
PLOS One | https://doi.org/10.1371/journal.pone.0339453  December 31, 2025 1 / 24

 

 OPEN ACCESS

Citation: Zhang Y, Song H, Zhang S, Wang X,  
Tang J (2025) A hybrid machine learning 
model for pulmonary tuberculosis forecasting 
of Chongqing with adjacent-region data. 
PLoS One 20(12): e0339453. https://doi.
org/10.1371/journal.pone.0339453

Editor: Salim Heddam, University 20 Aout 1955 
skikda, Algeria, ALGERIA

Received: June 3, 2025

Accepted: November 30, 2025

Published: December 31, 2025

Copyright: © 2025 Zhang et al. This is an open 
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: All relevant data 
are within the manuscript and its Supporting 
information files.

Funding: XYW received funding from the 
Chongqing Municipal Education Commission 
(https://jw.cq.gov.cn/) to support this work 
(Grant number: KJQN202202812 and 

RESEARCH ARTICLE

A hybrid machine learning model for pulmonary 
tuberculosis forecasting of Chongqing with 
adjacent-region data

Yilin Zhang 1☯, Hongbo Song2☯, Shuangxueer Zhang3, Xiaoying Wang 4‡*, Junjie Tang 1‡*

1  State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, 
Chongqing University, Chongqing, China, 2  Chongqing University-University of Cincinnati Joint Co-op 
Institute, Chongqing University, Chongqing, China, 3  College of Engineering, Carnegie Mellon University, 
Pittsburgh, Pennsylvania, United States of America, 4  Chongqing Medical and Pharmaceutical College, 
Chongqing, China 

☯ These authors contributed equally to this work.
‡ XW and JT also contributed equally to this work.
* diandiewxy@163.com (XW); tangjunjie@cqu.edu.cn (JT)

Abstract 

Pulmonary Tuberculosis (PTB) remains a serious infectious disease and a major 

global public health problem. Accurate prediction of PTB epidemics is essential to 

support health authorities in developing effective prevention and control strategies. 

This study proposed a novel two-stage hybrid prediction model that integrates a 

seasonal autoregressive integrated moving average (SARIMA) model and a support 

vector regression (SVR) model in parallel, followed in series by an extreme learning 

machine (ELM) optimized via the sparrow search algorithm. Furthermore, recognizing 

the notable spatial correlation characteristic of airborne PTB transmission, this study 

incorporates PTB incidence data from surrounding regions of the target area as addi-

tional input features to enhance the model with supplementary spatial information, 

thereby improving prediction accuracy. Validation using real-world PTB incidence 

data from Chongqing, China, demonstrates the superior performance of the proposed 

model, which reduces prediction errors by 18.47% to 77.38% compared to existing 

hybrid models. The inclusion of adjacent regional incidence data further significantly 

enhances predictive accuracy, reducing errors by 20.92% to 68.74%. The outcomes 

of this study are expected to facilitate earlier insights into PTB incidence trends and 

provide valuable support for public health decision-making in PTB prevention and 

control.

1.  Introduction

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, 
most commonly affects the lungs and is referred to as pulmonary tuberculosis (PTB). 
As a major global health concern and one of the most persistent diseases in human 
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history, TB continues to pose significant challenges. According to the World Health 
Organization Global TB Report 2024, an estimated 10.8 million people were suffering 
from TB worldwide in 2023, resulting in approximately 1.25 million deaths. Between 
2020 and 2021, the global TB incidence increased by 3.6%, reversing a previous 
declining trend of about 2% per year over the past two decades. In 2023, China 
ranked third globally in the number of new TB cases, accounting for 6.8% of the total 
burden, behind India (26%) and Indonesia (10%) [1].

Although the Chinese government has implemented a range of interventions, 
such as the directly observed treatment, short-course (DOTS) strategy [2,3] and a 
“free” TB diagnosis and treatment policy [4], to strengthen comprehensive TB con-
trol, achieving the WHO’s End TB Strategy target of a 90% reduction in TB incidence 
by 2035 remains a tough challenge. Therefore, there is an urgent need to develop 
targeted intervention strategies to curb TB transmission and mitigate its public health 
impact. In this context, building an accurate forecasting model for TB incidence is 
crucial for obtaining early insights into epidemic trends and facilitating effective TB 
prevention and control.

In recent years, time series forecasting has been increasingly applied to disease 
prediction, offering valuable insights for disease management. Accordingly, various 
single and hybrid models have been employed to forecast tuberculosis (TB) inci-
dence. Commonly used single prediction models for pulmonary TB (PTB) include the 
seasonal autoregressive integrated moving average (SARIMA) and machine learning 
approaches such as neural networks and long short-term memory (LSTM).

Studies have shown that the SARIMA model performs well in short-term TB inci-
dence prediction [5–8]. However, such statistical models are often limited by their 
assumption of linearity and may not always yield satisfactory results. As an alternative, 
machine learning models, such as recurrent neural networks (RNN), LSTM, backprop-
agation neural network (BPNN), and support vector regression (SVR), have gained 
popularity and frequently demonstrate higher predictive accuracy than statistical 
models [9–12]. Given the complexity of PTB incidence data, hybrid models combining 
statistical methods with machine learning have been introduced to leverage both linear 
and nonlinear components of the data, often yielding superior performance. Several 
studies have indicated that hybrid models, particularly those integrating SARIMA with 
neural networks, achieve better fitting results and outperform single models [13–20].

Nevertheless, most existing hybrid models adopt simple parallel or series structures 
with manually configured weights, which can limit predictive accuracy. Moreover, these 
simplistic architectures present several drawbacks in both construction and applica-
tion. Their rigid connection patterns restrict adaptability to varied scenarios and hinder 
the capture of complex data relationships. Although effective in modeling linear trends, 
such models often struggle with nonlinear mappings and more complicated patterns. 
They are also prone to overfitting, performing well on training data but generalizing 
poorly to new data due to oversensitivity to specific training patterns. Additionally, their 
parameter optimization is often trapped in local optima within complex loss land-
scapes, leading to suboptimal performance. Therefore, there is a clear need to rede-
sign the structure of hybrid models to enhance the accuracy of TB incidence forecasts.
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In predictive modeling, data preprocessing is an essential step that significantly enhances the accuracy of model 
predictions. Commonly adopted preprocessing techniques include data cleaning, smoothing, standardization, and data-
set partitioning. The underlying principle of these methods is to transform raw data into a format suitable for model input. 
Previous studies have often relied on techniques such as the Kalman Filter and Empirical Mode Decomposition to refine 
input data [21,22]. While these approaches focus on improving data quality through direct modification, their effectiveness 
remains highly dependent on the characteristics of the original dataset.

To address this limitation, an alternative strategy involves enriching the input structure rather than merely processing 
existing data. In this context, parameter optimization algorithms such as the Sparrow Search Algorithm (SSA) are increasingly 
being applied in disease prediction [23–26]. Introduced by Xue and Shen in 2020 [27], SSA is a swarm intelligence optimiza-
tion algorithm inspired by the foraging and anti-predation behaviors of sparrows. Compared to traditional optimization methods 
used in earlier studies [28,29], SSA features fewer hyperparameters, faster convergence, and lower computational cost. It also 
exhibits a strong global search capability, which helps avoid local optima. These attributes make SSA particularly suitable for 
tuning parameters in machine learning-based hybrid forecasting models. Nevertheless, to the best of our knowledge, SSA has 
not yet been employed in the development of prediction models for pulmonary tuberculosis (PTB) incidence.

China comprises 34 provincial-level administrative regions, each exhibiting distinct tuberculosis (TB) epidemic charac-
teristics. Accurate prediction of regional TB trends is therefore essential for formulating targeted prevention and control 
strategies. As a municipality directly under the central government, Chongqing reported a TB incidence rate falling below 
50 per 100,000 for the first time in 2023. Despite this progress, the region remains far from achieving the WHO End TB 
Strategy target of reducing incidence to below 10 per 100,000. Previous studies have predominantly examined the influ-
ence of environmental factors, such as air pollution, meteorological conditions, and sociodemographic variables, on TB 
incidence in specific areas [30,31].

Nevertheless, PTB persists as a significant infectious respiratory disease. Growing evidence indicates that incidence 
rates in a given area can be substantially influenced by TB prevalence in its neighboring regions, a phenomenon demon-
strated in a township-level study in Taiwan [32]. These findings underscore the critical role of spatial interactions in TB 
transmission dynamics and highlight the necessity of incorporating spatial dependencies into predictive models. Despite 
this recognized importance, few studies have explicitly integrated the epidemic data from surrounding areas to refine pre-
dictions for a specific target region.

In this study, we aimed to develop a highly accurate prediction model for PTB incidence by redesigning the architecture 
of a hybrid forecasting framework and incorporating PTB incidence data from adjacent regions. Monthly PTB incidence 
data from Chongqing and its neighboring and non-adjacent provinces between 2005 and 2019 were utilized. The main 
work and contributions of this research are summarized as follows:

1)	A novel two-stage hybrid model was constructed. In the first stage, a seasonal autoregressive integrated moving aver-
age (SARIMA) model and a support vector regression (SVR) model are arranged in parallel. Their outputs are then fed 
into an extreme learning machine (ELM) model in the second stage. This hierarchical and flexible structure enhances 
the model’s adaptability to complex incidence patterns.

2)	To account for spatial influences, monthly PTB incidence data from adjacent provinces were weighted and incorporated 
into the ELM model alongside the local incidence data from Chongqing. This integration provides the model with sup-
plementary spatial context, enabling more informed predictions.

3)	The SSA was employed to optimize the parameters of the ELM model, improving its predictive performance and gener-
alization ability. The involvement of SSA contributes to achieving more accurate and robust forecasting outcomes.

Through these initiatives, we established an advanced hybrid model to predict PTB incidence in Chongqing, China. It is 
anticipated that the findings will assist in forecasting future TB trends and support public health authorities in formulating 
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effective prevention and control strategies. Furthermore, the methodology proposed in this study may serve as a refer-
ence for constructing prediction models for other infectious diseases.

2.  Materials and methods

2.1  Study area and database

Chongqing, a municipality located in southwestern China, experiences a subtropical monsoon climate characterized 
by concentrated summer precipitation, resulting in a hot and humid environment. Such warm and humid conditions are 
considered conducive to the survival and transmission of Mycobacterium tuberculosis. Chongqing ranks among the top 
ten regions in China in terms of tuberculosis infection rates. From 2021 to 2023, the reported annual incidence of PTB in 
Chongqing was 66.69, 61.7, and 51.7 per 100,000 population, respectively [33].

Data on monthly reported PTB incidence in Chongqing from January 2005 to December 2020 were obtained from the 
Public Health Science Data Center [34]. The dataset from January 2005 to December 2016 was used as the training set, 
while data from January 2017 to December 2019 were reserved as the test set for model validation.

2.2  Seasonal autoregressive integrated moving average model

The SARIMA model is an advanced statistical model specifically designed for analyzing and forecasting time series data 
with seasonal characteristics. It extends the standard ARIMA framework by incorporating seasonal components [35]. The 
ARIMA model itself consists of three core elements: autoregressive (AR), integrated (I), and moving average (MA).

The AR component accounts for temporal dependencies within the time series by using past observations as predictors 
[36]. Specifically, it models the current value of the series as a linear combination of its previous values plus a noise term. 
The AR(p) model is expressed in equation (1), where Yt, Yt-1, Yt-2, Yt-p are stationaries and ϕ0

, ϕ1
, ϕ2

, ϕp are constants. εt is 
a Gaussian white noise series with a mean of zero.

	
Yt = ϕ0 + ϕ1Yt–1 + · · ·+ ϕpYt–p + εt = ϕ0 + εt +

p∑
k=1

ϕkYt–k
	 (1)

The MA component utilizes a linear combination of historical white noise to predict the present moment through a linear 
regression model. The MA(q) model is expressed in equation (2), where θ

1
, θ

2
, θq are parameters and εt, εt-1, εt-2, εt-q are 

Gaussian white noise series with mean zero.

	
Yt = εt – θ1εt–1 – θ2εt–2 – · · · – θqεt–q = εt –

q∑
k=1

θkεt–k
	 (2)

To simplify and comprehend ARIMA models, the backshift operator (B) and the difference operator (∇) are used. The 
backshift operator (B) is defined as BnYt = Yt-n. As for the difference operator, it takes the form ∇d=(1-B)d, where d is the 
times of differences taken to achieve stationary in the time series data. Hence, equation (1) can be written to equation (3).

	
Yt – ϕ1Yt–1 – · · · – ϕpYt–p = Yt –

p∑
k=1

ϕkYt–k = ϕ0 + εt = ϕ(B)Yt
	 (3)

where ϕ(B) is the autoregression polynomial of order p, defined by:

	 ϕ(B) = 1 – ϕ1B – ϕ2B2 – · · · – ϕpBp	 (4)
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Equation (2) can be written to equation (5).

	
Yt = εt – θ1εt–1 – · · · – θqεt–q = εt –

q∑
k=1

θkεt–k = θ(B)εt
	 (5)

where θ(B) is the moving average polynomial of order q, defined by:

	 θ(B) = 1 – θ1B – θ2B2 – · · · – θqBq	 (6)

Therefore, the ARIMA (p, d, q) model can be represented by using the backshift and difference operators. The equation of 
the ARIMA model is shown below:

	 ϕ(B)∇dYt = θ(B)εt	 (7)

SARIMA can be considered an extension of the ARIMA [37]. It expands the ARIMA model by merging three additional 
parameters to define the seasonal components of the ARIMA model. The parameters of the SARIMA are denoted as 
SARIMA (p, d, q) (P, D, Q, s). The non-seasonal components (p, d, q) remain the same as the corresponding ARIMA 
components. The seasonal components (P, D, Q) introduce additional specific to the seasonal behavior of the time series 
data, and s indicates the periodicity or seasonality of the data.

The SARIMA model takes the seasonal factors into account, then the seasonal difference operator is defined as 
∇S

D=(1-BS)D. According to the autoregression polynomial ɸ(B) and the moving average polynomial θ(B), the seasonal 
autoregression and moving average polynomials are defined in equations (8)–(10).

	 ϕs(B) = 1 – ϕ1Bs – ϕ2B2s – · · · – ϕpBps	 (8)

	 θs(B) = 1 – θ1Bs – θ2B2s – · · · – θqBqs	 (9)

	 ϕ(B)ϕs(B)∇d∇D
s Yt = θ(B)θs(B)εt 	 (10)

2.3  Support vector regression model

SVR is a machine learning algorithm specifically designed for regression analysis [38], widely used to model and predict 
continuous outcomes. The core objective of SVR is to identify a regression function that minimizes the error between 
predicted and actual values. In doing so, it seeks to maximize the margin around the fitted function where errors are toler-
ated, thereby enhancing generalization capability. The SVR function f(x) is shown in equation (11):

	 f(x) = wTφ(x) + b	 (11)

where φ(x) is the feature space obtained by mapping the input x through a kernel function, w is the weight vector of the 
model, and b is the bias. If the training sample falls within this interval band, it can be considered a correct prediction. 
Therefore, the penalty function of SVR is:

	
R(C) = min

w,b

1
2
∥w∥2 + C

m∑
i=1

(ξi + ξ∗i )

	 (12)
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Under constraints:

	 f(xi) – yi ≤ ε+ ξi	 (13)

	 yi – f(xi) ≤ ε+ ξ∗i 	 (14)

	 ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, ...,m	 (15)

where C is the regularization parameter, ε is the insensitive loss factor, and m is the number of samples. The training error 
above ε is ξi, while the training error under ε is ξi

*.
After solving the quadratic optimization problem with inequality constraints, the weight vector w is computed as shown 

in equation (16). The parameters αi
* and αi are Lagrangian multipliers.

	
w =

N∑
i=1

(α∗
i – αi)φ(xi)

	 (16)

Finally, the SVR regression function is derived as the equation shown in equation (17).

	
f(x) =

N∑
i=1

(α∗
i – αi)K(xi, x) + b

	 (17)

where K(x
i
, x

j
) is the kernel function. The kernel function can be computed by the inner product of x

i
 and x

j
. In the feature 

space, K(x
i
, x

j
) = φ(x

i
)·φ(x

j
).

2.4  Extreme learning machine model

ELM is a simple and effective algorithm that is designed for training single hidden layer feed-forward neural networks 
(SLFNs). The architecture of an SLFN can be described by a triple (d, m, k), where d is the dimensionality of input data, m 
is the number of hidden nodes, and k is the number of classes of input data. Given a training set:

	 D=
{
(xi, yi) |xi ∈ Rd, yi ∈ Rk} , 1 ≤ i ≤ n	 (18)

The output function F(x) of the SLFNs can be expressed as:

	
F(xi) =

m∑
j=1

βjg(wj · xi + bj)
	 (19)

where βj is the weight vector connecting the jth hidden node with the output nodes, while wj is the weight vector connecting the jth 
hidden node with the input nodes. Moreover, bj is the bias parameter of the jth hidden node, and g(•) is the activation function.

Among the parameters above, wj and bj are randomly selected. βj can be determined from the linear system shown 
below:

	

m∑
j=1

βjg(wj · xi + bj) = yi
	 (20)
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The linear system can also be written as matrix form, Y = Hβ. In the matrix formula, H is the output matrix of the input layer 
of SLFN, which is usually a non-square matrix. The expansion of H, β, and Y can be represented as:

	

H =



g(w1 · x1 + b1) · · · g(wm · x1 + bm)

...
...

...
g(w1 · xn + b1) · · · g(wm · xn + bm)



	 (21)

	 β =
[
βT1 ,β

T
2 , · · · ,βTm

]T
,Y =

[
yT1, y

T
2, · · · , yTn

]T
	 (22)

2.5  Spatial correlation analysis

To analyze the nationwide incidence of PTB across provinces and cities, the monthly PTB incidence in the target area 
served as the primary training dataset. Given that the time series comprises only 192 data points, the limited sample size 
may constrain prediction accuracy. To address this, we augmented the input data by incorporating monthly incidence rates 
from adjacent areas in the spatial dimension, thereby increasing the effective information available for modeling. The data 
from different regions were combined using weights derived from spatial autocorrelation analysis. Furthermore, as PTB is 
a severe respiratory infectious disease, its incidence is likely to exhibit geographical dependence, making spatial correla-
tion analysis a valuable component for improving prediction accuracy.

Spatial autocorrelation analysis allows for the assessment of whether incidence rates in surrounding regions are 
correlated with those in the target area. Since spatial patterns may vary across the study area, local spatial autocorrela-
tion analysis was employed to examine region-specific distribution characteristics. The degree of spatial association was 
quantified using Moran’s Index (Moran’s I) [39]. Regions exhibiting stronger spatial correlation with the target area were 
assigned higher weights in the prediction model.

The local Moran’s Index can be determined by using the formula shown in equation (23):

	
Ii =

xi – x̄
S2

n∑
j=1

Wij(xj – x̄), i ̸= j
	 (23)

where n indicates the number of regions covered in the study, xi (xj) represents the incidence of tuberculosis in region i (j), 

x  denotes the average incidence of tuberculosis across the study area, S2 is the variance, and Wij is the element in row i 
and column j of the spatial weight matrix.

The value range of Moran’s Index is [−1, 1]. The extent of correlation between different regions can be divided into 
three conditions based on the value of Moran’s Index:

1)	A value greater than 0 (or close to 1) indicates positive spatial correlation.

2)	A value less than 0 (or close to −1) indicates negative spatial correlation.

3)	A value near 0 suggests weak or no spatial correlation.

As spatial autocorrelation analysis is grounded in probability theory, it is essential to evaluate the statistical significance of 
the results. For local spatial autocorrelation, a Z-test is commonly applied to the statistic Ii, with p < 0.05 indicating signifi-
cant local spatial autocorrelation.

After computing Moran’s Index between regions, PTB incidence data from areas showing high spatial correlation with 
the target region were included as additional input features, as illustrated in Fig 1.
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2.6  The sparrow search algorithm of the ELM model

The SSA is a swarm intelligence-based optimization technique inspired by the foraging and anti-predatory behaviors of 
sparrows. In SSA, each sparrow represents a potential solution within the search space. The algorithm iteratively updates 
the position of each sparrow by combining individual experience with collective intelligence, guiding the population toward 
optimal regions.

When integrated with the ELM, SSA effectively optimizes the input weights w(j) and biases b(j) of the hidden layers. In 
conventional ELM, these parameters are typically initialized randomly, which can lead to suboptimal performance. By 
employing SSA, these values are systematically refined through an iterative process wherein each sparrow’s position 
corresponds to a candidate set of parameters. During each iteration, the fitness value—representing the performance of 
the objective function for each candidate solution—is evaluated to guide the search direction. This approach enhances the 
ELM’s ability to converge to a more effective and generalized model configuration.

	

X =




x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn



	 (24)

	

FX =




f([x11, x12, · · · , x1n])
f([x21, x22, · · · , x2n])

...
f([xm1, xm2, · · · , xmn])



	 (25)

Fig 1.  The schematic diagram of merging the data of adjacent areas.

https://doi.org/10.1371/journal.pone.0339453.g001

https://doi.org/10.1371/journal.pone.0339453.g001
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The matrix X is the position of a group of sparrows, and each row of X indicates a feasible solution. Specifically, X rep-
resents the vectors consisting of w(j) and b(j) (0 < j < k + 1). m is the number of sparrows, and n represents the number of 
values to be optimized. Each row of FX denotes the fitness value corresponding to each sparrow.

The best individuals within the group are given priority for food during the search process. As explorers, they have 
access to a larger foraging range than their followers. Within each iteration, the locations of producers are updated as 
below:

	
Xt+1
i,j =

{
Xti,j · exp(

–i
α·itermax ) R2 < ST

Xti,j +Q · L R2 ≥ ST 	 (26)

where t is the current iteration number; Xt
i,j is the jth variable of the ith sparrow at iteration t. The itermax represents the max-

imum iteration number; α is a random number located in [0,1]; R
2
 (R

2
∈[0,1]) and ST (ST∈[0.5,1]) are warning values and 

safety threshold, respectively. Moreover, Q is a random number following a normal distribution; L is a 1 × d matrix where 
every element is 1.

When R
2
 < ST, this means that there are no predators around and the explorers are allowed to conduct a global search. 

Conversely, when R
2
 ≥ ST, it implies that some sparrows have spotted predators, and all the sparrows need to take action. 

Within each iteration, the updating rule of a scrounger’s location is described as follows:

	

Xt+1
i,j =




Q · exp(X
t
worst–X

t
i,j

i2 ) i > n
2

Xt+1
p + |Xti,j – X

t+1
p | ·

(
AT · (A · AT)–1

)
· L i ≤ n

2	 (27)

where Xp is the optimal position held by producers and Xt
worst is the worst position at the current iteration. A is a 1 × d vec-

tor, and each element of A is randomly set to 1 or −1.
When i > n/2, the i follower with a lower fitness value is in poor condition and needs to fly elsewhere to feed. In SSA, the 

initial locations of individuals who are aware of danger are randomly generated in the population. The updating function for 
a sparrow realizing danger can be written as:

	
Xt+1
i,j =

{
Xtbest + β · |Xti,j – Xtbest| fi ̸= fg

Xti,j + K · |X
t
i,j–X

t
worst|

(fi–fw)+ε fi = fg	 (28)

where Xt
best is the current optimal position; β is the control parameter of step size, following a standard normal distribution. 

K represents the direction of the sparrow’s movement and is also a step control parameter, and it is a random number 
within the interval [−1, 1]; moreover, ε is a constant to avoid a zero-denominator; fi, fg, and fw are the present sparrow’s 
fitness value, current global best fitness values, and worst fitness values, correspondingly.

When fi ≠ fg, the sparrow is at the edge of the group. Additionally, when fi = fg, the sparrow in the middle of the group is 
aware of the danger and needs to stay close to other sparrows to avoid being preyed upon.

2.7  Hybrid SARIMA-SVR-ELM model

The SARIMA model is primarily employed to extract and analyze linear patterns in time series data, while the SVR model 
excels in handling nonlinear and high-dimensional prediction tasks. In practical applications, time series data often contain 
both linear and nonlinear components. By integrating SARIMA and SVR in a parallel configuration, the hybrid model 
effectively captures both types of patterns, thereby achieving superior performance compared to individual models. In the 
proposed framework, the parallel SARIMA-SVR structure constitutes the first stage, and its outputs are fed into an opti-
mized ELM model in the second stage, forming a series-connected two-stage forecasting system.
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Monthly PTB incidence from 2005–2016 was used for training, and 2017–2019 was reserved for evaluation. SARIMA 
and SVR were fitted on the training period and then used to produce one-step-ahead rolling forecasts for each month 
across the entire study horizon (2005–2019) for the target region and its adjacent regions. For each month, the resulting 
2 × 6 base-model forecasts were concatenated as meta-features. An extreme learning machine (ELM) was trained on the 
2005–2016 meta-features to predict the target region’s incidence (with the observed incidence as the meta-target), and 
its parameters were optimized via the sparrow search algorithm (SSA). Performance was assessed from 2017 to 2019 by 
comparing the ELM’s out-of-sample predictions with the observed monthly incidence in the target region.

The flowchart and schematic diagram of the proposed hybrid model are presented in Figs 2 and 3, respectively.
To evaluate predictive performance, three metrics were employed: Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and Mean Absolute Percentage Error (MAPE) [13]. The formulas for these metrics are provided below.

	
MAE =

1
n

n∑
i=1

∣∣∣Yi – Ŷi
∣∣∣
	 (29)

	

RMSE =

√√√√1
n

n∑
i=1

(
Yi – Ŷi

)2

	 (30)

	
MAPE =

100%
n

n∑
i=1

∣∣∣∣∣
Yi – Ŷi
Yi

∣∣∣∣∣
	 (31)

Fig 2.  The flow chart of the proposed hybrid model.

https://doi.org/10.1371/journal.pone.0339453.g002

https://doi.org/10.1371/journal.pone.0339453.g002


PLOS One | https://doi.org/10.1371/journal.pone.0339453  December 31, 2025 11 / 24

where Yi is the real incidence rate at time i in the test set, Ŷi is the estimated incidence rate at time i in the test set, and n 
represents the number of predictions in the test set.

All analytical procedures, including time series data extraction and analysis, construction of the SARIMA, SVR, and 
ELM models, and spatial autocorrelation analysis, were performed using Python 3.9.10 [40]. The overall workflow of the 
study is illustrated in Fig 4.

3.  Case studies

In this section, a series of baseline comparisons and ablation studies are conducted to verify the effectiveness of the proposed 
method. Data from 2005 to 2016 are used for training, and data from 2017 to 2019 are used for testing. The input features of 
the model consist of the historical tuberculosis incidence rates of Chongqing and its surrounding areas, and the lookback win-
dow length is set to 12. The three error metrics, MAE, RMSE, and MAPE, described in Section 2.7, are adopted as the evalua-
tion criteria.

3.1  Time series characteristics of PTB incidence in Chongqing

Fig 5 displays the time series of reported PTB incidence in Chongqing from January 2005 to December 2020. The series 
exhibits a combination of linear and nonlinear components, along with a clear long-term decreasing trend and pronounced 
seasonal fluctuations. Annually, two distinct peaks are observed in January and March, a pattern that aligns with findings 
from previous studies [10,41,42]. Data from the year 2020 were excluded from model development and testing due to 
potential disruptions in TB reporting caused by the COVID-19 pandemic.

The PTB incidence series exhibits an apparent seasonal pattern that fluctuates periodically over the course of a year. 
This periodicity was confirmed through seasonal decomposition, which revealed a more clearly defined cyclical compo-
nent, as shown in Fig 6.

3.2  Performance of the proposed model compared to simple baseline models

To evaluate the effectiveness of the proposed hybrid model, its performance was benchmarked against a range of sta-
tistical and machine learning models. The statistical counterparts included SARIMA, ARIMA, grey model first order one 

Fig 3.  The schematic diagram of the proposed hybrid model.

https://doi.org/10.1371/journal.pone.0339453.g003

https://doi.org/10.1371/journal.pone.0339453.g003
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Fig 4.  The flowchart of the study.

https://doi.org/10.1371/journal.pone.0339453.g004

Fig 5.  Time series plot of monthly reported PTB incidence in Chongqing from 2005 to 2020.

https://doi.org/10.1371/journal.pone.0339453.g005

https://doi.org/10.1371/journal.pone.0339453.g004
https://doi.org/10.1371/journal.pone.0339453.g005


PLOS One | https://doi.org/10.1371/journal.pone.0339453  December 31, 2025 13 / 24

variable (GM(1,1)), and the error, trend, seasonality (ETS) method. The machine learning models comprised SVR, ELM, 
SSA-optimized ELM (ELM(SSA)), XGBoost, BPNN, RNN, generalized regression neural network (GRNN), autoregressive 
neural network (ARNN), and LSTM. A comparative summary of their performance is provided in Table 1 and Figs 7 and 8. 
Among the statistical models, SARIMA achieved the lowest prediction errors. For machine learning models, XGBoost and 
LSTM demonstrated superior accuracy in capturing nonlinear trends. Notably, the standard ELM model offered the fastest 
computational speed, and its predictive accuracy was further enhanced through optimization with the SSA algorithm.

Although the standalone performance of the SVR model was surpassed by XGBoost and LSTM in our tests, it remains 
well-suited for modeling nonlinear trends in time series, particularly with limited datasets. The robustness of SVR stems 
from its use of an ε-insensitive band around the regression function, which excludes samples within this margin from the 
loss calculation. This mechanism confers a high tolerance to noise and outliers, enabling SVR to achieve reliable general-
ization even on small sample sizes. It is for this key reason that SVR was selected as a component in our hybrid forecast-
ing framework.

3.3  Ablation study on different hybrid model configurations

To identify the optimal hybrid forecasting structure, we systematically evaluated the performance of various model combi-
nations. This involved testing hybrid frameworks comprising three different models—specifically, SARIMA combined with 
either SVR, XGBoost, or BPNN, and subsequently integrated with ELM—under different connection architectures. The 
performance metrics of all candidate hybrid models are summarized in Table 2.

As indicated by the results in Table 2, the two-stage hybrid model labeled SARIMA//SVR + ELM(SSA) achieved the 
lowest prediction errors, demonstrating superior performance over other hybrid configurations. Moreover, models employ-
ing the SSA consistently showed improved accuracy compared to their non-optimized counterparts, confirming that SSA 

Fig 6.  The seasonal decomposition outcome of PTB incidence time series in Chongqing from 2005 to 2020.

https://doi.org/10.1371/journal.pone.0339453.g006

https://doi.org/10.1371/journal.pone.0339453.g006
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effectively optimizes ELM parameters and enhances predictive performance. These findings are visually supported in , 
where the calibration curve of the SARIMA//SVR + ELM(SSA) model closely aligns with the reference line, indicating a 
high level of predictive accuracy. Based on these comprehensive results, the SARIMA//SVR + ELM(SSA) structure was 
selected as the final model for PTB incidence forecasting.

3.4  Ablation study on the surrounding area of PTB incidence features

To enhance the predictive accuracy of the hybrid model, we investigate whether PTB incidence in surrounding regions 
influences the prediction of PTB incidence in Chongqing. First, Moran’s index is calculated to assess the spatial cor-
relation between Chongqing and five adjacent provinces (Hubei, Shaanxi, Sichuan, Guizhou, Hunan) as well as five 

Table 1.  Comparison of the proposed hybrid model with the existing simple models.

Models MAE RMSE MAPE (%)

Statistical models

SARIMA [8] 0.660 0.919 15.008

ARIMA [43] 0.708 0.979 15.497

GM (1,1) [41] 1.510 1.705 41.503

ETS [44] 0.763 1.242 19.107

Machine learning models

SVR [19] 0.844 1.048 17.656

ELM 1.395 1.657 42.053

XGBoost [45] 1.431 1.934 49.394

BPNN [11] 1.185 1.561 37.318

RNN [46] 1.968 3.117 76.536

LSTM [13] 1.881 2.821 70.785

The proposed model 0.434 0.737 10.795

https://doi.org/10.1371/journal.pone.0339453.t001

Fig 7.  Comparison of the hybrid model with existing statistical models.

https://doi.org/10.1371/journal.pone.0339453.g007

https://doi.org/10.1371/journal.pone.0339453.t001
https://doi.org/10.1371/journal.pone.0339453.g007
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Fig 8.  Comparison of the hybrid model with a machine learning model.

https://doi.org/10.1371/journal.pone.0339453.g008

Table 2.  Prediction performance of PTB incidence by using different forms of hybrid models.

Models MAE RMSE MAPE (%)

SARIMA, SVR, and ELM Model

SARIMA+SVR + ELM 1.270 1.900 46.156

SARIMA+SVR + ELM(SSA) 1.272 1.899 46.216

SARIMA//SVR//ELM 0.701 1.170 24.182

SARIMA//SVR//ELM (SSA) 0.612 1.070 17.385

SARIMA//SVR + ELM 0.768 1.011 22.867

SARIMA//SVR + ELM(SSA) 0.434 0.737 10.795

SARIMA, XGBoost, and ELM Model

SARIMA+XGBoost+ELM 1.562 2.205 55.320

SARIMA+XGBoost+ELM(SSA) 1.562 2.208 55.382

SARIMA//XGBoost//ELM 0.894 1.329 31.624

SARIMA//XGBoost//ELM(SSA) 0.896 1.247 29.194

SARIMA//XGBoost+ELM 0.979 1.451 34.582

SARIMA//XGBoost+ELM(SSA) 0.849 1.321 25.443

SARIMA, BPNN, and ELM Model

SARIMA+BPNN+ELM 1.117 1.397 32.080

SARIMA+BPNN+ELM(SSA) 1.141 1.419 33.648

SARIMA//BPNN//ELM 0.991 1.206 28.338

SARIMA//BPNN//ELM(SSA) 0.725 1.060 20.367

SARIMA//BPNN+ELM 0.948 1.186 28.508

SARIMA//BPNN+ELM(SSA) 0.742 1.287 18.194

https://doi.org/10.1371/journal.pone.0339453.t002

https://doi.org/10.1371/journal.pone.0339453.g008
https://doi.org/10.1371/journal.pone.0339453.t002
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non-adjacent provinces (Shanxi, Henan, Jiangxi, Yunnan, Gansu). A schematic diagram of Moran’s index is presented in 
Figs 12 and 13.

The effect of incorporating different numbers of adjacent provinces as auxiliary predictors for Chongqing is evaluated. 
The results, summarized in Table 3, indicate that including geographically proximate information consistently improves 
prediction performance. Compared to using data from Chongqing alone (0 provinces; MAE = 0.989, RMSE = 1.476, 
MAPE = 34.53%), the addition of neighboring provinces leads to a steady reduction in prediction error, with the best per-
formance achieved when all five adjacent provinces are included (MAE = 0.434, RMSE = 0.737, MAPE = 10.80%). This pat-
tern aligns with the notion of spatial spillover effects and shared epidemiological dynamics: PTB incidence in neighboring 

Fig 9.  Performance of SARIMA, SVR, and ELM model in predicting PTB incidence in Chongqing.

https://doi.org/10.1371/journal.pone.0339453.g009

Fig 10.  Performance of SARIMA, XGBoost, and ELM model in predicting PTB incidence in Chongqing.

https://doi.org/10.1371/journal.pone.0339453.g010

https://doi.org/10.1371/journal.pone.0339453.g009
https://doi.org/10.1371/journal.pone.0339453.g010
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regions serves as a valuable predictor for Chongqing, and integrating these external signals into the feature set effectively 
enhances forecasting accuracy.

However, the performance improvement is not strictly monotonic at each incremental step—for instance, the model with 
three provinces performs slightly worse than that with two. Such fluctuations are common in multivariate time-series modeling, 

Fig 11.  Performance of SARIMA, BPNN, and ELM model in predicting PTB incidence in Chongqing.

https://doi.org/10.1371/journal.pone.0339453.g011

Fig 12.  The schematic diagram of the spatial correlation analysis of Chongqing and its five adjacent provinces. Note: The base map layer is 
derived from public domain vector data provided by Natural Earth (http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0339453.g012

https://doi.org/10.1371/journal.pone.0339453.g011
http://www.naturalearthdata.com
https://doi.org/10.1371/journal.pone.0339453.g012


PLOS One | https://doi.org/10.1371/journal.pone.0339453  December 31, 2025 18 / 24

where nonlinear feature interactions, partial redundancy or collinearity among predictors, and the inherent bias–variance 
trade-off with increasing input dimensions can lead to minor deviations, even amid a clear overall downward trend in error.

Furthermore, incorporating data from non-adjacent provinces leads to a decline in performance (MAE = 1.015, 
RMSE = 1.432, MAPE = 34.70%), suggesting that these variables contribute little meaningful information and instead 
introduce noise or distributional discrepancies. The details are shown in Fig 14. In summary, while adjacent provinces 
offer valuable contextual signals that enhance prediction accuracy, non-adjacent provinces tend to act as uninformative or 
confounding features and should be excluded unless justified by strong domain-specific relevance.

3.5  Performance of the proposed model compared to hybrid baseline models

In previous studies, various hybrid models have been developed to predict the incidence of PTB. To evaluate the perfor-
mance of our proposed hybrid model, we compared it against several existing hybrid models reported in the literature. 

Fig 13.  The schematic diagram of the spatial correlation analysis of Chongqing and its five non-adjacent provinces. Note: The base map layer 
is derived from public domain vector data provided by Natural Earth (http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0339453.g013

Table 3.  Comparison of the prediction performance after adding the PTB incidence data 
from adjacent or non-adjacent regions.

Models MAE RMSE MAPE (%)

Adding adjacent region data (Hubei, Shaanxi, Guizhou, Sichuan, Hunan)

0 Province 0.989 1.476 34.534

1 Province 0.582 1.021 15.596

2 Provinces 0.549 0.946 16.256

3 Provinces 0.647 1.128 17.955

4 Provinces 0.581 0.932 16.972

5 Provinces 0.434 0.737 10.795

Adding non-adjacent region data 1.015 1.432 34.704

https://doi.org/10.1371/journal.pone.0339453.t003

http://www.naturalearthdata.com
https://doi.org/10.1371/journal.pone.0339453.g013
https://doi.org/10.1371/journal.pone.0339453.t003
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As summarized in Table 4 and visualized in Fig 15, the proposed model achieves the lowest prediction errors on the test 
datasets. Specifically, it reduces prediction error by 18.47% to 77.38% compared to other hybrid models, demonstrating 
superior predictive performance and robustness in PTB incidence forecasting.

3.6  Statistical analysis

To statistically validate the superiority of the proposed model, the Diebold-Mariano (DM) test was employed in this study. 
This statistical method is specifically designed to compare the predictive accuracy of two competing forecasting models 
[48]. It is widely used in time series analysis to determine whether the performance difference between a proposed model 
and a benchmark alternative is statistically significant.

The predictive accuracy of the proposed model was compared against each benchmark model in a pairwise manner 
using the DM test. This test assesses the null hypothesis of equal predictive accuracy. A significantly negative DM sta-
tistic indicates that the proposed model incurs a lower forecast loss, whereas a positive value favors the benchmark. As 
summarized in Table 5, the DM statistic is negative and significant (p < 0.05) in most comparisons, demonstrating that our 
model yields significantly smaller forecast errors than the alternatives over the 2017–2019 period.

Fig 14.  Forecasting curves after adding data from adjacent or non-adjacent provinces.

https://doi.org/10.1371/journal.pone.0339453.g014

Table 4.  Comparison of the proposed hybrid model with the existing hybrid models.

Models MAE RMSE MAPE

ARIMA+GRNN [16] 0.688 0.968 21.419

SARIMA+RNN [46] 0.667 1.079 19.879

SARIMA+GRNN [47] 0.726 1.108 21.146

SARIMA+BPNN [17] 1.486 1.873 47.727

SARIMA+SVR [19] 0.683 0.917 15.132

SARIMA+LSTM [13] 0.539 0.904 14.832

SARIMA+ETS [18] 0.740 1.087 19.376

SVR+BPNN [17] 1.134 1.466 32.658

The proposed model 0.434 0.737 10.795

https://doi.org/10.1371/journal.pone.0339453.t004

https://doi.org/10.1371/journal.pone.0339453.g014
https://doi.org/10.1371/journal.pone.0339453.t004
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For a small subset of benchmarks, the difference was not statistically significant (p ≥ 0.05). It is important to note that a 
non-significant result does not imply the benchmark is superior; rather, it suggests that the available sample of 36 monthly 
predictions may lack the statistical power to detect a modest but real difference, particularly in the presence of serial cor-
relation in forecast errors. In conclusion, the results confirm that the proposed model significantly outperforms the majority 
of benchmark models, and the few non-significant cases are best interpreted as a consequence of limited sample size, 
autocorrelation, and heteroscedasticity, rather than as evidence against the model’s efficacy.

Fig 15.  Forecasting curves of the hybrid model with existing hybrid models.

https://doi.org/10.1371/journal.pone.0339453.g015

Table 5.  DM test statistics for comparing the proposed model and benchmark models.

Models DM p value 95% CI low 95% CI high

SARIMA −1.003 0.316 −0.911 0.308

ARIMA −1.153 0.249 −1.144 0.315

GM (1,1) −4.475 7.64 × 10−6 −3.437 −1.292

ETS −2.064 0.039 −1.979 −0.017

SVR −1.988 0.046 −1.122 0.011

ELM −4.654 3.24 × 10−6 −3.160 −1.241

XGBoost −4.112 3.91 × 10−5 −4.775 −1.618

BPNN −3.064 0.002 −3.145 −0.638

RNN −3.677 2.36 × 10−4 −14.23 −4.109

LSTM −4.014 5.95 × 10−5 −11.16 −3.665

ARIMA+GRNN −2.930 0.003 −0.667 −0.121

SARIMA+RNN −1.692 0.091 −1.364 0.123

SARIMA+GRNN −1.752 0.079 −1.474 0.108

SARIMA+BPNN −3.735 1.88 × 10−4 −4.577 −1.353

SARIMA+SVR −2.069 0.038 −0.588 −0.005

SARIMA+LSTM −1.245 0.213 −0.721 0.173

SARIMA+ETS −2.347 0.018 −1.191 −0.086

SVR+BPNN −3.429 0.001 −2.556 −0.655

https://doi.org/10.1371/journal.pone.0339453.t005

https://doi.org/10.1371/journal.pone.0339453.g015
https://doi.org/10.1371/journal.pone.0339453.t005
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4.  Results and discussion

This study developed a high-performance hybrid model for forecasting PTB incidence in Chongqing, China. The proposed 
SARIMA//SVR + ELM(SSA) model demonstrated superior performance by effectively integrating linear components cap-
tured by SARIMA, nonlinear residuals modeled by SVR, and a final integration step using the SSA-optimized ELM. The 
PTB incidence series exhibited a clear long-term decreasing trend and stable seasonal fluctuations. Moreover, incorpo-
rating spatial data from adjacent provinces significantly enhanced the model’s accuracy, corroborating the spatial spillover 
effect of PTB transmission. Statistical tests confirmed that the proposed hybrid model was significantly superior to most 
benchmark models, thereby affirming the reliability of its PTB incidence forecasts.

A notable temporal performance drift was observed during the model’s testing phase, characterized by a rise in the 
mean absolute error from 0.28 in 2017 to 0.59 in 2019. The most significant instance of this was an over-prediction for 
January 2019, where the forecasted incidence was substantially higher than the observed value (predicted: 6.79 vs. 
observed: 3.24 per 100,000). While this could be conventionally interpreted as a limitation in generalizability, we posit that 
it more constructively reflects a fundamental shift in the underlying trend of PTB incidence. This shift is likely attributable 
to the accelerated and enhanced interventions implemented under China’s “13th Five-Year” National TB Control Plan initi-
ated in 2017 [49]. As the model was primarily trained on pre-2017 data, which captured a period of more gradual decline, 
it could not fully anticipate the steeper reduction in incidence driven by these structural policy breaks. From a public 
health planning perspective, this tendency for conservative, slightly over-estimating forecasts is not entirely detrimental, 
as it inherently creates a safety buffer for resource allocation, thereby enhancing the practical utility and decision-making 
robustness of the modeling framework.

In the current era dominated by data-intensive deep learning, our study yielded a counterintuitive finding: complex mod-
els like RNN and LSTM did not achieve superior performance. The root cause lies in the data-sparse nature of this study, 
where the 144 monthly data points with high variance were insufficient for such models to learn effectively, making them 
prone to overfitting and capturing noise rather than the underlying epidemiological pattern [50]. In this context, the ELM 
emerged as a particularly suitable choice. Its mechanism of using randomly assigned hidden layer weights and analyti-
cally calculating output weights grants it exceptional computational efficiency and remarkable resistance to overfitting on 
limited samples [51]. Complementing this, SVR was selected for its structural risk minimization principle, which provides 
inherent robustness against noise and outliers by constructing an ε-insensitive loss function [52]. Therefore, the ELM-SVR 
combination in our hybrid framework effectively balances computational efficiency, robustness, and nonlinear fitting capa-
bility, proving itself well-suited for medium-scale, volatile time-series forecasting tasks like the one in this study.

In the experiment investigating the impact of spatial features, we observed that forecasting performance generally 
improved as more adjacent provinces were included, although this trend was not strictly monotonic. For instance, perfor-
mance with three provinces was slightly inferior to that with two, a common non-monotonic pattern in multivariate model-
ing attributable to complex feature interactions, partial redundancy, and the inherent bias-variance trade-off of increasing 
model dimensionality [53]. Epidemiologically, this suggests meaningful geographical heterogeneity in the TB epidemic 
across regions. While data from adjacent provinces overall provide valuable spatial spillover signals, the influence of 
each specific province is not uniform, potentially due to variations in population mobility, data reporting practices, or local 
intervention timelines. Consequently, information from a third province might partially conflict with or dilute existing signals 
until a more comprehensive spatial context is established with additional provinces. This finding underscores that indis-
criminately adding data sources is suboptimal; future work should refine spatial feature integration by employing weighted 
matrices or mobility-based coupling indicators to build more precise and interpretable forecasting systems.

5.  Conclusion and future perspectives

In summary, this study successfully developed an accurate and robust hybrid model for forecasting PTB incidence. 
Through a profound analysis of the model’s performance, we have not only validated its technical superiority but, more 
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importantly, connected its behavior to real-world public health practice: the temporal variation in forecast error may reflect 
effectiveness of disease control that exceeded expectations; the data regime dictated that simpler, efficient models were 
more practical than complex ones; and the non-monotonic spatial pattern revealed the complex heterogeneity of disease 
spread. These discussions transcend mere model performance comparison and provide a new perspective for utilizing AI 
tools to understand and evaluate infectious disease control policies [54].

Future work will focus on integrating more real-time data streams (e.g., internet search indices, climate data) and 
finer-grained human mobility information to better capture the dynamic factors leading to structural breaks, thereby con-
structing more proactive and adaptive early warning systems for infectious diseases.
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