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Abstract

The drying process is a critical step in determining the quality of safflower (Carthamus

tinctorius L.). This study aims to systematically evaluate the effects of different drying

methods on the chemical composition, color, morphology, odor, and microstructure of

safflower dried petals, and to establish a comprehensive quality evaluation model for

safflower based on machine learning. The results showed that drying methods signif-

icantly altered the chemical composition of safflower. Freeze-dried samples exhibited

significantly higher levels of the active components hydroxysafflower yellow pigment

A and anhydrosafflower yellow pigment B compared to other methods (p < 0.05), pre-

senting a bright orange color and a mild odor. Microscopic structure and morpholog-

ical analysis indicate that freeze-dried safflower effectively preserves its morpholog-

ical characteristics, with a clear arrangement of cells and lower overall shrinkage.

Based on nineteen quality parameters, nine quality evaluation models for safflower

were constructed. The multiclassification decision forest model achieved a predic-

tion accuracy of 89.1%. The importance analysis of quality parameters revealed that

the B, G, and R color features in the RGB color mode are the most critical indica-

tors for evaluating safflower quality. This study provides key basis for optimizing the

drying process of safflower. The comprehensive evaluation model established pro-

vides a technical foundation for intelligent evaluation and standardized control of saf-

flower quality, which is of significant practical value for improving safflower quality

and promoting the standardized development of the industry.

Introduction

Safflower (Carthamus tinctorius L.) is a multifunctional economic crop. It is widely
cultivated in more than 60 countries or regions in the world [1,2]. The florets, seeds,
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stems and leaves can be utilized for food, dye, medicine, feed and health care
food [3,4]. In 1993, the Food and Agriculture Organization of the United Nations
(FAO) formally listed safflower as a dual-use plant for medicinal and food pur-
poses [5]. The petals contain yellow and red pigments which are commonly used for
color mixing in food, clothing and cosmetics [6]. It is also made into safflower wine,
safflower tea and safflower medicinal dishes with health benefits [7,8]. Carthami Flos
is the dried petals of safflower and contains active constituents such as flavonoids. Its
effects on the system of cardiovascular, immune, reproductive, nervous and digestive
systems have been reported [9].

Fresh safflower has a high moisture content and is prone to spoilage during stor-
age and transportation resulting in waste of resources. Therefore, the drying pro-
cess is the most important post-harvest step for safflower storage and transportation
as well as quality formation. Factors like temperature, pressure and drying medium
associated with this process affect the physicochemical properties and biological
activity of the dried product to varying degrees, resulting in differences in quality
due to morphological shrinkage, color browning, and loss of active ingredients [10–
13]. The traditional methods of processing safflower at its origin are mainly shade-
drying and sun-drying, which do not involve external heat sources [14,15]. Prolonged
dry times caused by climate change may lead to microbial growth and reproduc-
tion, while simultaneously causing the loss of bioactive compounds [16]. In response
to these problems, various industrial dryers have been designed and developed in
recent years [17]. Oven drying with hot air is considered a low-cost, time-efficient,
and highly controllable drying method. It utilizes circulating hot air to evaporate and
remove moisture from materials to achieve drying. However, high temperatures
increase the likelihood of degradation of bioactive compounds and deterioration
in product visual quality [18]. Decompression drying and freeze-drying in vacuum
reduce air pressure by vacuuming in closed containers, thus realizing accelerated
loss of moisture at lower temperatures. These methods effectively avoid decompo-
sition or deterioration of the bioactive compounds of the product due to high temper-
atures. The reduced exposure of materials to air during the drying process prevents
sample oxidation [19]. In addition, freeze-drying makes the moisture in the material
directly removed by sublimation from the solid state into the gaseous state, which
can effectively maintain the structure and color of the material [20]. Prior studies have
demonstrated that vacuum freeze-drying and microwave drying are superior to air-
drying, sun-drying, and oven-drying in terms of retaining the primary active compo-
nents of safflower (such as hydroxysafflor yellow A and safflor yellow A). Additionally,
safflower processed by vacuum freeze-drying exhibits better appearance than that
dried by microwave. Nevertheless, it also suffers from issues such as high energy
consumption, high operating costs, and lengthy processing times [21].

Drying process, as a key step in safflower processing, directly affects the reten-
tion rate of safflower active ingredients and appearance quality. The current Chi-
nese Pharmacopoeia stipulates the conventional physical and chemical indexes of
safflower. In actual production, the evaluation of safflower quality still mainly relies
on sensory evaluation or quantitative descriptive analysis [22]. While studies have
explored the effects of different drying methods on the appearance and chemical
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composition of safflower, there is currently a lack of work incorporating drying parameters into the safflower quality evalu-
ation system. Machine learning methods can integrate key parameters to build models, reasonably predict product qual-
ity, and obtain the conditions required for high-quality products. Yoon et al. [23] showed that machine learning methods
can effectively monitor cannabinoid composition and determine optimal drying endpoints to predict changes in cannabis
quality metrics during hot-air and cold-air drying. Przybył et al. [24] developed an artificial neural network based on vari-
ables represented by 46 image descriptors for predicting the quality category of rhubarb juice powder during spray drying.
In another study, Huang et al. [25] used Support Vector Machine to predict the degree and type of roast of oven-roasted
coffee beans. However, there are currently no studies that have established a model for evaluating the quality of safflower
using machine learning algorithms based on different drying methods.

Therefore, the study collected fresh safflower samples (F) and processed them by natural shade drying (NSD), double
fifteen shade drying (DFSD), sun drying (SD), freeze drying (FD), decompression drying (DD), and oven drying at 40°C,
60°C, and 80°C (OD40, OD60, and OD80). Changes in chemical constituents in safflower before and after drying were
analyzed by Ultra performance liquid chromatography-quadrupole-electrostatic field orbit trap high-resolution mass spec-
trometry (UPLC-Q-Orbitrap MS), Gas chromatography-mass spectrometry (GC-MS) and High performance liquid chro-
matography (HPLC). The effects of different drying methods on the macroscopic characters and microstructure of saf-
flower were analyzed by sensory evaluation combined with spectrophotometer and scanning electron microscopy (SEM).
The purpose of this paper is to explore the effects of eight drying methods on the chemical composition, macroscopic
characteristics, and microstructure of safflower, and to incorporate drying methods into the safflower quality evaluation
system to construct a safflower quality evaluation model. This will establish a more comprehensive and objective safflower
quality evaluation method and guide producers in adopting appropriate drying methods to produce high-quality products.

Materials and methods
Materials

The fresh safflower used in the experiment was Sichuan safflower harvested from the Sichuan Jianyang Safflower Base
(Jianyang, China). Sampling was conducted during the phenological period (April to May), and the safflower was picked
during its peak flowering period when it turned from yellow to red. The safflower samples used to construct the machine
learning model dataset comprised laboratory-made dried safflower, field-collected dried safflower, and commercially pur-
chased dried safflower. These samples were sourced from Sichuan, Henan, Xinjiang, Yunnan, and Gansu provinces in
China, with each sample featuring three biological replicates for subsequent modeling analysis. Information on the saf-
flower samples used in the experiment is provided in Supporting information S1 Table.

Drying methods

In this study, eight drying methods were used to investigate the drying quality of safflower. The drying methods are shown
in Table 1. Information of the equipment used for drying is shown in Supporting information S1 Fig. According to the Phar-
macopoeia of the People’s Republic of China 2020, the moisture content of dried safflower should not exceed 13% [26].

UPLC-Q-Orbitrap MS analysis

The fresh safflower samples frozen in liquid nitrogen were ground, and the safflower samples with different drying treat-
ments were powdered and sieved. For each dry sample, 50 mg of powder was weighed into a 2 ml sterilized centrifuge
tube and dissolved in 1.0 ml of 70% aqueous methanol. The samples were placed in a refrigerator at 4 °C overnight, dur-
ing which they were vortexed 3 times and then centrifuged at 1 × 104 g for 10 min. The supernatant was taken and fil-
tered through a microporous filter membrane (0.22 𝜇m) to obtain the filtrate, which was stored in the inlet bottle. Three
replicates were set up for both fresh samples and each drying method.
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Table 1. Different drying methods for fresh safflower.

Drying method Specific operations and conditions
NSD The samples were dried in a well-ventilated room, protected from light, and turned once per hour (temperature 20 °C, humidity 54%)
DFSD The samples were dried in a “double fifteen” drying room, turning once per hour (temperature 15 °C, humidity 15%)
SD In sunny weather, the samples were spread out in a sunny place to dry, and turned once per hour (temperature 28 °C, humidity 43%)
FD Drying with vacuum freeze dryers
DD Drying at 30 °C in a depressurized oven
OD Continuous drying in an electric blast oven (at 40 °C, 60 °C and 80 °C)
Note: The drying endpoint is defined as a moisture content of less than 13%. Moisture content measurements are performed in parallel three times
for each drying method. Safflower is spread out to a thickness of 0.5 to 1 cm. The drying oven is preheated for 30 minutes before use to stabilise the
temperature.

https://doi.org/10.1371/journal.pone.0339180.t001

The qualitative analysis of compounds differing in different drying methods was performed by UPLC-Q-Orbitrap MS
(Thermo Fisher Scientific, USA) technique with chromatographic conditions referring to Wang et al. [27]. For mass spec-
trometry, an electrospray ionization source was used in positive and negative ionization mode with a positive spray volt-
age of 2.50 kV, a negative spray voltage of 2.50 kV, a sheath gas of 20 arb, and an auxiliary gas of 10 arb. The capillary
temperature was 225 °C, and the full scan was performed at a resolution of 70,000, with a mass scanning range of 50 to
1,500 m/z, and the collision voltage was 20 eV. Unnecessary MS/MS information was removed using dynamic exclusion.

The raw data were imported into the Compound Discoverer 2.0 software for comparison and peak extraction, and the
molecular formula was fitted. The measured secondary fragment spectra were matched with the mzCloud and mzVault
databases to analyze and identify compounds. The ion chromatographic peak area data of the qualitatively identified
compounds were imported into SIMCA 14.1 software. After normalization, the metabolites were analyzed Partial Least
Squares-Discriminant Analysis (PLS-DA), and then screened for differences in metabolites before and after drying by
using Variable Importance in Project (VIP) in combination with fold change of individual compounds.

GC-MS analysis

The fresh samples and samples dried by different drying methods were transferred into 15 ml extraction vials and sealed
quickly. The SPME extraction fiber head was aged at 250 °C at the GC-MS (Agilent Technologies, USA) inlet to no impu-
rity peak. The sample bottles were placed on a solid-phase microextraction device with the temperature set to 80 °C. The
bottle is then placed in the extraction unit and preheated for 15 min. The SPME extraction head was inserted into the
headspace part of the sample through the cap, and the fiber head was pushed out. The extraction head was about 1.0 cm
higher than the upper surface of the sample, and the headspace extraction was performed for 60 min. The fiber head was
withdrawn and the extraction head was pulled out from the sample bottles. Then the extraction head was inserted into the
GC-MS injection port to push out the fiber head, which was desorbed at 260 °C for 1 min and injected for analysis.

A column of DB-17 MS (20.0 m × 250 𝜇m, 0.25 𝜇m) was used for chromatographic separation. The mass spectrom-
etry was performed using an EI source, an ionization source with an electron energy of 70 eV, an ion source tempera-
ture of 220 °C, a quadrupole temperature of 150 °C, and a mass range of 20 to 550 u. The qualitative analyses were car-
ried out using the mass spectrometry database, NIST11, the retention times and retention indices of the detected compo-
nents. The relative content data of qualitatively identified compounds were imported into SIMCA 14.1 software for PLS-DA
analysis to screen for differential metabolites before and after drying with VIP values. The percentage of the peak area
of the identified components to the sum of the areas of all identified components was used as the quantitative result. The
formula was calculated as follows [28]:

Ci = Ai
A1 + A2 +⋯+ Ai +⋯+ An

× 100% (1)

PLOS One https://doi.org/10.1371/journal.pone.0339180 January 2, 2026 4/ 21

https://doi.org/10.1371/journal.pone.0339180.t001
https://doi.org/10.1371/journal.pone.0339180


i
i

“pone.0339180” — 2025/12/26 — 16:30 — page 5 — #5 i
i

i
i

i
i

Where Ci is the content of an identified component (%); Ai is the peak area of an identified component; n is the total
number of identified components.

UPLC multi-component quantitative analysis

Take the appropriate amount of each control, dilute 2, 4, 8, 16, 32 times with methanol by 2-fold dilution method to obtain
the mixed standard solution of each concentration and prepare the standard curve. Take 0.4 g of sample powder, put it
into a stoppered conical flask, add 50 ml of purified water, weigh it accurately, ultrasonic treatment for 40 minutes, cool it
down, weigh it again, and make up the loss of weight with purified water, shake it well, filter it, and take the filtrate, obtain
the test material.

For the chromatographic conditions, the column was an Agilent ZORBAX SB-C18 RRHT UPLC column (100 mm ×
4.6 mm, 1.8 𝜇m), and the mobile phase was acetonitrile (A)-0.1% formic acid aqueous solution (B), and the elution gra-
dient was as follows: 0–5 min, 2–5% A; 5–10 min, 5%–10% A; 10–30 min, 10%–20% A; 30–45 min, 20% A; 45–46 min,
20–2% A; 46–55 min, 2% A. The detection wavelength was 360 nm; the volume flow rate was 0.2 ml/min; the column
temperature was 30 °C; the injection volume was 2 𝜇l.

To assess the precision of the method, the sample solution was injected six times consecutively, using HSYA as the
reference peak based on peak stability, high response values, and large peak areas. The sample solution was injected
and detected at 0, 4, 8, 12, 16, 24, and 48 hours to assess the stability of the method. Six parallel samples of the sample
solution were prepared and injected for detection to assess the repeatability of the method. Take 6 samples of NSD dried
safflower, place them in 10 ml volumetric flasks, and add eight reference standards at 100% of the known content to each
sample to conduct recovery experiments to further ensure the accuracy of the method.

Color, odor, and morphological properties analysis

The overall and localized traits of safflower samples obtained from different drying treatments were photographed with a
single-lens reflex camera (SLR) and a stereo microscope. The safflower samples were observed in terms of color, mor-
phology, odor and other traits. The L∗, a∗ and b∗ values of safflower powder before and after drying were determined
using a spectrophotometer. The total color difference (ΔE∗, Eq 2) and the browning index (BI, Eqs 3 and 4) were calcu-
lated from the measured L∗, a∗ and b∗ values using the following formulas [29].

ΔE∗ = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]
2

(2)

BI = [100(X − 0.31)]
0.17 (3)

X = a∗ + 1.75L∗
5.645L∗ + a∗ − 0.012b∗ (4)

SEM analysis

The safflower samples were fixed on a sample stage and sprayed with gold 6 times for 60 seconds each time. The shrink-
age of the corolla tube and inner and outer surface of corolla of safflower samples after different drying treatments were
observed by SEM.
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Machine learning model construction for safflower quality evaluation

The sensory characteristics of safflower such as color, texture, aroma, and morphology serve as key criteria for quality
grading. Manual sensory evaluation remains the primary method for assessing safflower quality. From July 20 to July 22,
2023, this study assembled an evaluation panel comprising four experts specializing in Chinese medicinal resources and
identification. The study received written informed consent from the four experts. Experts conducted sensory evaluations
and quality grading of safflower according to the document (84) No. 72, Annex, “Standards for the Commodity Specifica-
tion of 76 Herbal Medicines” – Safflower [30]. Each sample was evaluated in parallel three times, and the grading criteria
are shown in Table 2. All samples were randomly assigned three-digit codes and presented to experts in random order
for blind evaluation. Samples adhered to uniform standards, with weighed (5.00 ± 0.01) g safflower specimens placed in
transparent, lidless disposable plastic petri dishes (90mm diameter, 15mm height) for sensory assessment. Each expert
independently evaluated all samples, taking a 10-minute break after every 5 samples to mitigate sensory fatigue. Each
sample was evaluated three times. After all experts completed independent evaluations, the research team aggregated
each expert’s scores. Any sample receiving inconsistent classifications among experts was excluded.

Machine learning is used to construct predictive models for the quality of dried safflower. On the Azure Machine Learn-
ing (AML, https://studio.azureml.net/) platform, the following models are used for the prediction task: two-classification
average perceptron, two-classification Bayesian point machine, two-classification decision forest, two-classification local
deep support vector machine, two-classification logistic regression, two-classification neural network, two-classification
support vector machine, multiclassification decision forest, and multiclassification neural network. Logistic regression is
one of the most fundamental models in statistics and machine learning, offering strong interpretability and probabilistic
outputs. The research uses two-classification logistic regression model as a benchmark. The perceptron is a simple linear
classification algorithm that attempts to find a hyperplane separating two classes of data by directly adjusting weights. The
“average” technique enhances model generalization by averaging the weight vectors across all iterations during training,
thereby reducing overfitting. Decision forests build multiple decision trees, each trained on a random subset of the train-
ing data and feature subset. This approach resists overfitting and demonstrates excellent accuracy on tabular data [31].
Bayesian point machines are linear classifiers based on Bayesian theory. Their Bayesian nature makes them resistant
to overfitting and particularly robust with limited data [32]. Support vector machine utilizes kernel functions to map low-
dimensional feature data into high-dimensional space, where it seeks the maximum margin hyperplane to minimize the
distance between samples and the hyperplane. This approach is well-suited for analyzing small-sample, non-linear, and
high-dimensional data [33]. Neural networks are powerful general-purpose function approximators capable of captur-
ing complex nonlinear relationships and interaction effects in data [34,35]. It was possible to verify whether our problem
contained hidden patterns requiring deep architectures to learn.

During our collection of safflower samples, we observed an imbalance in sample categories. This aligns with the actual
distribution ratio of various safflower products in the market, but such data imbalance significantly impacts model train-
ing effectiveness. To mitigate this issue, k repetitions were performed on minority samples in the training dataset (k = 3).

Table 2. Sensory evaluation standard of safflower class classification.

Class Evaluation Standard
Class1 Dried. Tubular flowers crumpled and bent, in clusters or scattered. Surface deep red, bright red, slightly yellowish. Soft texture, aroma,

taste slightly bitter, without branches and leaves, impurities, insect moths, and mold.
Class2 Dried. Tubular flowers crumpled and bent, in clusters or scattered. Surface light red, dark red or yellow. Soft texture, aroma, and slightly

bitter taste, without branches and leaves, impurities, insect moths, and mold.
Class3 Dried. Tubular flowers crumpled and bent, in clusters or scattered. Surface dark reddish black or more yellow. Soft texture, aroma, and

slightly bitter taste. Leaves and branches not more than 5%, no impurities, moths, and mold.
Unqualified Dried. Tubular flowers crumpled and bent, in clusters or scattered. Surface dark red and black or yellow more. Crisp texture, light aroma,

slightly bitter taste, branches and leaves not more than 5%, with impurities, moth, and mold.

https://doi.org/10.1371/journal.pone.0339180.t002
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This involves repeating measurements on minority samples k times to double the minority data in the augmented training
dataset. Data imbalance is a common phenomenon [36], and data augmentation using repeated measurements has been
employed as a countermeasure [37]. Augmentation methods based on parallel measurement data preserve the inherent
variability of the samples. Related approaches have been proven effective in enhancing model sensitivity in blood glucose
classification studies [38].

Each sample collected for the machine learning dataset has 1 category label and 19 feature attribute categories. The
category label represents the sensory evaluation quality grade of safflower. The 19 feature attributes respectively record
each safflower sample’s drying method, drying temperature, color values measured by spectrophotometer (L∗, a∗, b∗,
ΔE∗), color values calculated based on RGB (R, G, B) and brightness, storage duration, as well as the content of 8 chem-
ical components including HSYA, AHSYB, HKT, KD, HKR, HKD, HAG, and KR. All continuous numerical features under-
went Z-score normalization. Safflower quality grades and different drying methods were quantified: safflower quality was
defined as 1 for Grade 1, 2 for Grade 2, 3 for Grade 3, and 4 for unqualified. NSD was defined as 1, DFSD was 2, SD was
3, FD was 4, DD was 5, and OD was 6.

Model hyperparameters were not manually tuned, but instead we employed AML’s built-in modules for automated
optimization. Model performance was evaluated using metrics including accuracy, precision, recall, and F1-score. The
entire dataset was randomly split into training and independent test sets at ratios of 7:3, 8:2, and 8.5:1.5. All models were
trained exclusively on the training set.

Statistical analysis

The differences between different treatment groups were compared using one-way analysis of variance (ANOVA). The
SPSS 26.0 software was used for analysis, and Duncan’s multiple range test was applied. The SIMCA 14.1 software
is used for performing PLS-DA and VIP analysis. The results of the correlation analysis between drying temperature
(DTEM), drying time (DT), moisture content (MC) of dried safflower, main active ingredients, and color values were
obtained using OriginPro 2021 software and expressed as Pearson correlation coefficients. The significance level was set
at p < 0.05 or p < 0.01. Data are expressed as mean ± standard deviation (SD).

Results
Identification and analysis of metabolites in eight kinds of dried safflower

A total of 155 components were identified in all the samples, most of which were primary metabolites such as organic
acids and amino acids involved in the basic plant metabolism, including 34 amino acids and peptides, 29 organic acids,
23 lipids, 11 carbohydrates and derivatives, 12 nucleosides, nucleotides and derivatives, 2 vitamins, and a few secondary
metabolites including 14 flavonoids, 5 alkaloids, 5 amines, 3 terpenoids, 2 aldehydes and 15 other constituents. The
details are shown in S2 Table.

The compounds in the samples of different drying methods were all the same kind, but the relative contents were differ-
ent. As a result, 61 compounds with differences before and after the drying of safflower were identified by using |log2FC|
≥ 1 and VIP ≥ 1 as the screening indexes by analyzing the ion chromatographic peak area data. The results are shown
in Fig 1(A) and Supporting information S3 Table. Among the 61 compounds, most of them showed the same increas-
ing and decreasing trend in different drying methods. Compared with the fresh samples, the composition of components
with increased and decreased levels is complex. The constituents showing significant reduction include various organic
acids, vitamins, glycosides, terpenoids, and lipids and other components such as D-saccharic acid, D-(-)-quinic acid,
pantothenic acid, chlorogenic acid, D-glucopyranoside, trifolin, ligustilide, nootkatone, pentadecanoic acid, and linoleoyl
ethanolamide. The components significantly increased were amino acids, carbohydrates, flavonoids, phenolic acids and
other components such as L-glutamic acid, 4-guanidinobutyric acid, 3-[(carboxycarbonyl)amino]-L-alanine, galacturonic
acid, 𝛿-gluconic acid 𝛿-lactone, quercetin-3𝛽-D-glucoside, quercetin, genistein, caffeic acid.
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Fig 1. UPLC-Q-Orbitrap MS analysis of different drying methods. (A) Cluster heat map of compounds that differ between fresh samples and different
drying methods; (B) PLS-DA score scatter plot; (C) PLS-DA permutation test diagram.

https://doi.org/10.1371/journal.pone.0339180.g001

Flavonoids are the main active components of safflower [39]. The HSYA and kaempferol are safflower flavonoids. Their
content is an important index to evaluate the quality of safflower. The log2FC values of HSYA for the eight drying meth-
ods compared with fresh samples were –1.10 (NSD), –0.87 (DFSD), –1.04 (SD), –0.31 (FD), –0.84 (DD), –0.82 (OD40),
–0.57 (OD60) and –0.68 (OD80), respectively. The log2FC values of kaempferol for the eight drying methods compared
with fresh samples were –7.96 (NSD), –8.00 (DFSD), –8.45 (SD), –8.39 (FD), –7.56 (DD), –7.93 (OD40), –7.58 (OD60)
and –7.90 (OD80), respectively.

The results of PLS-DA analysis are shown in Fig 1(B), and the spatial distribution of the samples dried by different dry-
ing methods has specific regions. The distribution of the points in each group was concentrated, and the intra-group dif-
ferences were small. The NSD and SD samples were located in the same quadrant, indicating the similarity of the chem-
ical composition of safflower dried by the traditional drying method. The OD60 and OD80 samples were located in the
same 4th quadrant and partially overlapped, suggesting that the difference in chemical composition between the two dry-
ing methods was minimal. Only the FD sample was located in the 3rd quadrant, indicating that the chemical composition
of the FD sample was more different from the other drying methods. The analysis of the PLS-DA model with 200 permuta-
tion test (Fig 1C) showed that there was no overfitting in the model.
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Identification and analysis of volatile components in eight kinds of dried safflower

The main aroma components of safflower are aldehydes, ketones, esters, alcohols and alkenes [40]. The fresh safflower
and safflower samples treated with different drying methods identified a total of 76 volatile components, mainly hydro-
carbons, terpenes, alcohols, aldehydes, esters, ethers and ketones (see Supporting information S4 Table). Based on the
comparative screening (match ≥ 80) of database NIST11, there were 12, 14, 25, 24, 22, 26, 29, 32 and 35 compounds
identified from F, NSD, DFSD, SD, FD, DD, OD40, OD60 and OD80 samples, with a relative content of 41.07%, 70.75%,
77.95%, 81.23%, 73.10%, 61.77%, 55.29%, 56.35% and 55.49% of the total volatile components of the group. The com-
ponents detected only in the fresh samples were dimethyl phthalate, myrtenol, trans-beta-ionone (relative content >1%).
Components detected only in dried samples were eucarvone, 3-ethyl-3-methylheptane, tetradecane, cyperene, 9,10-
dehydro-isolongifolene, humulene, 1-pentadecene, 1-tridecene alpha-bulnesene, (+/-)-dihydroactinidiolide, caryophyllene
oxide, alpha-caryophylladienol, 4-allyltoluene, hexahydrofarnesylacetone, supraene (relative content >1%).

To investigate the differences in the volatile components of safflower dried by different drying methods, the relative con-
tent data of the components determined by GC-MS were imported into SIMCA 14.1 software for PLS-DA analysis. The
results (Fig 2A) showed that fresh samples of safflower and samples processed by different drying methods could be
effectively separated. The highest similarity of volatile components was observed in the OD60 and OD80 samples, while
the FD sample showed the greatest difference from the other samples. There were 29 compounds (Fig 2B) with VIP val-
ues ≥ 1, and these compounds played an important role in the classification of samples from different drying methods
using the PLS-DA method.

Quantification of active ingredients in eight kinds of dried safflower

The relative standard deviations (RSD) of the retention times of the common peaks in the precision, stability, and repeata-
bility tests (n = 6) were 1.74%, 2.25%, and 2.54%, respectively. The RSD (n = 6) for peak area was 1.18%, 2.61%, and
2.37%, respectively. This indicates that the precision, stability, and repeatability of the analytical method are favorable.
The recovery rates for the eight reference standards ranged from 98.1% to 99.2%, with RSD (n=6) values of 0.75% to
2.01%, indicating that the accuracy of the analytical method is favorable. The UPLC liquid chromatograms of the mixed
standards are shown in Supporting information S2 Fig. The eight flavonoids could be well separated. Standard curves,
linearity ranges, and correlation coefficients (r²) for each component are presented in Supporting information S5 Table.
The content of each index component was calculated based on the peak area. The results are shown in Supporting infor-
mation S6 Table and Fig 3. The contents of HSYA and AHSYB were significantly higher in the FD samples than in the
other drying methods, and the total content of the active ingredients was the highest at 66931.13 ± 290.20 ug/g (p<0.05).
HSYA content: OD > NSD > SD, consistent with the results of Zhang et al. [41]. The NSD and SD samples had signifi-
cantly higher HKT content than the other drying methods, but the lowest total active ingredient content was 50200.40 ±
436.86 ug/g and 50450.68 ± 25.51 ug/g, respectively (p<0.05). The total content of active ingredients in safflower sam-
ples obtained by the traditional NSD and SD methods was lower than that of the FD, DD and OD methods. The OD60
and OD40 samples had the second-highest content of active components after that of the FD samples. The two compo-
nents, HKD and KR, were not detected in the FD, NSD, DFSD and SD samples, but could be detected in the DD and OD
samples.

Impacts of eight drying methods on the color, odor, and morphological properties of safflower

The study observed and described the color, morphology and odor of safflower samples obtained through different drying
processes as shown in Fig 4. The photographs of safflower taken with a stereo microscope are shown in Fig 5(A).

The color of dried safflower corolla was reddish-yellow crosswise and the corolla tube was darker. NSD, DD and FD
samples dried at lower temperatures were less wrinkled and curved. The FD samples were the closest in morphology to
the fresh samples, with the least shrinkage and the lightest odor. The OD samples at the three temperatures were more
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Fig 2. GC-MS analysis of different drying methods. (A) PLS-DA score scatter plot; (B) PLS-DA VIP value diagram.

https://doi.org/10.1371/journal.pone.0339180.g002

wrinkled and bent, and the safflower obtained was darker in color. Moreover, the bending of safflower would increase with
increasing temperature, the texture would become dry and fragile, and the special flavor would fade to burnt flavor.

The color parameters of safflower dried by different drying methods are shown in Fig 5(B). The highest L∗ (54.76 ±
0.18), a∗ (26.31 ± 0.03) and b∗ (29.04 ± 0.16) values were observed for the FD samples as compared to the other dry-
ing methods. This agrees with the findings of Geng et al. that the highest values of L∗, a∗ and b∗ were found in the FD
samples [42]. In addition, SD (49.49 ± 0.17) and OD40 (49.40 ± 0.04) samples showed higher levels of L∗ values than
the other samples in the following order: SD > OD40 > DFSD > NSD > DD > OD80 > OD60. Safflower is rich in flavonoids
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Fig 3. The contents of chalcone component (A), kaempferol glycoside component (B) and the total content of the two components
(C) in safflower samples dried by different drying methods. HSYA is Hydroxysafflor yellow A; AHSYB is Anhydrosafflor yellow B; HKT is 6-
Hydroxykaempferol-3,6,7- tri-O-glucoside; HKR is 6-Hydroxykaempferol-3-O-rutoside-6-O-glucoside; HKD is 6-Hydroxykaempferol-3,6-di-O-glucoside;
HAG is 6-Hydroxyapigenin-6-O-glucoside- 7-O-glucuronic acid; KR is Kaempferol-3-O-rutoside; KD is Kaempferol-3,7-di-O- glucoside.“∗” indicates a
significant difference in data compared to FD samples (p < 0.05). “#” indicates a significant difference in the comparison between the groups. Values are
mean ± SD (n=3).

https://doi.org/10.1371/journal.pone.0339180.g003

Fig 4. Characters of safflowers obtained by different drying methods.

https://doi.org/10.1371/journal.pone.0339180.g004

such as safflower yellow pigment and safflower red pigment. The yellow and red pigments in safflower are quite unstable.
The red pigment is unstable to heat, while the yellow pigment is sensitive to light [43–45]. The color change during drying
could be a result of this. All the dried samples had different degrees of ΔE∗. The FD samples had the highest ΔE∗ (63.53
± 2.39), followed by OD60 (31.75 ± 0.31). The BI is a quantitative measure of the degree of color change of products
during storage and processing due to oxidation, enzymatic reactions and heat treatment, etc. The lowest value of BI was
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Fig 5. Microscopic observation of morphology and quantitative color analysis of safflower obtained by different drying methods. (A) Safflower
samples photographed by stereo microscope. 1-NSD; 2-DFSD; 3-SD; 4-FD; 5-DD; 6-OD40; 7-OD60; 8-OD80; (B) Color values of samples with different
drying methods. Different lowercase letters indicate significant differences at p < 0.05. Values are mean ± SD (n=3).

https://doi.org/10.1371/journal.pone.0339180.g005

found in OD60 (29.79 ± 0.10), followed by NSD (31.45 ± 0.08), FD (32.06 ± 0.12), DFSD (32.83 ± 0.12), OD80 (33.21 ±
0.06), and OD40 (33.41 ± 0.07). SD (33.85 ± 0.10) and DD (33.84 ± 0.02) samples had the highest BI values.

Impacts of eight drying methods on the microstructure of safflower

The results of the crumpling of corolla and corolla tube of safflower samples after different drying treatments were pho-
tographed using SEM as shown in Fig 6. The inner and outer surfaces of dried safflower corolla were different (Fig 6A
and B). The outer surface of the NSD, DFSD, SD, FD, OD60 and OD80 samples was wrinkled and concave, with poorly
aligned cells and an overall skewed and twisted appearance, whereas the inner surface was full and convex, with neatly
aligned cells in an elongated shape. The DD sample was in the opposite state, with the outer surface being full and the
inner surface concave. The OD40 samples are concave on both the inner and outer surfaces. The crumpling degree of
the corolla tube part of safflower after drying was large (Fig 6C). Except for the FD sample which had a smooth surface
and neat cell arrangement, the rest of the samples had a large crumpling of the corolla tube.

Correlation analysis between safflower drying parameters and quality indicators

This study systematically investigated the effects of DTEM, DT, and MC on the content of major active components and
color indices of safflower through Pearson correlation analysis, with the results shown in Fig 7. The analysis revealed that
DTEM was negatively correlated with the content of HSYA and AHSYB. Higher DTEM led to the degradation of these
two major active components, with a more pronounced negative impact on AHSYB. DT showed a significant negative
correlation with these two components (p ≤ 0.01). Prolonging DT is detrimental to the retention of HSYA and AHSYB.
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Fig 6. SEM images of the surface structure of safflower with different drying methods. (A) Corolla (inner surface); (B) Corolla (outer surface);
(C) Corolla tube. 1-NSD; 2-DFSD; 3-SD; 4-FD; 5-DD; 6-OD40; 7-OD60; 8-OD80.

https://doi.org/10.1371/journal.pone.0339180.g006

Most kaempferol glycoside components (KD, HKD, KR) exhibited a significant positive correlation with DTEM (correla-
tion coefficients ranging from 0.80 to 0.85, p ≤ 0.01). However, DT showed a negative correlation with these components.
It is worth noting that HKT and HAG content showed a strong positive correlation with DT (p ≤ 0.01). Color is an impor-
tant indicator for evaluating the appearance grade of safflower. DTEM showed a significant negative correlation with L∗,
a∗, and b∗ values (correlation coefficients ranging from –0.96 to 0-0.99, p ≤ 0.01). This indicates that as DTEM increases,
the brightness of safflower significantly decreases, red saturation decreases, yellow fades, and quality deteriorates. The
main active components HSYA and AHSYB showed a positive correlation with color values L∗, a∗, and b∗. KD, HKD, and
KR showed significant negative correlations with brightness L∗, a∗, and b∗ values (correlation coefficients ranging from
-0.75 to -0.82, p ≤ 0.01), indicating that the retention of active components is synchronized with the formation of color
appearance. Additionally, the correlation patterns between final MC and various parameters were highly consistent with
DT.

Machine learning modeling safflower quality comprehensive

A total of 144 samples were collected for building machine learning models, and the sample information is shown in Sup-
porting information S7 Table. The machine learning flowchart is shown in Fig 8(A). The accuracy and precision of vari-
ous machine learning models are improved with a training-to-test ratio of 8.5:1.5. Several machine learning models were
comprehensively employed in this study to evaluate safflower quality, with Table 3 summarizing the predictive perfor-
mance metrics of each model. The two-classification decision forest performs excellently on accuracy (0.826) and preci-
sion (0.929), with about 8.7% and 21.5% improvements over the baseline respectively. The two-classification local deep
support vector machine shows enhanced recall (0.933) and F1 score (0.875), demonstrating more balanced performance.
Among models with relatively lower performance, the two-classification support vector machine significantly underper-
formed the baseline in accuracy (0.630) and precision (0.630). The multiclassification neural network showed suboptimal
recall (0.627) and F1 score (0.653). The two-classification Bayesian point machine failed to surpass the baseline across
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Fig 7. Pearson correlation analysis of safflower drying parameters and quality indicators. “∗” indicates significant correlation at the p ≤ 0.05 level
(two-tailed); “∗∗” indicates significant correlation at the p ≤ 0.01 level (two-tailed).

https://doi.org/10.1371/journal.pone.0339180.g007

Fig 8. The construction of a machine learning model for safflower quality evaluation. (A) Machine learning flowchart; (B)The confusion matrix of
multiclassification decision forest.

https://doi.org/10.1371/journal.pone.0339180.g008

most metrics. It is worth noting that the multiclassification decision forest achieved the highest accuracy (0.891) among all
models, representing a 15.2% improvement over the baseline and demonstrating its advantage in complex classification
tasks. However, its confusion matrix (Fig 8B) reveals disparities in the model’s recognition capabilities across categories:
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Table 3. Prediction evaluation indicators of each model.

Model Accuracy Precision Recall F1
Two− classification logistic regression 0.739 0.714 1.000 0.833
Two− classification average perceptron 0.783 0.857 0.800 0.828
Two− classification Bayesian point machine 0.696 0.750 0.800 0.774
Two− classification decision forest 0.826 0.929 0.813 0.867
Two− classification localized deep support vector machine 0.826 0.824 0.933 0.875
Two− classification neural network 0.826 0.867 0.867 0.867
Two− classification support vector machine 0.630 0.630 1.000 0.789
Multiclassification decision forest 0.891 0.831 0.730 0.777
Multiclassification neural network 0.826 0.681 0.627 0.653

https://doi.org/10.1371/journal.pone.0339180.t003

class 1 and class 3 achieved high recognition rates (87.5% and 83.3%, respectively), while class 2 and class 4 showed
poorer recognition performance. Notably, only 50% of class 4 samples were correctly classified, with the remainder mis-
classified as class 2. This indicates confusion between certain categories, potentially due to feature overlap.

The importance analysis of the 19 feature parameters in the multiclassification decision forest is shown in Support-
ing information S8 Table. In the RGB color model, B, G and R ranked in the top three in terms of importance for safflower
quality grading, with weights of 0.241, 0.171 and 0.101, respectively. And the sum of the weights of these three feature
parameters was 0.513. The color features played an important role in the process of safflower quality grading. This is in
line with the description of the grade grading criteria of Chinese herbal medicines in the “Standard for Commodity Speci-
fication of 76 Medicinal Herbs”, and the main difference lies in the color difference of the herbs [46]. This was followed by
characteristic parameters such as KR, storage duration, a∗ in Lab color mode, drying temperature, and drying method.
The weights of drying temperature and drying method were 0.038 and 0.035, respectively.

Discussion

After harvesting from fresh plants, safflower composition undergoes complex changes before and after drying. The com-
ponents detected by GC-MS in the fresh samples were much less than those detected in the dried samples. During the
drying process, the volatile components in safflower underwent changes including oxidation and fracture, resulting in a
significant increase in the total amount of volatile components after drying and the formation of the special odor of saf-
flower herbs.

It is well known that flavonoids are the main active components of safflower. HSYA and AHSYB have a wide range of
bioactive functions such as antioxidant, anti-inflammatory, anticoagulant, antitumor, and cardioprotective effects [47,48].
The FD samples contained significantly higher contents of HSYA and AHSYB than those of the other drying methods. The
compositional changes during low-temperature drying at -40°C were small and preserved the compositional characteris-
tics of fresh samples of safflower. Fan et al.’s research showed that FD is more effective than NSD, SD, and OD in pre-
serving HSYA [49]. Wang et al. and Fan et al.’s research showed that when the temperature is above 60°C, HSYA and
AHSYB undergo structural changes and are prone to degradation [49,50]. Yu et al. [51] and Periche et al. [52] similarly
showed that FD was more effective than hot-air drying in preserving the total flavonoids. The HSYA and AHSYB contents
of DD, OD, DFSD, and NSD samples were higher than those of SD samples. Flavonoid components can be decomposed
by light [53]. Light exposure has a significant impact on the stability of HSYA. Under natural light conditions, the degra-
dation rate of HSYA is significantly higher than under light-avoidance conditions. SD drying takes a longer time and is
exposed to light, which is not conducive to the retention of flavonoids [54,55]. The two components, HKD and KR, were
not detected in the FD, NSD, DFSD, and SD samples, however, they could be detected in the DD and OD samples. Zhou
et al.’s research indicates that KR can be detected in samples processed using heating vacuum drying, oven drying, and
sun drying methods, whereas it cannot be detected in vacuum freeze-dried samples [56]. The kaempferol belongs to the
flavonoid alcohol class of compounds. HSYA and AHSYB can degrade under high-temperature conditions at 100°C to
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produce flavonoid alcohol compounds [49]. Therefore, it is inferred that the thermal drying process may be conducive
to the formation of HKD and KR. However, the structural transformation mechanisms of the compounds under different
drying conditions require further investigation.

Macroscopic characters are important quality attributes that influence consumer acceptance of a product [57]. Temper-
ature has a great influence on the appearance and odor properties of safflower. As the temperature increased, the types
of volatile components in safflower increased, the morphology became wrinkled, and the specific odor was replaced by
a burnt odor. The FD method preserves the characteristics of fresh samples better than other drying methods, resulting
in a milder odor and less shrinkage. In addition, FD samples observed under SEM appear smoother overall, with clear
cell arrangement. FD allowed the frozen water molecular crystals to sublimate to the gaseous state during the drying pro-
cess with minimal volume shrinkage, thus better preserving the tissue structure of the samples [58–60]. The shrinkage
was most pronounced in the OD samples, which could be attributed to the high moisture content of fresh safflower, and
the evaporation of the water led to the collapse of the material [61]. Safflower color is an important indicator for evaluat-
ing the quality of safflower. The color of FD samples was mainly orange-yellow, followed by red, and the values of L∗, a∗

and b∗ were significantly higher than those of samples from other drying methods. The physical structure of freeze-dried
samples is more stereoscopic, with a more uniform distribution of colored substances. Continuous moisture loss leads
to an increase in the reflectance of the sample surface, resulting in a higher L∗ value [62] The yellow and red pigments
in safflower are relatively unstable when exposed to heat. Under low temperature and vacuum conditions, the oxidation
degree of FD is low and the loss of heat-sensitive components is small, so the color of the product is better than other dry-
ing methods [63]. The ΔE∗ value of the OD60 sample is second only to that of the FD sample, with the lowest L∗, a∗, and
b∗ values. The OD60 sample has a higher drying temperature, and compared to the OD80 sample, it requires a longer
drying time to reach 13% moisture content. At this temperature, thermal degradation of the pigment molecular structure
occurs, and it is insufficient to rapidly evaporate moisture, leading to continued degradation of the pigment in a prolonged
hot and humid environment. Pigment degradation and physical structural collapse cause the sample color to darken and
lighten, with decreases in L∗, a∗, and b∗ values. Additionally, the sample exhibits the lowest BI value, suggesting that this
temperature condition primarily induces thermal degradation of safflower pigment rather than promoting enzymatic or
non-enzymatic browning reactions. The higher ΔE∗ and lowest BI values are primarily due to pigment loss and physical
darkening rather than the formation of brown substances.

The traditional empirical identification of safflower quality is mainly based on chromatic characteristics, morphological
parameters, textural properties and olfactory identification based on volatile components. The modern physical and chem-
ical identification of safflower focuses on the quantitative analysis of HSYA and other characteristic marker components.
With the technical progress of modern analytical techniques, especially the wide application of HPLC, GC-MS and near
infrared spectroscopy (NIRS), the quality control strategy of safflower has been gradually shifted to a multimodal detec-
tion system. Su et al. [64] used high performance liquid fingerprinting and GC-MS to objectively analyze safflower. Jia-
Xi et al. [65] used ultra-high performance liquid chromatography/Q-Orbitrap mass spectrometry and nuclear magnetic
resonance to determine primary and secondary metabolites to evaluate the quality of safflower. Lin et al. [66] combined
computer vision and NIRS to realize rapid and nondestructive analysis of safflower. This study integrated safflower dry-
ing conditions and quality evaluation metrics to construct a safflower quality prediction model using common supervised
classification methods. Compared to the two-classification logistic regression benchmark model, the multiclassification
decision forest achieved the highest accuracy among all models. The integrated learning approach, when addressing the
inherently complex pattern recognition challenges in multiclassification tasks, leverages variance reduction and feature
importance evaluation mechanisms to maintain high generalization capability while achieving superior predictive preci-
sion. Although an expected trade-off exists between recall and F1 score, its performance on the core metric of accuracy
demonstrates the architecture’s unique value in handling complex classification tasks. Moreover, it revealed intrinsic cor-
relations between these features and quality attributes through feature importance ranking. The model identified that the
RGB color features, with a cumulative weight of 0.513, were the most critical discriminative factors. This aligns closely
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with the traditional empirical consensus in Chinese medicinal material identification of “assessing quality through color
observation [67],” validating the scientific basis and interpretability of traditional methods at a data level. Drying temper-
ature and drying method still hold a certain weight in the model (0.038 and 0.035, respectively), indicating that process-
ing techniques have a measurable impact on the final quality of safflower. Similarly, the two-classification decision for-
est also performs outstandingly in terms of accuracy and precision. The local deep support vector machine achieves a
significant improvement in recall and performance balance by integrating deep feature extraction with optimal boundary
determination. Compared to traditional identification methods reliant on human expertise, the established machine learn-
ing models objectively quantify multidimensional features. However, the models exhibit varying degrees of confusion in
classifying different safflower grades, particularly in distinguishing between grades 2 and 4. Inherent discrepancies exist
between the quantitative features relied upon by the models and the criteria used in manual identification. Substandard
products may be downgraded due to discrete defects like localized mold, insect damage, or non-medicinal impurities, yet
these critical details cannot be effectively captured by continuous features like overall color or active ingredient content.
Conversely, these substandard samples overlap with higher-grade samples in terms of color and primary chemical com-
position metrics, leading the model to classify them into similar grades based solely on numerical features. This demon-
strates the inherent limitations of grade prediction based solely on macroscopic physicochemical indicators when micro-
defects lack quantitative characterization. To enhance model performance, future research could focus on construct-
ing a multimodal, high-dimensional feature system. The core strategy involves integrating computer vision technology
to quantify currently missing key traits, precisely calculating impurity ratios and identifying localized mold spots through
image analysis. Additionally, advanced machine learning algorithms capable of capturing complex nonlinear relationships
should be employed to establish robust intelligent grading models that more closely approximate the logic of classification
standards.

In general, machine learning methods require large sample sizes. However, some studies have used small sample
sizes. Zelic et al. [68] used applied decision tree and Bayesian classification algorithms to the diagnosis of sports injuries
in 118 athletes. And Zheng et al. [69] who identified type 2 diabetes through electronic health records based on a machine
learning framework in a sample of 300 patients. The sample size used in our study was limited, and further research by
extending the sample size and cross-validation methods can be considered subsequently. Despite the limitations of our
study, the application of machine learning methods to construct a model for safflower quality evaluation based on fea-
ture attributes is of research significance, suggesting that this approach can be generalized to other quality evaluation
applications for products that require dry storage.

Conclusion

In this study, different drying methods were used to treat safflower. Changes in chemical composition and macroscopic
characters of safflower before and after drying were analyzed. The results showed that FD was beneficial in maintaining
the macroscopic characters and HSYA and AHSYB components of safflower. However, the cost of FD is high and it may
only be suitable for drying small batches of samples to produce high quality products. OD samples have a higher content
of flavonoids, lower drying cost and controllable conditions. Considering the macroscopic characters and active ingredi-
ent contents of safflower samples, as well as the practicability, time and economic costs of actual production, oven dry-
ing below 60°C is more suitable for large-scale processing and popularization in production areas. Furthermore, this study
preliminarily explored the possibility of using machine learning algorithms to construct a safflower quality evaluation model
and found that multiclassification decision forest performed well in predicting safflower quality. However, the universal-
ity and stability of this model still need to be further verified. Future studies can expand on this basis by increasing the
sample size and range of drying conditions to further evaluate the applicability of the model.
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