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Abstract

The fuzzy fractional generalized FitzHugh-Nagumo differential equations (FFGFH-

NDEs) is a well-known and generalized model that plays a significant role in biologi-

cal systems, including complex synchronization in brain networks, cardiac dynamics,

propagation of signals through nerve impulses, and digital circuit theory. The analyt-

ical study of the FFGFH-NDEs is more complex and difficult to deal with. An effec-

tive and efficient technique is required to solve FFGFH-NDEs analytically. This arti-

cle introduces and investigates the analytical fuzzy solutions of FFGFH-NDEs using

fuzzy fractional Caputo generalized Hukuhara (FFCgH)-differentiability. The closed-

form solutions of FFGFH-NDEs for various cases and types of FFCgH-differentiability

are extracted for the homogeneous and nonhomogeneous case of the concerned

model. The potential solutions are determined using fuzzy Laplace transform (FLT)

and are presented in terms of multivariate Mittag-Leffler functions (MLFs). To high-

light the innovation of this work, the digital memristor networks problem is designed

and solved as an application of the proposed study including the graphical analysis to

understand the uncertain behavior of the proposed model.

1 Introduction

Over the last few decades, fractional differential equations (FDEs) have established
themselves as one of the most active and potential domains of discussion among
mathematicians because they are able to capture the non-integer behaviour of sys-
tems more accurately than the standard integer-order equations. The versatility of
FDEs allow them to take account of memory effects as well as heredity character-
istics, which means they are useful in a whole range of scientific and engineering
fields. All of these applications lie in the fields of physics, biology, chemistry, applied
mathematics and engineering. FDEs generate rigorous problems in computing their
analytical solutions, which calls for efficient and effective methods in their resolution.
The field of fractional calculus has thus registered some important developments,
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and there are many research articles which can be considered critical in improv-
ing the overall concept of the field. Some articles that made significant contributions
to the analysis include those of [1,2] and [3], which provided a good account of the
entire process.

Fuzzy differential equations with an integer and fractional order derivatives

All real-world physical problems are inherently uncertain and vague. However, due
to the presence of uncertainty, modelling and obtaining meaningful results from
this sort of problem can often be quite challenging. The science and engineering
domains, in most of their cases, depend on differential equations, which are con-
strained by very complex environmental factors. Newly formulated fuzzy differen-
tial equations (FDEs) have been formulated to address this complexity more effec-
tively. These FDEs are, however, inherently difficult to manage. Realistically, there
is very little data available about the variables and parameters of these systems, and
most of what is available is vague and lacking. This imprecision gives rise to mea-
surement, experiment or observation errors. To deal with this ambiguity and uncer-
tainty, researchers either use stochastic and statistical or interval and fuzzy methods.
Uncertainty in stochastic and probabilistic processes stems from natural randomness
and is conventionally expressed using a probability density function. Nevertheless,
this approach demands sufficient information on the variables and parameters for
an accurate estimate of the distribution. On the other hand, uncertainty arising from
incomplete or imprecise knowledge of variables and parameters is treated by means
of interval and fuzzy set theories. The objective of the development of these meth-
ods is to lighten the interval uncertainty present in computational and mathematical
models. The research articles [4,5] investigate the basic advancements in the field
of interval and fuzzy analysis. An innovative methodology for solving interval-valued
differential equations was proposed by Wang et al. [6] using the gH-derivative. The
FDEs are of major significance for modelling dynamic systems in the case of uncer-
tainty and vagueness when the boundaries are well known. The notion of FDEs was
first presented in 1978, but by 1982, the idea had matured considerably. This concept
is based on the fuzzy derivative, called the Dubois-Prade derivative [7]. Many fuzzy
derivatives have been defined such as Puri-Ralescu derivatives (H-derivative) [8];
Goetschel-Voxman derivative [9]; Seikala derivative (S-derivative) [10] and Friedman-
Ming-Kandel derivative [11]. However, the H-derivative and S-derivative are most
widely used in academic literature when dealing with continuous fuzzy valued func-
tions (FvFs). The Hukuhara difference (H-difference) [12] defines bounds of FvFs
through 𝔰-cut, while the S-derivative uses 𝔰-cut to define the lower and upper bounds
of FvFs. The study of the FDEs mainly proves the existence and uniqueness of
solutions, develops new solution methods, proposes diverse fuzzy derivatives, and
studies the featured equations from an understanding perspective. In [13], Kaleva
establishes the existence and uniqueness of solutions to FDEs. The non-decreasing
diameter of FvFs limits the H-derivative and S-derivative novelty. Therefore, such
derivatives have some limitations when used in real world problems related to FDEs.
To overcome these limitations, Zadeh [14] proposed the extension principle method
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as a solution for FDEs. An approach to study FDEs by mining popular homologous sequences has received a lot of atten-
tion, but does not define the fuzzy derivative. This area is novelized by the introduction of the same and reverse order
derivative. On the other hand, this derivative overcomes the shortcomings of the Hukuhara and Seikkala derivatives, while
keeping their strong relationship to the generalized forms of each. The strongly generalized Hukuhara derivative (SGH-
derivative) was introduced by Bede [15] for two cases of differentiability. The first form is very similar to the H-derivative,
while the second one takes care of the non-decreasing diameter of FvFs. This derivative is unique along with the switch-
ing points at which first form of differentiability switches to the second form in certain intervals. The SGH-derivative is
a major one that has been used in many important studies. This offers utility but the SGH-derivative suffers from the
same limitations as the H-difference, principally relying on it. As a result, it does not exists when the H-difference is
undefined.

The limitations of the SGH-derivative are tackled by the H-derivative, introduced by Bede and Stefanini [16]. Esmi et al.
[17] used strong linear independence to establish connections between H-derivative and the fuzzy derivative. The idea
of solving fuzzy fractional differential equations (FFDEs) has been introduced by Agarwal et al. [18] in 2010. This prob-
lem has hence drawn the attention of many researchers [19–21], in which many methods for solving FFDEs have been
developed. Different forms of derivatives such as Riemann-Liouville (RL), Caputo, Caputo-Fabrizio and conformable for
the FVFs have been proposed. The classical derivative is extended by these derivatives. Jeong [22] derived the existence
and uniqueness of FFDEs basing on RL-derivative. A solution method of the FFDEs is introduced by Salahshour et al.
[23] using the SGH-derivative and the fractional Laplace transform (FLT). Afterward, Akram et al. [24] provided analytical
solutions to the Langevin FFDEs using FLT. Many researchers [25–27] contributed a lot of work on the stochastic sys-
tems of time-variying differential equations. In a Pythagorean fuzzy environment, Akram et al. [28,29] extended the con-
cept of FFDEs and derive the solutions in terms of SGH-differentiability. In FFDEs, RL and Caputo derivatives are used
and they differ from one another in certain important aspects such as the zero result of the Caputo derivative of a constant
function does not exist but for the case of RL-derivative. There is also the fact that RL FFDEs have fractional order ini-
tial conditions while Caputo derivative needs integer order initial conditions. Based on integrating Caputo-derivative and
H-derivative, Allahviranloo et al. [30] introduced the concept of the FFDEs under the Caputo H-derivative.The existence
and uniqueness of FFDEs were examined by Arshad and Lupulescu [31]. The application of Schauder fixed point the-
orem established results for FFDEs by Agarwal et al. [32]. A special function plays an important role in fractional calcu-
lus theory such as MLF is of particular significance [33]. The concept of MLF is widely used to determine the analytical
solutions of the complex fuzzy fractional models. With the help of single variable, the concept of bivariate MLF (BVMLF)
and trivariate MLF (TVMLF) is presented in [34] to determine the solution of FDEs. Recently, MLF is further extended in
more than three variables by numerous authors [34,35] that leads to many applications in diverse mathematical domains
such as control theory and fractional calculus. Akram et al. [36] extended this concept and derived explicit analytic solu-
tions for systems of FFDEs with incommensurate orders. They further generalized this approach to obtain solutions for
coupled systems of FFDEs [37]. Allahviranloo et al. [38] broadened the concept of generalized differentiability and intro-
duced level-wise gH-differentiability for one-dimensional FvFs. They also applied artificial neural networks to solve frac-
tional integro-differential equations [39]. Akın et al. [40] developed a novel algorithm for solving second-order FFDEs.
Ghulam et al. [41] established the solution of fuzzy fractional generalized Bagley–Torvik equation using fuzzy Caputo
gH-differentiability. Ghulam et al. [42] introduced the solution of fuzzy Langevin fractional delay differential equations using
granular derivative. Ghulam et al. [43] proposed the bounded and symmetric solutions in dual form of fully bipolar fuzzy
linear systems. Akram et al. [44] developed the incommensurate non-homogeneous system of fuzzy linear fractional dif-
ferential equations. Solutions to FFDEs using the natural transform method and interactive derivatives are discussed
in [45,46]. An and Hoa [47] investigated the stability of controlled FFDEs using the Caputo derivative of random order.
Alinezhad and Allahviranloo [48] proposed a solution procedure for optimal control problems using the Caputo derivative
in a fuzzy setting. The FitzHugh-Nagumo differential equations (FH-NDEs) forms the key mathematical model in the class
of excitable systems, which is of widespread use in neuroscience and cardiac dynamics. FH-NDE is the simpler version of
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the more complex Hodgkin Huxley model for action potentials in a neurons. The FH-NDE explains how electrical signals
propagate through neurons, signal transmission, and synchronization in brain networks. The remarkable work has been
done by the researchers [49–52] on the neuromorphic networks based on memristor platform. Originally the FH-NDE was
developed in the 1960 by Richard FitzHugh and John Nagumo. However, the FH-NDE has emerged in one a numerous
domains such as applied mathematics, physics and neuroscience. The FH-NDEs is used to explain how electrical sig-
nals are transmitted along the neurons and the signals are transmitted and synchronized in the neural networks. More-
over, FH-NDE was analyzed by Devendra Kumar et al. [53], where a numerical scheme based on the combination of the
q-homotopy analysis method and the Laplace transform was applied. The conformable Sumudu decomposition method
was applied analytically to the FH-NDE by Suliman Alfaqeih and Emine Misirli [54]. Uma et al. [55] recently developed a
numerical method of solving stochastic partial FH-NDE model which occur in models of biological sciences. Yousif et al.
[56] presented a finite difference 𝛽-fractional method of solving the time-fractional FH-NDE.

Motivation and contribution

The fractional FH-NDE (FFH-NDE) has also attracted considerable attention due to its ability to represent real world
physical phenomena like, signal transmission, synchronization in brain networks and cardiac dynamics. The solution of
FFH-NDE neurons model was studied by Shaher Momani et al. [57] using the multi-step generalized differential trans-
form method. Using homotopy perturbation transform technique, Amit Prakash and Hardish Kaur [58] studied FFH-NDE.
The fractional reduced differential transform method was applied by Ramani et al. [59] to solve the FFH-NDE. Akinnukawe
et al. [60] described a hybrid second derivative two step algorithm in numerical integration for the solution of non linear
FH-NDE. The FFH-NDEs have attained the attention because of their capability to model real life physical phenomena
such as signal transmission, synchronization within brain networks and cardiac dynamics. All above techniques only pro-
vide the solutions of FFH-NDEs for exact initial conditions and data without uncertainty. Fan et al. [61] established the
semi-analytical solution of time FFH-NDE using semi-analytical techniques. The previous study motivated us to develop
the FFGFH-NDEs, a generalized model that plays a significant role in biological systems such as complex synchronization
in brain networks, cardiac dynamics, propagation of signals through neurons and to digital circuit theory. Mathematically,
the FFGFH-NDEs are formulated as a reaction-diffusion equation, expressed in the form:

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ 𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)] = 0,

𝕊(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯),

𝕊′(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯),

(1)

where [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) represents the CFFgH-derivatives of FVF 𝕊(𝔯, 𝔨) having orders 0 < 𝛾 ≤ 1 and

0 ≤ 𝜍 ≤ 2 respectively. The initial conditions 𝕊(𝔯,0) and 𝕊′(𝔯,0) represent triangular FVFs with respect to spatial variable 𝔯.
The FFGFH-NDEs act as an extension of classical FFH-NDEs in the fuzzy environments, where the CFFgH-derivatives of
𝕊(𝔯, 𝔨) deals with the memory effects in time, the orders 𝜍 and 𝛾 of the fractional derivatives control the memory strength,
fuzzy threshold function 𝜓 acts as a control function with the graded values ranging with in [0,1] and the initial conditions
as an triangular FVFs helps to investigates how uncertainty propagates through fractional derivatives and non-linear
dynamics. The FFGFH-NDE, a prominent and generalized reaction-diffusion model which is widely employed in describ-
ing nerve impulse transmission and digital memristors netwoks. It serves as a system for bifurcations, stability and chaotic
behavior in dynamical systems and to understand how complex behavior arises from simple rules. The fuzzy fractional
FitzHughNagumo equations are extensions of neurodynamical models that allow an expression of uncertainty with initial
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states that are fuzzy, memory effect formulation using a fractional operator, and the maintenance of nonlinear excitability
provided by cubic FHN structure, providing a strong and biologically natural of a system that can be used when creating
a framework of neuronal behavior under variability and long-term memory interactions. The novelty of FFGFH-NDEs is
presented as follows:

(i). The novel and generalized model of FFGFH-NDEs is established with initial conditions as the triangular fuzzy valued
functions.

(ii). The generalized results in the form of theorems are presented in order to determine the fuzzy solutions of the
FFGFH-NDEs under different types of FFCgH differentiability.

(iii). An effective and efficient schematic technique is developed for determining the analytical fuzzy solutions of FFGFH-
NDEs.

(iv). The fuzzy solutions of FFGFH-NDEs are constructed using the FFCgH differentiability along with FLT in the form
of multivariate MLFs. Furthermore, the fuzzy solutions of FFGFH-NDEs are discussed for different values of 𝜓 and
fractional orders 𝛾 and 𝜍.

(v). The graphical illustration of analytical fuzzy solutions as the multivariate Mittag-Leffler functions is presented to
understand the complexity and novelty of our work.

(vi). The comparative analysis of the fuzzy solutions with the existing techniques of crisp solutions of the proposed model
is presented in order to validate the innovation and better understanding of the fuzzy solutions of FFGFH-NDEs.

(vii). To highlight the innovation of this work, the real-world application of FFGFH-NDEs in digital memristor networks is
designed through proper correspondence and analyzed by various parameters.

The rest of the article is designed: Sect 2 summarizes some important concepts and results of special functions and
fuzzy fractional calculus. With the aid of MLF, the analytical solution scheme to the FFGFH-NDEs along with some impor-
tant results are developed in Sect 3. To validate the main results of Sect 3, illustrative examples are presented in Sect 4.
Also, for particular values of 𝜓 such as 𝜓 = 1,0 and fractional orders 𝛾; 𝜍, some examples are presented in this Section.
Sect 5 addresses real-world applications of FFGFH-NDEs in digital memristor networks to demonstrate the original-
ity of the proposed approach along with the graphical representation. Finally, Sect 6 concludes the paper and sketches
avenues for future research.

2 Preliminaries

This section covers the very basic concepts and definitions of fuzzy fractional calculus, FLT, and MLF, which is an integral
part of fuzzy fractional calculus. The notations used throughout this article are given in Table 1.

Definition 1. [62] Suppose that ℝ denotes the real line. A fuzzy set q on the real line ℝ is characterized by rule of
membership q ∶ [𝔰, 𝔡] ⊂ ℝ⟶[0,1] with the conditions that q is bounded support, upper semi-continuous and convex.
Through ♮ℝ, we define the collection of fuzzy numbers on ℝ. The 𝔫-cut of q is symbolized as [q]𝔫 and is defined in two
cases: If 𝔫 ∈ (0,1], then [q]𝔫 = {x ∈ ℝ ∶ q(x) ≥ 𝔫}. For specific case, if 𝔫 = 0, then [q]𝔫 = cl(supp q) . It can be defined in
parametric form as: [q]𝔫 = [q(𝔫),q(𝔫)].

Definition 2. [8] Suppose that q1,q2 ∈ ♮ℝ. The H-difference of FNs q1 and q2 denoted by q1 ⊖ q2 is defined as follows:

q1 = q2 ⊕ q3

with the condition that there exists q3 ∈ ♮ℝ.
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Table 1. Table of notations.

Notations Representation
FLT Fuzzy Laplace Transform
FFI Fuzzy Fractional Integral
FDEs Fuzzy Differential Equations
♮ℝ The class of fuzzy numbers on ℝ
FDEs Fractional Differential Equations
UVMLF Univariate Mittag-Leffler functions
BVMLF Bivariate Mittag-Leffler functions
TVMLF Trivariate Mittag-Leffler functions
𝒞♮ℝ(0, 𝔲) The family of continuous FVFs on (0, 𝔲)
FFDEs Fuzzy Fractional Differential Equations
IFFLT Inverse Fuzzy Fractional Laplace Transform
ℒ♮ℝ(0, 𝔲) The class of Lebesgue integrable FVFs on (0, 𝔲)
FFH-NDEs Fractional FitzHugh-Nagumo differential equations
C1((0, 𝔲), ♮ℝ) The class of gH-differentiable and continuous FVFs on (0, 𝔲)
FFGFH-NDEs Fuzzy Fractional Generalized FitzHugh-Nagumo differential equations

https://doi.org/10.1371/journal.pone.0339866.t001

Definition 3. [63] Let q1,q2 ∈ ♮ℝ, then the generalized H-difference of FNs denoted by q1 ⊖gH q2 for q3 ∈ ♮ℝ is defined
by

q1 ⊖gH q2 = q3 ⟺{
(1) q1 = q2 ⊕ q3,

or (2) q1 = q2 ⊖ (−1)q3,

where the Minkovski addition of q1 and q2 is denoted by ⊕.

Suppose that 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ is a FVF. The reader is referred [16] to understand the fundamental concepts of continu-
ity, limit and gH-differentiability of first form (F⋇−F⋇) and second form (S⊛−F⋇) of FVF. Through C1((0, 𝔲), ♮ℝ), we denote
the class of all the gH-differentiable and continuous FVFs on (0, 𝔲). For 𝕊 ∈ C1((0, 𝔲), ♮ℝ), the reader is also referred [64]
to investigate the RL integral and CF- derivative. In this paper, we denote the class of all Lebesgue integrable and contin-
uous FVFs on (0, 𝔲) by ℒ♮ℝ(0, 𝔲) and 𝒞♮ℝ(0, 𝔲) respectively.

Definition 4. [30] Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ, where 𝕊 ∈ℒ♮ℝ(0, 𝔲) ∩𝒞♮ℝ(0, 𝔲) be a FVF, then the CFF- derivative of 𝕊(𝔯) of
fractional order 𝜇 ∈ (0,1) is given by:

CF
gH𝔇

𝜇
+𝕊(𝔯) =

1
Γ(1 − 𝜇) ∫

𝔯

0

(𝔯 − 𝔨)−𝜇⊙𝕊′
gH(𝔨)d𝔨. (2)

For 𝜇 ∈ (1,2), the CFF- derivative of 𝕊(𝔯) is related as:

CF
gH𝔇

𝜇
+𝕊(𝔯) =

1
Γ(2 − 𝜇) ∫

𝔯

0

(𝔯 − 𝔨)1−𝜇⊙𝕊′
gH(𝔨)d𝔨. (3)

Definition 5. [34] Let 𝕊 ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲), then BVMLF with 𝔡1, 𝔡2, 𝔡3, 𝜔 ∈ ℂ as its parameters and Re(𝔡1),Re(𝔡2),
Re(𝔡3) > 0 is defined as

E𝜔
𝔡1,𝔡2,𝔡3(𝔯1, 𝔯2) =

∞
∑
̃i=0

∞
∑
̃j=0

(𝜔) ̃i+ ̃j𝔯
̃j
1𝔯

̃j
2

Γ( ̃i𝔡1 + ̃j𝔡2 + 𝔡3) ̃i! ̃j!
. (4)
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Using 𝜔 = 1 and 𝔯1, 𝔯2 as power functions, then UVMLF is related as

𝔯𝔡3−1E1
𝔡1,𝔡2,𝔡3(𝜉𝔯

𝔡1 , 𝜚𝔯𝔡2) =
∞
∑
̃i=0

∞
∑
̃j=0

( ̃i + ̃j)!
̃j! ̃i!

𝜉 ̃j𝜚 ̃j

Γ( ̃i𝔡1 + ̃j𝔡2 + 𝔡3) ̃i! ̃j!
𝔯 ̃i𝔡1+ ̃j𝔡2+𝔡3−1. (5)

For UVMLF, the FFI is defined as follows:

(
a
I
𝜔;𝜉,𝜚
𝔡1,𝔡2,𝔡3𝕊)(𝔯) =∫

𝔯

0

(𝔯 − 𝜏)𝔡3−1E𝜔
𝔡1,𝔡2,𝔡3(𝜉(𝔯 − 𝜏)𝔡1 , 𝜚(𝔯 − 𝜏)𝔡2) ⊙ 𝕊(𝜏)d𝜏, for 𝔯 > 0. (6)

Definition 6. [65] Let 𝕊 ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲), then a TVMLF with 𝔡1, 𝔡2, 𝔡3, 𝔡4, 𝜔 ∈ ℂ as its five parameters and
Re(𝔡1), Re(𝔡2), Re(𝔡3) > 0 is given by

E𝜔
𝔡1,𝔡2,𝔡3,𝔡4(𝔯1, 𝔯2, 𝔯3) =

∞
∑
̃i=0

∞
∑
̃j=0

∞
∑
k̃=0

(𝜔) ̃i+ ̃j+k̃𝔯
̃j
1𝔯

̃j
2𝔯k̃3

Γ( ̃i𝔡1 + ̃j𝔡2 + k̃𝔡3 + 𝔡4) ̃i! ̃j!k̃!
. (7)

Suppose that 𝔯1 = 𝜉𝔯𝔡1 , 𝔯2 = 𝜚𝔯𝔡2 , 𝔯3 = 𝜎𝔯𝔡3 , then the Eq (7) reduces in UVMLF as follows

𝔯𝔡4−1E𝜔
𝔡1,𝔡2,𝔡3,𝔡4(𝜉𝔯

𝔡1 , 𝜚𝔯𝔡2 , 𝜎𝔯𝔡3) =
∞
∑
̃i=0

∞
∑
̃j=0

∞
∑
k̃=0

(𝜔) ̃i+ ̃j+k̃𝜉
̃j𝜚 ̃j𝜎k̃

Γ( ̃i𝔡1 + ̃j𝔡2 + k̃𝔡3 + 𝔡4) ̃i! ̃j!k̃!
𝔯 ̃i𝔡1+ ̃j𝔡2+k̃𝔡3+𝔡4−1. (8)

Substituting 𝜔 = 1 in Eq (8), one gets UVMLF as a special case of TVMLF

𝔯𝔡4−1E1
𝔡1,𝔡2,𝔡3,𝔡4(𝜉𝔯

𝔡1 , 𝜚𝔯𝔡2 , 𝜎𝔯𝔡3) =
∞
∑
̃i=0

∞
∑
̃j=0

∞
∑
k̃=0

( ̃i + ̃j + k̃)!
̃i! ̃j!k̃!

𝜉 ̃j𝜚 ̃j𝜎k̃
Γ( ̃i𝔡1 + ̃j𝔡2 + k̃𝔡3 + 𝔡4)

𝔯 ̃i𝔡1+ ̃j𝔡2+k̃𝔡3+𝔡4−1. (9)

For TVMLF, the FFI in univariate form is defined as follows:

(
a
I
𝜔;𝜉,𝜚,𝜎
𝔡1,𝔡2,𝔡3,𝔡4𝕊)(𝔯) =∫

𝔯

0

(𝔯 − 𝜏)𝔡3−1E𝜔
𝔡1,𝔡2,𝔡3,𝔡4(𝜉(𝔯 − 𝜏)𝔡1 , 𝜚(𝔯 − 𝜏)𝔡2 , 𝜎(𝔯 − 𝜏)𝔡3) ⊙ 𝕊(𝜏)d𝜏, for 𝔯 > 0, (10)

where 𝔡1, 𝔡2, 𝔡3, 𝔡4, 𝜔, 𝜉, 𝜚, 𝜎 ∈ ℂ provided that Re(𝔡1), Re(𝔡2), Re(𝔡3), Re(𝔡4) > 0. Setting 𝜔 = 0, the Eq (10) reduces to
RL integral having order 𝔡4 as

(
a
I
𝜔;𝜉,𝜚,𝜎
𝔡1,𝔡2,𝔡3,𝔡4𝕊)(𝔯) =

∞
∑
̃i=0

∞
∑

∞
∑
k=0

(𝜔) ̃i+ ̃j+k𝜉 j𝜚j𝜎k
i!j!k! (Ii𝔡1+ ̃j𝔡2+k𝔡3+𝔡4

a+ 𝕊)(𝔯). (11)

Definition 7. [66] Let 𝕊 ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲) provided that 𝕊(𝔯) ⊙ e−𝜑𝔯 is improper integrable on the interval [0,∞),
then the FLT denoted by L[𝕊(𝔯)] is defined by

L[𝕊(𝔯)] =∫
∞

0

𝕊(𝔯) ⊙ e−𝜑𝔯d𝔯. (12)
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In 𝔰-cut form, Eq (12) can be expressed as follows

∫
∞

0

𝕊(𝔯) ⊙ e−𝔨𝔯d𝔯 = [∫
∞

0

𝕊−(𝔯; 𝔰)e−𝔨𝔯d𝔯,∫
∞

0

𝕊+(𝔯; 𝔰)e−𝔨𝔯d𝔯], (13)

where

L[𝕊−(𝔯; 𝔰)] =∫
∞

0

𝕊−(𝔯; 𝔰)e−𝔨𝔯d𝔯 ; L[𝕊+(𝔯; 𝔰)] =∫
∞

0

𝕊+(𝔯; 𝔰)e−𝔨𝔯d𝔯. (14)

The linearity property of FLT L on the FVFs 𝕊(𝔯) and 𝔡(𝔯) is defined as follows:

Lemma 1. [66] Let 𝕊(𝔯), 𝔡(𝔯) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲) and x,w ∈ ℝ. Then

L[x⊙𝕊(𝔯) ⊕ w⊙ 𝔡(𝔯)] = x⊙ L[𝕊(𝔯)] ⊕ w⊙ L[𝔡(𝔯)]. (15)

Theorem 8. [66] Let 𝕊(𝔯) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲) be a FVF and ♮ ∈ ℝ, then

(𝕊 ⋆ ♮)(𝔯) =∫
𝔯

0

𝕊(𝔨) ⊙ ♮(𝔯 − 𝔨)d𝔨. (16)

The FLT of (𝕊 ⋆ ♮)(𝔯) is given by

L[(𝕊 ⋆ ♮)(𝔯)] = L[𝕊(𝔯)] ⊙ L[♮(𝔯)]. (17)

Theorem 9. [35] Suppose that 𝜇2 < 𝜇1, 𝜇3 < 𝜇1, where 𝜇, 𝔱 ∈R and 0 < Re(𝔪), then the IFFLT and MLF are related
by the following result

L−1[ 𝔪𝜇3

𝔪𝜇1 − 𝜇𝔪𝜇2 − 𝔱](𝔨) = 𝔨𝜇1−𝜇3−1E𝜇1,𝜇1−𝜇2,𝜇1−𝜇3(𝔱𝔨𝜇1 , 𝜇𝔨𝜇1−𝜇2). (18)

Corollary 1. [35] Given any 𝔯 ∈R and 𝜇1, 𝜇2, 𝜇3, 𝜇, 𝔱 ∈R provided that 0 < 𝜇1, 𝜇2, 𝜇3 − 1 > ⌊𝜇1⌋, we have

CF
gH𝔇

𝜇1
+ [𝔯𝜇3−1E𝜇1,𝜇2,𝜇3(𝔱𝔯𝜇1 , 𝜇𝔯𝜇2)] = 𝔯𝜇3−𝜇1−1E𝜇1,𝜇2,𝜇3−𝜇1(𝔱𝔯𝜇1 , 𝜇𝔯𝜇2). (19)

Theorem 10. [35] Given any 𝜇1, 𝜇2, 𝜇3 ∈ ℝ and 0 < 𝜇1, 𝜇2. The FFI corresponding to UVMLF is defined by the follow-
ing expression:

(I1;𝔱,𝜇𝜇1,𝜇2,𝜇3𝔡)(𝔯) =∫
𝔯

0

(𝔯 − 𝔰)𝜇1−1E1
𝜇1,𝜇2,𝜇3(𝔱(𝔯 − 𝔰)𝜇1 , 𝜇(𝔯 − 𝔰)𝜇1−𝜇2) ⊙ 𝔡(𝔰)d𝔰.

3 Fuzzy fractional generalized FitzHugh-Nagumo differential equations

Let 𝕊(𝔯, 𝔨) be a Lebesgue integrable and continuous FVF on (0, 𝔲) such that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that
𝕊(𝔯, 𝔨) represents a fuzzy valued transmembrane function of space and time variables 𝔯 and 𝔨 respectively. For the fuzzy
threshold function 𝜓 ∶ ℝ⟶[0,1] and the fuzzy initial conditions 𝕊0 and 𝕊

′
0 with respect to spatial variable 𝔯 and time
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variable 𝔨 = 0, the FFGFH-NDEs are developed as:

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ 𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)] = 0,

𝕊(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) 0 < 𝔯 < 1,

𝕊′(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) 0 < 𝔯 < 1,

(20)

where [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) represents the CFFgH-derivatives of FVF 𝕊(𝔯, 𝔨) having orders 0 < 𝛾 ≤ 1 and

0 ≤ 𝜍 ≤ 2 respectively. The initial conditions 𝕊(𝔯,0) and 𝕊′(𝔯,0) represent triangular FVFs with respect to spatial variable 𝔯.
The FFGFH-NDEs act as an extension of classical FFH-NDEs in the fuzzy environments, where the CFFgH-derivatives of
𝕊(𝔯, 𝔨) deals with the memory effects in time, the orders 𝜍 and 𝛾 of the fractional derivatives control the memory strength,
fuzzy threshold function 𝜓 acts as a control function with the graded values ranging with in [0,1] and the initial conditions
as an triangular FVFs helps to investigates how uncertainty propagates through fractional derivatives and non-linear
dynamics. We present some necessary theorems that will play a key role in solving the FFGFH-NDE. First, we present a
theorem dealing with different types of FLT of CF

gH𝔇2
+𝕊(𝔯, 𝔨), which play a significant role for obtaining the results of gener-

alized FFCgH-derivatives of FVF 𝕊(𝔯, 𝔨). Moreover, we develop the results of FLT of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) under

the types of fuzzy differentiability for the fractional order 1 < 𝜍 ≤ 2.

Theorem 11. Suppose that a FVF 𝕊(𝔯, 𝔨) is primitive provided that e𝔪𝔨⊙𝕊(𝔯, 𝔨), e𝔪𝔨⊙CF
gH𝔇+𝕊(𝔯, 𝔨) and e𝔪𝔨⊙CF

gH𝔇2
+𝕊(𝔯, 𝔨)

are continuous and fuzzy Riemann integrable on the interval [0,∞), then the following results arise

(a) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then

L[CF
gH𝔇2

+𝕊(𝔯, 𝔨)](𝔪) = {𝔪2 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪⊙𝕊(𝔯, 0)} ⊖ 𝕊′(𝔯,0)). (21)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇, then

L[CF
gH𝔇2

+𝕊(𝔯, 𝔨)](𝔪) = −𝕊′(𝔯,0) ⊖ {(−𝔪2 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)) ⊖ (−𝔪⊙ 𝕊(𝔯, 0))}. (22)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇, then

L[CF
gH𝔇2

+𝕊(𝔯, 𝔨)](𝔪) = {(−𝔪⊙ 𝕊(𝔯, 0)) ⊖ (−𝔪2 ⊙ L[𝕊(𝔯, 𝔨)](𝔪))} ⊖ 𝕊′(𝔯,0)). (23)

(d) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then

L[CF
gH𝔇2

+𝕊(𝔯, 𝔨)](𝔪) = (−𝕊′(𝔯,0)) ⊖ {(−𝔪⊙ 𝕊(𝔯, 0)) ⊖𝔪2 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)}. (24)

Proof 12. It is easy to prove the results of cases (a), (b), (c) and (d), therefore left as an exercise. □
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Theorem 13. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ provided that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) follows piece-

wise continuity on the interval [0,∞) and 𝕊 is of exponential order 𝜍 > 0 provided that 𝜍 < Re(𝔪), then the following cases
arises:

(a) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then FFLT of CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = {𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪𝜍−1 ⊙𝕊(𝔯, 0)} ⊖ (𝔪𝜍−2 ⊙𝕊′(𝔯,0)). (25)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇, then FFLT

of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = (−𝔪𝜍−2 ⊙𝕊′(𝔯,0)) ⊖ {(−𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)) ⊖ (−𝔪𝜍−1 ⊙𝕊(𝔯, 0))}. (26)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇, then FFLT

of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = {(−𝔪𝜍−1 ⊙𝕊(𝔯, 0)) ⊖ (−𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪))} ⊖ (𝔪𝜍−2 ⊙𝕊′(𝔯,0)). (27)

(d) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then FFLT of CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = (−𝔪𝜍−2 ⊙𝕊′(𝔯,0)) ⊖ {𝔪𝜍−1 ⊙𝕊(𝔯, 0) ⊖𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)}. (28)

Proof 14. (a). Suppose that 𝕊(𝔯, 𝔨) and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then from Eq (3), Defi-

nition 7 and convolution theorem of [67]

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = 1

Γ(2 − 𝜍) ⊙ L[𝔨1−𝜍] ⊙ L[CF
gH𝔇2

+𝕊(𝔯, 𝔨)](𝔪). (29)

From Eqs (21) and (29), we obtain

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = 1

Γ(2 − 𝜍) ⊙ L[𝔨1−𝜍] ⊙ {𝔪2 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪⊙𝕊(𝔯, 0)} ⊖ 𝕊′(𝔯,0)) (30)

Using the Eq (21) and setting
1

Γ(2−𝜍)
⊙ L[𝔨1−𝜍] = 𝔪𝜍−2 in Eq (30), we obtain the required result as follows

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = {𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪𝜍−1 ⊙𝕊(𝔯, 0)} ⊖ (𝔪𝜍−2 ⊙𝕊′(𝔯,0)). (31)

The results of cases (b), (c) and (d) can be proved in the similar way. □

Theorem 15. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ provided that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) follows

piecewise continuity on the interval [0,∞) and 𝕊 is of exponential order provided that 1 < 𝜍 ≤ 2, then the following cases
arises:
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(a) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then FFLT of CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) provided that

1 < 𝜍 ≤ 2 is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = {𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪𝜍−1 ⊙𝕊(𝔯, 0)} ⊖ (𝔪𝜍−2 ⊙𝕊′(𝔯,0)). (32)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇, then FFLT

of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) provided that 1 < 𝜍 ≤ 2 is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = (−𝔪𝜍−2 ⊙𝕊′(𝔯,0)) ⊖ {(−𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)) ⊖ (−𝔪𝜍−1 ⊙𝕊(𝔯, 0))}. (33)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇, then FFLT

of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) provided that 1 < 𝜍 ≤ 2 is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = {(−𝔪𝜍−1 ⊙𝕊(𝔯, 0)) ⊖ (−𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪))} ⊖𝔪𝜍−2 ⊙𝕊′(𝔯,0). (34)

(d) If a FVF 𝕊(𝔯, 𝔨) and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then FFLT of CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) provided that

1 < 𝜍 ≤ 2 is related as

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = −𝔪𝜍−2 ⊙𝕊′(𝔯,0) ⊖ {𝔪𝜍−1 ⊙𝕊(𝔯, 0) ⊖ (𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)])(𝔪)}. (35)

Proof 16. For any 𝔰 provided that 0 ≤ 𝔰 ≤ 1, the 𝔰-cut form of FFLT of CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is related as

[L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪)]

𝔰
= [L[(CF

gH𝔇
𝜍
+𝕊)−𝔰 (𝔯, 𝔨)](𝔪), [L[(CF

gH𝔇
𝜍
+𝕊)+𝔰 (𝔯, 𝔨)](𝔪)]. (36)

(b). Suppose that 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇,

then

[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)]

𝔰
= [CF

gH𝔇
𝜍
+𝕊+𝔰 (𝔯, 𝔨), CF

gH𝔇
𝜍
+𝕊−𝔰 (𝔯, 𝔨)]. (37)

Applying FFLT on Eq (37), we deduce that

[L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪)]

𝔰
= [L[(CF

gH𝔇
𝜍
+𝕊+𝔰 )(𝔯, 𝔨)](𝔪), L[(CF

gH𝔇
𝜍
+𝕊−𝔰 )(𝔯, 𝔨)](𝔪)]. (38)

From Eqs (26) and (38), we have

[L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪)]

𝔰
= [(−𝔪𝜍−2 ⊙𝕊+𝔰

′(𝔯,0)) ⊖ {(−𝔪𝜍 ⊙ L[𝕊+𝔰 (𝔯, 𝔨)](𝔪)) ⊖ (−𝔪𝜍−1

⊙𝕊+𝔰 (𝔯,0))}, (−𝔪𝜍−2 ⊙𝕊−𝔰
′(𝔯,0)) ⊖ {(−𝔪𝜍 ⊙ L[𝕊−𝔰 (𝔯, 𝔨)](𝔪)) ⊖ (−𝔪𝜍−1 ⊙𝕊−𝔰 (𝔯,0))}]. (39)

PLOS One https://doi.org/10.1371/journal.pone.0339866 February 3, 2026 11/ 49

https://doi.org/10.1371/journal.pone.0339866


i
i

“pone.0339866” — 2026/2/3 — 19:02 — page 12 — #12 i
i

i
i

i
i

Rearranging the Eq (39) and using the fact that CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇, we obtain

L[CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨)](𝔪) = (−𝔪𝜍−2 ⊙𝕊′(𝔯,0)) ⊖ {(−𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)) ⊖ (−𝔪𝜍−1 ⊙𝕊(𝔯, 0))}.

The results of cases (a), (c) and (d) can also be proved in the similar fashion, therefore left as an exercise. □

Theorem 17. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ provided that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞) and 𝕊 is of exponential orders 𝜍, 𝛾 respectively provided

that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, then the following solutions of system (1) arises:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾)⊖

(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (40)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (41)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,𝜍−𝛾+1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (42)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form
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𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,𝜍−𝛾+2

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (43)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (44)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , −𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2

(𝜓𝔨𝜍 , −𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , −𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (45)

Proof 18. Suppose that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Consider the FFGFH-NDE problem as follows:

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ 𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)] = 0,

𝕊(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯),

𝕊′(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯),

(46)

Now applying FFLT to problem (46), we have

L[[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ 𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)]] = 0 (47)

By Lemma 1, the aforementioned Eq (47) reduces as follows:

L[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ L[CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ L[𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)]] = 0. (48)
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(a) Suppose that FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then from Eqs (25)

and (48), we have

{𝔪𝜍 ⊙ L[𝕊(𝔯, 𝔨)](𝔪) ⊖𝔪𝜍−1 ⊙𝕊(𝔯, 0)} ⊖ (𝔪𝜍−2 ⊙𝕊′(𝔯,0)) ⊖ {𝔪𝛾 ⊙ L[𝕊(𝔯, 𝔨)](𝔪)⊖

𝔪𝛾−1 ⊙𝕊(𝔯, 0)} ⊕ L[ − 𝜓 ⊙ 𝕊(𝔯, 𝔨) ⊕ 𝕊∗(𝔯, 𝔨)] = 0, (49)

where 𝕊∗(𝔯, 𝔨) = (1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨) is a nonlinear function. From lemma 1 and Theorem 8, Eq (49) implies

L[𝕊(𝔯, 𝔨)](𝔪) = 𝔪𝜍−1 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯)
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊕ (𝔪𝜍−2 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯))

𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖

(𝔪𝛾−1 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯))
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖ 1

𝔪𝜍 −𝔪𝛾 − 𝜓 ⊙ L[𝕊∗(𝔯, 𝔨)](𝔪). (50)

From Theorem 9, Eq (50) implies

L[𝕊(𝔯, 𝔨)](𝔪) = 𝔪𝜍−1 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯)
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊕ (𝔪𝜍−2 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯))

𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖

(𝔪𝛾−1 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯))
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖ L[𝔨𝜍−1E𝜍,𝜍−𝛾,𝜍(𝜓𝔨𝜍 , 𝔨𝜍−𝛾)](𝔪) ⊙ L[𝕊∗(𝔯, 𝔨)](𝔪). (51)

Applying Theorem 8 on Eq (51), we obtain

L[𝕊(𝔯, 𝔨)](𝔪) = 𝔪𝜍−1 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯)
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊕ (𝔪𝜍−2 ⊙ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯))

𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖ (𝔪𝛾−1⊙

(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯))
𝔪𝜍 −𝔪𝛾 − 𝜓 ⊖ L[∫

𝔨

0

(𝔨 − 𝔰)𝜍−1
E𝜍,𝜍−𝛾,𝜍(𝜓(𝔨 − 𝔰)𝜍 , (𝔨 − 𝔰)𝜍−𝛾) ⊙ 𝕊∗(𝔯, 𝔰)d𝔰](𝔪). (52)

Using IFFLT and Theorem 9, we deduce

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾)

⊖(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖∫
𝔨

0

(𝔨 − 𝔰)𝜍−1
E𝜍,𝜍−𝛾,

𝜍(𝜓(𝔨 − 𝔰)𝜍 , (𝔨 − 𝔰)𝜍−𝛾) ⊙ 𝕊∗(𝔯, 𝔰)d𝔰. (53)
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The most general form of the solution is obtained by using Theorem 10 in Eq (53) as follows

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾)⊖

(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨).

The rest of the parts (b),(c), (d), (e), and (f ) can be proved in a similar way as mentioned in Part (a). □

Theorem 19. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ provided that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞) and 𝕊 is of exponential orders 𝜍, 𝛾 respectively where

1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1 provided that 𝜓 = 1, then the following solutions of system (1) arises:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾)⊖

(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(I1;−1,1
𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 2𝕊2(𝔯, 𝔨)])(𝔨). (54)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨)⊖

2𝕊2(𝔯, 𝔨)](𝔨). (55)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾)⊕

(−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 2𝕊2(𝔯, 𝔨)])(𝔨). (56)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, then the system (1) has solution of the form
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𝕊(𝔯, 𝔨) = (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝔨𝜍 ,

𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1((−1)𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨)

⊖2𝕊2(𝔯, 𝔨)])(𝔨). (57)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 ,

𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (58)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , −𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2

(𝔨𝜍 , −𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , −𝔨𝜍−𝛾) ⊖ (I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨)

⊖𝕊3(𝔯, 𝔨)])(𝔨). (59)

Proof 20. This theorem can be proved on the similar way as Theorem 17 with the condition that 𝜓 = 1. □

Theorem 21. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ provided that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞) and 𝕊 is of exponential orders 𝜍, 𝛾 respectively where

1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1 provided that 𝜓 = 0, then the following solutions of system (1) arises:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, the system (1) has solution of the form
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𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1

(0, 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊕ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 𝕊2(𝔯, 𝔨)])(𝔨). (60)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾)

⊕(−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊕ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 𝕊2(𝔯, 𝔨)])(𝔨). (61)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾)

⊕(−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊕ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 𝕊2(𝔯, 𝔨)])(𝔨). (62)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

where 1 < 𝜍 ≤ 2;0 < 𝛾 ≤ 1, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊖ (𝕊1,

𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊕ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊3(𝔯, 𝔨) ⊖ 𝕊2(𝔯, 𝔨)])(𝔨). (63)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾)

⊖(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊖ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (64)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 0 < 𝛾 ≤ 1, the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, −𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨E𝜍,𝜍−𝛾,2(0, −𝔨𝜍−𝛾)

⊕(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, −𝔨𝜍−𝛾) ⊖ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (65)
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Proof 22. This theorem can be proved on the similar way as Theorem 17 with the condition that 𝜓 = 0. □

Theorem 23. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ such that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that 𝕊(𝔯, 𝔨), [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞), where 𝜍 and 𝛾 are exponential orders provided that

1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, then the system (1) contains the following cases of solution:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)⊙

𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (66)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3)⊙

̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(−𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (67)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)

⊙𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (68)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as
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𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯)

⊙𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (69)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)⊙

𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (70)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3)

⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝜓𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;𝜓,1𝜍,𝜍−𝛾,𝜍[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (71)

Proof 24. The proof is on the similar steps as mentioned in Theorem 17. □

Theorem 25. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ such that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that 𝕊(𝔯, 𝔨), [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞), where 𝜍 and 𝛾 are exponential orders provided that

1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2 with 𝜓 = 1, then the system (1) contains the following cases of solution:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)⊙

𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (72)
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(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)

⊙𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (73)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3)⊙

̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (74)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3)⊙

̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (75)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1

⊙E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (76)
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(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3)⊙

̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(𝔨𝜍 , 𝔨𝜍−𝛾) ⊕ (−1)(I1;1,1𝜍,𝜍−𝛾,𝜍[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (77)

Proof 26. The proof is on the similar steps as mentioned in Theorem 19. □

Theorem 27. Let 𝕊 ∶ (0, 𝔲)⟶ ♮ℝ such that 𝕊(𝔯, 𝔨) ∈ ℂ♮ℝ(0, 𝔲) ∩ L♮ℝ(0, 𝔲). Suppose that 𝕊(𝔯, 𝔨), [CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) and

[CF
gH𝔇

𝛾
+𝕊](𝔯, 𝔨) follow piecewise continuity on the interval [0,∞), where 𝜍 and 𝛾 are exponential orders provided that

1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2 with 𝜓 = 0, then the system (1) contains the following cases of solution:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1

⊙E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊖ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (78)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)

⊙𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊕ (−1)(I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (79)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is
given as
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𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1

(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)⊙

𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊕ (−1)(I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (80)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then for exponential orders 𝜍, 𝛾

such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊖ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2

(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯)⊙

𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊖ (I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (81)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1

(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊖ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯)⊙

𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊕ (−1)(I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (82)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then for exponential orders 𝜍, 𝛾 such that 1 < 𝜍 ≤ 2 and 1 < 𝛾 ≤ 2, the system (1) has solution which is given as

𝕊(𝔯, 𝔨) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯) ⊙ E𝜍,𝜍−𝛾,1(0, 𝔨𝜍−𝛾) ⊕ (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨 ⊙ E𝜍,𝜍−𝛾,2

(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) ⊙ 𝔨𝜍−𝛾+1 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+2(0, 𝔨𝜍−𝛾) ⊕ (−1)(𝕊1, 𝕊2, 𝕊3)⊙

̃ℓ(𝔯) ⊙ 𝔨𝜍−𝛾 ⊙ E𝜍,𝜍−𝛾,𝜍−𝛾+1(0, 𝔨𝜍−𝛾) ⊕ (−1)(I1;0,1𝜍,𝜍−𝛾,𝜍[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (83)

Proof 28. The proof is on the similar steps as mentioned in Theorem 21. □
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Structure of Solution

The steps of finding the analytical solution of FFGFH-NDEs model with the given initial conditions are discussed as:

1. Consider the problem of FFGFH-NDEs (1) with the specified initial conditions in fuzzy environment.
2. Applying the FFLT to problem (1) and Lemma 1 in order to obtain the separated form of the aforementioned prob-

lem.
3. Apply Theorems 15, 9 and Theorem 8 to evaluate the FFLT of fractional order FFCgH-differentiability of FVF 𝕊(𝔯, 𝔨)

with 0 < 𝛾 ≤ 1 and 0 < 𝜍 ≤ 2.
4. Apply the Theorem 9 to transform the complicated results into UVMLF form so that the given system can be solved

more effectively.
5. Apply the Theorem 8 to determined the combined form of the UVMLF and integral operator.
6. Apply IFFLT along with Theorem 10 in order to determine the analytical fuzzy solutions for specified type of

FFCgH-differentiability.

4 Examples

In this section, we will present some examples to explain more specific general results. These examples show how practi-
cal those results actually are. First, we shall consider the example which concerns the analytical solution of FFGFH-NDEs
having fractional orders 𝛾 and 𝜍 such that 1 < 𝜍 ≤ 2, 0 < 𝛾 ≤ 1. Secondly, we will present the solutions of aforementioned
problem for 𝜓 = 1 and 𝜓 = 0 for 𝛾 and 𝜍 such that 1 < 𝜍 ≤ 2, 0 < 𝛾 ≤ 1. Furthermore, we will discuss an other example with
fractional orders 𝛾, 𝜍 such that 1 < 𝜍 ≤ 2, 1 < 𝛾 ≤ 2. Finally, we will deduce the results for 𝜓 = 1 and 𝜓 = 0 with fractional
orders 𝛾, 𝜍 such that 1 < 𝜍 ≤ 2, 1 < 𝛾 ≤ 2.

Example 29. Consider the FFGFH-NDE (1) for 𝛾 = 8
9
; 𝜍 = 13

9
along with the triangular fuzzy initial conditions

(𝕊1, 𝕊2, 𝕊3)⊙ ̃ℓ(𝔯) = (4,5,8)⊙(𝔯2+1) and (𝕊1, 𝕊2, 𝕊3)⊙ ̃j(𝔯) = (−3, −1,5)⊙(𝔯−1). Then using Theorem 17, the FFGFH-NDE
(1) contains the following forms of solutions:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the problem (1) has solution

of the form

𝕊(𝔯, 𝔨) = (4,5,8) ⊙ (𝔯2 + 1) ⊙ E13
9

,
5
9
,1
(𝜓𝔨

13
9 , 𝔨

5
9 ) ⊕ (−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E13

9
,
5
9
,2
(𝜓𝔨

13
9 ,

𝔨
5
9 ) ⊖ 𝕊⊙ 𝔨

14
9 E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊖ (I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (84)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the problem (1) has solution of the form
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𝕊(𝔯, 𝔨) = (−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E13
9

,
5
9
,2
(𝜓𝔨

13
9 , 𝔨

5
9 ) ⊖ (−1)(4,5,8) ⊙ (𝔯2 + 1) ⊙ E13

9
,
5
9
,1

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊕ (−1)(4,5,8) ⊙ (𝔯2 + 1) ⊙ 𝔨

5
9E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊕ (−1)(I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (85)

The cases of fuzzy solutions based on the types of differentiability are given in the Table 2.The graphical analysis
of cases (a) and (b) is given by the Figs 1 and 2 respectively which are showing the behavior with respect to fractional

orders 𝜍 = 13
9

and 𝛾 = 8
9
. We will present the discussion of these figures one another from left to right sequence. The

figures in sequence from left to right show specific details regarding the effects of these fractional parameters on the
Fuzzy-Valued Function. A three-dimensional display in the Figs 1 and 2 shows how the fuzzy solutions of case (a) and
(b) changes throughout its entire domain while encompassing both the fractional orders. The graphical representa-
tion demonstrated in the above cases depicts that the fuzzy solutions are consistent and coherent for various values
of parameters involved. At every point of FFGFH-NDEs, the solutions are fuzzy valued to demonstrate the consistent
behavior. The structure of the solutions deeply connects the medelled profile, in particular when both the fuzziness and
fractional orders are jointly considered.

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the problem (1) has solution of the form

𝕊(𝔯, 𝔨) = (4,5,8) ⊙ (𝔯2 + 1) ⊙ E13
9

,
5
9
,1
(𝜓𝔨

13
9 , 𝔨

5
9 ) ⊕ (−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊕ (−1)(4,5,8) ⊙ (𝔯2 + 1) ⊙ 𝔨

5
9E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊕ (−1)(I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓)

⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (86)

Table 2. Summary table of cases of FFCgH-differentiability.

𝕊(𝔯, 𝔨) CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨)

F⋇−F⋇ F⋇−F⋇ F⋇−F⋇

F⋇−F⋇ S⊛−F⋇ S⊛−F⋇

S⊛−F⋇ F⋇−F⋇ F⋇−F⋇

F⋇−F⋇ S⊛−F⋇ F⋇−F⋇

F⋇−F⋇ F⋇−F⋇ S⊛−F⋇

S⊛−F⋇ S⊛−F⋇ S⊛−F⋇

https://doi.org/10.1371/journal.pone.0339866.t002
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Fig 1. Graphical representation of case (a) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.95.

https://doi.org/10.1371/journal.pone.0339866.g001

Fig 2. Graphical representation of case (b) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.95.

https://doi.org/10.1371/journal.pone.0339866.g002
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(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the problem (1) has solution

of the form

𝕊(𝔯, 𝔨) = (4,5,8) ⊙ (𝔯2 + 1) ⊙ E13
9

,
5
9
,1
(𝜓𝔨

13
9 , 𝔨

5
9 ) ⊖ (−1)(−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E13

9
,
5
9
,
5
9
+2

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊖ (4,5,8) ⊙ (𝔯2 + 1) ⊙ 𝔨

5
9E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊖ (I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨)

⊖𝕊3(𝔯, 𝔨)])(𝔨). (87)

The graphical analysis of cases (c) and (d) is given by the Figs 3 and 4 which are showing the behavior with respect

to fractional orders 𝜍 = 13
9

and 𝛾 = 8
9
. A three-dimensional display in the Figs 3 and 4 shows how the fuzzy solutions

of case (c) and (d) changes throughout its entire domain while encompassing both the fractional orders. The graphical
representation demonstrated in the above cases depicts that the fuzzy solutions are consistent and coherent for vari-
ous values of parameters involved. At every point of FFGFH-NDEs, the solutions are fuzzy valued to demonstrate the
consistent behavior. The structure of the solutions deeply connects the medelled profile, in particular when both the
fuzziness and fractional orders are jointly considered.

Fig 3. Graphical representation of case (c) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.85.

https://doi.org/10.1371/journal.pone.0339866.g003
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Fig 4. Graphical representation of case (d) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.85.

https://doi.org/10.1371/journal.pone.0339866.g004

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇,then the problem (1) has solution of the form

𝕊(𝔯, 𝔨) = (−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E5
9
,
5
9
,2
(𝜓𝔨

13
9 , 𝔨

5
9 ) ⊕ (−1)(4,5,8) ⊙ (𝔯2 + 1) ⊙ E13

9
,
5
9
,1

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊖ (4,5,8) ⊙ (𝔯2 + 1) ⊙ 𝔨

5
9E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , 𝔨

5
9 ) ⊖ (I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨)

⊖𝕊3(𝔯, 𝔨)])(𝔨). (88)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

13
9
+ 𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the problem (1) has solution of the form

𝕊(𝔯, 𝔨) = (4,5,8) ⊙ (𝔯2 + 1) ⊙ E13
9

,
5
9
,1
(𝜓𝔨

13
9 , −𝔨

5
9 ) ⊕ (−3, −1,5) ⊙ (𝔯 − 1) ⊙ 𝔨E13

9
,
5
9
,2

(𝜓𝔨
13
9 , −𝔨

5
9 ) ⊕ (4,5,8) ⊙ (𝔯2 + 1) ⊙ 𝔨

5
9E13

9
,
5
9
,
14
9

(𝜓𝔨
13
9 , −𝔨

5
9 ) ⊖ (I1;𝜓,1

13
9

,
5
9
,
13
9

[(1 + 𝜓)⊙

𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (89)
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The graphical analysis of cases (e) and (f ) is given by the Figs 5 and 6 respectively, which show the behavior with

respect to fractional orders 𝜍 = 13
9

and 𝛾 = 8
9
. We will present the discussion of these figures one another from left to

right sequence. The figures in sequence from left to right show specific details regarding the effects of these fractional

Fig 5. Graphical representation of case (e) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.75.

https://doi.org/10.1371/journal.pone.0339866.g005

Fig 6. Graphical representation of case (f ) for 𝝇 = 13
9
; 𝜸 = 8

9
and 𝝍 = 0.75.

https://doi.org/10.1371/journal.pone.0339866.g006
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parameters on the FVFs. A three-dimensional display in the Figs 5 and 6 shows how the fuzzy solutions of case (e) and
(f ) changes throughout its entire domain while encompassing both the fractional orders. The graphical representation
demonstrated in the above cases depicts that the fuzzy solutions are consistent and coherent for various values of param-
eters involved. At every point of FFGFH-NDEs, the solutions are fuzzy valued to demonstrate the consistent behavior.
The structure of the solutions deeply connects the medelled profile, in particular when both the fuzziness and fractional
orders are jointly considered. By fixing the fractional order 𝛾 = 1, the crisp solutions of the Example (29) can be deter-
mined. Fuzzified fractional models serve to represent system uncertainties and physical tolerances according to the
research making them suitable for digital circuit theory and biological modeling. The graphical solution of the FFGFH-
NDEs allows readers to grasp the uncertainty levels and tolerance ranges of the solutions in the much better way.

Example 30. Consider the FFGFH-NDE (1) for 𝛾 = 3
5
; 𝜍 = 7

4
along with the initial conditions (𝕊1, 𝕊2, 𝕊3)⊙ ̃ℓ(𝔯) =

(1,7,9) ⊙ (𝔯2 − 1) and (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) = (2,4,7) ⊙ (𝔯 + 1). Then using Theorem 19 and 21, the FFGFH-NDE (1) contains
the following forms of solutions:

1. For 𝜓 = 1
(a) If a FVF 𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the system (1) has

solution of the form

𝕊(𝔯, 𝔨) = (1,7,9) ⊙ (𝔯2 − 1) ⊙ E7
4
,
23
20

,1
(𝔨
7
4 , 𝔨

23
20 ) ⊕ (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨E7

4
,
23
20

,2

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(I1;1,1

7
4
,
23
20

,
7
4

[𝕊3(𝔯, 𝔨)

⊖2𝕊2(𝔯, 𝔨)])(𝔨). (90)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨 ⊙ E7
4
,
23
20

,2
(𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ E7

4
,
23
20

,1

(𝔨
7
4 , 𝔨

23
20 ) ⊕ (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(I1;1,1

7
4
,
23
20

,
7
4

[

𝕊3(𝔯, 𝔨) ⊖ 2𝕊2(𝔯, 𝔨)](𝔨). (91)
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(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨 ⊙ E7
4
,
23
20

,2
(𝔨
7
4 , 𝔨

23
20 ) ⊕ (1,7,9) ⊙ (𝔯2 − 1) ⊙ E7

4
,
23
20

,1

(𝔨
7
4 , 𝔨

23
20 ) ⊕ (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(I1;1,1

7
4
,
23
20

,
7
4

[

𝕊3(𝔯, 𝔨) ⊖ 2𝕊2(𝔯, 𝔨)])(𝔨). (92)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the system (1) has

solution of the form

𝕊(𝔯, 𝔨) = (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ E7
4
,
23
20

,1
(𝔨
7
4 , 𝔨

23
20 ) ⊕ (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨E7

4
,
23
20

,2

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

((−1)𝔨
7
4 , 𝔨

23
20 ) ⊖ (−1)(I1;1,1

𝛾,
23
20

,𝛾

[𝕊3(𝔯, 𝔨) ⊖ 2𝕊2(𝔯, 𝔨)])(𝔨). (93)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) has solution of the form

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨E7
4
,
23
20

,2
(𝔨
7
4 , 𝔨

23
20 ) ⊕ (−1)(1,7,9) ⊙ (𝔯2 − 1) ⊙ E7

4
,
23
20

,1

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

(𝔨
7
4 , 𝔨

23
20 ) ⊖ (I1;1,1

7
4
,
23
20

,
7
4

[2⊙𝕊2(𝔯, 𝔨)

⊖𝕊3(𝔯, 𝔨)])(𝔨). (94)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) has solution of the form
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𝕊(𝔯, 𝔨) = (1,7,9) ⊙ (𝔯2 − 1) ⊙ E7
4
,
23
20

,1
(𝜓𝔨

7
4 , −𝔨

23
20 ) ⊕ (2,4,7) ⊙ (𝔯 + 1) ⊙ 𝔨E7

4
,
23
20

,2

(𝔨
7
4 , −𝔨

23
20 ) ⊕ (1,7,9) ⊙ (𝔯2 − 1) ⊙ 𝔨

23
20E7

4
,
23
20

,
43
20

(𝔨
7
4 , −𝔨

23
20 ) ⊖ (I1;1,1

7
4
,
23
20

,
7
4

[2⊙

𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (95)

The fuzzy solutions of FFGFH-NDEs for the cases (a), (b), (c), (d), (e) and (f ) are of significant importance as these
solutions combine fuzziness with fractional dynamics hence offering a more realistic model of excitable media
where variability of parameters are together with a long memory term. The parametrically varied fuzzy solution
takes into consideration not only uncertainty in the initial condition but in the parameters of the associated sys-
tem such as threshold function.Contrasting the crisp solution, where a single deterministic solution is produced,

the fuzzified solutions of the FFGFH-NDE (1) for 𝛾 = 3
5
; 𝜍 = 7

4
are more reliable because they produces a family of

solutions that has interval values taking account of uncertainty in both the spatial and time dynamics of the system.
Similarly, we can construct the fuzzy solutions of FFGFH-NDEs for 𝜓 = 0 in the same manner for the different cases
of fuzzy differentiability.

Example 31. Consider the FFGFH-NDE (1) for 𝛾 = 4
3
; 𝜍 = 5

3
along with the initial conditions (𝕊1, 𝕊2, 𝕊3)⊙ ̃ℓ(𝔯) =

(7,9,11) ⊙ (5 + 𝔨) and (𝕊1, 𝕊2, 𝕊3)⊙ ̃j(𝔯) = (2,4,7) ⊙ (2 − 𝔯2). Then from Theorem 23, the FFGFH-NDE (1) contains the
following forms of solutions:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the system (1) contains the

solution which is given as

𝕊(𝔯, 𝔨) = (7,9,11) ⊙ (5 + 𝔯) ⊙ E5
3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊕ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5

3
,
1
3
,2
(𝜓𝔨

5
3 , 𝔨

1
3 )⊖

(7,9,11) ⊙ (5 + 𝔨) ⊙⊙E5
3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊖ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨

4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊖ (I1;𝜓,1

5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (96)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given as
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𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5
3
,
1
3
,2
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊖ (−1)(7,9,11) ⊙ (5 + 𝔯) ⊙ E5

3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 )⊕

(−1)(7,9,11) ⊙ (5 + 𝔨) ⊙ 𝔨
1
3 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊕ (−1)(2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨

4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 )

⊕(−1)(I1;𝜓,1
5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (97)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (7,9,11) ⊙ (5 + 𝔯) ⊙ E5
3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊕ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 )⊕

(−1)(7,9,11) ⊙ (5 + 𝔯) ⊙ 𝔨
1
3 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊖ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨

4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 )⊕

(−1)(I1;𝜓,1
5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (98)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the system (1) contains the

solution which is given as

𝕊(𝔯, 𝔨) = (7,9,11) ⊙ (5 + 𝔯) ⊙ E5
3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊖ (−1)(2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 )⊕

(−1)(2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨
4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊖ (7,9,11) ⊙ (5 + 𝔯) ⊙ 𝔨

1
3 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 )⊖

(I1;𝜓,1
5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (99)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given as
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𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5
3
,
1
3
,2
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊕ (−1)(7,9,11) ⊙ (5 + 𝔯) ⊙ E5

3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 )⊖

(7,9,11) ⊙ (5 + 𝔯) ⊙ 𝔨
1
3 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊖ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨

4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊕ (−1)

(I1;𝜓,1
5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (100)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given as

𝕊(𝔯, 𝔨) = (7,9,11) ⊙ (5 + 𝔯) ⊙ E5
3
,
1
3
,1
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊕ (2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨 ⊙ E5

3
,
1
3
,2
(𝜓𝔨

5
3 , 𝔨

1
3 ) ⊕ (−1)

(2,4,7) ⊙ (2 − 𝔯2) ⊙ 𝔨
4
3 ⊙ E5

3
,
1
3
,
7
3

(𝜓𝔨
5
3 , 𝔨

1
3 ) ⊕ (−1)(7,9,11) ⊙ (5 + 𝔯) ⊙ 𝔨

1
3 ⊙ E5

3
,
1
3
,
4
3

(𝜓𝔨
5
3 , 𝔨

1
3 )⊕

(−1)(I1;𝜓,1
5
3
,
1
3
,
5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (101)

Example 32. Consider the FFGFH-NDE (1) for 𝛾 = 3
2
; 𝜍 = 7

4
along with the initial conditions (𝕊1, 𝕊2, 𝕊3)⊙ ̃ℓ(𝔯) =

(−3, −1,4) ⊙ (7− 𝔯2) and (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯) = (2,4,7) ⊙ (𝔯2 + 4). Then from Theorems 25 and 27, the problem (1) contains
the following forms of solutions:

1. (a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the system (1)

contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(𝔨
7
4 , 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,2
(𝔨
7
4 , 𝔨

1
4 )⊖

(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨
5
4 ⊙ E7

4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 )⊖

(I1;1,1
7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (102)
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(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7
4
,
1
4
,2
(𝔨
7
4 , 𝔨

1
4 ) ⊖ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7

4
,
1
4
,1

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔨2) ⊙ 𝔨

1
4 ⊙ E7

4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4

⊙E7
4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(I1;1,1

7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (103)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(𝔨
7
4 , 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4 ⊙ E7

4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4⊙

E7
4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(I1;1,1

7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (104)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the system (1) con-

tains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(𝔨
7
4 , 𝔨

1
4 ) ⊖ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(2,4,7) ⊙ (𝔨2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4⊙

E7
4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (I1;1,1

7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (105)
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(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7
4
,
1
4
,2
(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7

4
,
1
4
,1

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4 ⊙ E7

4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4⊙

E7
4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(I1;1,1

7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (106)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(𝔨
7
4 , 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,2

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4

⊙E7
4
,
1
4
,
5
4

(𝔨
7
4 , 𝔨

1
4 ) ⊕ (−1)(I1;1,1

7
4
,
1
4
,
7
4

[2⊙𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (107)

2. (a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the system (1)

contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(0, 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,2
(0, 𝔨

1
4 )

⊖(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨
5
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 )

⊖(I1;0,1
7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (108)
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(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7
4
,
1
4
,2
(0, 𝔨

1
4 ) ⊖ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7

4
,
1
4
,1
(0, 𝔨

1
4 )

⊕(−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨
1
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊕ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊕ (−1)(I1;0,1

7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (109)

(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(0, 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 )

⊕(−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨
1
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊕ (−1)(I1;0,1

7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (110)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the system (1) con-

tains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(0, 𝔨

1
4 ) ⊖ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊕ (−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊖ (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊖ (I1;0,1

7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (111)
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(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7
4
,
1
4
,2
(0, 𝔨

1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7

4
,
1
4
,1

(0, 𝔨
1
4 ) ⊖ (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊖ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨

5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊕ (−1)(I1;0,1

7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (112)

(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the system (1) contains the solution which is given by

𝕊(𝔯, 𝔨) = (−3, −1,4) ⊙ (7 − 𝔯2) ⊙ E7
4
,
1
4
,1
(0, 𝔨

1
4 ) ⊕ (2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨 ⊙ E7

4
,
1
4
,2
(0, 𝔨

1
4 )

⊕(−1)(2,4,7) ⊙ (𝔯2 + 4) ⊙ 𝔨
5
4 ⊙ E7

4
,
1
4
,
9
4

(0, 𝔨
1
4 ) ⊕ (−1)(−3, −1,4) ⊙ (7 − 𝔯2) ⊙ 𝔨

1
4 ⊙ E7

4
,
1
4
,
5
4

(0, 𝔨
1
4 ) ⊕ (−1)(I1;0,1

7
4
,
1
4
,
7
4

[𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (113)

Comparative analysis

The model of FFGFH-NDEs offers a novel and general tool for investigating nonlinear dynamical systems with memory,
uncertain or imprecise data and spatial interactions. By incorporating fractional order derivatives, the model has captured
the influence of long-term memory in both temporal and spatial dynamics. Most of the biological and physical situation
involves uncertainties in parameters and measurements. The crisp solutions of FFH-NDEs produces a single determin-
istic curve that offers exact projections but with accurate conditions without any inclusion of uncertainty. In order to over-
come this constraint, the FFGFH-NDEs uses triangular fuzzy-valued initial conditions and fuzzy parameters in order to
deal with the lower endpoints, upper endpoints and the points in between the lower and upper endpoints. This leads to
the fact that the set of solutions is extended to a family of curves instead of one curve. The upper fuzzy endpoint is the
extreme excitability and the lower the future of the fuzzy endpoint is conservative responses. The excitability is also gov-
erned by graded values in fuzzy environment in between the lower and upper extreme values giving more generalized
visualization for each solution of the FFGFH-NDEs. By changing the values of fuzzy parameters, one gets a novel solu-
tion of FFGFH-NDEs for each value and visualization. By fixing some parameters, one can get the crisp solution from the
solutions of FFGFH-NDEs. Therefore, the crisp solutions of FFH-NDEs are regarded as the special cases of the solutions
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of FFGFH-NDEs. Table 3 provides the numerical solution as fuzzy lower membership solution(Fuzzy Lower), fuzzy peak
membership solution(Fuzzy Peak) and fuzzy upper membership solutions(Fuzzy Upper). Table 3 provides the fuzzy solu-
tions of case (a) of Example 32 at fixed 𝔨. At the fixed 𝔨, we obtained the variety of fuzzy solutions i.e. fuzzy lower mem-
bership, fuzzy peak membership and fuzzy upper membership solutions. Furthermore, our proposed technique gives
the graded values of fuzzy solutions which provides the better understanding for understanding the fuzzy solutions and
also broader visualization of each fuzzy solution at each point. By changing the fuzzy parameters in each case will pro-
vide not only the above mentioned three types of fuzzy graded solution but also provide the fuzzy solutions of the above
concerned fuzzy model of FFGFH-NDEs. If we analyse the above table, the other contributors only provided the only
one stage of solutions such as Fan et al. [61] provided the solution of crisp model by many semi-analytical techniques
such as RPSM, HPM etc. At 𝔯 = 10, the approximate solution of FFH-NDEs is 9.79×10−1 but in our case there are many
fuzzy solutions such as 9.97×10−1 represents the lower fuzzy membership solution, 9.98×10−1 represents the peak
fuzzy membership solution, 9.99×10−1 represents the upper membership fuzzy solution and there exist many more fuzzy
graded solutions in between lower and upper membership fuzzy solutions. The graphical representation of the above
fuzzy solutions of FFH-NDEs provides a wider clarity and understanding at each point of the solutions. Thus, the model
of FFGFH-NDEs offers a novel and general tool for investigating nonlinear dynamical systems with memory, uncertain or
imprecise data and spatial interactions.

Table 4 provides the fuzzy solutions of case (d) of Example 32 at fixed 𝔨. At 𝔯 = 14, the approximate solution of FFH-
NDEs is 9.79 × 10−1 but in our case there are many fuzzy solutions such as 9.97×10−1 represents the lower fuzzy mem-
bership solution, 9.99×10−1 represents the peak fuzzy membership solution, 9.99×10−1 represents the upper mem-
bership fuzzy solution. Table 4 shows that the crisp solution is a particular case of fuzzy solutions within the fuzzy frame-
work, but the fuzzy formulation extends it by quantifying uncertainty and demonstrating improved approximation quality.
Similarly, the fuzzy solutions of the remaining cases provide a novel understanding and visualization of FFGFH-NDEs.

Table 3. Fuzzy solutions of case (a) of Example 32 at fixed 𝔨 = 0.1.
𝔯 Crisp Approx [61] Fuzzy Lower Fuzzy Peak Fuzzy Upper
–12 1.02 × 10−4 1.01 × 10−4 1.04 × 10−3 1.07 × 10−4

–10 1.09 × 10−4 1.05 × 10−4 1.09 × 10−3 1.13 × 10−4

–8 4.46 × 10−3 4.31 × 10−3 4.47 × 10−3 4.62 × 10−3

–6 1.76 × 10−2 1.76 × 10−2 1.85 × 10−2 1.86 × 10−2

–4 7.01 × 10−2 6.97 × 10−2 7.05 × 10−2 7.14 × 10−2

4 9.56 × 10−1 9.86 × 10−1 9.89 × 10−1 9.96 × 10−1

6 9.69 × 10−1 9.96 × 10−1 9.97 × 10−1 9.99 × 10−1

10 9.79 × 10−1 9.97 × 10−1 9.98 × 10−1 9.99 × 10−1

12 9.81 × 10−1 9.98 × 10−1 9.99 × 10−1 9.99 × 10−1

https://doi.org/10.1371/journal.pone.0339866.t003

Table 4. Fuzzy solutions of case (d) of Example 32 at fixed 𝔨 = 0.5.
𝔯 Crisp Approx [61] Fuzzy Lower Fuzzy Peak Fuzzy Upper
–14 2.18 × 10−4 2.05 × 10−4 2.25 × 10−4 2.32 × 10−4

–12 2.09 × 10−4 2.05 × 10−4 2.14 × 10−4 2.16 × 10−4

–10 1.06 × 10−3 1.02 × 10−3 1.09 × 10−3 1.13 × 10−3

–8 4.46 × 10−3 4.34 × 10−3 4.47 × 10−3 4.52 × 10−3

–6 1.74 × 10−2 1.76 × 10−2 1.82 × 10−2 1.84 × 10−2

–4 7.02 × 10−2 6.97 × 10−2 7.05 × 10−2 7.11 × 10−2

4 7.56 × 10−2 7.32 × 10−2 7.62 × 10−2 7.71 × 10−1

6 8.69 × 10−1 8.56 × 10−1 8.73 × 10−1 8.90 × 10−1

10 8.78 × 10−1 8.69 × 10−1 8.93 × 10−1 8.96 × 10−1

12 9.76 × 10−1 9.71 × 10−1 9.92 × 10−1 9.97 × 10−1

14 9.79 × 10−1 9.97 × 10−1 9.99 × 10−1 9.99 × 10−1

https://doi.org/10.1371/journal.pone.0339866.t004

PLOS One https://doi.org/10.1371/journal.pone.0339866 February 3, 2026 38/ 49

https://doi.org/10.1371/journal.pone.0339866.t003
https://doi.org/10.1371/journal.pone.0339866.t004
https://doi.org/10.1371/journal.pone.0339866


i
i

“pone.0339866” — 2026/2/3 — 19:02 — page 39 — #39 i
i

i
i

i
i

Therefore , the FFGFH-NDEs offer a novel and general tool of investigating nonlinear dynamical systems with memory,
uncertainty and spatial interactions.

5 Application

Fractional calculus and fuzzy systems have revolutionized circuit theory, particularly in the modeling and analysis of com-
plex, nonlinear and uncertain systems. Traditional models based on integer-order derivatives and precise parameters are
often insufficient for modern circuits because of memory effects and uncertainty of the parameters such as resistance,
capacitance and inductance that may change with the change of temperature and environmental factors.

The FFGFH-NDEs are beneficial in modeling circuits with memory effects and uncertainty of parameters such as Mem-
ristors. This section describes its importance, formulation and real life application of FFGFH-NDEs in digital circuit the-
ory. Both of the frameworks explain nonlinear dynamical systems with memory and nonlocality. The nonlinear dynamical
behavior and nonlocality make both the frameworks naturally compatible. In the FFGFH-NDEs model, excitation variable
𝕊(𝔯, 𝔨) represents the membrane potential and the recovery variable takes into consideration slower inhibitory dynamics.
The inclusion of fuzzy fractional derivatives offers a memory effect, in which the current state is determined by the whole
history in the past, and the fuzzy environment includes uncertainty in both initial conditions and system parameters. The
voltage serves as the excitation around the memristors in the corresponding memristor networks and the current pass-
ing through the memristor shows the recovery. The nonlinearity of the current-voltage characteristic of the memristor is
inherent to the cubic nonlinearity of the FFGFH-NDEs and the hysteresis and memory history-dependent resistance of
memristors is naturally analogous to the fractional memory kernel of the FFH-NDEs equations. Triangular fuzzy numbers
through the fuzzy fractional setting are effectively used to represent variability in device fabrication and values of oper-
ational noise; conservative and extreme behavior are simultaneously represented within a single mathematical frame-
work. We establish the one-one correspondence between the functioning of FFGFH-NDEs and memristors networks as
follows:

• Fuzzy transmembrane excitation function 𝕊(𝔯, 𝔨) ⇔ Voltage function in the memristors networks.
• The recovery variable in FFGFH-NDEs⇔ Current flowing in memristors.
• The fractional order derivative of FFGFH-NDEs⇔ Memory effects in memristors.
• Fuzzy parameters in FFGFH-NDEs⇔ Uncertainty or variability of devices in memristors.

Assume that 𝕊(𝔯, 𝔨) acts as a voltage function in the context of fuzzy environment, fuzzy fractional order derivative
[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) determines the memory effects of voltage in memristor, [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) represents the diffusion of the voltage

signals, the non- linear function 𝕊(𝔯, 𝔨)[(1−𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) −𝜓)] describes the changes in state with time, fuzzy threshold
function 𝜓 acts as a control function with the graded values with in the range [0,1] and the fuzzy parameters along with
the initial conditions as an triangular FVFs helps to investigates how uncertainty propagates through fractional deriva-
tives and non-linear dynamics. The schematic representation and flowchart of FFGFH-NDEs and memristors networks is
given in the Figs 7 and 8. Neuromorphic computing, brain-inspired electronics and adaptive signal processing are areas
that digital memristor networks can be used. Their dynamics, however, are inherently nonlinear, history dependent and
possibly affected by uncertainty related to variation of devices, fabrication requirements and noise in the environment.
The FFGFH-NDEs cubic term is analogous to the nonlinear current-voltage characteristic in memristors. The FFGFH-
NDEs are the best tool to replicate excitability, threshold switching and oscillatory dynamics observed in digital arrays of
memristors. Fractional derivatives have long-term memory effects, like memristor resistance does on the full list of the
past history of applied voltage/current. The memory effects such as long-term and short-term memory effects are con-
trolled by CFFgH-derivatives by adjusting the values of fractional orders involved in the FFGFH-NDEs. The memory
effects are history dependent which causes the uncertainty in the proposed study. The parameter described by triangular
fuzziness in the FFHNDEs enables the generation of solution bands by the model which represent best-case, worst-case
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Fig 7. Schematic diagram of FFGFH-NDEs as Memristor networks.

https://doi.org/10.1371/journal.pone.0339866.g007

Fig 8. Flowchart of FFGFH-NDEs as Memristors networks.

https://doi.org/10.1371/journal.pone.0339866.g008
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and most-likely behaviors of devices. This allows robust control design, as the fuzzy solution envelope ensures improved
performance even at states of uncertainty of the device. Suppose that 𝕊(𝔯, 𝔨)[(1 − 𝕊(𝔯, 𝔨))(𝕊(𝔯, 𝔨) − 𝜓)] = 𝔣(𝒲(𝔨), ℐ(𝔨)), then
the special case of FFGFH-NDEs in the digital memristors networks is given by:

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[CF
gH𝔇

𝜍
+𝕊](𝔯, 𝔨) ⊖ [CF

gH𝔇
𝛾
+𝕊](𝔯, 𝔨) ⊕ 𝔣(𝒲(𝔨), ℐ(𝔨)) = 0,

𝕊(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃ℓ(𝔯),

𝕊′(𝔯,0) = (𝕊1, 𝕊2, 𝕊3) ⊙ ̃j(𝔯),

(114)

where 𝕊(𝔯,0) and 𝕊′(𝔯,0) are the triangular fuzzy initial conditions. Consider the FFGFH-NDEs (114) for 𝛾 = 4.5
3
; 𝜍 = 5.5

3
along with the initial conditions 𝕊(𝔯,0) = (−5, −3,1)⊙(3−𝔯) and 𝕊′(𝔯,0) = (−7, −4,5)⊙(1+𝔯). Then from Theorem 23, the
FFGFH-NDEs (114) contain the following forms of solutions:

(a) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇, then the Eq (114) contains the

solution which is given as

𝕊(𝔯, 𝔨) = (−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5
3

,
1
3
,1
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊕ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5

3
,
1
3
,2

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨

4
3 ⊙ E5.5

3
,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (115)

(b) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its F⋇ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

S⊛ −F⋇, then the Eq (114) contains the solution which is given as

𝕊(𝔯, 𝔨) = (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5
3

,
1
3
,2
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊖ (−1)(−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5

3
,
1
3
,1

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−5, −3,1) ⊙ (3 − 𝔯) ⊙ 𝔨

1
3 ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−7, −4,5) ⊙ (1 + 𝔯)

⊙𝔨
4
3 ⊙ E5.5

3
,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (116)
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(c) If a FVF 𝕊(𝔯, 𝔨) is FFCgH-differentiable in its S⊛ −F⋇ and CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨), CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its

F⋇ −F⋇, then the Eq (114) contains the solution which is given as

𝕊(𝔯, 𝔨) = (−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5
3

,
1
3
,1
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊕ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−5, −3,1) ⊙ (3 − 𝔯) ⊙ 𝔨

1
3 ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨

4
3

⊙E5.5
3

,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (117)

(d) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its S⊛ −F⋇, then the Eq (114) contains the

solution which is given as

𝕊(𝔯, 𝔨) = (−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5
3

,
1
3
,1
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊖ (−1)(−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5

3
,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨

4
3 ⊙ E5.5

3
,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−5, −3,1) ⊙ (3 − 𝔯) ⊙ 𝔨

1
3

⊙E5.5
3

,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (118)

(e) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝛾
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝜍
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the Eq (114) contains the solution which is given as

𝕊(𝔯, 𝔨) = (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5
3

,
1
3
,2
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5

3
,
1
3
,1

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−5, −3,1) ⊙ (3 − 𝔯) ⊙ 𝔨

1
3 ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊖ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨

4
3⊙

E5.5
3

,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (119)
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(f) If a FVF 𝕊(𝔯, 𝔨), CF
gH𝔇

𝜍
+𝕊(𝔯, 𝔨) are FFCgH-differentiable in its F⋇ −F⋇ and CF

gH𝔇
𝛾
+𝕊(𝔯, 𝔨) is FFCgH-differentiable in its

S⊛ −F⋇, then the Eq (114) contains the solution which is given as

𝕊(𝔯, 𝔨) = (−5, −3,1) ⊙ (3 − 𝔯) ⊙ E5.5
3

,
1
3
,1
(𝜓𝔨

5.5
3 , 𝔨

1
3 ) ⊕ (−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨 ⊙ E5.5

3
,
1
3
,2

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−7, −4,5) ⊙ (1 + 𝔯) ⊙ 𝔨

4
3 ⊙ E5.5

3
,
1
3
,
7
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(−5, −3,1) ⊙ (3 − 𝔯)⊙

𝔨
1
3 ⊙ E5.5

3
,
1
3
,
4
3

(𝜓𝔨
5.5
3 , 𝔨

1
3 ) ⊕ (−1)(I1;𝜓,1

5.5
3

,
1
3
,
5.5
3

[(1 + 𝜓) ⊙ 𝕊2(𝔯, 𝔨) ⊖ 𝕊3(𝔯, 𝔨)])(𝔨). (120)

The solutions of the Eq (114) for 𝜓 = 1 and 𝜓 = 0 can be determined on the similar way by using the Theorems 25
and 27 respectively for any of the case either 1 < 𝜍 ≤ 2,0 < 𝛾 ≤ 1 or 1 < 𝜍 ≤ 2,1 < 𝛾 ≤ 2. The generalized FFGFH-NDE
demonstrates versatility in modeling complex dynamic behaviors and is particularly effective for systems operating
within fuzzy environments. Its ability to incorporate the uncertainty intrinsic to fuzzy systems enables a more accurate
depiction of real-world phenomena. The memristor model is a specific application of fractional calculus in circuit the-
ory, focusing on a single component with memory. The FFGFH-NDE model generalizes this concept to include spatial
coupling and uncertainty, making it more suitable for complex circuits like advanced memristor networks. It provides a
richer framework to study circuits with distributed, nonlinear, and uncertain dynamics. By deriving the analytical solu-
tion for FFGFH-NDE, this study enhances the understanding of how such phenomena respond under uncertain condi-
tions. This analytical solution offers a precise and straightforward mathematical framework, enhancing understanding of
the system’s dynamics and enabling deeper analysis. The graphical depiction of the analytical solution for FFGFH-NDE
across varying parameter values of 𝜍 and 𝛾 provided that either 1 < 𝜍 ≤ 2,0 < 𝛾 ≤ 1 or 1 < 𝜍 ≤ 2,1 < 𝛾 ≤ 2 introduces a
visual perspective to the study. The three-dimensional graphical analysis of FFGFH-NDEs (114) is given by the Figs 9
to 14, showing the behavior for different values of fractional orders 𝜍 and 𝛾. A three-dimensional display in Figs 9 and
10 shows how the fuzzy solutions of the case (a) and (b) of system (114) change throughout its entire domain while
encompassing both the fractional orders. The Figs 11 to 14 give the three-dimensional display of cases (c), (d), (e), (f )
respectively for fixed values of fractional orders as mentioned in the cases. Fuzzified fractional models serve to repre-
sent system uncertainties and physical tolerances according to the research making them suitable for digital circuit the-
ory and biological modeling. The system (114) can be further generalized to many more advanced areas, especially in
fuzzy control systems as well as in biological signal processing, because it deals with three fundamental attributes of
real-world systems known as memory effects, uncertainty effects, and nonlinear excitability.

6 Conclusion

The FFGFH-NDE model offers a novel and general means of investigating nonlinear dynamical systems with memory,
uncertainty and spatial interactions. By incorporating fractional order derivatives, the model has captured the influence of
long-term memory in both temporal and spatial dynamics. The integration of fuzzy logic into the model allows the model
to take into account uncertainties in parameters and makes this model highly applicable to real world science and engi-
neering applications. The FFGFH-NDEs is a well-known and generalized model that plays a significant role in biological
systems, including complex synchronization in brain networks, cardiac dynamics, propagation of signals through nerve
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Fig 9. Graphical representation of case (a) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.9.

https://doi.org/10.1371/journal.pone.0339866.g009

Fig 10. Graphical representation of case (b) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.9.

https://doi.org/10.1371/journal.pone.0339866.g010

impulses, and digital circuit theory. An effective and efficient technique is required to solve FFGFH-NDEs analytically. This
have presented the analytical fuzzy solutions of FFGFH-NDEs using various cases of the fuzzy fractional Caputo gen-
eralized Hukuhara differentiability. The solutions have been formulated and expressed as bivariate and trivariate MLF
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Fig 11. Graphical representation of case (c) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.8.

https://doi.org/10.1371/journal.pone.0339866.g011

Fig 12. Graphical representation of case (d) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.7.

https://doi.org/10.1371/journal.pone.0339866.g012

using Laplace transformation technique. To draw attention to the innovation of this work, we have establish the connec-
tion between FFGFH-NDEs and digital memristor networks using one-one correspondence and the functioning behavior
of both the models. The incorporation of fuzzy and fractional dynamics has contributed to improving the model’s accuracy
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Fig 13. Graphical representation of case (e) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.8.

https://doi.org/10.1371/journal.pone.0339866.g013

Fig 14. Graphical representation of case (f ) for 𝝇 = 5.5
3
; 𝜸 = 4.5

3
and 𝝍 = 0.7.

https://doi.org/10.1371/journal.pone.0339866.g014

and allowed for new pathways for the analysis of systems exhibiting complex and nonlinear behaviors. The graphical rep-
resentation of the fuzzy solutions of FFGFH-NDEs under various types of FFCgH-differentiability is presented to show
the novelty of the proposed work. Researchers will use our methodology to solve systems of fuzzy fractional differential
equations in the Bi-Polar, Pythagorean, Spherical, m-Polar and Pythagorean m-Polar environments.
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