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Abstract

Biliary atresia is a neonatal cholangiopathy characterized by loss of the extrahepatic
bile duct causing bile acid accumulation in the liver and subsequent fibro inflam-
mation and abnormal proliferation of intrahepatic ducts. Further, BA liver develops
fibrosis, progresses to cirrhosis, and ultimately results in liver failure requiring liver
transplantation. NRAS, an oncoprotein, acts as an effector in cholangiocyte cell
proliferation and differentiation. We hypothesize that elevated levels of Taurocholic
acid (TCA), a conjugated bile acid, activates YAP1 via NRAS, inducing cholangiocyte
proliferation. Our experiments using mouse intrahepatic cholangiocyte cells treated
with TCA showed significant proliferation of cells at 100 yM compared to control, 10,
and 1000 pM. Immunofluorescence staining with KRT19 and EPCAM antibodies
showed neither loss of protein expressions nor altered morphology of cholangiocyte
cells with TCA treatments suggesting no loss of cholangiocyte integrity. Fluorescent
images measured by Image-J showed elevated NRAS and YAP1 expressions in cells
treated with 100 uM TCA for two days compared to control. Further, colocalization
analysis revealed YAP1 was translocation to the nucleus presumably. There it can act
as a transcription factor and induce TEAD1 expression. In addition, NRAS overex-
pressed at 100 uM of TCA activated downstream targets MAPK1. We conclude that
TCA induces abnormal cholangiocyte cell proliferation by triggering NRAS production
and causing a downstream activation and translocation of YAP1. However, TCA at
lower doses showed no significant impact on cholangiocyte cells but at higher doses
caused toxicity and cell death.

Introduction

Cholangiopathies are a class of complex and progressive liver diseases that target
the cholangiocytes, epithelial cells lining the bile ducts in the liver [1]. The most com-
mon neonatal cholangiopathy is Biliary Atresia (BA). The disease is characterized by
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loss of extrahepatic bile duct and inflammation of intrahepatic bile ducts impairing bile
drainage, thus leading to the accumulation of bile acids in the liver [2]. This accretion
in the liver results in elevated levels of total serum bile acids, inducing acute hepatic
inflammation and injury that rapidly progresses into hepatic fibrosis and, eventually,
cirrhosis if left untreated [3]. Some common postulations are that the atresia of bile
ducts may result because of the developmental defects in bile ducts during preg-
nancy (suggesting a prenatal genesis of liver dysfunction), viral infection or exposure
to environmental toxins at birth activating a deregulated innate and adaptive immune
response that amplifies cholangiocyte injury [4—6].

During the immune response, cholangiocytes exhibit cytotoxicity characterized by
abnormal cell proliferation and apoptosis — as a function of cell degradation which
eventually results in fibrosis, obstruction of the ductal lumen, and bile duct loss
[7,8]. Surgical intervention by hepatic portoenterostomy (HPE), known as the Kasai
procedure is to restore biliary flow and bile drainage by connecting the bile duct to
the Roux-en-Y loop jejunum is the crucial intervention once BA is diagnosed [9,10].
However, the Kasai procedure, in many cases, only aids in slowing the progression of
the intrahepatic disease. Post-procedure many patients still deal with the prognosis
of cholangitis, a bacterial infection that occurs predominantly in patients after KPE
and is commonly treated with antibiotics manifesting in ways such as portal hyperten-
sion and advanced cirrhosis [11-13]. Pathogenesis to cirrhosis post-Kasai procedure
suggests that subsistent damaging molecular processes are ongoing, although the
pathogenic mechanisms by which these occur are ambiguous [11,14]. A prominent
causative factor that researchers are studying is the bile acids in those with biliary
atresia, particularly the increase in serum levels during the progression of the disease
and its correlation with the inflammatory fibrosis stage [11,15]. BA patients who had
early diagnosis and HPE showed significantly elevated taurocholate levels in blood
(0.98+0.62 pmol/L) compared to normal infants (0.43+0.40 ymol/L) [16].

Bile acid-coenzyme A: amino acid N-acyltransferase (BAAT) is one of the critical
liver enzymes responsible for producing conjugated bile acids. Deficiencies in this
enzyme lead to abnormal bile acids and are caused by mutations in the gene that
encodes it, the peroxisomal protein-encoding gene BAAT found in hepatocytes [17].
Among the possible causes of damage post-Kasai is the oncogene N-RAS, a gene
with limited data on its potential involvement in the pathways that lead to the progno-
sis of the disease. N-RAS is a gene of interest because it has been shown to play a
key role in mediating cholangiocyte proinflammatory cytokine production [18]. Evi-
dence is beginning to show that cholangiocytes, initially thought to just be affected
by the liver’s proinflammatory immune response to various stresses, are actually an
effector [7]. Experimental evidence has shown that cholangiocytes and hepatocytes
in BA livers have impaired cell junctions and polarity complexes that are caused by
Cdc42 insufficiency resulting in impaired intrahepatic bile ducts [19].

Cholangiocytes’ response to the perpetual exposure of the typical and pathologic
substances in bile is normally highly regulated so there is no aberrant response of the
immune system. However, the deregulated innate immunity characterized by many
cholangiopathies including BA, leads to a response of the cholangiocytes where they
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can acquire an activated phenotype that expresses an abnormal pattern of immune system proteins such as chemokines,
cytokines, and their receptors [7,20]. Toll-like receptor signaling pathway is a key player in the pathological response of
the cytokines and chemokines by cholangiocytes and involves the hydrolase enzyme Ras [7]. Ras, a group of small cellu-
lar GTPases that regulate diverse cellular processes, has three isoforms — H-Ras, K-Ras, and N-Ras [21]. Recent studies
have shown the oncogene N-RAS to be the primary Ras protein expressed in cholangiocytes [7,18]. The brief association
of TLRs with lipopolysaccharides in cholangiocytes activates N-Ras and leads to rapid phosphorylation of the downstream
Ras effectors extracellular signal-regulated kinases (ERKs) 1 and 2 [7,20].

Although the effect of N-Ras activation in association with liver injury has been widely studied, there is limited knowl-
edge on N-Ras activation in Biliary Atresia. Because of the evidence supporting that BAAT has strong affinity towards tau-
rine over glycine in forming conjugated bile acids [22], loss of extrahepatic bile duct results in the accumulation of bile acid
[11], and N-Ras’ role in the proliferation of cholangiocyte cells [23], we hypothesize that the accumulation of conjugated
bile acids triggers the N-Ras proliferation pathway, and inhibition of this pathway could help achieve a better prognosis of
BA post-Kasai procedure. In this study, we aim to build on the work of previous studies and evaluate the effect of N-Ras
inhibition by various chemical treatments in improving cholangiocyte function.

Materials and methods
Processing of RNAseq datasets

Public and freely available RNAseq data (GSE186444) of cholangiocyte organoids (COs) generated from livers of normal
(n=3) and biliary atresia (BA) patients at diagnosis (Dx, n=5) and transplant (Tx, n=6) were obtained from GEO data-
base [4]. Comparisons between BACO-Dx and BACO-Tx were performed using GEO2R (https://www.ncbi.nlm.nih.gov/
geo/geo?2r/) to identify differentially regulated gene expression profiles. ToppGene Suite was applied to the genes UP-
regulated in BACO-Tx compared to BACO-Dx to prioritize biological process based on their functional similarity [24].

Mouse cholangiocyte cell line cultures

Cholangiocyte cell line derived from mouse intrahepatic bile ducts were generously provided by Dr. Heather Francis, Indi-
ana University, USA [25,26]. Briefly, cells were cultured as adherent cells using Dulbecco’s Modification of Eagle’s Medium
(DMEM) (Corning, cat# MT10014CV) supplemented with 10% heat-inactivated Fetal Bovine Serum (Corning, cat#
MT35017CV) and 1% Penicillin-Streptomycin (10,000 U/mL) (Gibco, cat# 15140122). Cells were cultured in a humidified
incubator supplied with 5% CO, and maintained at 37°C. To expand the cultures, adherent cells were treated with 0.05%
Trysin-EDTA (Gibco, cat# 25300054) for 8 minutes before they were harvested.

Taurocholic acid treatments

Cultured cholangiocyte cells were treated with TCA (MilliporeSigma, cat# 580218) at different concentrations and tested
for different time intervals. TCA concentrations at 10 uM, 100 uM, and 1000 uM were tested over 24 hrs or 48 hrs.
Untreated cells served as control while experiments were conducted a minimum of three independent times.

Immunofluorescence of cell cultures

Cholangiocyte cells were plated in glass bottom dishes (ThermoScientific, cat# 12567400) before the experiments were
performed. Cells either untreated or treated with TCA were washed twice with 1X PBS and fixed for 10 minutes using 4%
paraformaldehyde (Electron Microscopy Sciences, cat# 15710) made in 1X PBS at room temp. Blocking buffer constituted
of 1% bovine serum albumin (Fisher BioReagents, cat# BP1600), 5% donkey serum (Jackson Immuno Research Labs,
cat# NC9624464) and 0.1% Triton X-100 Surfactant (MilliporeSigma, cat# MTX15683) made in 1X PBS was added to the
cells at room temperature (RT) for one hour. Primary antibodies (S1 Table) were diluted to the appropriate concentrations,
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based on manufacturer’s recommendations. in blocking buffer and cells were incubated overnight at 4°C. Matching
secondary antibodies (S2 Table) were diluted, and cells were incubated for one hr at RT. To stain the nuclei, cells were
incubated with Hoechst (Invitrogen, cat# H1398) diluted to 1 in 8000 1X PBS for ten minutes. Slides were mounted with
Fluoromount (Invitrogen, cat# 5018788) and allowed to sit overnight at RT in dark. Images were captured using Nikon
fluorescence microscope fitted with 18mega pixels color CMOS C-Mount microscope camera equipped with reduction
lens (Amscope, cat# MU1803). Captured images were processed using ImagedJ software to obtain mean gray values of
fluorescent intensity and saved at 600 pixelsperinch high resolution tiff files.

Gene expression by qPCR

RNA Isolation. An RNAqueous kit (Invitrogen, cat# AM1912) was used to isolate total RNA from the cells grown
in 100 mm culture dishes, plated at a density of 2 x 10° cells per dish. Cells either untreated or treated with TCA
were washed with 1X PBS to remove traces of medium and were lysed using lysis binding solution provided with
the kit. Lysate was recovered in test tubes and equal volumes of 65% ethanol were added with gentle mixing by
vortexing. The lysate ethanol mixture was then loaded to a collection tube and centrifuged at RCF 10,000X for
45 seconds. The flow-through was discarded and the filtrate was washed with different wash solutions that were
supplied in the Kit.

The filter cartridge was then put into a fresh collection tube, and preheated elution solution was pipetted to the center
of the filter and the tube centrifugated for 30 seconds, after which the eluate was recovered. This step was repeated to
ensure all the RNA was recovered from the samples.

cDNA synthesis and PCR. complementary DNA synthesis was performed using RevertAid First Strand cDNA
Synthesis Kit (ThermoScientific, cat#é FERK1622). cDNA synthesis, PCR amplification of first stand cDNA, control PCR
amplification, and gel electrophoresis were performed as follows.

cDNA synthesis: Following reagents were added to a sterile, nuclease-free tube kept on ice in the following order:
Total RNA (0.1 ng — 5 ug), Oligo (dT)18 primer (1 ul), and 12 ul of nuclease free water. To this solution, 4 pl of 5X reaction
buffer, 1 yl of RiboLock RNase inhibitor (20 U/ul), 2 pl of 10 mM dNTP Mix, and 1 pl of RevertAid M-MuLV RT (200 U/pul)
was added. This solution was then incubated for 60 minutes at 42 °C in a thermal cycler (BioRad T100). The reaction was
terminated by heating to 70 °C for 5 minutes.

Gene amplification by gPCR: cDNA was diluted to 1:1000 in nuclease free water. A thin-walled PCR strip tube was
put on ice and the following reagents added: 2 pl of diluted cDNA, 5 pl of 10X PCR buffer, 1 pl (0.2 mM each) of 10 Mm
dNTP mix, 3 pl of 25 mM MgCI2, 0.5 ul each of Forward and Reverse Primers, 0.5 ul of Tag DNA polymerase (5 U/ pl),
and 35.5 pl of nuclease free water. Primer sequences for mouse genes specified in the S3 Table were retrieved from the
PrimerBank database, a public resource for PCR primers that are experimentally validated and can be used to detect and
quantify gene expressions [27].

Agarose gel electrophoresis: 1% agarose gel was prepared with 1xTris-Acetate-EDTA (TAE) buffer (Fisher BioRe-
agents, cat# BP13354). The agarose solution was mixed with 5 yl of SYBR (Invitrogen, cat# S33102) safe to allow the
binding of DNA and visualization under ultraviolet light. The gels were loaded with PCR mix and run for 30 minutes at 120
V using a compact power supply (Owl™ EC300XL2).

Statistical analysis

Cell numbers from cell proliferation assays and mean gray values for fluorescent images from Image J were analyzed
using t test or ANOVA using GraphPad Prism software. Significance between untreated and treated samples was deter-
mined using an unpaired t test or one-way ANOVA. Data in figures were expressed as mean+SD (standard deviation) and
p values of <0.05 were considered statistically significant. All data presented were generated from three or more indepen-
dent experiments.
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Results
Cholangiocyte organoids revealed elevated expressions of NRAS and YAP1

To identify gene signatures that were significantly altered in response to the elevated conjugated bile acids in BA, we
analyzed publicly available curated gene expression datasets (GSE186444) of cholangiocyte organoids (CO) which were
generated from livers of normal control (NC) and BA patients at diagnosis (Dx) or transplant (Tx) (S1, S2 File). Using
ToppGene, functional enrichment of gene sets that were up-regulated in BACO-Tx compared to BACO-Dx identified “cell
cycle” as a top biological process (S3 File). Next, comparing genes across COs we identified expressions of NRAS and
YAP1 significantly upregulated (Fig 1a,1e) but for PITX1 downregulated (Fig 1h). Subsequently, using pathway enrich-
ment analysis for these three genes, we identified NRAS downstream effectors, RAF1, MAPK14/p38, and ERK2 (Fig
1b—1d) and YAP1 downstream targets TEAD1, and SMAD2 (Fig 1f,1g) significantly upregulated but not for PITX1. To
determine if there is a relationship between activation levels of NRAS and age of BA patients at diagnosis and transplant,
we compared the gene expression levels across five diagnosis and six transplant patients. Our analysis revealed no
significant correlation among patients at diagnosis; however, transplant patients showed a significant inverse correlation
with age (Fig 1i,1j), indicating patients who came for early transplant had higher NRAS levels. This suggested activation of
NRAS pathway in Tx compared to Dx (see Discussion).

Exposure to taurocholic acid induced cholangiocyte cell proliferation

To test the hypothesis that “accumulated bile acids in BA livers induce cholangiocyte proliferation via NRAS and YAP1
pathways”, an experimental model of the disease was established by treating the mouse cholangiocyte cells with TCA.
TCA is a conjugated bile acid known for its toxicity in the liver and is one of the bile acids with elevated levels in cirrhosis.
To determine the concentration that would abnormally increase the cell proliferation, the experimental group was treated
with a low dose of TCA (10 pyM), a medium dose (100 uM), and a high dose (1000 uM). Mouse intrahepatic cholangiocyte
cells plated at equal densities (Fig 2a) were exposed to TCA for two days (Fig 2b). We observed that at the end of two-day
treatment, cells exposed to 100 uM TCA had a significantly higher cell count compared to the control, however, 10 yM and
1000 uM showed no significant difference in growth (Fig 2c). When proliferation rates for 24 and 48 hrs. were plotted, a
significant steady growth with 100 uM treatments was observed but not with other doses (Fig 2d). Furthermore, another
set of experiments were performed to determine the cytotoxicity of TCA. Cells were grown to confluent and subjected to
TCA treatments at 10 uM and 100 uM, and 1000 uM for 24 hrs. As shown in the supplemental figure (S1 Fig), cells with
100 uM continued to grow at significant rates compared to control (untreated), however, 10 uM showed no significant (dif-
ference in) growth compared to control whereas 1000 uM showed partial cell death indicating toxicity. We conclude that
low dose of TCA is not sufficient to activate the NRAS and YAP1 pathways while high doses may have triggered inhibitory
pathways because of toxicity.

Taurocholic acid treated cells retained cholangiocyte integrity

Cytokeratin 19 (KRT19) and Epithelial cell adhesion molecule (EPCAM) are characteristic markers of mature cholangio-
cyte cells and epithelial cells and are expressed in cytoplasm and cell membrane of biliary epithelial cells respectively.
Before proceeding with further experiments, cells were characterized by detecting cholangiocyte markers after TCA
treatments. This is to demonstrate whether cells maintained their epithelial integrity without undergoing epithelial to mes-
enchymal transition (EMT) as indicated by the loss of KRT19 and EPCAM. The cells were treated with 100 uM since there
was significant change in cell proliferation and 1000 uM which induced no change in cell number. Immunofluorescence
imaging showed CK19 expressions levels increased significantly with 1000 uM (S2 Fig). Although EPCAM levels dropped
significantly with 1000 pM, the protein expression was still visible (S3 Fig). This demonstrated that TCA did not transcrip-
tionally reprogram cholangiocyte cells resulting in EMT when treated with 100 or 1000 uM.
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Fig 1. Gene expressions from previously published bulk RNA-seq of cholangiocyte organoids generated from human livers of normal con-
trols (NC) and biliary atresia (BA) at diagnosis (Dx) or transplant (Tx). a. NRAS, neuroblastoma ras oncogene; b. RAF1, Raf-1 proto-oncogene,
serine/threonine kinase; c. MAPK14/p38, mitogen activated protein kinase 14; d. MAPK1/ERK2, mitogen-activated protein kinase 1. e. YAP1, Yes1
associated transcriptional regulator; f. TEAD1, TEA domain transcription factor 1; g. SMAD2, SMAD family member 2; h. PITX1, paired like home-
odomain 1. i. Tabular display of NRAS gene expression levels in cholangiocyte organoids generated from livers of Normal donors, BA patients at
diagnosis and transplant. j. Simple linear regression of NRAS expression levels plotted against age for normal, BA patients at diagnosis and transplant,

data was analyzed by Pearson correlation. RPKM, Reads Per Kilobase Million Mapped Reads. Data is represented as mean = SD. ns. =non-significant, *
p<0.05, ** p<0.001.

https://doi.org/10.1371/journal.pone.0339210.9001
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Cell proliferation markers were induced with TCA treatment

N-RAS, localized to cytosol, is known for its role in cell cycle division and when activated becomes an effector in an
abnormal cell proliferation pathway. When cells were treated with 100 uM and 1000 uM for two days and subjected
to immunofluorescence with antibody for NRAS, they demonstrated significantly elevated levels in 100 uM but non-
significant in 1000 yuM compared to untreated (Fig 3a and 3b). YAP1 is localized to cytosol when inactive, however,
when turned ON, YAP1 moves to the nucleus where it acts as a transcription factor. Upon translocation, YAP1 con-
trols genes that promote cell proliferation. Immunofluorescence staining for YAP1 in control, 100 uM, and 1000 pyM
treatments detected low levels of protein expression in control and 1000 pM treated cells with cytosolic localization.
However, in the 100 uM-treated cultures, there was a much higher expression of YAP1 (Fig 3c and 3d), and it was
partially localized in the nucleus (Fig 3e). To further investigate whether the activation of NRAS and YAP1 induced
downstream target, Mapk1 and Tead1 respectively were examined for gene expression levels using quantitative PCR
technique. Results showed that 100 uM treatment significantly induced the genes, however, only Mapk1 but not Tead1
were induced with 1000 uM. Further, Pitx1 expression was also determined to see if it was acting upstream of NRAS.
However, no significant changes were observed indicating Pitx7 may not be involved in the cell proliferation pathway
(Fig 4a, 4b, 4c, and 4d). In summary, we were able to establish a cell proliferation model with 100 yM TCA treatment
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https://doi.org/10.1371/journal.pone.0339210.9004

and to demonstrate that NRAS was activated. This can indirectly trigger YAP1, which translocates to nucleus and
upregulates the expression of TEAD1 resulting in cell proliferation (Fig 5).

Discussion

Comparing the gene expressions of COs generated from human livers of NC, BA at diagnosis, and BA at transplant, we
found significant differences between diagnosis and transplanted groups in YAP1, NRAS, and their downstream effectors.
Further, significant differences between normal and transplanted groups are observed only in YAP7 and its downstream
effectors. In contrast, there were no significant differences between control and diagnosis groups for any of the genes
analyzed. We believe that COs generated from the livers of diagnosis patients were not significantly damaged. This is also
supported by the evidence that Kasai procedure performed in BA patients before 45 days of age and received high-dose
steroids showed improvement in native liver survival [28].

HEPATOCYTE CHOLANGIOCYTE

Cell proliferation

I,Cholesterol

A Trihydroxy-
5b-cholanoyl-CoA

Fig 5. Schematic representation of cholangiocyte cell proliferation in Biliary atresia via NRAS and YAP1 activation triggered by accumula-
tion of Taurocholic acid that ultimately results in intrahepatic ductular reaction. BAAT, bile acid-CoA:amino acid N-acyltransferase; TEAD1, TEA
domain transcription factor 1; YAP1, Yes1 associated transcriptional regulator; NRAS, neuroblastoma ras oncogene; MAPK1, mitogen-activated protein
kinase 1. (- « », indirect activation; — direct activation).

https://doi.org/10.1371/journal.pone.0339210.9005
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In this study, we aimed to build on the work of previous studies to evaluate the effect of Hippo/YAP pathway activation
via N-Ras, induced by taurocholic acid treatment [29]. While low concentrations of TCA had no significant effect on chol-
angiocytes, moderate concentrations had profound impact on cell proliferation. Similarly, our observation is in accordance
with a recent study that measured serum bile acids to predict liver injury post-KPE and demonstrated that serum cholic
acid fractions positively correlated with ductular reaction [30]. Conversely, high concentrations of TCA proved toxic to the
cholangiocyte cells and is comparable to another study that developed serum bile acids as a prognostic biomarker in BA.
In their study, 6-month post-KPE patients with >40 pmol/L serum total bile acids, 42.9% of them had 10-year cumulative
incidence of liver transplant/death while 64% developed clinically evident portal hypertension [31]. In BA patients, although
there is ductular reaction (DR) often there are no patent bile ducts visible in transplant livers. DR predicted poor native
liver survival and rapid liver fibrosis. In association with serum total bile acids DR had a strong correlation in predicting
different stages of the disease before transplantation [32]. We sought to test the hypothesis that TCA would induce the
expressions of NRAS and YAP1, proteins when activated are associated with cholangiocyte cell proliferation [18,33].

Our results demonstrated that cells proliferated rapidly with 100 uM and developed abnormal protein levels of
NRAS and YAP1. Further, there were significant levels of YAP1 present in the nucleus. MAPK1 is known to be coact-
ivated with NRAS, while TEAD1 is transcriptionally activated by YAP1, a transcriptional factor that controls genes
involved in cell proliferation [33—35]. PITX1 is involved in several cancers however, its role in cholangiocarcinoma is
still unclear. A previous study has demonstrated that PITX1 can serve as early diagnosis marker for hepatocellular
carcinoma, however, PITX1 downregulates RAS activity suppressing tumor formation [36,37]. In this study, we were
able to validate abnormally high gene expressions of MAPK1 and TEAD1, however, we did not see any significant
change in PITX1. Taken together, our results indicate that treatment of cholangiocytes with 100 yM TCA demonstrated
cell proliferation and induced YAP1 expression which can be related to ductular reaction and progression of liver
damage in BA and may serve as in vitro model for BA [21,29]. However, in vivo studies using experimental BA mouse
models or human cholangiocytes are required to further validate translational relevance. To capture further insights
into whether NRAS and YAP1 signatures were unique to BA transplanted group, we examined primary sclerosing chol-
angitis (PSC) transplanted group, a chronic liver disease with similar degree of fibrosis. Extrahepatic cholangiocyte
organoids (ECOs) generated from PSC patients revealed genes for mucosal maintenance, hypoxia, reactive oxygen
species, and long noncoding RNA upregulated but not cell proliferation with NRAS and YAP1 [38]. Taken together, the
data suggests that BA transplanted group although is heterogenous, compared to diagnosis group NRAS and YAP1
pathways are upregulated and unique to BA.

All'in all, our bioinformatic analysis using RNAseq data from cholangiocyte organoids and in vitro studies using cholan-
giocytes identified NRAS/ YAP1 pathway triggered by TCA, may serve as novel early diagnosis markers of progression to
liver failure in biliary atresia.
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