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Abstract

Surface defects in industrial environments severely the impact product aesthet-
ics, quality, and operational efficiency. Although deep learning approaches show
promise, current architectures often demonstrate inadequate feature extraction in
industrial settings. We introduce EFEN-YOLOVS8, a novel defect detection frame-
work that prioritizes efficient feature extraction to enhance detection accuracy. Our
approach incorporates a 3-FEloU loss function that concurrently tackles defect-
background discrimination and positive-negative sample imbalance. The Shallow
Attention Convolution (SAConv) module strengthens feature localization in early
network layers, while Large Separable Kernel Attention (LSKA) expands recep-
tive fields and augments processing efficiency. Additionally, our Weighted Atrous
Spatial Pyramid Pooling (WASPP) feature fusion module facilitates multi-scale
integration, enabling richer abstract information capture and improved model rep-
resentation. Comprehensive experimental validation, including statistical signifi-
cance testing across diverse data splits, confirms superior performance over existing
methods. Our framework achieves 7.4% mAP improvement on NEU-DET and 3.3%
enhancement on GC10-DET compared to baseline models, maintaining consistent
performance across both 8:2 and 9:1 train-test configurations. These findings vali-
date the method’s robust generalization capacity and establish its effectiveness for
industrial surface defect detection applications. Code and datasets are available at:
https://github.com/01WineCool/YOLO.

Introduction

Materials across automotive, aerospace, construction, and manufacturing sectors

exhibit specialized properties tailored to demanding operational requirements. Nev-
ertheless, environmental exposure and processing conditions induce surface defects
including scratches, pitting, corrosion, and delamination, which degrade both aes-
thetic appeal and structural integrity while diminishing service longevity. Conventional
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detection approaches rely predominantly on manual visual inspection, introducing
human error, fatigue-related inconsistencies, elevated operational costs, and reduced
throughput—limitations that render such methods insufficient for contemporary indus-
trial applications. Alternative methodologies encompass laser scanning, magnetic
flux leakage testing, eddy current evaluation, and ultrasonic inspection; however,
these techniques demand rigorous technical specifications, impose substantial cap-
ital expenditures, and exhibit susceptibility to environmental interference, thereby
constraining their widespread deployment in production environments [1].

Advances in automation and computer vision have catalyzed innovative surface
defect detection paradigms. Initial methodologies employed manual feature extrac-
tion coupled with image preprocessing prior to classification. Ashour et al. [2] utilized
gray-level co-occurrence matrices (GLCM) to extract multi-directional texture fea-
tures from steel strip imagery for defect identification. Similarly, Carvalho et al. [3]
developed pixel clustering techniques through specialized feature extraction, while
Schneider et al. [4] captured signal characteristics across temporal, spectral, and
distributional domains, incorporating feature selection mechanisms for enhanced
recognition accuracy. Despite achieving adequate performance within specific oper-
ational contexts, these approaches exhibit domain-specific feature extraction con-
straints, fundamentally limiting their generalizability and posing substantial scalability
challenges.

Deep learning has revolutionized defect detection through its superior representa-
tional capabilities, with optimized object detection algorithms further advancing detec-
tion efficiency. Two-stage methodologies, exemplified by the R-CNN family [5,6],
achieve exceptional accuracy through region proposal mechanisms, while single-
stage approaches including YOLO variants [7,8] and SSD architectures [9] excel in
real-time scenarios due to their computational efficiency. Recent advances demon-
strate continued innovation: Sun et al. [10] enhanced R-CNN performance by incor-
porating attention-guided feature encoding and multi-level grid-based ROI fusion
modules. Liu et al. [11] strengthened feature extraction through FocalNextBlock inte-
gration within backbone architectures. The transformer-based DETR [12] pioneered
end-to-end single-stage detection, while RT-DETR [13] addressed computational
overhead concerns despite maintaining substantial parameter requirements. Wei
et al. [14] proposed a vision transformer combining receptive-field attention con-
volution (RFAConv) with context broadcasting median (CBM) modules, achieving
significant improvements in metallic surface defect detection.

Surface defects present multifaceted challenges characterized by irregular geome-
tries, variable dimensions, inconsistent aspect ratios, and heterogeneous illumination
patterns. Such variability undermines detection algorithm effectiveness, while com-
plex backgrounds impose additional computational burdens on parameter-intensive
networks. Object detection frameworks encounter particular difficulties with multi-
scale generalization, necessitating extensive downsampling operations that compro-
mise small target detection capabilities. In scenarios dominated by intricate back-
grounds and minute defective regions, feature extraction becomes exceptionally
demanding. Single-stage architectures offer optimal solutions for time-critical applica-
tions, achieving favorable speed-accuracy trade-offs through unified detection
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pipelines that enhance practical deployment viability. However, significant optimization opportunities persist across
diverse industrial contexts. Given that model performance varies substantially across application domains, strategic detec-
tor selection remains paramount for maximizing inspection efficiency. This work presents EFEN-YOLOv8, an enhanced
framework built upon YOLOV8 foundations, specifically designed for robust defect detection across complex industrial
environments. The principal contributions include:

* We introduce a novel Shallow Attention Convolution (SAConv) module, which employs fine-grained attention mech-
anisms to significantly enhance spatial feature localization and positional encoding. Crucially, this module facilitates
precise feature extraction within early network layers. Complementing SAConv, our innovative Weighted Atrous Spa-
tial Pyramid Pooling (WASPP) module ensures robust multi-scale feature integration and comprehensive contextual
information preservation.

+ To address both the challenging foreground-background discrimination and the pervasive class imbalance inherent
in defect detection datasets, we propose a novel S-FEloU loss function. This innovative formulation concurrently opti-
mizes bounding box regression while effectively mitigating the significant positive-negative sample disparity frequently
encountered in real-world industrial inspection scenarios.

» Our proposed framework achieves exceptional performance, establishing new competitive baselines on the challeng-
ing NEU-DET and GC10-DET benchmarks. These results unequivocally advance the state-of-the-art in surface defect
detection.

Related work

Deep learning-based object detection has emerged as the dominant paradigm for surface defect detection, driven by
advances in novel convolution architectures, attention mechanisms, loss function optimization, and multi-scale feature
fusion strategies.

Convolution methods. Convolutional operations extract hierarchical feature representations while enabling spa-
tial dimension manipulation through learnable filters. Unlike fully connected architectures, convolutional layers achieve
parameter efficiency, motivating extensive research into specialized convolution variants. Dent et al. [15] developed Spa-
tial Depth Convolution (SPD-Conv) blocks that preserve complete channel information through feature map-specific oper-
ations, demonstrating enhanced performance on low-resolution imagery and small object detection. Wang et al. [16]
combined self-attention with graph convolution while employing lightweight Depthwise Convolution (DWconv) modules,
achieving both computational acceleration and improved recognition of challenging defect patterns. Zhong et al. [17]
introduced DualConv, which processes identical input channels through parallel 3x3 and 1x1 kernels, optimizing fea-
ture extraction and yielding substantial accuracy improvements in YOLOv3 implementations. Shahaf et al. [18] leveraged
Wavelet Transform (WT) for multi-frequency analysis, capturing rich low-frequency components and global receptive fields
through convolution-based spatial mixing, thereby enhancing CNN robustness against geometric variations and structural
damage. Chen et al. [19] proposed Partial Convolution (PConv), applying standard convolution to selected input chan-
nels while maintaining others unchanged, significantly reducing computational overhead and memory consumption. Each
technique offers distinct computational and representational advantages, necessitating careful selection based on specific
application requirements and performance constraints.

Attention mechanisms. While convolution excels at local feature extraction, attention mechanisms provide global
contextual modeling capabilities that enhance long-range dependency capture and enable selective focus on salient
input regions. Li et al. [20] integrated dual channel-spatial attention to strengthen feature fusion within neural architec-
tures. Tang et al. [21] developed joint attention frameworks that suppress background interference while emphasizing
defect characteristics, thereby improving network analytical capabilities. However, enhanced attention modules may intro-
duce computational overhead and convergence challenges. Guo et al. [22] proposed large kernel attention that unifies
convolutional and self-attention advantages, incorporating local structural modeling, long-range dependency capture,
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and adaptive receptive field adjustment. Kang et al. [23] addressed computational efficiency in global context extrac-
tion through Channel Reduction Attention (CRA), which compresses query and key dimensions to unity, substantially
reducing self-attention computational complexity. Wang et al. [24] focused on multi-head attention for detail preserva-
tion and inference acceleration, employing jump-sensitive feature fusion modules that maintain texture extraction fidelity
while enhancing detection performance. Despite these advances, many attention mechanisms remain constrained by
their limited receptive fields, hampering fine-grained feature capture essential for detecting minute or subtle surface
anomalies.

Loss functions. Loss function optimization represents a critical pathway for enhancing model stability and conver-
gence efficiency, directly influencing both training dynamics and regression precision. Hu et al. [25] synthesized mean
squared error, cross-entropy, and CloU components into a unified loss formulation that constrains classification perfor-
mance while improving model stability and accuracy. Liao et al. [26] designed an angular-based loss function that con-
siders geometric relationships between predicted and ground truth centroids, balancing component contributions through
L1 and Alpha-loU integration to achieve superior detection accuracy and accelerated convergence. Li et al. [27] directly
incorporated localization quality into classification loss through category-specific weighting schemes, enabling detec-
tion models to prioritize challenging samples and address classification-localization inconsistencies inherent in traditional
object detection paradigms. Luo et al. [28] introduced UNI-loU loss for bounding box regression, optimizing accuracy
through dynamic attention mechanisms that adapt to prediction quality variations. While existing loss functions primarily
minimize spatial discrepancies between predictions and the ground truth, they seldom account for inter-class relationships
among defect categories, representing a significant opportunity for improvement.

Multi-scale fusion. Despite these advances, small defect detection remains challenging due to insufficient multi-scale
feature integration and extraction capabilities. Recent investigations [1,26,29,30] have incorporated high-resolution feature
maps containing rich small object information into fusion networks, employing sophisticated bidirectional feature pyramid
networks (Bi-FPN) to enhance small target detection accuracy. Li et al. [31] combined top-down upsampling with bottom-
up downsampling pathways to emphasize both positional and semantic information within multi-scale fusion architec-
tures. Zhang et al. [32] integrated Atrous Spatial Pyramid Pooling (ASPP) modules into YOLOV5, substantially improving
small target detection performance on limited datasets through diverse semantic information capture. Li et al. [33] incor-
porated simplified Spatial Pyramid Pooling-Fast (SimSPPF) structures into backbone networks, enabling feature extrac-
tion across four distinct scales. Yang et al. [34] proposed FocalModulation for feature enhancement, employing atten-
tion mechanisms to concentrate on salient image regions and improve regional recognition capabilities. Compared to
SPPF, FocalModulation processes variable-sized inputs while achieving superior object identification and localization
precision.

While these methodologies demonstrate effectiveness in specific contexts, they exhibit fundamental limitations in com-
plex scenarios. Shallow network layers typically contain noisy, low-level features, whereas deeper layers often fail to pre-
serve fine-grained spatial details essential for precise localization. This hierarchical information disparity impedes effective
attention allocation to critical regions. Although ASPP and similar architectures successfully integrate multi-level informa-
tion, they inadequately prioritize discriminative features, constraining model enhancement potential and limiting break-
through performance. To address these challenges, detection frameworks must exhibit superior global modeling capabil-
ities, effectively discriminate between heterogeneous features, and assess their relative importance for decision-making.
Through enhanced shallow feature attention and comprehensive local-global information integration, our proposed archi-
tecture achieves more effective feature discrimination and superior detection performance.
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Methods
YOLOvV8 algorithm and EFEN-YOLOV8 architecture

The YOLOVS8 framework consists of four principal components: backbone feature extraction network, neck feature fusion
network, detection head, and loss function incorporating both classification and localization objectives. Our EFEN-
YOLOVS8 architecture, depicted in Fig 1, introduces several key modifications to address defect detection challenges. We
replace the initial two C2f modules in the backbone with SAConv modules that provide expanded receptive fields and
weighted attention mechanisms. LSKA attention is strategically integrated before fusion layers and detection heads to
strengthen defect feature identification capabilities. Our novel WASPP module emphasizes feature importance while inte-
grating diverse semantic information across multiple scales. Finally, we propose the 8-FEloU loss function to enhance
defect discrimination and mitigate positive-negative sample imbalance inherent in defect detection datasets.

Shallow Attention Convolution (SAConv)

Hierarchical feature learning in deep convolutional networks reveals distinct representational characteristics across net-
work depths. Shallow layers, positioned proximal to input data, preserve fine-grained spatial information including tex-
ture patterns, edge structures, and low-level visual primitives essential for precise localization. Conversely, deeper layers

Backbone : Neck

(af
|
( cf }—{

Fig 1. EFEN-YOLOVS8 architecture. Thermal maps demonstrate the effectiveness of each improvement component. The enhanced model successfully
captures defect information at shallow layers while maintaining focus on defect features through multi-scale fusion and attention mechanisms.

https://doi.org/10.1371/journal.pone.0339617.g001
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progressively abstract semantic concepts through nonlinear transformations, enabling high-level reasoning and complex
pattern recognition. The quality of early-stage feature learning fundamentally influences the subsequent network perfor-
mance, as initial representations form the foundation for all downstream processing. However, standard convolutional
operations face inherent limitations in establishing long-range spatial dependencies due to constrained receptive fields,
particularly affecting early layers where fine-grained spatial relationships are crucial.

For surface defect detection, shallow layer information proves indispensable for identifying minute anomalies and sub-
tle textural variations. Traditional CNNs often inadequately preserve and refine these critical shallow features due to lim-
ited spatial connectivity and insufficient attention mechanisms. To address these limitations and enhance shallow-layer
defect sensitivity, we introduce the Shallow Attention Convolution (SAConv) module, specifically engineered to strengthen
fine-grained feature representation while maintaining computational efficiency. The SAConv operational mechanism is
illustrated in Fig 2.

SAConv operates through a dual-stage architecture optimized for shallow feature enhancement. The initial stage cap-
tures multi-scale spatial dependencies through heterogeneous convolutional kernels of varying dimensions. Small kernels
preserve fine-grained detail resolution essential for detecting subtle defects, while larger kernels extend spatial receptive
fields to capture broader contextual information. This multi-kernel interaction enables comprehensive spatial relationship
modeling across diverse scales, facilitating robust feature learning that spans both local and semi-global spatial contexts.
The subsequent stage employs adaptive pooling operations coupled with attention mechanisms to refine feature localiza-
tion and importance weighting. This pooling strategy ensures effective aggregation of scattered defect information while
attention mechanisms amplify discriminative features critical for accurate detection. Through this integrated approach,
SAConv maintains rich spatial detail at shallow network depths while enhancing sensitivity to subtle anomalies, ultimately
improving detection performance with minimal computational overhead.

1= ¢ - ] -
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Fig 2. SAConv module architecture and computational flow. The module employs multi-scale kernel operations followed by adaptive pooling and
attention mechanisms for enhanced shallow feature extraction.

https://doi.org/10.1371/journal.pone.0339617.9g002
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B-FEloU loss function

Inter-class spatial relationships in surface defect detection significantly impact classification performance, particularly
when visually similar defect categories exhibit overlapping characteristics. Certain defect types demonstrate strong struc-
tural similarities during acquisition, such as comparable grayscale distributions between oil stains and water reflections
on metallic surfaces. These visual ambiguities compromise the network discrimination capabilities, resulting in suboptimal
feature learning and classification errors. Conventional loss functions assume simplified feature distributions and inad-
equately account for nuanced inter-category similarities, often treating distinct yet visually comparable defects as indis-
tinguishable. This limitation manifests as discrimination deficiencies when structural differences between classes remain
subtle yet critical for accurate categorization.

We propose the 5-FEloU (Feature-Enhanced Intersection over Union) loss function to enhance model sensitivity to
fine-grained class distinctions. The §-FEloU formulation prioritizes spatial and structural variations between similar cate-
gories, enabling superior capture of discriminative features during training. As formulated in Eq (1), 8-FEloU incorporates
an adaptive weighting factor 8 that dynamically modulates loss magnitude based on predicted-ground truth feature over-
lap. This mechanism emphasizes regions exhibiting high inter-class similarity, ultimately strengthening the model’s capac-
ity to differentiate between visually comparable yet semantically distinct defects. Through enhanced spatial relationship
modeling, B-FEloU improves both classification accuracy and robustness across challenging detection scenarios.

c
Lgreiou = Z B(LEocal + ALgiou)s (1)

c=1

where C represents the total number of detection classes, 8 denotes the adaptive category weighting factor, and 1 con-
trols the relative contribution of the EloU regression loss component.

The EloU loss function [35], detailed in Eq (2) and illustrated in Fig 3, enhances bounding box regression through com-
prehensive geometric penalty terms.

Cﬁ(bp, bgt) CF(WP, Wgt) d2(hp, hgt)
(we)? + (he)? (we)2 (he)z

Leou=1—10oU + (2)
where w® and h° represent the width and height of the minimum enclosing rectangle encompassing both predicted and
ground truth boxes, and d denotes the Euclidean distance between specified points.

The Focal loss component addresses foreground-background imbalance prevalent in defect detection by dynamically
reweighting training samples based on classification difficulty. This mechanism reduces the influence of easily classified
samples while emphasizing hard negatives, effectively mitigating the positive-negative sample disparity characteristic of
single-stage detection frameworks. The Focal loss formulation appears in Eq (3):

Lroca = —a(1 — pp)” log(py) 3)
where
p if y=1
pt= . (4)
1—-p ify=0

where o; represents the class-specific weighting factor, p; denotes the predicted probability for the target class, and y
controls the focusing strength for hard example mining. When y = 0, the formulation reduces to standard cross-entropy
loss.
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Fig 3. Geometric configuration for 3-FEloU computation. The predicted bounding box (blue), ground truth box (red), and minimum enclos-
ing rectangle (yellow) define the spatial relationships used in loss calculation. Parameters b, w, and h represent box centers, widths, and heights
respectively.

https://doi.org/10.1371/journal.pone.0339617.9003

Large Separable Kernel Attention (LSKA)

Surface defects present multifaceted detection challenges characterized by irregular geometries, discontinuous bound-
aries, and complex edge artifacts, often compounded by substantial background noise and imaging interference. These
conditions severely impede accurate defect localization within complex industrial environments. To enhance feature
discrimination capabilities and improve defect characterization, we integrate the Large Separable Kernel Attention
(LSKA) [36] mechanism preceding the final prediction layers. This strategic placement enables enhanced focus on critical
defect characteristics while maintaining computational efficiency. As depicted in Fig 4, LSKA decomposes traditional 2D
convolutional kernels into cascaded 1D separable operations, applied sequentially through depth-wise and dilated convo-
lution pathways. This factorization strategy significantly reduces computational overhead and memory requirements while
preserving large receptive field capabilities essential for capturing global spatial dependencies in complex defect patterns.

The LSKA mechanism operates through a multi-stage attention computation process:

_c
Z = Z W(Czd—1)x1 * (Z VV?X(Zd—D * FC) (®)
Hw A
=3 ne *<ZWC . *EC) (6)
e 1 B VR ]
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Fig 4. LSKA module architecture and computational flow. The module processes input features F € R€*H*W through cascaded depth-wise convo-
lutions: standard DW-Conv followed by dilated DW-D-Conv operations. Results are concatenated with the original feature map after 1 x 1 convolution to
produce the final attended output. Parameters: C denotes input channels, H and W represent spatial dimensions, d controls dilation rate, and k defines
maximum receptive field extent.

https://doi.org/10.1371/journal.pone.0339617.9g004

AC=W1X1>1<ZC (7)

—C
F =ACQ®FC 8)

where * and ® denote convolution and element-wise multiplication operations respectively. The intermediate feature EC
represents the depth-wise convolution output with kernel dimensions (2d—1) x (2d—1), capturing local spatial relationships
while mitigating gridding artifacts inherent in dilated operations. The dilated convolution employs kernel size lSJ X ng
where |-| represents the floor function. The attention map A° results from 1 x 1 convolution for channel-wise feature recal-
ibration. Through this hierarchical processing, dilated depth-wise convolution extracts global spatial context from local

features EC, while maintaining computational efficiency through separable kernel decomposition.

Empirical analysis reveals that larger LSKA kernel sizes introduce computational overhead without proportional per-
formance gains. Experimental validation demonstrates optimal detection accuracy at moderate kernel dimensions across
both evaluation datasets, suggesting an effective balance between receptive field coverage and computational efficiency.
A comprehensive kernel analysis can be found in the fourth section.

Weighted Atrous Spatial Pyramid Pooling (WASPP)

Convolutional operations exhibit inherent spatial locality constraints, primarily capturing local patterns within limited recep-
tive fields. While this locality enables effective fine-grained feature extraction, it fundamentally restricts global context
modeling and high-level semantic understanding essential for comprehensive scene analysis. Multi-scale convolution
strategies address this limitation by incorporating diverse receptive field configurations to capture hierarchical seman-
tic information across spatial scales. However, features extracted from heterogeneous receptive fields exhibit varying
relevance for specific detection tasks, with substantial portions potentially irrelevant to critical discriminative patterns.

PLOS One | https://doi.org/10.1371/journal.pone.0339617 January 2, 2026 9/ 24



https://doi.org/10.1371/journal.pone.0339617.g004
https://doi.org/10.1371/journal.pone.0339617

PLO?%- One

We propose the Weighted Atrous Spatial Pyramid Pooling (WASPP) module as an enhanced variant of traditional
ASPP architectures, illustrated in Fig 5. WASPP integrates multiple parallel convolutional pathways employing standard
kernels (1 x 1, 3 x 3) and atrous convolutions with systematic dilation rates (6, 12, 18) to capture multi-scale contextual
information efficiently. This hierarchical design enables simultaneous extraction of local detail and global context while
maintaining computational tractability for real-time applications.

To enhance discriminative feature selection, each convolutional branch within WASPP extracts features into dedicated
channels, subsequently processed through sigmoid activation for adaptive importance weighting. This attention mecha-
nism emphasizes salient features while suppressing irrelevant information, enabling selective focus on task-critical spa-
tial patterns. The weighted features undergo concatenation with original convolutional outputs, facilitating comprehensive
multi-scale representation that preserves both raw and refined feature information.

The module incorporates adaptive global average pooling followed by 1 x 1 convolution and bilinear upsampling to
ensure consistent spatial dimensions across all feature pathways. Final feature integration occurs through concatenation
and subsequent 1 x 1 convolution for dimensional consistency and feature refinement. This architecture effectively over-
comes fraditional convolution limitations in global context modeling by leveraging multi-scale kernel configurations and
attention-guided feature selection. Through systematic integration of local and global information across diverse scales,
WASPP enhances semantic understanding while maintaining computational efficiency, ultimately improving the model’s
capacity to identify and localize complex defect patterns in challenging industrial environments.

Output
1x1
conv,
Concat
Upsample
A
1x1 . . 3x3 . . 3x3 . . 3x3 . . 3x3 . . 1x1
conv, Pz conv, Pl conv ré HETEE conv r12 PgiEE conv r18 EEEE conv
- ; - T s 5
1x1 3x3 3x3 3x3 3x3 1x1
cony| conv conv ré conv r12 conv r18 Pool

3 3 A 3 7y

Fig 5. WASPP module architecture and multi-scale feature integration. The module employs parallel convolutional branches with varying receptive
fields, followed by adaptive weighting mechanisms and feature concatenation. Each pathway contributes scale-specific information that is selectively
emphasized through sigmoid-based attention before final fusion.

https://doi.org/10.1371/journal.pone.0339617.g005
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Experimental

To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments using the NEU-
DET [37] dataset for initial module verification, followed by generalization validation on the GC10-DET [38] dataset.

Datasets

NEU-DET dataset. The NEU-DET dataset, developed by Northeastern University of China, presents challenging con-
ditions characterized by significant noise, uneven illumination, diverse defect morphologies, and intra-class variability,
making it particularly suitable for validating robust detection algorithms. The dataset contains 1,800 images across six
surface defect categories, with 300 samples per class at 200 x 200 pixel resolution, as depicted in Fig 6. The defect cat-
egories comprise cracking (Cr), pitting surface (Pi), rolled oxide (Ro), scratch (Sc), inclusion (In), and patch (Pa). As illus-
trated in the representative samples of Fig 6, each defect category exhibits distinct morphological characteristics with
irregular spatial distributions and varying visual complexity. Notably, cracking samples demonstrate substantial back-
ground noise and non-uniform illumination that can obscure critical defect boundaries, potentially leading to missed detec-
tions and compromised feature learning, ultimately challenging model robustness and detection accuracy.

GC10-DET dataset. The GC10-DET dataset comprises 2,294 high-resolution images with dimensions of 2048 x 1000
pixels, encompassing ten distinct steel surface defect categories as illustrated in Fig 7. The defect taxonomy includes:
punching hole (Pu), weld line (WI), crescent gap (Cg), water spots (Ws), oil spots (Os), silk spot (Ss), inclusion (In), rolled
pit (Rp), crease (Cr), and waist folding (Wf). This dataset provides enhanced complexity through higher resolution imagery

Pi Ro Sc

Fig 6. Representative defect categories in NEU-DET dataset. Each class exhibits distinct morphological characteristics and varying degrees of visual
complexity, with irregular spatial distributions that challenge detection algorithms.

https://doi.org/10.1371/journal.pone.0339617.9g006
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Fig 7. Defect category distribution in GC10-DET dataset. The ten defect classes represent diverse steel surface anomalies with varying scales,
textures, and morphological characteristics.

https://doi.org/10.1371/journal.pone.0339617.9007
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and increased defect category diversity, enabling comprehensive evaluation of model generalization capabilities across
varied industrial surface conditions.

Evaluation metrics

Following standard object detection evaluation protocols, we employ precision (P), recall (R), average precision (AP),
mean average precision (mAP), computational complexity (GFLOPs), and model parameters (Params) as primary perfor-
mance indicators. The evaluation metrics are defined as:

P
P=T5+FP ©)
P

R=T5+Fn (10)

;
Asz P(R)dR (11)

0

1 n

mAP = EZAP,- (12)

i=1

where TP represents true positive detections, FP denotes false positive predictions, FN indicates false negative instances
(missed detections), and n corresponds to the total number of defect categories. Average precision (AP) is computed as
the area under the precision-recall curve for each class, while mean average precision (mAP) represents the average AP
across all categories. For single-class scenarios, mAP reduces to AP.
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Experimental configuration

Experiments are conducted on a Windows-based workstation equipped with an NVIDIA RTX 3060 GPU, utilizing CUDA
12.3, PyTorch 1.12.0 framework, and Python 3.8.5 environment. Training employs a primary 9:1 training-testing partition,
with selected experiments utilizing an 8:2 split for robustness evaluation. Training hyperparameters include 350 epochs,
initial learning rate of 0.01, batch size of 16, momentum coefficient of 0.937, and weight decay of 0.0005, optimized
through stochastic gradient descent (SGD).

Loss function comparative analysis

Loss function design fundamentally influences model optimization by quantifying prediction-target discrepancies, with
effective formulations enhancing robustness through balanced training efficiency and generalization capability. We eval-
uate our proposed 5-FEloU loss against established loU variants—CloU, DloU, WIoU, SloU, and EloU—across multiple
data partitioning schemes to assess performance consistency and robustness. Tables 1 and 2 present comprehensive
comparative results demonstrating the superior balanced performance of S-FEloU across all defect categories, regard-
less of data partitioning strategy. Under the 9:1 configuration, 8-FEloU achieves 76.0% mAP, surpassing the second-best
approach by 0.3 percentage points. The more challenging 8:2 split further validates our method’s efficacy, with 3-FEloU
maintaining optimal performance at 73.6% mAP compared to SloU’s 72.6%. This consistency across varying training data
availability demonstrates the robustness of our loss formulation.

A category-specific analysis reveals distinct performance characteristics across various loss functions. Specifically,
while DloU excels in the detection of cracking defects and EloU optimizes patch detection, 5-FEloU demonstrates excep-
tional stability and balanced performance across all defect categories. Within the particularly challenging cracking cat-
egory, our method achieves performance of 44.4% and 50.3% under different data partitioning schemes. These figures
represent substantial improvements of 8.9% and 2.9% over the weakest-performing baselines, respectively. Crucially,
the performance differential observed between the 9:1 and 8:2 data partitions offers critical insights into the inherent sta-
bility of different loss functions. Remarkably, 5-FEloU exhibits exceptional resilience, showing only a 2.4% performance
degradation even with a significant reduction in training data. This strongly suggests superior generalization capabilities.

Table 1. mAP values under different losses with a training-to-testing ratio of 9:1.

Loss mAP50% mAP50%
Cr In Pa Pi Ro Sc

CloU 73.0 401 81.5 90.7 74.7 65.0 86.0
DloU 75.7 48.4 83.0 93.9 75.9 64.2 88.9
WiloU 72.7 40.4 76.2 90.9 75.8 68.1 84.8
SloU 75.6 35.5 89.0 90.9 76.3 78.4 83.8
EloU 75.1 34.2 82.2 96.0 78.8 71.8 87.4
f-FEloU 76.0 44.4 86.1 95.3 771 70.9 82.1

https://doi.org/10.1371/journal.pone.0339617.t001

Table 2. mAP values under different losses with a training-to-testing ratio of 8:2.

Loss mAP50% mAP50%
Cr In Pa Pi Ro Sc

CloU 711 48.2 80.7 92.4 82.5 49.1 74.0
DloU 72.4 50.6 80.9 92.9 79.8 56.6 73.6
WloU 72.0 429 85.3 94.2 77.4 52.6 79.6
SloU 72.6 47.4 83.4 91.4 81.2 52.1 80.4
EloU 721 47.4 82.3 92.0 81.2 56.4 73.4
f-FEloU 73.6 50.3 82.2 91.1 82.5 59.2 75.6

https://doi.org/10.1371/journal.pone.0339617.t002
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Conversely, conventional approaches like CloU and EloU suffer significantly more substantial performance deterioration,
indicating a heightened susceptibility to overfitting when confronted with limited training samples.

The effectiveness of §-FEloU stems from the synergistic integration of EloU regression loss with Focal loss classifica-
tion, enhanced by our adaptive 8 weighting mechanism. The Focal loss component effectively addresses class imbalance
between background and defect regions, while the § parameter enables dynamic adjustment based on detection difficulty
and inter-class relationships. This dual mechanism accelerates convergence while enhancing discriminative capacity for
subtle defect variations. Through comprehensive evaluation across diverse defect categories and data partitioning scenar-
ios, B-FEIoU consistently demonstrates superior balanced performance and exceptional robustness for industrial surface
defect detection applications.

The impact of LSKA kernel size

LSKA employs a sophisticated attention mechanism that decomposes traditional two-dimensional convolution kernels into
cascaded one-dimensional operations along horizontal and vertical axes within deep convolutional layers. We evaluate
six distinct kernel dimensions: 7, 11, 23, 35, 41, and 53 pixels. Given the morphological diversity of surface defects across
both datasets, which encompass substantial scale variations and heterogeneous geometric patterns including elongated,
triangular, and semi-circular configurations, kernel size selection critically influences detection performance.

Tables 3 and 4 demonstrate that smaller convolution kernels consistently produce suboptimal overall accuracy due to
their inherent spatial locality constraints, which limit comprehensive defect information capture across extended spatial
contexts. Medium-sized kernels (11 and 23) demonstrate superior performance for fine-grained defect feature detection,
particularly excelling at identifying irregular elongated or curved defect characteristics that require balanced local-global
context integration. Conversely, larger kernels provide enhanced global contextual information and achieve superior accu-
racy for substantial defect features, demonstrating optimal performance on expansive regions with regular geometric pat-
terns such as large patches or crescent-shaped anomalies. However, this expanded receptive field compromises spatial
localization precision, thereby reducing detection efficacy for minute defect features requiring fine-grained spatial discrimi-
nation.

The empirical results reveal an optimal trade-off at kernel size 23 for NEU-DET (77.0% mAP) and kernel size 11 for
GC10-DET (67.2% mAP), where sufficient contextual information is captured without sacrificing the spatial precision
essential for detecting subtle surface anomalies. This dataset-dependent optimal kernel size reflects the distinct defect
characteristics and complexity levels inherent in each industrial surface inspection scenario.

Ablation study

To validate the effectiveness of our proposed architectural enhancements, we conduct comprehensive ablation experi-
ments using YOLOv8n as the baseline framework. Table 5 presents the ablation results for each module configuration
on the NEU-DET dataset. The ablation results demonstrate distinct performance characteristics for each architectural

Table 3. Effects of different LSKA convolution kernel in NEU-DET Dataset.

LSKA kernel mAP50% mAP50%
Cr In Pa Pi Ro Sc

7 75.4 51.3 84.5 98.4 78.6 64.8 82.9
11 75.5 455 84.0 94.8 76.1 67.1 85.5
23 77.0 54.5 87.1 95.9 69.9 72.2 82.5
35 75.2 42.9 88.0 92.1 76.3 69.1 83.1
41 75.4 47.0 86.5 90.9 76.1 68.3 83.7
53 75.0 49.7 86.9 92.8 75.7 63.9 81.4

https://doi.org/10.1371/journal.pone.0339617.t003

PLOS One | https://doi.org/10.1371/journal.pone.0339617 January 2, 2026 14/ 24



https://doi.org/10.1371/journal.pone.0339617.t003
https://doi.org/10.1371/journal.pone.0339617

PLOR. One

Table 4. Effects of different LSKA convolution kernel in GC10-DET Dataset.

LSKA kernel mAP50% mAP50%
Pu WL CG Ws Os SS In Rp Cr Wf

7 66.8 92.0 |846 |96.3 [812 |533 |604 [252 (346 |51.8 |88.4
11 67.2 944 |89.8 [924 |809 [68.8 |726 |455 |56 43.7 | 78.2
23 67.1 932 |87.0 |94.7 |827 |63.1 716 [389 |[17.0 [433 |794
35 66.7 942 |854 |975 |788 |627 |740 |339 (159 (476 |77.1
41 66.3 926 |757 |955 |744 |639 |614 |231 39.6 |491 |87.7
53 66.6 928 |816 |[957 |776 |67.2 |553 |254 [304 |[556 |839

https://doi.org/10.1371/journal.pone.0339617.t004

Table 5. The ablation results of each module.

Model Loss LSKA SAConv WASPP mAP50% Parame GFLOPs
Yolov8n — — — - 73.0 2.87 8.1
Yolov8n_1 — — — v 76.5 5.45 12.3
Yolov8n_2 — — v — 73.2 2.88 8.5
Yolov8n_3 — v — — 75.2 3.04 8.4
Yolov8n_4 N — — — 76.0 2.87 8.1
Yolov8n_5 N N — — 77.0 2.96 8.3
Yolov8n_6 v v v — 79.2 3.05 8.7

ours v v v v 80.4 5.64 12.8

https://doi.org/10.1371/journal.pone.0339617.t005

component. Initially, while the WASPP module (YOLOv8n_1) introduces substantial parameter overhead and computa-
tional complexity, it achieves notable detection improvements, yielding 76.5% mAP compared to the 73.0% baseline. The
SAConv module in isolation (YOLOv8n_2) exhibits minimal performance enhancement, achieving only marginal improve-
ment with negligible parameter increase. This limited effectiveness suggests that SAConv requires synergistic integration
with contextual attention mechanisms to realize its full potential. The LSKA attention mechanism (YOLOv8n_3) demon-
strates substantial standalone effectiveness, achieving 75.2% mAP with minimal computational overhead. This 2.2%
improvement validates LSKA's capacity to enhance contextual feature relationships and direct model attention toward
critical defect characteristics. The 3-FEloU loss function (YOLOv8n_4) significantly improves regression performance,
achieving 76.0% mAP while maintaining identical parameter count and computational complexity as the baseline, con-
firming the effectiveness of our adaptive loss formulation. Progressive module integration reveals compelling synergistic
effects. Combining 5-FEIoU with LSKA (YOLOv8n_5) yields 77.0% mAP, demonstrating that enhanced loss optimiza-
tion facilitates improved attention mechanism performance. The addition of SAConv (YOLOv8n_6) produces substan-
tial improvement to 79.2% mAP, validating our hypothesis that SAConv effectiveness depends on adequate contextual
interaction provided by LSKA. This configuration enables SAConv to effectively extract shallow features, enrich spatial
information, and emphasize multi-scale receptive field importance.

The complete architecture incorporating all proposed components achieves 80.4% mAP, representing a remarkable
7.4% improvement over the baseline YOLOv8n. While this configuration incurs increased computational cost, the sub-
stantial performance gains justify the computational overhead for industrial defect detection applications requiring high
accuracy. The systematic ablation study validates each component’s contribution and demonstrates the synergistic ben-
efits of integrated architectural enhancements. To comprehensively assess feature extraction capabilities, we employ
HiResCam visualization comparing our enhanced architecture with the baseline implementation, as illustrated in Fig 8.
The comparative analysis reveals superior feature extraction performance across diverse defect categories. For crack-
ing defects, while only single defects receive explicit annotations, multiple unmarked anomalies exist within images. Our
model successfully identifies several unlabeled instances, demonstrating enhanced sensitivity to subtle defect patterns.
Similarly, for pitting defects characterized by extensive spatial distribution, the baseline model exhibits inadequate feature
learning, whereas our architecture demonstrates comprehensive defect extraction capabilities. Consistent improvements
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Fig 8. Comparative feature extraction visualization through HiResCam analysis. Heat maps demonstrate superior defect localization capabilities of
our proposed architecture compared to baseline YOLOv8n across representative defect categories, revealing enhanced sensitivity to subtle anomalies
and improved spatial feature extraction.

https://doi.org/10.1371/journal.pone.0339617.9g008

across all defect categories validate our model's enhanced feature extraction efficacy and substantiate the architectural
enhancements’ effectiveness.

Comparative performance analysis

To comprehensively validate our proposed architecture’s effectiveness, we conduct extensive comparisons against state-
of-the-art detection frameworks and contemporary approaches. We standardize input image dimensions across all eval-
uated models to ensure consistent experimental conditions. Open-source architectures (YOLOv5, YOLOvS8, YOLOv11,
YOLOX, Faster R-CNN, SSD, RT-DETR) undergo retraining on the NEU-DET dataset using their respective default hyper-
parameter configurations and identical training protocols. For contemporary methods referenced in recent literature [39—
42], we implement their approaches based on published methodological descriptions and apply consistent experimental
conditions matching our proposed framework. Unspecified parameters align with our implementation standards to main-
tain fair comparative evaluation.

Table 6 demonstrates that our proposed architecture achieves superior overall detection performance, attaining 80.4%
mAP while maintaining reasonable computational efficiency. Although our model exhibits higher parameter count than
certain lightweight architectures, it delivers the highest detection accuracy across all evaluated methods. The performance
analysis reveals several key insights regarding architectural trade-offs and detection capabilities. Examining category-
specific performance, our approach demonstrates superior or comparable accuracy across most defect types. Notably,
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Table 6. Performance comparison with state-of-the-art detection methods on NEU-DET dataset.

Model mAP50% mAP50% Param(M) GFLOPs
Cr In Pa Pi Ro Sc
Yolov5n [43] 37.0 |79.2 |945 |76.7 |66.0 |769 |71.7 1.69 4.2
Yolov5s [43] 487 |84.4 |95.0 |727 |616 |76.6 |73.2 6.71 16.0
Yolov8n [44] 40.1 |815 |90.7 |74.7 |65.0 |86.0 |73.0 2.87 8.1
YoloX [45] 374 |80.9 |915 |77.2 |49.0 |87.7 |70.6 8.94 26.8
Yolov11n [44] 515 |90.2 |[94.7 (748 |723 |845 |78.0 247 6.3
SSD [9] 39.8 |70.1 [79.2 (801 |549 |86.2 |68.4 248 61.7
Faster-RCNN [6] 435 |740 |86.5 |804 |78.7 |743 |729 136.9 396.9
RT-DETR [13] 486 |89.7 |88.8 |656 [652 (884 |744 18.9 57.0
Dong et al. [39] 453 |87.7 |952 |79.6 |66.7 [83.7 |76.4 2.30 6.4
Wu et al. [40] 53,5 |854 |953 |775 |70.3 |86.7 |781 1.60 34
Lu et al. [41] 46.0 |84.7 [958 |73.9 [69.7 (784 |748 245 5.0
You et al. [42] 46.8 |80.5 |952 |726 |66.5 (813 |73.8 3.48 8.1
Ours 494 1906 |95.1 |83.2 |76.2 |87.8 |80.4 5.64 12.8

https://doi.org/10.1371/journal.pone.0339617.t006

our model achieves exceptional performance on inclusion and pitting defects, significantly outperforming all compara-

tive methods. For patch defects, our approach achieves 95.1% mAP, matching the performance of leading methods while
maintaining superior overall balance. The only category where our method shows marginal underperformance is cracking
defects, where Wu et al. [40] and YOLOv11n achieve 53.5% and 51.5% respectively, compared to our 49.4%. This limita-
tion likely stems from the inherently challenging nature of crack detection, characterized by subtle, elongated features that
require specialized architectural considerations.

Computational efficiency analysis reveals favorable trade-offs compared to resource-intensive architectures. Relative to
Faster R-CNN, our model demonstrates substantially reduced computational requirements while achieving superior detec-
tion accuracy. Similarly, compared to SSD and RT-DETR, our architecture provides enhanced accuracy with significantly
lower parameter overhead and computational complexity. While lightweight approaches such as Wu et al. [40] achieve
superior parameter efficiency, our method substantially surpasses their detection performance by 2.3 percentage points,
justifying the moderate computational overhead. Our approach demonstrates particularly strong performance on chal-
lenging defect categories requiring fine-grained feature discrimination, establishing its effectiveness for industrial surface
inspection applications where detection accuracy is paramount.

Generalization experiment

To evaluate the generalization capability of our proposed architecture, we conduct performance assessment on the GC10-
DET dataset as an independent validation benchmark. Table 7 presents the generalization results, where our method
demonstrates superior performance across multiple defect categories compared to state-of-the-art detectors. Particularly
noteworthy is the exceptional accuracy of 99.4% achieved for punching defects, establishing new performance bench-
marks in this category.

Nevertheless, performance degradation occurs for the indentation defects, primarily attributed to severe class imbal-
ance inherent in the dataset. Specifically, the substantial disparity between 85 indentation samples and 884 filament sam-
ples creates a pronounced imbalance that impedes effective feature distribution learning during training. This imbalance
exacerbates domain shift complications [46] and exacerbates the learning difficulty for under-represented classes. Conse-
quently, the model exhibits inherent bias toward high-frequency classes such as filaments, leading to systematic misclas-
sification of indentation defects. Despite these challenges, our architecture achieves 72.1% overall detection accuracy,
surpassing existing leading detectors by a substantial margin of 3.3% over YOLOv8n. This performance gain validates
the robust generalization capability across diverse datasets and demonstrates considerable potential for broader industrial
deployment scenarios.
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Table 7. Generalization performance comparison across different detection architectures.

Model mAP50% mAP50%
Pu WL CG Ws Os SS In Rp Cr wWf
YOLOv5n [43] 99.0 (888 |98.1 [835 |63.2 [59.0 |50.8 [12.3 |34.8 [99.5 |68.9
YOLOvS5s [43] 989 (915 |934 |822 (736 |713 |444 |318 |[53.7 |727 |713
YOLOvV8n [44] 97.8 |91.3 |96.7 (854 |711 |755 |401 |6.2 459 |78.1 |6838
YOLOv11n [45] 99.3 |785 |97.5 |[79.7 |69.8 [79.8 |343 (219 |37.2 (941 |69.2
Faster-RCNN [6] 83.1 [853 |750 [60.1 |446 |[415 |244 |15 50.5 |70.3 |53.6
SSD [9] 86.5 [81.2 |88.8 [69.5 |389 [49.7 |04 0.6 19.8 | 799 |514
RT-DETR [13] 899 [927 |9.6 |[730 |69.1 [575 |295 [318 |51.7 [951 |68.7
Dong et al. [39] 98.8 [93.7 [96.2 (838 |741 |743 |39.7 |24 51.0 | 784 |69.2
Wu et al. [40] 98.3 |911 |96.8 [88.7 |655 |[76.1 |29.8 [19.3 |50.1 [83.6 |69.9
Lu et al. [41] 939 [883 |96.4 (834 |67.3 |76.2 |475 |3.8 46.0 | 76.0 |67.9
You et al. [42] 991 (919 |99 [80.7 |731 |711 |27.7 |3.0 56.0 [78.6 |67.8
Ours 994 [944 |96.8 |84.7 |[76.0 |73.6 |440 |16.0 |[59.0 |774 |721

https://doi.org/10.1371/journal.pone.0339617.t007

Qualitative analysis

Fig 9 presents a comprehensive qualitative comparison, demonstrating the superior detection performance of the pro-
posed EFEN-YOLOVS8 architecture across diverse industrial defect scenarios. The visualization results reveal that while
competitive methods including YOLOv11n, YOLOv8n, RT-DETR, and recent approaches by Dong et al. and Wu et al.
exhibit varying performance across different defect categories, our proposed method consistently delivers robust detection
with high confidence scores.

Notably, for challenging defect categories such as surface cracking, our method achieves significantly higher confi-
dence scores compared to baseline approaches while maintaining exceptional localization accuracy through precisely fit-
ted bounding boxes. The patch detection results demonstrate particularly strong performance, successfully identifying and
labeling each defect independently, thereby validating our method’s capability to effectively distinguish negative samples.
This multi-category defect analysis validates the contribution of our architectural improvements toward enhanced detec-
tion robustness and accuracy. Although certain competitive methods occasionally achieve higher confidence scores in
isolated cases, they demonstrate inconsistent performance across the comprehensive evaluation spectrum, frequently
producing loose bounding boxes or failing to detect subtle defects entirely. Visualization confirms that our results establish
the practical feasibility of the proposed architecture in real-world industrial testing applications.

Robustness analysis using random data splits

Robustness analysis for ablation experiments. To rigorously assess the efficacy of each proposed module, com-
prehensive statistical significance testing was conducted. This involved five independent experiments, each initialized
with distinct random seeds, performed on the NEU-DET dataset using a 9:1 train-test split. Detailed statistical analysis,
presented in Table 8, encompasses mean performance, standard deviation, 95% confidence intervals, and paired t-test
results comparing each module’s contribution against the baseline YOLOv8n.

The statistical analysis unequivocally demonstrates that all proposed modules yield significant performance improve-
ments, bolstering confidence in their individual efficacy. Specifically, WASPP registers the most substantial individual gain,
improving performance by +3.5% (p < 0.001). This is closely followed by §-FEloU, which contributes +2.9% (p < 0.001),
and LSKA, yielding a +2.7% enhancement (p < 0.001). Though SAConv exhibits the most modest standalone improve-
ment, exhibiting a +0.8% gain (p < 0.05), its contribution nonetheless remains statistically significant. Crucially, the rela-
tively modest performance of SAConv in isolation validates a key architectural hypothesis: that this module’s full potential
is unlocked only through synergistic integration with contextual attention mechanisms, particularly LSKA. This synergy is
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powerfully evidenced by the substantial performance gains observed in combined configurations (Table 5). Further affirm-
ing the robustness and reproducibility of our experimental results are the uniformly low standard deviations (o < 0.53) and
narrow confidence intervals observed across all configurations. Collectively, these findings offer compelling statistical evi-
dence that each proposed component verifiably and significantly contributes to the final architecture’s superior detection
performance.

Robustness analysis of model performance. To ensure experimental robustness and statistical reliability, we
employed a rigorous validation framework. Specifically, five independent experiments, each initialized with a distinct ran-
dom seed, were conducted on both NEU-DET and GC10-DET datasets, evaluated across two train/test ratios (8:2 and
9:1). Crucially, dataset shuffling was performed in each iteration to ensure statistical independence between training
and testing partitions. Table 9 presents the detailed results of this five-fold experimental validation, including mean (u),

Yolovlln RT-DETR Dong et al. . Ground Truths
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Fig 9. Comparative visualization of detection performance across different methods on industrial defect samples.

https://doi.org/10.1371/journal.pone.0339617.9009

Table 8. Statistical significance analysis of ablation components across 5 random splits on NEU-DET dataset.
The evaluation indicators mainly include the mean (u), standard deviation (o), 95% confidence interval, improvement
over baseline (A), and p-value of mAP scores.

Module Run1 |Run2 |Run3 |Run4 |Run5 |u+to 95% CI A p-value
Baseline | 73.0 725 72.6 73.1 73.0 72.8+0.27 [72.49, 73.19] - -
LSKA 75.2 75.4 75.9 75.4 75.8 75.5+0.28 [75.20, 75.88] +2.7 | <0.001

SAConv 73.2 73.5 74.2 73.8 73.3 73.6 = 0.41 [73.08, 74.12] +0.8 | <0.05
B-FEloU 76.0 74.9 76.0 75.5 76.2 75.7+0.53 [75.06, 76.38] +2.9 | <0.001
WASPP 76.5 75.9 76.2 76.6 76.1 76.3 £0.28 [75.92, 76.60] +3.5 | <0.001

https://doi.org/10.1371/journal.pone.0339617.t008
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Table 9. Statistical analysis of experimental results across 5 random splits. The evaluation indicators mainly
include the mean (u), standard deviation (o), and 95% confidence interval of mAP scores.

Dataset Split | Run1 Run 2 Run 3 Run 4 Run 5 pto 95% ClI

NEU-DET 8:2 76.6 76.1 759 75.8 76.3 76.1 £0.31 [75.72, 76.48]
NEU-DET 9:1 79.9 80.8 80.2 80.7 80.4 80.4 £ 0.36 [79.95, 80.85]
GC10-DET 8:2 64.3 59.4 62.2 58.4 59.3 60.8 + 2.51 [67.48, 64.12]
GC10-DET 9:1 71.0 73.3 69.8 72.9 73.5 72.1 £1.63 [70.09, 74.11]

https://doi.org/10.1371/journal.pone.0339617.t009

standard deviation (o), and 95% confidence intervals for mAP scores. Our statistical analysis highlights significant per-
formance disparities across varying configurations and datasets. Notably, increasing the training data proportion from
80% to 90% consistently yielded substantial improvements across both datasets: NEU-DET registered a 4.3 percentage
point enhancement (from 76.1% to 80.4%), while GC10-DET exhibited an even more pronounced 11.3 percentage point
improvement (from 60.8% to 72.1%). These gains unequivocally demonstrate that our proposed architecture significantly
benefits from larger training sets, particularly for challenging datasets characterized by intricate defect patterns.

Underscoring fundamental differences in dataset complexity is the consistently superior performance observed on
NEU-DET relative to GC10-DET. NEU-DET, for instance, features inherently more distinguishable defect patterns, thereby
facilitating more effective model learning. This disparity is likely attributable to severe class imbalance within GC10-

DET, where certain defect categories possess insufficient training samples. Such an imbalance impedes adequate fea-
ture learning, inevitably resulting in degraded performance for these underrepresented classes. Furthermore, variance
analysis yields critical insights into model stability and dataset characteristics. NEU-DET demonstrates exceptionally
low standard deviations (o < 0.36) across all experimental configurations, signifying robust and consistent performance
irrespective of stochastic initialization. Conversely, GC10-DET exhibits substantially elevated variance (o = 1.63-2.51),
most pronounced in the 8:2 partitioning scheme, indicating heightened susceptibility to training instabilities and con-
vergence difficulties. The constrained confidence intervals observed for NEU-DET ([75.72,76.48] and [79.95,80.85])
attest to superior precision in performance estimation, whereas the substantially broader intervals characterizing GC10-
DET ([57.48,64.12] and [70.09,74.11]) underscore the intrinsic complexity and detection variability inherent within this
challenging dataset.

Confusion matrix analysis and performance insights. Fig 10 presents confusion matrices under different training-
testing ratios, providing comprehensive insights into the model’s classification capabilities and performance characteris-
tics across defect categories. On the GC10-DET dataset, the proposed EFEN-YOLOv8 demonstrates exceptional clas-
sification performance, with most categories achieving diagonal values exceeding 0.70. Particularly noteworthy are the
hanfeng, yueyawan, and shuiban defects, which exhibit superior detection accuracy. This high-precision performance indi-
cates effective feature extraction and discrimination capabilities inherent in the enhanced architecture. Similarly, on the
NEU-DET dataset, categories including inclusion, patches, and scratches maintain robust detection accuracy above 0.90,
validating the model’s effectiveness across diverse industrial scenarios.

The analysis reveals distinctive performance patterns that underscore the complexity inherent in real-world defect
detection challenges. Categories exhibiting similar visual characteristics, such as crazing patterns that closely resemble
natural surface variations, present intrinsic classification complexity—a reflection of the challenging nature of industrial
quality control rather than architectural deficiencies. The comparative performance across different train-test ratios (9:1
and 8:2) demonstrates the model’s adaptability to varying data distributions while maintaining consistent improvements
over baseline methods across all configurations.

Despite achieving state-of-the-art performance, certain challenging scenarios warrant continued investigation. These
include the detection of highly subtle defects existing at the classification boundary between normal and defective sam-
ples, and optimization strategies for severely imbalanced datasets where specific defect types occur infrequently in indus-
trial environments. In particular, the imbalance or scarcity of defective samples has resulted in poor detection performance
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for certain types. Nevertheless, these observations provide clear directions for future research while affirming the signifi-
cant advancement achieved by the proposed architecture in enhancing practical defect detection capabilities.
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Conclusion

This paper presents EFEN-YOLOVS, a novel defect detection architecture incorporating four key innovations. The
SAConv module enhances shallow-layer feature localization through weighted attention mechanisms, enabling early-
stage defect identification with differential feature emphasis. The proposed -FEIloU loss function addresses class dis-
crimination challenges while mitigating positive-negative sample imbalance, simultaneously accelerating convergence and
enhancing regression precision. The integrated LSKA attention mechanism amplifies defect feature focus following sam-
ple balance optimization. The WASPP module facilitates multi-scale feature fusion with adaptive weighting to emphasize
critical feature importance.

Comprehensive experimental validation demonstrates the architecture’s effectiveness across multiple evaluation sce-
narios. On NEU-DET, our model achieves 80.4% detection accuracy without preprocessing under 9:1 data partitioning,
with robust performance of 76.1% under the more challenging 8:2 split, demonstrating substantial improvements across
all defect categories. Notably, the challenging Cr defect category exhibits remarkable enhancement from 37.0% to 49.4%
mAP, while maintaining superior performance for remaining defect types. Statistical significance analysis through five-fold
cross-validation with different random seeds confirms the model’s reliability, yielding exceptionally low variance (o < 0.36)
and narrow confidence intervals, indicating consistent performance across diverse experimental configurations. On GC10-
DET, the model attains 72.1% precision, representing a 3.3% improvement that validates the architecture’s robustness
and generalization capabilities across heterogeneous datasets. While achieving significant improvements over existing
approaches, this work identifies areas where continued research can further advance surface defect detection capabili-
ties. The confusion matrix analysis reveals that certain challenging scenarios, including highly subtle defects near clas-
sification boundaries and severely imbalanced industrial datasets, represent ongoing research opportunities rather than
fundamental limitations. The computational efficiency positions the model favorably for industrial deployment, though opti-
mization opportunities exist for resource-constrained environments. The performance variations across different datasets
demonstrate the inherent complexity of diverse industrial applications while maintaining substantial improvements over
baseline methods, indicating promising directions for domain adaptation techniques.

Future research directions include algorithmic refinement through dataset optimization and architectural enhancement
to minimize false detection rates while improving overall accuracy and robustness. Proposed methodological improve-
ments include noise mitigation through advanced filtering techniques, CLAHE-based [47] noise suppression, sophisticated
image enhancement algorithms, and data augmentation via adversarial generative networks [48]. Additionally, model
pruning strategies will be investigated to reduce computational overhead, thereby enhancing inference speed and overall
detection efficiency.

Author contributions

Conceptualization: Meishun Wu, Jinmin Peng, Xinyi Yu, Heng Xu, Haotian Sun.
Data curation: Meishun Wu, Xinyi Yu, Heng Xu.

Formal analysis: Meishun Wu.

Funding acquisition: Jinmin Peng.

Investigation: Meishun Wu, Xinyi Yu.

Methodology: Meishun Wu, Jinmin Peng, Xinyi Yu, Haotian Sun.

Project administration: Jinmin Peng, Haotian Sun.

Resources: Jinmin Peng, Haotian Sun.

PLOS One | https://doi.org/10.1371/journal.pone.0339617 January 2, 2026 22/ 24



https://doi.org/10.1371/journal.pone.0339617

PLO\S\%- One

Software: Jinmin Peng, Xinyi Yu.

Supervision: Jinmin Peng.

Validation: Meishun Wu, Jinmin Peng.

Visualization: Meishun Wu, Jinmin Peng, Xinyi Yu, Heng Xu, Haotian Sun.
Writing — original draft: Meishun Wu, Heng Xu.

Writing — review & editing: Meishun Wu, Jinmin Peng, Xinyi Yu.

References

1. HanJ, Cui G, Li Z, Zhao J. DBCW-YOLO: a modified YOLOVS5 for the detection of steel surface defects. Applied Sciences. 2024;14(11):4594.
https://doi.org/10.3390/app14 114594

2. Ashour MW, Khalid F, Abdul Halin A, Abdullah LN, Darwish SH. Surface defects classification of hot-rolled steel strips using multi-directional
shearlet features. Arab J Sci Eng. 2018;44(4):2925-32. https://doi.org/10.1007/s13369-018-3329-5

3. de Carvalho TBA, Sibaldo MAA, Tsang IR, Cavalcanti GDC, Sijbers J, Tsang IJ. IntensityPatches and RegionPatches for image recognition.
Applied Soft Computing. 2018;62:176—86. https://doi.org/10.1016/j.as0c.2017.09.046

4. Schneider T, Helwig N, Schiitze A. Industrial condition monitoring with smart sensors using automated feature extraction and selection. Meas Sci
Technol. 2018;29(9):094002. https://doi.org/10.1088/1361-6501/aad1d4

5. Xie X, Cheng G, Wang J, Yao X, Han J. Oriented R-CNN for object detection. In: 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). 2021. p. 3500-9.

6. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach
Intell. 2017;39(6):1137—49. https://doi.org/10.1109/TPAMI.2016.2577031 PMID: 27295650

7. Redmon J, Divvala SK, Girshick RB, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015. p. 779-88.

8. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
p. 6517-25.

9. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu CY, et al. SSD: single shot MultiBox detector. In: European Conference on Computer
Vision; 2015. https://api.semanticscholar.org/Corpus|D:2141740

10. SunF, Tong G, Song Y. Efficient flexible voxel-based two-stage network for 3D object detection in autonomous driving. Applied Soft Computing.
2024;162:111856. https://doi.org/10.1016/j.as0c.2024.111856

11. LiuL, Li P, Wang D, Zhu S. A wind turbine damage detection algorithm designed based on YOLOVS8. Applied Soft Computing. 2024;154:111364.
https://doi.org/10.1016/j.as0c.2024.111364

12. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Vedaldi A, Bischof H, Brox
T, Frahm JM, editors. Computer Vision — ECCV 2020. Cham: Springer; 2020. p. 213-29.

13. LvW, Xu S, Zhao Y, Wang G, Wei J, Cui C. DETRs beat YOLOs on real-time object detection. In: 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2023. p. 16965-74.

14. WeiH, Zhao L, Li R, Zhang M. RFAConv-CBM-ViT: enhanced vision transformer for metal surface defect detection. J Supercomput. 2024;81(1).
https://doi.org/10.1007/s11227-024-06662-0

15. Xiangi Deng XD, Xiangi Deng JL, Jianping Liu CP, Cheng Peng YW. Using improved YOLOv5 model to detect volume for logs in log farms.
Journal of Internet Technology. 2023;24(7):1403—13. https://doi.org/10.53106/160792642023122407002

16. Wang G-Q, Zhang C-Z, Chen M-S, Lin YC, Tan X-H, Kang Y-X, et al. A high-accuracy and lightweight detector based on a graph convolution
network for strip surface defect detection. Advanced Engineering Informatics. 2024;59:102280. https://doi.org/10.1016/j.aei.2023.102280

17. Zhong J, Chen J, Mian A. DualConv: dual convolutional kernels for lightweight deep neural networks. IEEE Trans Neural Netw Learn Syst.
2023;34(11):9528-35. https://doi.org/10.1109/TNNLS.2022.3151138 PMID: 35230955

18. Finder SE, Amoyal R, Treister E, Freifeld O. Wavelet convolutions for large receptive fields. arXiv preprint 2024. https://doi.org/abs/2407.05848

19. ChenJ, Kao S, He H, Zhuo W, Wen S, Lee C-H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2023. p. 12021-31. https://doi.org/10.1109/cvpr52729.2023.01157

20. LiZ, YuanJ, Li G, Wang H, Li X, Li D, et al. RSI-YOLO: object detection method for remote sensing images based on improved YOLO. Sensors
(Basel). 2023;23(14):6414. https://doi.org/10.3390/s23146414 PMID: 37514708

21. TangJ, Liu S, Zhao D, Tang L, Zou W, Zheng B. PCB-YOLO: an improved detection algorithm of PCB surface defects based on YOLOVS5.
Sustainability. 2023;15(7):5963. https://doi.org/10.3390/su15075963

PLOS One | https://doi.org/10.1371/journal.pone.0339617 January 2, 2026 23/ 24



https://doi.org/10.3390/app14114594
https://doi.org/10.1007/s13369-018-3329-5
https://doi.org/10.1016/j.asoc.2017.09.046
https://doi.org/10.1088/1361-6501/aad1d4
https://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://api.semanticscholar.org/CorpusID:2141740
https://doi.org/10.1016/j.asoc.2024.111856
https://doi.org/10.1016/j.asoc.2024.111364
https://doi.org/10.1007/s11227-024-06662-0
https://doi.org/10.53106/160792642023122407002
https://doi.org/10.1016/j.aei.2023.102280
https://doi.org/10.1109/TNNLS.2022.3151138
http://www.ncbi.nlm.nih.gov/pubmed/35230955
https://doi.org/abs/2407.05848
https://doi.org/10.1109/cvpr52729.2023.01157
https://doi.org/10.3390/s23146414
http://www.ncbi.nlm.nih.gov/pubmed/37514708
https://doi.org/10.3390/su15075963
https://doi.org/10.1371/journal.pone.0339617

PLO?)&- One

22,

23.

24,
25.

26.

27.

28.
29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.
44.
45.
46.

47.

48.

Guo M-H, Lu C-Z, Liu Z-N, Cheng M-M, Hu S-M. Visual attention network. Comp Visual Med. 2023;9(4):733-52.
https://doi.org/10.1007/s41095-023-0364-2

Kang B, Moon S, Cho Y, Yu H, Kang S-J. MetaSeg: MetaFormer-based global contexts-aware network for efficient semantic segmentation. In:
2024 |IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2024. p. 433—42. https://doi.org/10.1109/wacv57701.2024.00050

Wang C, Xie H. MeDERT: a metal surface defect detection model. IEEE Access. 2023;11:35469—78. hitps://doi.org/10.1109/access.2023.3262264

Hu J, Zhi X, Shi T, Zhang W, Cui Y, Zhao S. PAG-YOLO: a portable attention-guided YOLO network for small ship detection. Remote Sensing.
2021;13(16):3059. https://doi.org/10.3390/rs13163059

Liao L, Luo L, Su J, Xiao Z, Zou F, Lin Y. Eagle-YOLO: an eagle-inspired YOLO for object detection in unmanned aerial vehicles scenarios.
Mathematics. 2023;11(9):2093. https://doi.org/10.3390/math11092093

Li X, Wang W, Wu L, Chen S, Hu X, Li J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object
detection. arXiv preprint 2020. https://doi.org/abs/2006.04388.

Luo X, Cai Z, Shao B, Wang Y. Unified-loU: for high-quality object detection. arXiv preprint 2024 .https://doi.org/abs/2408.06636

Fang H, Xia M, Liu H, Chang Y, Wang L, Liu X. Automatic zipper tape defect detection using two-stage multi-scale convolutional networks.
Neurocomputing. 2021;422:34-50. https://doi.org/10.1016/|.neucom.2020.09.046

Wang T, Ma Z, Yang T, Zou S. PETNet: a YOLO-based prior enhanced transformer network for aerial image detection. Neurocomputing.
2023;547:126384. https://doi.org/10.1016/j.neucom.2023.126384

Li'Y, Zhang X, Shen Z. YOLO-submarine cable: an improved YOLO-V3 network for object detection on submarine cable images. JMSE.
2022;10(8):1143. https://doi.org/10.3390/jmse10081143

Jicheng Z, Yushuo H, Ping Z, Shixing X. Amaranth identification method based on ASPP-YOLO v5 in low data set. Transactions of Agricultural
Machinery. 2023;54(S2):223-8.

Li Z, He Q, Yang W. E-FPN: an enhanced feature pyramid network for UAV scenarios detection. Vis Comput. 2024;41(1):675-93.
https://doi.org/10.1007/s00371-024-03355-w

Yang J, Li C, Gao J. Focal modulation networks. arXiv preprint 2022. https://doi.org/abs/2203.11926

Zhang Y-F, Ren W, Zhang Z, Jia Z, Wang L, Tan T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing.
2022;506:146-57. https://doi.org/10.1016/j.neucom.2022.07.042

Lau KW, Po L-M, Rehman YAU. Large separable kernel attention: rethinking the large Kernel attention design in CNN. Expert Systems with
Applications. 2024;236:121352. htips://doi.org/10.1016/j.eswa.2023.121352

He Y, Song K, Meng Q, Yan Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans Instrum
Meas. 2020;69(4):1493-504. https://doi.org/10.1109/tim.2019.2915404

Lv X, Duan F, Jiang J-J, Fu X, Gan L. Deep Metallic Surface Defect Detection: The New Benchmark and Detection Network. Sensors (Basel).
2020;20(6):1562. https://doi.org/10.3390/s20061562 PMID: 32168887

Dong X, Zhang C, Wang J, Chen Y, Wang D. Real-time detection of surface cracking defects for large-sized stamped parts. Computers in Industry.
2024;159-160:104105. https://doi.org/10.1016/j.compind.2024.104105

Wu Z, Zhang Y, Wang X, Li H, Sun Y, Wang G. Algorithm for detecting surface defects in wind turbines based on a lightweight YOLO model. Sci
Rep. 2024;14(1):24558. hitps://doi.org/10.1038/s41598-024-74798-3 PMID: 39427027

Lu M, Sheng W, Zou Y, Chen Y, Chen Z. WSS-YOLO: an improved industrial defect detection network for steel surface defects. Measurement.
2024;236:115060. https://doi.org/10.1016/j.measurement.2024.115060

You C, Kong H. Improved steel surface defect detection algorithm based on YOLOvS8. IEEE Access. 2024;12:99570-7.
https://doi.org/10.1109/access.2024.3429555

Ultralytics. YOLOV5: a family of object detection models. 2020. https://github.com/ultralytics/yolov5
Jocher G, Qiu J, Chaurasia A. Ultralytics YOLO. 2023. https://github.com/ultralytics/uliralytics
Ge Z, Liu S, Wang F, Li Z, Sun J. YOLOX: exceeding YOLO series in 2021. arXiv preprint 2021.https://doi.org/abs/2107.08430

Angeletti G, Caputo B, Tommasi T. Adaptive deep learning through visual domain localization. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). 2018. p. 7135-42. https://doi.org/10.1109/icra.2018.8460650

Khan R, Talha M, Khattak AS, Qasim M. Realization of balanced contrast limited adaptive histogram equalization (B-CLAHE) for adaptive dynamic
range compression of real time medical images. In: Proceedings of 2013 10th International Bhurban Conference on Applied Sciences &
Technology (IBCAST). 2013. p. 117-21. hitps://doi.org/10.1109/ibcast.2013.6512142

Goodfellow 1J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Neural Information Processing
Systems; 2014. https://api.semanticscholar.org/Corpus|D:261560300

PLOS One | https://doi.org/10.1371/journal.pone.0339617 January 2, 2026 24/ 24



https://doi.org/10.1007/s41095-023-0364-2
https://doi.org/10.1109/wacv57701.2024.00050
https://doi.org/10.1109/access.2023.3262264
https://doi.org/10.3390/rs13163059
https://doi.org/10.3390/math11092093
https://doi.org/abs/2006.04388
https://doi.org/abs/2408.06636
https://doi.org/10.1016/j.neucom.2020.09.046
https://doi.org/10.1016/j.neucom.2023.126384
https://doi.org/10.3390/jmse10081143
https://doi.org/10.1007/s00371-024-03355-w
https://doi.org/abs/2203.11926
https://doi.org/10.1016/j.neucom.2022.07.042
https://doi.org/10.1016/j.eswa.2023.121352
https://doi.org/10.1109/tim.2019.2915404
https://doi.org/10.3390/s20061562
http://www.ncbi.nlm.nih.gov/pubmed/32168887
https://doi.org/10.1016/j.compind.2024.104105
https://doi.org/10.1038/s41598-024-74798-3
http://www.ncbi.nlm.nih.gov/pubmed/39427027
https://doi.org/10.1016/j.measurement.2024.115060
https://doi.org/10.1109/access.2024.3429555
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://doi.org/abs/2107.08430
https://doi.org/10.1109/icra.2018.8460650
https://doi.org/10.1109/ibcast.2013.6512142
https://api.semanticscholar.org/CorpusID:261560300
https://doi.org/10.1371/journal.pone.0339617

	EFEN-YOLOv8: Surface defect detection network based on spatial feature capture and multi-level weighted attention
	References


