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Abstract 

The rapid urbanization process has led to many prominent environmental issues 

in urban areas, resulting from a drastic change in land use. The Urban Heat Island 

(UHI) effect is of particular concern because it has a significant impact on the livability 

of cities. Therefore, exploring and studying the intensity of UHI and its future distri-

bution have significant practical implications. In this study, the CNN-LSTM-Attention 

model was constructed to predict four remote sensing spectral indices, and combined 

with the CA-Markov model to predict land use change. The relationship between four 

different spectral indices and the intensity of UHI was analyzed by a multiple linear 

regression model (R2 = 0.7468, RMSE = 0.0546), and the UHI intensity and distribution 

in 2025 were predicted and analyzed. The results show that by 2025, the proportion 

of built-up area will continue to increase by 1.37 percentage points, which will lead to 

a more intense and concentrated UHI effect, and the proportion of heat island area 

will increase by 2.97 percentage points. The study shows that increasing vegetation 

area and water area can effectively alleviate the impact of UHI. Local government 

departments formulate reasonable policies based on survey results, reduce over-

radiation, improve urban livability, and promote sustainable development.

Introduction

Addressing the UHI effect is crucial for enhancing urban livability and promoting sus-
tainable development. Various planning strategies have been proposed to mitigate 
this phenomenon. One such approach is “Compact Cityism,” which aims to create 
high-density, mixed-use environments that reduce urban sprawl and associated 
heat-trapping infrastructure. By concentrating development in specific areas, cities 
can minimize the expansion of impervious surfaces and optimize public transporta-
tion systems, thereby decreasing energy consumption and heat generation.

Another strategy is “Green Wedge Urbanism,” which involves integrating green 
spaces such as parks, forests, and wetlands into urban layouts in a wedge-shaped 
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pattern. These green wedges extend from the urban fringe to the city center, provid-
ing pathways for cool air to circulate and reducing the heat island effect. They also 
enhance biodiversity, improve air quality, and offer recreational spaces for residents.

Additionally, “Low-Carbon Urbanism” focuses on reducing greenhouse gas emis-
sions through sustainable energy use, energy-efficient building designs, and the 
promotion of non-motorized transportation. By decreasing the overall carbon footprint 
of urban areas, this approach contributes to lower urban temperatures and a more 
sustainable urban environment.

These planning strategies offer valuable insights for urban planners and policy-
makers in their efforts to combat the UHI effect and improve urban living conditions.

Global urbanization is occurring at a rate never seen before, with 6.3 billion people 
predicted to live in cities by 2050. Urbanization, the most significant human activity on 
Earth’s surface, is responsible for the transformation of natural surfaces, particularly 
vegetation and permeable areas, into artificial surfaces. This shift results in signif-
icant changes to land cover and use, which applies to both urban and rural areas. 
The cyclical feedback process between urbanization and the climate environment 
involves the expansion of cities, which can have a significant impact on meteorolog-
ical parameters in the region. Climate and environmental issues, represented by the 
UHI effect, have gradually evolved into major environmental problems in urban areas.

The “UHI effect” refers to the phenomenon of higher temperatures in urban areas 
than in the surrounding suburbs [1,2]. The impact of human activities, particularly 
urbanization, on the local climate is significant [3]. Understanding the dynamic 
changes in land use is essential to comprehending the effects of human activity 
on the environment [4,5]. Severe UHI effects can lead to increased environmental 
pollution [6]and a sharp rise in resource consumption [7], and serious threats to 
human health [8]. With the deepening of global changes, the analysis of land use 
changes has progressively evolved as a central theme in studies on global environ-
mental change. Following the analysis of satellite data on land dynamics worldwide 
between 1982 and 2016, Song discovered that changes in land usage had regional 
features; For example, tree cover has increased in mountainous locations, but 
vegetation cover has decreased in many arid and semi-arid ecosystems (such as 
those in Australia, China, and the United States). Research by Mohammad Harmay 
and colleagues showed that from 2001 to 2014, the urban heat island intensity(UHII) 
increased uniformly, with an increase of 1.20 ± 0.20°C, and the expansion of built-up 
areas reached 14.93% [9]. Kalnay’s research projected an average surface tempera-
ture rise of 0.27°C per century [10]. Tian’s study on the connection between UHI and 
urban livability [11]. Guo’s studies on the connection between UHI and sustainable 
development have both produced insightful findings [12]. The ongoing escalation of 
the UHI phenomenon has resulted in notable adverse effects on the sustainability 
and livability of metropolitan areas, drawing widespread attention. Many different 
mixed land use factors influence the UHI effect [13], the built environment [14], 
anthropogenic heat from human activities [15,16], and other urban factors [17]. These 
correlations have been quantitatively studied using a variety of statistical techniques. 
LST is among the most significant indicators of the UHI effect [18]. A number of 
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studies have investigated the relationship between LST and land use using historical remote sensing data [19,20]. They 
have reached similar conclusions that the LST is higher in urban areas [21], while it is lower near water bodies and forests 
[22,23].

The prediction of land surface temperature today uses a wide range of spatial prediction models and techniques, 
including CA-Markov and artificial neural networks. However, these studies only rely on historical LST data and land 
use classification datasets to predict LST, without thinking about the future changes in land use. Such predictions 
may lead to reduced accuracy. In order to overcome this limitation, Nadizadeh Shorabeh used a combined model of 
CA-Markov and artificial neural networks to predict the UHI effect’s strength in 2033 based on changes in land use 
[24]. Some researchers have also incorporated spectral indices into prediction models, such as Normalized Difference 
Vegetation Index (NDVI), Urban Index (UI), and Normalized Difference Built-up Index (NDBI) [25–27]. Wang used the 
link between land use, NDVI, LST to estimate the LST in Nanjing in 2030 and 2050 [28]. UI was selected as an LST 
predictor in a Mushore predictive research carried out in Harare. They projected that between 2015 and 2040, the 
portion of the city with LST between 18 and 28°C would shrink, while the portion with LST between 36 and 45°C would 
rise from 42.5% to 58% [29]. However, this research process did not fully consider the influence of land use alter-
ations on urban LST. These studies also cannot directly serve as guidance for local governments to formulate urban 
planning policies to weaken the UHI. In this study, combined with the spectral indices of the research area, a multiple 
linear regression(MLR) model is constructed based on fully considering changes in land use, extracting the represen-
tative spectral indices of the research area according to land use classification(LUC) levels, to predict the UHI effect in 
the research area.

Beijing, the People’s Republic of China’s capital, has experienced a sharp increase in urbanization in the past few 
years. The UHI has been exacerbated in Beijing due to its massive expansion, which has led to extreme high tempera-
tures multiple times during summers. The livability of Beijing is facing unprecedented challenges. Currently, China is 
continuously promoting ecological civilization construction, and a large number of ecological and environmental issues 
represented by the UHI effect will receive greatly increase attention from the public. Research on Beijing, China’s capital, 
will be a valuable resource for other rapidly developing cities.

Based on the above comprehensive judgment, this paper plans to forecast the distribution and intensity of the urban 
UHI in Beijing in 2025 based on land use classification and spectral indices. The main objectives include: (1) to examine 
how land use changes and LST patterns have changed over time in Beijing between 2013 and 2022; (2) to construct 
models for predicting spectral indices and MLR models; (3) to simulate and predict the UHII and distribution of the UHI in 
Beijing in 2025.

Materials and methods

Study area

Beijing is bordered to the east by Tianjin Municipality and the west by Hebei Province. It serves as China’s political, cul-
tural, economic, and technological center. Since the initiation of reforms and opening up in 1978, Beijing has undergone 
rapid urbanization. According to statistics, the urbanization rate of Beijing, i.e., from 77.5% in 2000 to 87.5% in 2020, the 
percentage of people living in cities grew (Beijing Municipal Government, 2021). By 2023, the GDP of Beijing reached 
4376.07 billion yuan, a 5.2% rise from the prior year. Calculated according to the resident population, the per capita GDP 
of the entire city was 200,000 yuan. Beijing successfully hosted the Summer Olympics and the Winter Olympics, making 
it the first “Dual Olympic City” globally. In addition, it is a prominent ancient capital, one of the birthplaces of the Chinese 
people, and a contemporary global city. Beijing has a clear four-season climate, semi-humid and semi-arid, with relatively 
short spring and autumn. This study selected six districts in the center of Beijing and some areas around them as the 
research area.As shown in Fig 1.
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Data collection and preprocessing

Calculating landsat images for UHI.  Acquiring Landsat C2L2 dataset with cloud cover less than 10% from the 
website https://earthexplorer.usgs.gov. Since the data stored on the website are in integer format, there may be certain 
scaling factors and offsets in the actual results. Referring to the data user manual provided by the US Geological Survey 
website at https://www.usgs.gov/media/files/landsat-8-collection-2-level-science-product-guide, the Band Math function in 
ENVI software can be used to calculate true surface temperature by applying the formula B1*0.00341802 + 149. This will 
yield surface temperature in Kelvin units. To convert it to Celsius, subtract 273.15.

Landsat images for land use classification.  This study examines the alterations in land cover area within the 
designated region from 2013 to 2022, utilizing four Landsat images sourced from the USGS website, and the cloud cover 
in each image area is less than 10%. The selected images were acquired between June and September to effectively 
mitigate the effects of seasonal variations. To enhance image quality and minimize atmospheric and lighting influences on 
surface reflectance, radiometric and atmospheric corrections were performed using ENVI 5.3.

Fig 1.  The location of the study area. These include a map of China, a map of Beijing city, and a Landsat 8 true-color composite image of the 
study area.

https://doi.org/10.1371/journal.pone.0339782.g001

https://earthexplorer.usgs.gov
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Technical workflow diagram

The goal of this study is to predict the intensity and distribution of the UHI effect. In order to fulfill this goal, the following 
workflow (Fig 2) is designed, consisting of 6 main steps: (1) Calculate the intensity of the UHII and LUC based on Landsat 
images. (2) Compute four remote sensing indices. (3) Establishing a Long Short-Term Memory Neural Network Model 
Based on the Attention Mechanism and Combined with Convolutional Neural Networks (CNN-LSTM-Attention) and a MLR 
model. (4) Predict LUC using the CA-Markov model. (5) Forecast temporal remote sensing indices using CNN-LSTM- 
Attention. (6) Predict future UHII and its distribution range based on the MLR model.

Calculate urban heat island intensity

UHII is a scalar quantity used to characterize the strength of the UHI effect. It can be represented by the surface tempera-
ture difference between urban and suburban areas retrieved from satellite remote sensing. According to the local standard 
“UHII Classification” issued by the Beijing Municipal Administration for Market Regulation on March 30, 2023, the calcula-
tion method for UHII is as follows:

Fig 2.   Technical workflow diagram.

https://doi.org/10.1371/journal.pone.0339782.g002

https://doi.org/10.1371/journal.pone.0339782.g002
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	 UHII = Tu – Tr 	 (1)

where UHII represents the intensity of UHI; Tu represents urban air temperature (°C) or surface temperature (K); Tr  rep-
resents suburban air temperature (°C) or surface temperature (K). In this article, based on the LUC map, suburban areas 
are defined as all places other than built-up regions and water bodies.

Land use classification

The article compares three algorithms: Support Vector Machine, Minimum Distance, and Maximum Likelihood Classifier, 
and selects Support Vector Machine with the highest accuracy as the image classification algorithm. Compared with other 
algorithms, Support Vector Machine has lower requirements for training data. The Kernel Function Chosen is the Radial 
Basis Function; the value of Gamma is 2; the value of the penalty parameter is 200. In this article, four main land use 
types in Landsat images are selected: built-up areas, vegetation areas, water areas, and bare soil areas. By randomly 
selecting 1000 points from every categorised map and contrasting them with Google Earth historical images, accuracy 
verification is completed. The classification accuracy for 2013, 2016, 2019, and 2022 is 86.22%, 84.61%, 85.12%, and 
82.37%, respectively.

Compute remote sensing spectral indices

After reviewing relevant literature, several kinds of metrics of land cover with proven potential for predicting LST have 
been identified [30–34]. From these, the most representative remote sensing indices for the four land use categories 
were selected as the land cover indices for this study. By integrating spectral bands and constants, four land cover index 
indicators were computed for the years 2007, 2010, 2013, 2016, 2019, and 2022. These are the NDBI, NDVI, Normalized 
Difference Water Index (NDWI), and Bare Soil Index (BSI).

Calculate NDBI.  NDBI is used in remote sensing to pinpoint built-up areas. It achieves rapid and accurate extraction 
of urban building information by comparing the reflectance differences between built-up regions and other types of land 
cover.

	 NDBI = SWIR–NIR
SWIR+NIR	 (2)

where SWIR represents the reflectance in the shortwave infrared band; NIR represents the reflectance of the near- 
infrared band.
The time-series NDBI indices of the study area over the past decade have been calculated through the Google Earth 
Engine (GEE) platform, as shown in Fig 3 Overall, the NDBI shows a trend of periodic variation.

Calculate NDVI.  Plants strongly reflect green and infrared light. Higher levels of vegetation cover result in lower red 
reflections and larger near-infrared reflections.. Near-infrared reflection rises with vegetation, but red light easily reaches 
saturation absorption. Therefore, by utilizing the difference between near-infrared and infrared, the contrast between 
infrared and near-infrared is enhanced, serving as an indicator reflecting vegetation. The expression for NDVI is as 
follows:

	 NDVI = NIR–Red
NIR+Red 	 (3)

where Red corresponds to band 4 in Landsat 8, representing the reflectance of the red band.
The time-series NDVI indices of the study area over the past decade have been calculated through the GEE platform, as 
shown in Fig 4. Overall, the NDVI shows a trend of periodic variation.
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Fig 3.  The time series information of the NDBI.

https://doi.org/10.1371/journal.pone.0339782.g003

Fig 4.  The time series information of the NDVI.

https://doi.org/10.1371/journal.pone.0339782.g004

https://doi.org/10.1371/journal.pone.0339782.g003
https://doi.org/10.1371/journal.pone.0339782.g004
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Calculate NDWI.  NDWI is the most commonly used index for water extraction. Due to the decreasing reflectance of 
water with increasing wavelength, NDWI utilizes the Green and NIR bands for normalization and can effectively extract 
water information. The expression for NDWI is as follows:

	 NDWI = Green–NIR
Green+NIR	 (4)

where Green corresponds to band 3 in Landsat 8, representing the reflectance of the green band.
The time-series NDWI indices of the study area over the past decade have been calculated through the GEE platform, as 
shown in Fig 5. Overall, the NDWI shows a trend of periodic variation.

Calculate BSI.  BSI demonstrates a strong enhancement effect for built-up bare soil areas. It not only enhances the 
degree and completeness of built-up areas but also effectively extracts some building areas that are not easily identifiable 
by other indices. The expression for BSI is as follows:

	
BSI = (SWIR+Red)–(SWIR+Blue)

(SWIR+Red)+(SWIR+Blue)	 (5)

where Blue corresponds to band 2 in Landsat 8, representing the reflectance of the blue band.
The time-series BSI indices of the study area over the past decade have been calculated through the GEE platform, as 
shown in Fig 6. Overall, the BSI shows a trend of periodic variation.

CA-Markov predict LUC

The CA-Markov model can consider changes in both space and time. Complex systems can have their spatial variations 
simulated by the CA model, while the Markov model excels in long-term prediction. The coupled CA-Markov model can 
perform long-term predictions effectively and simulate spatial changes efficiently.

Fig 5.  The time series information of the NDWI.

https://doi.org/10.1371/journal.pone.0339782.g005

https://doi.org/10.1371/journal.pone.0339782.g005


PLOS One | https://doi.org/10.1371/journal.pone.0339782  December 29, 2025 9 / 26

A Markov chain is a stochastic process where a random variable transitions from one state to another. According to the 
properties of Markov chains, a variable’s future state is determined by its present state alone. In a Markov chain, the tran-
sition probability from state i to state j determines the likelihood of this step in state transition. In the CA-Markov model, a 
pre-prepared Markov chain matrix is used. The states of cells are updated according to the states of adjacent cells, and 
the temporal changes are controlled by the transition probability matrix.

	 P(i → j) = p [X = j
∣∣X – 1 = i]	 (6)

This step aims to obtain the land use results map for 2025, using land use maps from 2016, 2019, and 2022. Initially, a 
Markov chain is employed to calculate the probability transition matrix using data from 2016 and 2019. Subsequently, 
utilizing the data from 2019 as a baseline, the probability transition matrix obtained is used to simulate the land use result 
for 2022. The simulated result is iterated multiple times and compared with the actual land use data from 2022. Upon 
reaching near-saturation accuracy, the data from 2022 is then used as a baseline to forecast the land use data for 2025. 
The model diagram is as shown in Fig 7.

Establish CNN-LSTM-attention model

This study predicts the temporal remote sensing indices of the study area by constructing a CNN-LSTM-Attention model, 
integrating remote sensing spectral indices calculated for the study area in 2007, 2010, 2013, 2016, 2019, and 2022.

LSTM neural networks are a special type of RNN model. Their unique architecture allows them to mitigate the vanish-
ing gradient problem, enabling them to retain information from earlier time steps without incurring significant costs. LSTM 
consists of three main components, each responsible for a distinct function. Which details from the prior timestamp should 
be recalled or forgotten is decided in the first section. The second component, referred to as the cell, makes an effort to 
extract fresh data from the input. In the third section, the changed data is finally transmitted from the present timestamp to 

Fig 6.  The time series information of the BSI.

https://doi.org/10.1371/journal.pone.0339782.g006

https://doi.org/10.1371/journal.pone.0339782.g006
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the subsequent timestamp.. We refer to these three parts of the LSTM unit as gates. The forget gate is the first, the input 
gate is the second component, and the third part is the output gate.

In order to improve the accuracy of the model under the condition of limited resources, it is necessary to allocate more 
resources to the key features of the objects to be recognized, that is, to enhance the recognition accuracy by means 
of weights. In this study, a channel attention mechanism is planned to be introduced to improve the performance of the 
model. The schematic diagram of the channel attention mechanism is shown in Fig 8.

The operation process of the SE (Squeeze-and-Excitation) channel attention mechanism is as follows: First, global 
average pooling is performed on the input features, and then they are fed into two fully connected layers. Among them, 
the first fully connected layer compresses the C channels into C/r channels to reduce the amount of calculation (here, r 
represents the compression ratio), and then it goes through a Relu non-linear activation layer. The number of neurons in 
the second fully connected layer is the same as that of the input feature layer, aiming to restore the number of channels to 
C. Finally, the Sigmoid function is used to limit the output value within the range of (0–1). This output value serves as the 
weight generated by the channel attention mechanism and is multiplied by the original features, so as to obtain the final 
features extracted after incorporating the attention mechanism.

Fig 7.  CA-Markov model diagram.

https://doi.org/10.1371/journal.pone.0339782.g007

Fig 8.  Schematic diagram of the channel attention mechanism.

https://doi.org/10.1371/journal.pone.0339782.g008

https://doi.org/10.1371/journal.pone.0339782.g007
https://doi.org/10.1371/journal.pone.0339782.g008
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The integrated model consists of an input layer, a Convolutional Neural Network (CNN) layer, a Long Short-Term Memory 
(LSTM) layer, an attention layer, and an output layer. In the input layer, the format of the input data is specified, with the batch 
size defaulting to 1 and the time step set to t = 3. The CNN layer can extract the spatial correlations among different feature 
values in the data. Within the CNN layer, convolution, pooling, and flattening operations are carried out sequentially. For the 
time-series data in this study, one-dimensional convolution is employed in the model. The LSTM layer is formed by stacking 
five LSTM layers. Dropout layers are added after the CNN layer and at the end of the LSTM layer to randomly discard nodes 
and prevent overfitting. The attention layer calculates the weighted sum of the LSTM output vectors. The vectors output by the 
LSTM layer serve as the input to the attention layer, which is then trained through a fully connected layer, followed by normal-
ization of the output from the fully connected layer. The final output layer specifies the prediction time step and ultimately out-
puts the prediction results for the specified step. The schematic diagram of the CNN-LSTM-Attention model is shown in Fig 9.

To assess the predictive ability of the forecasting model, the dataset is randomly split divided into a training set and a 
test set, with 80% of the data used for training and the remaining for testing. Three metrics are employed in this study as 
error evaluation indicators: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determina-
tion (R2).

	 MSE = 1
m

∑m
i=1 (yi – ŷi)

2
	 (7)

	 RMSE =

√
1
m

∑m
i=1 (yi – ŷi)

2

	 (8)

	
R2 = 1 –

∑m
i=1(yi–ŷi)

2

∑m
i=1(yi–yi)

2 	 (9)

where m represents the number of samples, yi represents the true values, ŷi represents the predicted values, and yirep-
resents the sample mean.

Multiple linear regression model

Regression analysis is an important statistical method for analyzing the relationship between independent variables and 
dependent variables. It helps to determine the degree to which the dependent variable changes with the change in inde-
pendent variables. The MLR model considers the effect of multiple independent variables on the dependent variable.

Fig 9.  CNN-LSTM-attention model diagram.

https://doi.org/10.1371/journal.pone.0339782.g009

https://doi.org/10.1371/journal.pone.0339782.g009
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	 y = a0 + a1x1 + a2x2 + . . .+ anxn	 (10)

where a0 is the intercept term, a0, a1, a2,…, an coefficient before the independent variable, representing weight; x  is the 
independent variable; and y  is the dependent variable.

Regression is widely used in many fields. To more accurately assess the relationship between UHII and remote sens-
ing indices, corresponding land use categories must be considered when calculating input variables. For instance, when 
extracting NDVI values for vegetation categories, other areas in the region could be set to 0. As shown in Fig 10.

The accuracy of the regression model is evaluated through MSE, RMSE, and R2.

Results

Land use change status in the study area

Fig 11 illustrates the land use change situation in the study area from 2013 to 2022.(Landsat 8).
Built-up areas account for the largest proportion of all land use categories and continue to expand, increasing from 

2693.11 km² in 2013 to 2929.64 km² in 2022, an increase of 236.53 km². The proportion of bare land is gradually decreas-
ing, reduced by 247.83 km². The changes in the proportions of vegetation and water bodies are not significant. The spe-
cific details are as shown in Table 1.

Analysis of spatiotemporal variations in land surface temperature in the study area

Fig 12 illustrates the spatiotemporal patterns of LST in 2013, 2016, 2019, and 2022.(Landsat 8) To facilitate a visual 
comparison of LSTs on different dates, the following temperatures have been normalized. In the summer of 2013, LSTs 
ranged from 18.65°C to 57.86°C, and the average temperature is 34.61°C. LSTs ranged from 11.68°C to 58.62°C during 
the summer 2016, and the average temperature is 35.76°C. LSTs between 14.52°C to 54.18°C during the summer 2019, 
and the average temperature is 34.60°C. LSTs between 21.36°C to 57.78°C during the summer 2022, and the average 
temperature is 34.49°C.

In 2013, some areas within the central six districts exhibited relatively high LSTs. Additionally, there were several 
independent high-temperature regions located in Shunyi District, Changping District, and Shijingshan District. From 2013 

Fig 10.  The NDBI index extracted based on land use categories. (Landsat 8).

https://doi.org/10.1371/journal.pone.0339782.g010

https://doi.org/10.1371/journal.pone.0339782.g010
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and 2016, the high-temperature areas in the central six districts began to expand, gradually connecting the originally 
scattered high-temperature patches in the surrounding areas. From 2016 to 2019, the high-temperature areas further 
expanded, covering more than half of the study area, and there was a trend of overall movement towards the southwest. 
High-temperature patches began to appear in Tongzhou District and Daxing District. Between 2019 and 2022, the aver-
age temperature in the entire study area remained almost unchanged compared to 2019, but the temperature distribution 
became more uniform. The central six districts still maintained relatively high LSTs, and the area northeast of Chaoyang 
District experienced further temperature increases. The average maximum and minimum temperatures in the study area 
both show a trend of further increase. Fig 13 is a line graph depicting the surface temperature changes in the study area 
from 2013 to 2022.

Analysis of UHI evolution characteristics

The calculated UHII levels are first normalized to eliminate the effects of different times and weather conditions on 
the acquired images, facilitating subsequent analysis. Then, the normalized data is categorized. Common methods 
for categorization include equal interval method and mean-standard deviation method. Studies have shown that the 

Fig 11.  The four images above correspond to LUC in 2013, 2016, 2019, and 2022 respectively. (a) LUC in 2013; (b) LUC in 2016; (c) LUC in 
2019; (d) LUC in 2022.

https://doi.org/10.1371/journal.pone.0339782.g011

Table 1.  Land use change from 2013 to 2022.

Land use classification Area and percentage 2013 2016 2019 2022

Water Area (km2) 50.51 49.49 48.26 53.00

Percentage (%) 0.81 0.79 0.77 0.85

Plant Area (km2) 883.54 887.25 887.43 892.35

Percentage (%) 14.13 14.19 14.19 14.27

Bare soil Area (km2) 2626.14 2518.48 2451.61 2378.31

Percentage (%) 41.99 40.27 39.21 38.03

Building Area (km2) 2693.11 2798.08 2866.00 2929.64

Percentage (%) 43.07 44.75 45.83 46.85

https://doi.org/10.1371/journal.pone.0339782.t001

https://doi.org/10.1371/journal.pone.0339782.g011
https://doi.org/10.1371/journal.pone.0339782.t001
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mean-standard deviation method is more in line with the actual situation of the research area. This study uses the 
mean-standard deviation method to classify UHII.

Fig 14 illustrates the categorization of UHII levels using the mean-standard deviation method.(Landsat 8) The intensity 
levels include: Strong Cold Island Area, Cold Island Area, Weak Heat Island Area, Heat Island Area, and Strong Heat 
Island Area. The criteria for categorization are shown in Table 2.

Although the acquisition times of the images and environmental factors vary, the UHI effect is evident in each of the 
years. From 2013 to 2022, the UHI effect in the six central districts has been strong. These areas are characterized by 
heavy traffic, high population density, numerous commercial centers, and are the economic development hubs. With the 
steady progress of urbanization, the areas with strong heat islands have gradually expanded, connecting many originally 
fragmented strong heat island patches and mainly moving southwestward. The regions with abundant vegetation and 
forests in the northwest, as well as areas with river distributions, are the low-temperature zones during all periods.

From Table 3, we can compare the UHII of the research area in 2013, 2016, 2019, and 2022. The results show that the 
total area of heat island and strong heat island regions increased by 39.97 square kilometers. However, the heat island 
situation in 2022 has improved compared to 2019. Over these ten years, the weak heat island regions have predominantly 
constituted the UHI. The proportion of the study area with a weak heat island effect decreased from 39.29% in 2013 to 
35.37% in 2016, but then rose again to 39.22% in 2019, matching the 2013 proportion. The overall proportion of heat 
island and strong heat island regions increased year by year, with a slight decrease from 2019 to 2022. The 2022 Winter 
Olympics, hosted by Beijing, makes Beijing the first “Dual Olympic City” in the world. During the preparation period, a 
series of environmental improvement measures in Beijing effectively alleviated the overall UHI effect. The comparison of 
UHII is shown in Fig 15.

Predicted land use distribution for 2025 using the CA-Markov model

To determine the accuracy of the developed CA-Markov model, a comparison between the actual LUC map in 2022 and 
the simulation results was conducted. As shown in Table 4. The Kappa coefficient is 71.59%, indicating overall good 
performance. The predicted 2025 LUC map is presented in Fig 16. It is anticipated that the built-up area will continue to 

Fig 12.  Maps of LST distribution in the study area for the years 2013, 2016, 2019, and 2022. (a) LST in 2013; (b) LST in 2016; (c) LST in 2019; 
(d) LST in 2022.

https://doi.org/10.1371/journal.pone.0339782.g012

https://doi.org/10.1371/journal.pone.0339782.g012
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grow by 2025, constituting nearly 50% of the total study region. The continuous expansion of the built-up area will connect 
initially scattered building patches into complete, continuous blocks. Bare land area is expected to shrink further, with 
most bare soil areas acting as the main source of expansion for built-up areas. Compared to 2022, the bare soil area is 
predicted to decrease by 74.92 km², while the built-up area is expected to increase by 85.75 km².

Predicted results of the CNN-LSTM-attention model

Train the CNN-LSTM-Attention model by changing its hyperparameters, including the structure, the number of epochs, 
the learning rate, the activation function, etc. When the results reach a satisfactory accuracy, determine the corresponding 
weight coefficients. Since the model conducts time series prediction for individual remote sensing indices, they have sim-
ilar hyperparameters. Fig 18 below shows the distribution map of the remote sensing indices in 2022 simulated based on 
the remote sensing indices of historical years, and it is compared with the actual distribution of the remote sensing indices 
in 2022. Fig 17 is a scatter plot of the errors of the simulated distribution of the remote sensing indices. The error informa-
tion of the four predicted remote sensing indices is shown in Table 5.

Fig 13.  Changes in LST from 2013 to 2022.

https://doi.org/10.1371/journal.pone.0339782.g013

https://doi.org/10.1371/journal.pone.0339782.g013
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Based on the validation results showing satisfactory prediction accuracy, the historical remote sensing index data for 
the study area in the years 2007, 2010, 2013, 2016, 2019, and 2022 will be used to predict the distribution of remote 
sensing indices for the year 2025, as required by this study. As shown in Fig 19.(Landsat 8).

Fig 14.  UHII in 2013, 2016, 2019, and 2022. (a) UHII in 2013; (b) UHII in 2016; (c) UHII in 2019; (d) UHII in 2022.

https://doi.org/10.1371/journal.pone.0339782.g014

Table 2.  Basis for classification of UHII.

Heat island zoning Heat island class Ecological assessment

N<mean-std Strong cool island Excellent

mean-std < N<mean-0.5std Cool island Favorable

mean-0.5std < N<mean+0.5std Weak heat island General

mean+0.5std < N<mean+std Heat island Mediocre

N> mean+std Strong heat island Poor

https://doi.org/10.1371/journal.pone.0339782.t002

Table 3.  Area statistics for UHII classification.

Heat Island Class Area and percentage 2013 2016 2019 2022

Strong Cool Island Area (km2) 888.94 938.61 1019.58 839.39

Percentage (%) 14.21 15.01 16.30 13.42

Cool Island Area (km2) 1051.89 1032.11 965.90 1063.38

Percentage (%) 16.82 16.51 15.45 17.01

Weak Heat Island Area (km2) 2456.67 2361.76 2211.95 2452.76

Percentage (%) 39.29 37.76 35.37 39.22

Heat Island Area (km2) 886.37 879.79 999.25 894.25

Percentage (%) 14.17 14.07 15.98 14.30

Strong Heat Island Area (km2) 969.43 1041.02 1056.63 1003.52

Percentage (%) 15.51 16.65 16.90 16.05

https://doi.org/10.1371/journal.pone.0339782.t003

https://doi.org/10.1371/journal.pone.0339782.g014
https://doi.org/10.1371/journal.pone.0339782.t002
https://doi.org/10.1371/journal.pone.0339782.t003
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Results of multivariate linear regression model

Due to the different ranges of variation between UHII and remote sensing indices, all parameters were normalized, and 
multivariate linear regression was performed on the normalized results. This effectively avoids bias towards indices with 
higher numerical values. After establishing the regression relationship and determining satisfactory accuracy, the results 
were analyzed. UHII is negatively correlated with NDVI and NDWI, indicating that UHII decreases with the increase of 
vegetation areas and water bodies. UHII was positively correlated with NDBI and BSI, suggesting that UHII increases with 
an increase in impervious surfaces and barren land. Additionally, the analysis revealed that as one of the economic and 
cultural centers in China, Beijing’s developed urban construction and high-density building clusters contribute to stronger 
UHI effects, especially in densely built-up areas. The impact of building indices on UHII in the study area is the greatest, 
followed by bare soil areas and vegetation areas, while water bodies have the least impact. The UHI effect is weaker in 
areas with more water bodies. Therefore, water bodies can mitigate UHI effects to some extent in the study area.

	 UHII = 0.33+ 0.35 ∗ NDBI – 0.09 ∗ NDVI – 0.04 ∗ NDWI+ 0.17 ∗ BSI 	 (11)

Fig 15.  Comparison of UHII in 2013, 2016, 2019, and 2022.

https://doi.org/10.1371/journal.pone.0339782.g015

Table 4.  Comparative analysis of LUC distribution between 2025 and 2022.

Land use classification Area and percentage 2022 2025

Water Area (km2) 53.00 50.68

Percentage (%) 0.85 0.81

Plant Area (km2) 892.35 883.84

Percentage (%) 14.27 14.13

Bare soil Area (km2) 2378.31 2303.39

Percentage (%) 38.03 36.84

Building Area (km2) 2929.64 3015.39

Percentage (%) 46.85 48.22

https://doi.org/10.1371/journal.pone.0339782.t004

https://doi.org/10.1371/journal.pone.0339782.g015
https://doi.org/10.1371/journal.pone.0339782.t004
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Fig 16.  Predicted 2025 LUC Map. (Landsat 8).

https://doi.org/10.1371/journal.pone.0339782.g016

https://doi.org/10.1371/journal.pone.0339782.g016
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Fig 17.  The scatter plot of the errors of the simulated distribution of the remote sensing indices. (a) NDBI (b) NDVI (c) NDWI (d) BSI.

https://doi.org/10.1371/journal.pone.0339782.g017

https://doi.org/10.1371/journal.pone.0339782.g017
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Table 5.  Error information for the predicted four remote sensing indices.

Remote sensing spectral indices R2 RMSE MSE

NDBI 0.8464 0.0423 0.0017

NDVI 0.8754 0.0579 0.0033

NDWI 0.8752 0.0496 0.0024

BSI 0.8550 0.0450 0.0020

https://doi.org/10.1371/journal.pone.0339782.t005

Fig 18.  Comparison between the predicted and actual values of NDBI, NDVI, NDWI, and BSI for the year 2022. (a) The actual values of NDBI 
for the year 2022; (b) The predicted values of NDBI for the year 2022; (c) The actual values of NDVI for the year 2022; (d) The predicted values 
of NDVI for the year 2022; (e) The actual values of NDWI for the year 2022; (f) The predicted values of NDWI for the year 2022; (g) The actual 
values of BSI for the year 2022; (h) The predicted values of BSI for the year 2022.

https://doi.org/10.1371/journal.pone.0339782.g018

https://doi.org/10.1371/journal.pone.0339782.t005
https://doi.org/10.1371/journal.pone.0339782.g018


PLOS One | https://doi.org/10.1371/journal.pone.0339782  December 29, 2025 21 / 26

The extracted remote sensing indices from 2022 were input into the constructed regression model. The model’s simulated 
findings and the real UHII outcomes from 2022 were contrasted., and the errors are shown in Table 6.

The remote sensing index results predicted by the CNN-LST-Attention model were input into the constructed MLR 
model to forecast the UHII for the year 2025(Fig 20). Classification of the prediction results and comparison with the 
results in 2022, analysis of the distribution and variation of UHII. Table 7 shows the statistical results of the areas for each 
level of UHII in 2025, while Fig 21 illustrates the comparison of UHII distribution between 2025 and 2022. The proportion 
of cold island areas has decreased significantly, and the proportion of strong heat island areas has slightly decreased. 
Despite this, the overall extent of the heat island has expanded. In comparison to 2022, there was a 2.97% increase in the 
proportion of the heat island area, and an additional 1.25% rise in the combined areas of the heat island and strong heat 
island. These findings suggest that the intensity of the heat island effect within the study region has escalated.

Discussion

Significant changes have been made in the LUC in Beijing over the past decade, primarily due to the replacement of bare 
land areas with developed areas. This transformation is a result of economic development. The “Beijing Urban Master 
Plan (2016-2035)”, issued by the Beijing Municipal Committee and Municipal Government in 2017, focuses on planning 
the future of the capital with a broader spatial perspective. It adheres to the rigid constraints of resource and environ-
mental carrying capacity, sets limits on population size, establishes ecological control lines and urban development 
boundaries, and shifts from expansive planning to optimizing spatial structure as a development strategy (Beijing Munic-
ipal Government, 2017), which will have profound implications for Beijing’s land use pattern. In recent years, Beijing has 
continuously hosted large international conferences, coupled with the successful hosting of the Beijing Winter Olympics 
in 2022, further increasing the demand for construction land in Beijing. The continuous expansion of developed areas has 

Fig 19.  Predicted values of NDBI, NDVI, NDWI, and BSI for the year 2025. (a) Predicted NDBI Values for 2025; (b) Predicted NDVI Values for 
2025; (c) Predicted NDWI Values for 2025; (d) Predicted BSI Values for 2025.

https://doi.org/10.1371/journal.pone.0339782.g019

Table 6.  Analysis of the discrepancy between actual and simulated values of UHII in 2022.

R2 RMSE MSE

UHII 0.7468 0.0546 0.0029

https://doi.org/10.1371/journal.pone.0339782.t006

https://doi.org/10.1371/journal.pone.0339782.g019
https://doi.org/10.1371/journal.pone.0339782.t006
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Fig 20.  UHII and its distribution in 2025. (Landsat 8).

https://doi.org/10.1371/journal.pone.0339782.g020

https://doi.org/10.1371/journal.pone.0339782.g020
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led to an increase in UHIs. The concentration of high-temperature areas in developed areas can be observed by compar-
ing the distribution maps of LST and LUC.

Selecting the appropriate method/model is crucial for accurately predicting future UHII. The use of MLR models can 
effectively identify and differentiate the key variables influencing UHII. By determining the relationship between UHII and 
the key variables, the MLR model can be applied for prediction. However, regression models have inherent limitations. 
Solely focusing on prediction accuracy, deep learning or artificial neural networks can handle nonlinear relationships, 
improving prediction accuracy with higher R2 and lower RMSE. However, both artificial neural networks and deep learn-
ing function as “black boxes,” making it challenging to identify the precise causes of severe UHII. Therefore, regression 
models should be used in order to identify the primary affecting factors. Subsequently, optimization of the UHII prediction 
model can be achieved by combining deep learning and artificial neural networks.

Table 7.  Comparison and analysis of UHII between 2025 and 2022.

Heat island class Area and percentage 2022 2025

Strong Cool Island Area (km2) 839.39 932.06

Percentage (%) 13.42 14.90

Cool Island Area (km2) 1063.38 785.23

Percentage (%) 17.01 12.56

Weak Heat Island Area (km2) 2452.76 2560.13

Percentage (%) 39.22 40.94

Heat Island Area (km2) 894.25 978.09

Percentage (%) 14.30 15.64

Strong Heat Island Area (km2) 1003.52 997.79

Percentage (%) 16.05 15.96

https://doi.org/10.1371/journal.pone.0339782.t007

Fig 21.  Comparison of UHII between 2025 and 2022.

https://doi.org/10.1371/journal.pone.0339782.g021

https://doi.org/10.1371/journal.pone.0339782.t007
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According to the predicted LUC map, the developed areas will continue to expand in various directions, leading to 
a significant increase in impervious surfaces. This expansion will result in the absorption of more energy in the region, 
increasing UHII by continually raising the surface temperature of the surrounding areas. This situation may lead to a sharp 
decline in the livability of Beijing, which already has a dense population, with shortages in living spaces and decreased 
utilization of natural resources.

The coordinated development of Beijing-Tianjin-Hebei effectively alleviates the pressure on Beijing’s non-capital 
functional areas. Xiong’an New Area, as a millennium plan in China, plays a key role in promoting the coordinated devel-
opment of Beijing-Tianjin-Hebei. By adhering to and optimizing the core functions of the capital, as well as adjusting and 
weakening functions that are not suitable for the capital, a series of measures implemented and enforced will effectively 
enhance the livability of Beijing.

Currently, almost all major cities globally are facing rising temperatures and increasing UHI effects. Therefore, urban 
cooling initiatives are considered activities directly related to economic growth and inseparable from sustainable develop-
ment goals. Effective urban cooling goals can be achieved by issuing a series of policies and regulations. Research analy-
sis reveals that LST near vegetation and water bodies is lower, resulting in weaker UHI effects. It’s possible to alleviate the 
UHI effect by reducing the area of developed land and increasing the area covered by vegetation areas and water bodies. 
However, in the current scenario of rapid urbanization, significantly reducing the area of developed land is impractical. 
Still, controlling the urban development boundary can regulate the spread of developed areas. Based on the analysis of 
the regression results, we can make the following recommendations for improving urban livability and urban sustainability: 
(1) Reduce the planned area of developed land. (2) Decrease the density of bare land areas and increase the proportion 
of vegetation areas and water body coverage.

Conclusions

The objective of this study is to examine the distribution and evolution trend of UHII in relation to land use classification 
projected for 2025. By constructing a CNN-LSTM-Attention model, predictions were made for four remote sensing spectral 
indices: NDBI (R2 = 0.8464), NDVI (R2 = 0.8754), NDWI (R2 = 0.8752), and BSI (R2 = 0.8550). Subsequently, a MLR model 
was built to predict UHII (R2 = 0.7468, RMSE = 0.0546). The model demonstrates good accuracy, aiding in accurate UHII 
predictions. Due to the further expansion of urbanized areas, the UHI effect in Beijing will intensify. To mitigate the risks 
to urban livability and sustainable development, this study recommends controlling the urban development boundary, 
increasing the proportion of vegetation areas and water body areas, and optimizing the urban development pattern.

In conclusion, this study provides a method for predicting future UHII by combining MLR model with deep learning. 
Future UHII forecasts were achieved by the study using CA-Markov to predict future land use classification results. Using 
a MLR model to support direct urban development planning recommendations was proposed, with the goal of improving 
urban livability and achieving sustainable development.
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