

RESEARCH ARTICLE

Investigating human paleodiet at Mesolithic Yuzhniy Oleniy Ostrov, Karelia using a multi-proxy stable isotope approach

Rebekka I. I. Eckelmann^{1*}, Laura Arppe², Rick J. Schulting^{1,3}, Sambit Ghosh⁴, Jakub Trubač⁵, Aneta Kuchařová⁵, Matthew J. Wooller^{4,6}, Dmitry Gerasimov⁷, Vyacheslav Moiseyev⁷, Kristiina Mannermaa¹

1 Department of Cultures, University of Helsinki, Helsinki, Finland, **2** Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland, **3** School of Archaeology, University of Oxford, Oxford, United Kingdom, **4** Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America, **5** Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czech Republic, **6** College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America, **7** Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St Petersburg, Russia

* rebekka.eckelmann@helsinki.fi

Abstract

OPEN ACCESS

Citation: Eckelmann RII, Arppe L, Schulting RJ, Ghosh S, Trubač J, Kuchařová A, et al. (2026) Investigating human paleodiet at Mesolithic Yuzhniy Oleniy Ostrov, Karelia using a multi-proxy stable isotope approach. PLoS One 21(1): e0338887. <https://doi.org/10.1371/journal.pone.0338887>

Editor: Dorothée Drucker, Senckenberg Gesellschaft für Naturforschung, GERMANY

Received: July 9, 2025

Accepted: November 29, 2025

Published: January 7, 2026

Copyright: © 2026 Eckelmann et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the manuscript and its [Supporting Information](#) files.

Funding: This study was funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and

This study employs multiple isotopic proxies to investigate dietary practices at Yuzhniy Oleniy Ostrov (YOO, Karelia, north-western Russia), the largest Mesolithic cemetery in northern Europe. Building on previous research, we combine bulk $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ collagen measurements from 60 human individuals with new $\delta^{13}\text{C}$ values on enamel bioapatite ($n=10$) and the first archaeological compound-specific isotope analysis of amino acids (CSIA-AA) from north-western Russia ($n=6$), to provide a more comprehensive view of local resource use and dietary patterns. Results show that YOO forms a distinct isotopic cluster within the broader circum-Baltic hunter-gatherer-fisher spectrum, characterized by unusually high $\delta^{15}\text{N}$ values for an inland site. CSIA-AA and combined enamel-collagen $\delta^{13}\text{C}$ data do not indicate marine contributions or freshwater seal hunting as the drivers of these values, instead confirming a high reliance on freshwater resources compatible with the Lake Onega system and potentially an increased diet-to-tissue offset related to a high protein diet. FRUITS Bayesian dietary modelling similarly indicated a high freshwater component, alongside unexpectedly low contributions from terrestrial game and high estimates for plant foods. The latter results diverge from ethnographic expectations for boreal hunter-gatherer-fisher subsistence and may reflect current limitations in modelling lipid intake and adaptive strategies in high-protein diets, highlighting a need to reconsider how isotopic and ethnographic data are integrated. Isotopic variability between individuals was minimal, with no significant differences by sex or burial location, supporting a shared dietary regime during the relatively short period of site use. Overall, this

innovation programme with grant agreement No 864358 (project “Animals Make Identities. The Social Bioarchaeology of Late Mesolithic and Early Neolithic Cemeteries in North-East Europe”) awarded to KM. RIIE further received funding from the Finnish Cultural Foundation through grant No 00250275. Open access funded by Helsinki University Library. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

study presents the most detailed isotopic evaluation of diet at Yuzhniy Oleniy Ostrov to date and underscores the value of multi-proxy isotope analysis in exploring prehistoric lifeways.

Introduction

As one of the largest known Early Holocene burial sites with preserved skeletal remains in northern Europe, Yuzhniy Oleniy Ostrov (YOO, Karelia, north-western Russia) plays a key role in understanding subsistence and dietary practices in the northern reaches of human settlement in a time of change marked by the impact of the 8.2 ka climatic cold event. Due to its size and mortuary variability, including burials with hundreds of recovered grave goods as well as those without any, the site has long offered a unique opportunity to investigate early hunter-gatherer-fisher (HGF) lifeways and social organization. Dietary reconstructions provide one avenue through which archaeologists can approach these topics, as diet is closely linked to cultural and subsistence practices, as well as patterns of social interaction. One of the most important tools used for this purpose is stable isotope analysis.

At YOO, however, stable isotope analyses have so far been carried out primarily in the context of radiocarbon dating [1,2]. While these studies indicate a significant contribution of aquatic resources to the YOO diet and identify unusually high $\delta^{15}\text{N}$ values, they focused on assessing freshwater reservoir effects, rather than on detailed dietary reconstruction and its implications for subsistence and social differentiation. Here, we build on this foundation to investigate dietary intake in greater depth, integrating new and previously published bulk stable carbon and nitrogen isotope data from collagen (expressed as $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ respectively) and increasing the sample size from 41 to 60 individuals. We further conducted compound-specific stable carbon and nitrogen isotope analysis of amino acids ($\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$) and stable carbon isotope measurements on enamel bioapatite ($\delta^{13}\text{C}_{\text{apa}}$) on a subsample of these individuals, making these the first analyses of this kind for archaeological materials from the Stone Age of north-western Russia (ca. 9000 BCE – 300 CE) [3–6].

By applying this multi-tissue, multi-proxy approach, we aim to refine dietary reconstruction at YOO, reassess the relative reliance on aquatic versus terrestrial resources, which may also aid in refining the radiocarbon reservoir corrections, and test long-standing hypotheses about freshwater seal hunting at Lake Onega and the broader subsistence economy in this region. In addition, we explore intra-site isotopic variability in relation to burial location and sex, which may reflect aspects of social organization or food sharing practices. Finally, we situate the YOO dataset within the wider isotopic framework of Late Mesolithic and Early Neolithic (distinguished in north-eastern Europe by the presence of pottery rather than of domesticates) HGF groups across northern Europe, to examine both regional distinctions and shared adaptive strategies in subsistence, mobility, and environmental resilience during the early Holocene.

Stable isotopes in dietary reconstructions

Bulk $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values measured on archaeological tissues have been used to investigate past dietary patterns since the late 1970s [3] and both methodological refinement and varied applications in archaeological research has been ongoing since then [4].

$\delta^{13}\text{C}$ tracks the carbon isotopic signature of the dominant basal producer within the food web of a consumer and the primary carbon source they are using. This results in differences between systems based primarily on terrestrial plants using C₃ or C₄ photosynthetic pathways (ranging from $-22\text{\textperthousand}$ to $-35\text{\textperthousand}$ and $-9\text{\textperthousand}$ to $-17\text{\textperthousand}$ respectively) [3,5]. Differences also occur between these and marine (-12 to $-17\text{\textperthousand}$) and to a degree freshwater ecosystems, which are highly variable but often marked by relatively low $\delta^{13}\text{C}$ values combined with relatively high $\delta^{15}\text{N}$ values [6–8]. C₄ plants are absent in the temperate boreal forest environment of northern Europe and are excluded from consideration in this study. Instead, the primary factors assumed to influence dietary $\delta^{13}\text{C}$ values are the differences between aquatic and terrestrial resources. $\delta^{13}\text{C}$ values are also influenced by a range of environmental factors affecting plant metabolism (e.g., heat stress, light availability, recycling of respired CO₂ in closed forests) [9]. Additionally, there is a small trophic level increase in $\delta^{13}\text{C}$ values of ca. 1\textperthousand [10,11].

$\delta^{15}\text{N}$ values are widely used as trophic level indicators, as they typically increase by approximately $3\text{--}6\text{\textperthousand}$ with each step in a food chain [12–15]. This enrichment enables researchers to estimate the trophic position of a specimen and assess the amount and trophic level of protein in their diet [12,16,17]. In aquatic environments, where food chains are often longer, elevated $\delta^{15}\text{N}$ values are commonly interpreted as evidence of high marine or freshwater protein consumption (HMP and HFP, respectively) [17,18]. However, variability at the base of the food web (e.g., differences in soil nitrogen availability, organic matter content, or aridity), or metabolic factors, can also impact $\delta^{15}\text{N}$ values, complicating interpretations of trophic relationships and trophic level estimates based on $\delta^{15}\text{N}_{\text{col}}$ measurements [18–20].

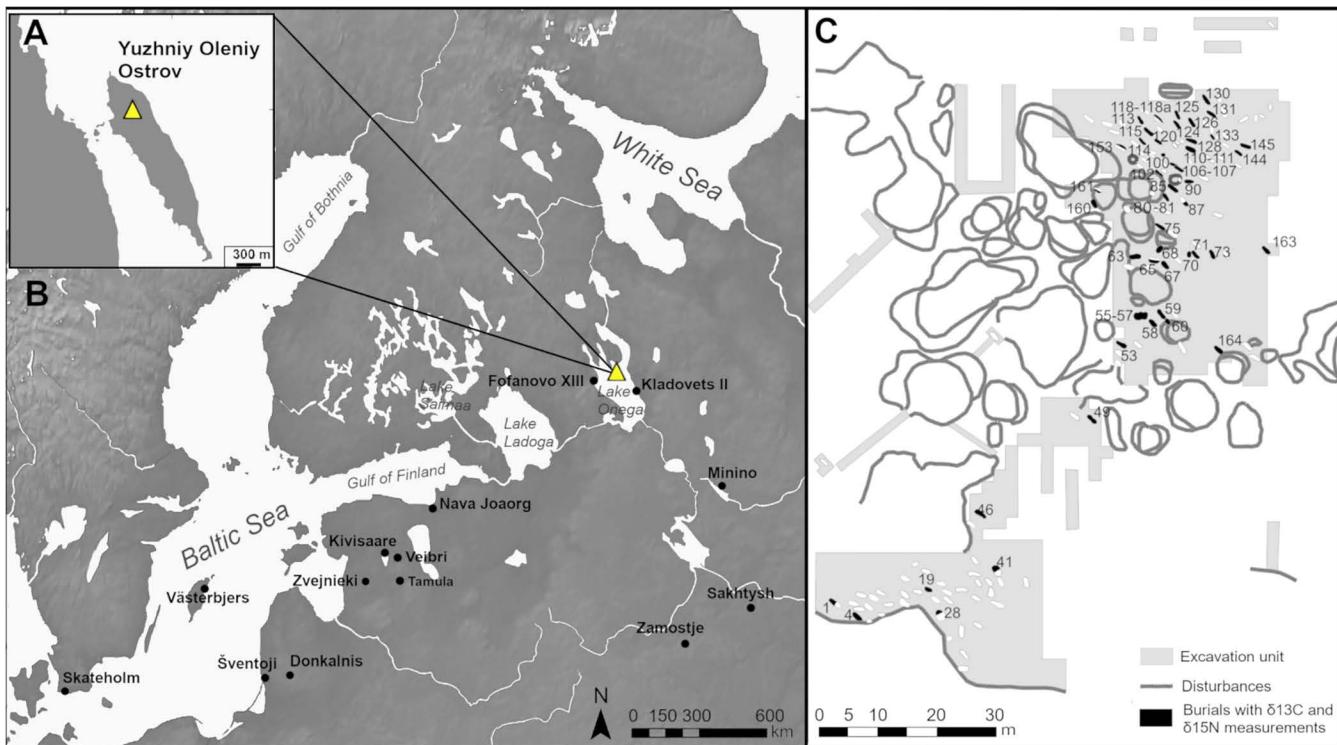
Beyond these differences in primary systems, archaeological dietary reconstructions are affected by the differences in isotopic composition between macronutrients (lipids, carbohydrates and protein) and their physiological routing during consumer tissue formation. The $\delta^{15}\text{N}$ signal in omnivore collagen reflects protein intake, with no significant contribution of lipids and carbohydrates, which are usually summarized as “energy” [21]. Lipids have substantially lower $\delta^{13}\text{C}$ values, ca. $-8\text{\textperthousand}$ compared to protein [21]. As a result of dietary routing the $\delta^{13}\text{C}$ signal in collagen also mainly reflects the protein portion of the diet. This bias increases in high protein consumers [22,23]. In contrast, $\delta^{13}\text{C}$ measured on enamel apatite represents overall diet without bias towards a specific macronutrient, which combined with the collagen proxies allows more comprehensive dietary assessments [24–27]. This potentially allows for a greater appreciation of the contribution of plant foods to the diet, which are underrepresented in the protein signal, and enables the differentiation of marine or C₄ contributions to the different macronutrient units through a combination of $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{apa}}$ values [26,28,29].

In archaeological research, Bayesian Mixing Models (BMMs) are frequently employed to estimate the proportional contributions of different food sources to the isotopic signature measured in a consumer [19]. However, the interpretation of stable isotope values and the effectiveness of BMMs depend on a robust understanding of the relevant local isotopic baseline and supporting background data (e.g., from relevant archaeological floral and faunal assemblages) to situate them. In cases like YOO, where local broad baseline sampling is not possible due to a paucity of suitable (i.e., unburnt) archaeological remains and the general scarcity of local isotope studies, it is prudent to compare alternative models, do sensitivity testing and evaluate model results critically. In addition, when baseline parameters are ambiguous, additional proxies like CSIA of individual amino acids for $\delta^{13}\text{C}$ and more rarely $\delta^{15}\text{N}$ are increasingly applied. This approach helps to provide more precise differentiation between food sources, metabolic, trophic and environmental processes, thereby improving the robustness of BMM estimates [30–35].

Amino acids are typically classified into essential amino acids (EAAs, e.g., leucine (Leu), isoleucine (Ile), phenylalanine (Phe), threonine (Thr) and valine (Val)), and non-essential amino acids (NEAAs, e.g., glutamic acid/glutamine (Glx) and glycine (Gly)). While NEAAs can be synthesized *de novo* by the consumer, often incorporating carbon from various

metabolic pathways, EAAs must be obtained through the diet and are integrated into consumer tissues with minimal isotopic alteration. This classification is especially relevant in the context of $\delta^{13}\text{C}_{\text{AA}}$ analysis, as the conservative behavior of $\delta^{13}\text{C}$ values of essential amino acids ($\delta^{13}\text{C}_{\text{EAA}}$) effectively preserves the $\delta^{13}\text{C}_{\text{EAA}}$ signature of producers at the base of the food web (i.e., algae, fungi, bacteria and different plant types) [36,37] and forms the premise of the so-called ‘fingerprinting’ approach often applied in ecological studies [37,38]. Previous research indicates that the relative $\delta^{13}\text{C}$ patterns among EAAs are largely conserved within basal producer groups, and by extension in their consumers. In theory, this means that the contribution of food deriving from different basal producers (e.g., algae, C_3 plants, fungi and bacteria) can be tracked via the relationship of different $\delta^{13}\text{C}_{\text{EAA}}$ s even without a detailed assessment of the local isotopic baseline. [41,42]

In archaeological studies, a more commonly employed approach is to use direct comparisons between EAAs of groups with known consumption patterns, e.g., using $\Delta^{13}\text{C}_{\text{Lys-Phe}}$ and $\Delta^{13}\text{C}_{\text{Gly-Phe}}$ as proxies to identify consumption of freshwater, marine and lagoonal resources [30,35,39,40].


For $\delta^{15}\text{N}_{\text{AA}}$ -based studies of trophic standing, amino acids are instead classified based on their isotopic behavior during trophic transfers, typically into trophic amino acids (AA_{tr} , e.g., glutamic acid (Glx), proline (Pro), valine (Val)) which show substantial ^{15}N -enrichment with increasing trophic level, and source amino acids (AA_{src} , e.g., lysine (Lys), phenylalanine (Phe)), which show very little change from the $\delta^{15}\text{N}$ at the base of the food web [41,42]. This contrast is the basis for the use of $\delta^{15}\text{N}_{\text{AA}}$ s as more precise indicators of trophic relationships than bulk nitrogen isotope values. Ecological studies often calculate trophic level, or position (TP), based on the difference in $\delta^{15}\text{N}$ values between trophic and source amino acid values, most commonly between $\delta^{15}\text{N}_{\text{Glx}}$ and $\delta^{15}\text{N}_{\text{Phe}}$ [43–45]. However, recent studies have shown that the division into source and trophic amino acid does not remain clear-cut across species and age stages [41,42], and that TP estimates can also be influenced by variability in baseline $\delta^{15}\text{N}$ values, isotopic offsets between trophic and source amino acids at the base of the food chain (β values), which may differ between ecosystems and basal producer groups [46], and trophic discrimination factors (TDFs), which can vary with physiology, diet quality, and metabolic routing [44,47,48].

Nonetheless, a key advantage of $\delta^{15}\text{N}_{\text{AA}}$ analysis is that both source and trophic amino acids can be measured within the same sample, allowing internal calibration of trophic position without requiring extensive external baseline data, improving the resolution of dietary and ecological interpretations, particularly in archaeological contexts where baseline information is limited or absent [34,44,49].

Archaeological and environmental background

Excavated in the 1930s, Yuzhniy Oleniy Ostrov (YOO) in Karelia, north-western Russia, is the only securely identified Stone Age burial site with skeletal preservation in a radius extending for two hundred kilometers (Fig 1) and the largest Mesolithic cemetery in northern Europe, encompassing a total of 177 identified burials (with many others having been destroyed during quarrying) and more than 7000 objects included in the graves, predominantly animal tooth ornaments [50]. Recent radiocarbon analyses date the burial site not only to the end phase of the local Mesolithic – defined as non-ceramic using HGF cultures in contrast to the Neolithic ceramic using HGFs – but also to a narrow time frame of ca. 6200–6000 cal BCE coinciding with the 8.2 ka cold event [1]. YOO is thus currently not just the only viable opportunity to apply modern bioarchaeological methods on human skeletal remains to the investigation of early Holocene HGF diet and subsistence in the area but also has the potential to reveal information on human responses to adverse environmental conditions. However, this line of inquiry is currently limited by the absence of local human samples dating to before or after the 8.2 ka cold event.

The site itself is located on a small eponymous island in the northern part of Lake Onega (62°07'44.3"N and 35°34'33.9"E, [53]), Europe's second largest lake. With a modern surface area of ca. 9900 km² it is the dominating feature of the local landscape and environment to the point where it creates its own microclimate [1,54,55]. The island's surroundings are marked by high diversity in landscape features and ecozones, as well as some of the historically most productive fishing grounds in European Russia [56,57]. Considering the locality and ethnographic parallels with other Boreal

Fig 1. Location of Yuzhniy Oleniy Ostrov and northeast Baltic sites mentioned in the text with site detail. A) Detail of the location of Yuzhniy Oleniy Ostrov with (B) showing the site and others in a wider geographical context [51], with C) showing a map of the Yuzhniy Oleniy Ostrov site with sampled burials highlighted. The site map was created using Natural Earth public domain data [52].

<https://doi.org/10.1371/journal.pone.0338887.g001>

hunter-gatherer communities, the assumption that aquatic resources would have been part of the subsistence of the YOO population has been present ever since the first publication on the site [52]. However, the extent of reliance on freshwater resources has remained unclear, and sometimes controversially discussed, due to the paucity of material evidence for fishing at the site compared to an abundance of finds associated with the hunting of terrestrial animals and their physical remains in the form of tooth pendants [52,58].

The first bioarchaeological analysis that included dietary investigations at YOO were based on trace element concentrations of strontium and calcium [59] and zinc and copper [60]. Both studies inferred differences between groups of individuals, in regard to meat intake [59], and the consumption of both protein and marine invertebrates [60]. Contemporary literature does not support the use of trace elements on archaeological bone for direct dietary inferences due to issues with diagenesis (for a review see [61]) and these studies are therefore not considered further here. In 2013 $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values from four YOO individuals were published to contextualize Minino, another Mesolithic burial site, by Wood and colleagues [2] and the results showed high $\delta^{15}\text{N}$ values indicating aquatic resource consumption [2]. In 2022, a larger set of $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values with 38 sampled individuals was published by Schulting and colleagues [1] associated with a major radiocarbon dating effort at the site. They confirmed the widespread prevalence of a high aquatic diet component and included a small sample of faunal $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values as baseline proxies which are also referenced here.

No evidence for diachronic trends or sex-based differences in dietary intake at the site has been identified in previous work [1], but unusually high $\delta^{15}\text{N}_{\text{col}}$ values were noted [1,2], recalling previous hypotheses regarding the potential former presence of freshwater seals and seal hunting in Lake Onega [62,63]. Schulting et al. also pointed out high variability in freshwater reservoir effects that were interpreted as indicating that fish from different carbon reservoirs were consumed by

the YOO community. This suggests that local baseline values may not have been homogenous even within the lake basin, connected to the still poorly understood isoscape of Lake Onega and its environs. Considering the lake's size, depth differences, numerous straits, bays, smaller lakes and hundreds of tributaries, it is very likely substantial internal variation in isotopic compositions exists within the lake system [64,65].

Due to their emphasis on radiocarbon dating, both studies remained focused on the identification of freshwater resource consumption without a more detailed paleodietary reconstruction or integration of the socio-cultural context of the buried individuals. Here, we apply a multiproxy and multi-tissue strategy combining these previous results with new $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values, additional $\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$ and $\delta^{13}\text{C}_{\text{apa}}$ measurements and the application of Bayesian mixing models to provide more detailed characterization of past diet at YOO.

Material

The archaeological samples analyzed in this study all originate from the Yuzhniy Oleniy Ostrov burial site. They are analyzed with the permission of the Anthropology and Archaeology sections of the Peter the Great Museum of Anthropology and Ethnography (MAE) in St. Petersburg, where they are curated in collections 5773 and 5716 (for details including specimen numbers see SI3, Table S1 in [S1 Data](#)). No further permits were required for the described study, which complied with all relevant regulations.

In previous studies [1,2], 41 humans were sampled to analyze for $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ [1,2] with all samples originating from collagen of adult bone and one third molar. In addition, 13 pendants made from Eurasian elk (*Alces alces*) incisors, one Eurasian beaver (*Castor fiber*) tooth pendant and dates for two bird bones – an osprey (*Pandion haliaetus*) and a black-throated diver (*Gavia arctica*) – were also available [1]. A wild boar (*Sus scrofa*) tooth was analyzed (ibid.) but excluded as a baseline value due to its likely non-local origin [66]. Bone collagen of two modern perch (*Perca fluviatilis*) and one vendace (*Coregonus albula*) from Lake Onega were also measured [1].

The new human measurements added in the present study were conducted exclusively on dental tissues (see SI3, Table S1 in [S1 Data](#)). $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values from 19 additional individuals were obtained through sequential sampling of tooth dentine in 2021 (Eckelmann et al., in prep.), following the procedure described in [67], which employs a biopsy punch for sampling. The values included in this study represent an average of the microsamples formed from five years of age onwards [68] for each analyzed tooth, with age assignments following [67,68]. The cut-off age at five years was chosen to avoid isotopic signals affected by nursing effects [73,74], as the cessation of breastfeeding was identified in the serial profiles as occurring before four years of age in all individuals (Eckelmann et al., in prep., following [67,69]), and to ensure the values reflect diet based on environmental resources. This inclusion of both bone and tooth collagen samples means that the isotopic data represents different time scales and periods in the individuals' lives, as primary dentine forms during childhood whereas bone values represent an isotopic signal averaged over multiple years before death [70,71]. Six of these newly sampled individuals were also analyzed for $\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$ on dentine collagen and ten for $\delta^{13}\text{C}_{\text{apa}}$ of tooth enamel. Biological sex was determined via biomolecular analysis as part of a forthcoming PhD-dissertation (Batanina et al. in prep.) for all but five individuals for whom osteological evaluations were used (in brackets in [Table 1](#)).

Table 1. Summary of the archaeological human data currently available for each type of analysis. The numbers in brackets refer to sex identification based on osteology only (for details see SI3, Table S1-2 in [S1 Data](#)).

Analysis Material	$\delta^{13}\text{C}_{\text{col}}$ & $\delta^{15}\text{N}_{\text{col}}$ bone collagen	$\delta^{13}\text{C}_{\text{col}}$ & $\delta^{15}\text{N}_{\text{col}}$ dentine collagen	$\delta^{13}\text{C}_{\text{AA}}$ $\delta^{15}\text{N}_{\text{AA}}$ dentine collagen	$\delta^{13}\text{C}_{\text{apa}}$ enamel apatite
Sampled Individuals	40	37	6	10
	in total: 60 individuals; 22(+2) females, 24 (+3) males; 9 unidentified		3 female, 3 male	4 female, 6 male
Source	[1,2]	[1], this paper	this paper	this paper

<https://doi.org/10.1371/journal.pone.0338887.t001>

Their placement in spatial clusters (North (burials 1–47) and South (burials 48–170)) within the site was accepted as established in the literature [52,59,72]. An overview of the complete numbers of available human samples for each analysis is provided in [Table 1](#).

In addition to these human skeletal materials, the biological baseline was also expanded through further $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ measurements on the dentine collagen of two archaeological reindeer (*Rangifer tarandus*) molars (one first molar from burial 61 and one third molar from burial 138) and on the bone collagen of two additional modern perch and one modern zander (*Sander lucioperca*) from Lake Onega, the latter of which was also subjected to CSIA. Bone collagen of the vendace and of one perch previously sampled for bulk collagen isotopic analyses [1] was also re-sampled for CSIA (SI3, Table S2 in [S1 Data](#)). Accordingly, there are in total currently 16 herbivore, two bird and five fish $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ measurements from the Lake Onega area available for this analysis, in addition to three fish CSIA values.

Laboratory analyses

Full descriptions of laboratory sample pre-treatment and isotopic measurements for all analyses are detailed in the Supporting Information SI1 in [S1 File](#) with a summary found in the following paragraphs. $^{15}\text{N}/^{14}\text{N}$ and $^{13}\text{C}/^{12}\text{C}$ ratios are presented in the δ notation with units of per mil (‰), relative to the international standards atmospheric N_2 (AIR N_2) and Vienna PeeDee Belemnite (VPDB), respectively.

The new human and animal bulk collagen $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ samples were processed following the protocol of Czermak and colleagues [67], with the values given representing the post-weaning average of the sequence. The reindeer and fish samples similarly followed the demineralization protocol described in Czermak et al. [67]. Isotope data were normalized to USGS-40 ($\delta^{13}\text{C} = -26.4\text{‰}$ and $\delta^{15}\text{N} = -4.5\text{‰}$) and USGS-41 ($\delta^{15}\text{N} = 47.6\text{‰}$ and $\delta^{13}\text{C} = 37.6\text{‰}$). Quality control reference materials (caffeine, collagen) not used for normalization indicate a precision of $\pm 0.2\text{‰}$ for $\delta^{13}\text{C}_{\text{col}}$ and $\pm 0.2\text{‰}$ for $\delta^{15}\text{N}_{\text{col}}$ measurements (see SI1, Table S1 in [S1 File](#)).

For the analysis of $\delta^{13}\text{C}_{\text{apa}}$, samples were prepared following pre-treatment after [73,74] aimed at retaining only the structural carbonate. The applied analytical procedure was based on Revesz et al. [75] with modifications. Calibration of the results versus the V-PDB scale was achieved using international reference materials NBS-18 ($\delta^{13}\text{C} = -5.0\text{‰}$) and IAEA-603 ($\delta^{13}\text{C} = 2.5\text{‰}$) (International Atomic Energy Agency, Vienna, Austria). The internal precision (SD) measured over eight replicates of the calcite materials used for calibration was 0.02‰ for raw $\delta^{13}\text{C}$ values. The values presented are an average of multiple samples, typically seven (mean 7 ± 1), taken across the vertical axis of the tooth crown spanning from apex to enamel root junction and represent a mean of $\delta^{13}\text{C}_{\text{apa}}$ incorporated during the complete time of enamel formation (for the sampled teeth this usually means from birth to ca. four years of age).

The CSIA-AA analyses and sample preparation were conducted following previously published protocols [49,76,77] and included six samples of human and three samples of modern lake Onega fish collagen remaining from previous bulk isotopic analyses. External UAF AA1 and AA2 standards were used to calibrate measurements. Accuracy was assessed by comparing measured and known values of an internal norleucine standard for both $\delta^{13}\text{C}_{\text{AA}}$ ($\Delta = 0.1\text{‰}$) and $\delta^{15}\text{N}_{\text{AA}}$ ($\Delta = 1.1\text{‰}$) and an external caffeine standard for $\delta^{15}\text{N}_{\text{AA}}$ ($\Delta = 0.4\text{‰}$) only. Data quality was monitored through the relationship between measured proline and hydroxyproline isotope values, both showing high correlation and regression lines close to the expected 1:1 line ($\delta^{15}\text{N}_{\text{Hyp vs Pro}}: R^2 = 0.998$, slope = 1.012 and $\delta^{13}\text{C}_{\text{Hyp vs Pro}}: R^2 = 0.996$, slope = 1.014), indicating good data quality (SI2, Fig S2 in [S1 File](#)) [78].

Data processing

To all $\delta^{13}\text{C}$ values derived from modern samples, a correction for the effects of temporal changes in the $\delta^{13}\text{C}$ value of atmospheric CO_2 was applied by adding $+2\text{‰}$ [79], to facilitate comparison between modern and archaeological samples. This correction was also applied to modern reference material derived from other studies. Additionally, a lipid normalization calculation after Kiljunen et al. [80] was applied to all modern fish $\delta^{13}\text{C}$ values.

Data evaluation was done using Microsoft Office Excel, PAST 4.03 and RStudio 5.01. Initial evaluation included the identification of outliers via Generalized Extreme Studentized Deviate as well as an assessment of normality via Shapiro-Wilk tests and of equal variance via *F*-tests. The two-tailed homoscedastic Student's *t*-test was employed to assess any differences between groups, based on biological sex and burial cluster. The coefficient of variation (CV) was employed to compare variability between sites across the region. Differences between the median estimated dietary proportions in individuals with- and without available $\delta^{13}\text{C}_{\text{apa}}$ measurements were assessed through a one-way PERMANOVA.

The amino acid fingerprinting method used available published $\delta^{13}\text{C}_{\text{AA}}$ data from basal producers relevant to the site's context, i.e., freshwater algae, freshwater cyanobacteria, terrestrial plants, bacteria, and fungi [36–38,81–96]. The analysis included $\delta^{13}\text{C}_{\text{AA}}$ values of Leu, Ile, Phe, Thr and Val as EAAs most measured and associated with distinct values between basal groups. Subsequently both linear discriminant analysis (LDA) and principal component analysis (PCA) were conducted with values normalized through mean-subtraction and including the samples from YOO and Lake Onega. LDA is the more common approach in ecology studies [36,37,87] and provides a better distinction between basal groups, but PCA was applied as a more conservative approach due to it not taking prior (basal producer) group assignments into account.

Trophic positions were estimated using $\delta^{15}\text{N}$ values of Glx and Phe and calculation of TPs followed Ishikawa et al. [20] as $TP = \frac{\delta^{15}\text{N}_{\text{Glu}} - \delta^{15}\text{N}_{\text{Phe}} + \beta}{TDF_{\text{Glu}} - TDF_{\text{Phe}}} + 1$ with a $TDF_{\text{Glu-Phe}}$ of 7.6‰ [97] and $\beta_{\text{Glu-Phe}}$ of +8.4‰ reflecting the terrestrial and -3.4‰ the aquatic ecosystem [43,45,97]. As discussed above, both the β and TDF values are flexible, and while those used here are commonly referenced in archaeological studies [42,98,99], they represent averages, and other values have been suggested as well [46,100]. The β values also assume either fully aquatic or fully C3 terrestrial derived protein, which does not reflect the realities of human omnivorous behavior [42]. Accordingly, the calculated TP values provided in SI3, Table S2 in [S1 Data](#), serve as rough estimates of the potential span of TPs occupied by humans, but should be considered guidelines rather than absolutes. Instead, the relationship between measured $\delta^{15}\text{N}_{\text{Phe}}$ and $\delta^{15}\text{N}_{\text{Glx}}$ values is considered the more meaningful proxy.

Bayesian mixing models

Using the combined $\delta^{13}\text{C}_{\text{col}}$, $\delta^{15}\text{N}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{apa}}$ values FRUITS version 3.0 [101] was used to perform BMMs to estimate dietary source proportions at YOO. As with other BMMs, caution is warranted when interpreting FRUITS model outputs, particularly in aquatic dietary contexts, due to inherent limitations in baseline resolution and uncertainty regarding applied fractionation factors [19,101–103] as discussed in more detail below. To address these concerns, we implemented a series of sensitivity analyses using multiple model variants. The main model in FRUITS (model 1) was set up with three proxies ($\delta^{13}\text{C}_{\text{col}}$, $\delta^{15}\text{N}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{apa}}$), three sources (plant, game, fish) and three fractions (protein, energy – consisting of the lipids and carbohydrate portion – and bulk diet) following [21]. The contribution of protein to the $\delta^{13}\text{C}_{\text{col}}$ signal was estimated at $74\% \pm 4\%$ and energy at $26\% \pm 4\%$ while the $\delta^{15}\text{N}$ value is derived from dietary protein only ($100\% \pm 0\%$) [21]. In the model the $\delta^{13}\text{C}_{\text{apa}}$ signal is entirely derived from the bulk fraction of the diet ($100\% \pm 0\%$) [104].

A secondary model (model 2) considered only the contributions of dietary protein, using two proxies ($\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$) due to the restricted availability of $\delta^{13}\text{C}_{\text{apa}}$ measurements. In the absence of $\delta^{13}\text{C}_{\text{apa}}$ reflecting the bulk diet portion, only two fractions (protein, energy) were used, and the model was not concentration dependent.

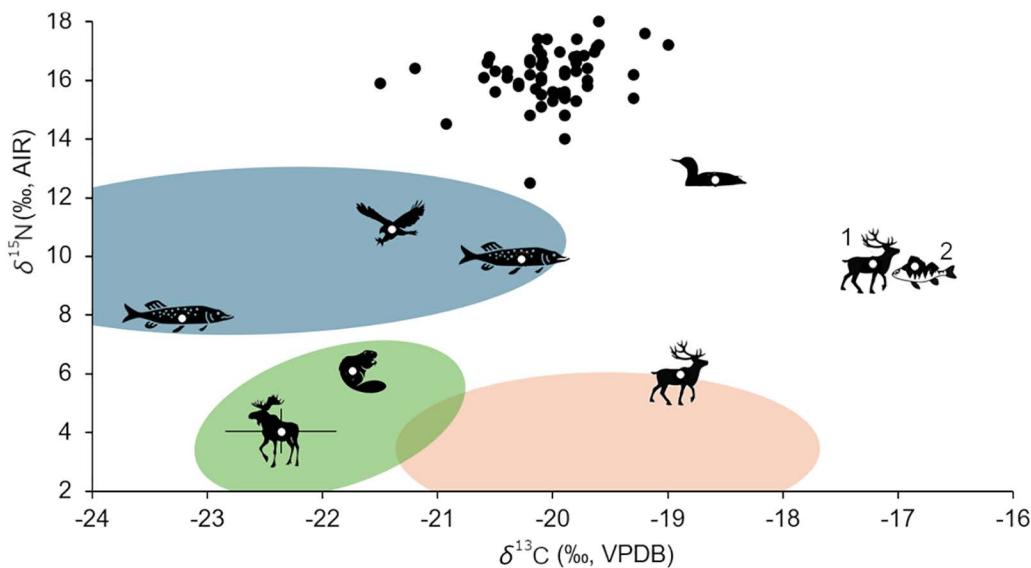
Due to the lack of representative baseline $\delta^{13}\text{C}_{\text{col}}$, $\delta^{15}\text{N}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{apa}}$ values for the Lake Onega area, we decided to account for potential variations by running two model variants using slightly different baseline values. One employs only the values derived from YOO and Lake Onega to account for terrestrial animal and aquatic resources (models 1.1 and 2.1) and one incorporates a broader baseline spectrum including published values from multiple Fenno-Baltic and western Russian sites (models 1.2 and 2.2, for details see SI3, Table S3–S6 in [S1 Data](#)). The plant values employed were the same for both models, as no local values are available for plants from YOO, and included a wide geographical range of

hemi-boreal, boreal, and subarctic samples. The source values were based on the weighted average of background data and adjusted to food values following [21] (SI3, Table S4 in [S1 Data](#)).

Trophic enrichment factors (TEF) in all models were set as $\Delta^{13}\text{C}_{\text{diet-coll}} = +4.8 \pm 0.5\text{‰}$ and where applicable $\Delta^{13}\text{C}_{\text{diet-apa}} = +10.1 \pm 0.5\text{‰}$ [21]. TEFs for $\Delta^{15}\text{N}_{\text{diet-coll}}$ in the literature vary between ca. $3.0\text{--}5.5 \pm 0.5\text{‰}$ with the lower values more commonly applied in ecological and the higher in archaeological studies [103]. The drivers behind differences at this level are not entirely understood but appear to be related to both consumed diet and consumer (species) metabolism [15,105]. To account for this variability, we tested three different versions of the models using three different TEFs for $\Delta^{15}\text{N}_{\text{diet-coll}}$ ($a = 5.5\text{‰}$, high; $b = 4.6\text{‰}$, medium and $c = 3.6\text{‰}$, low; [21,103,106] for detailed results see SI3, Table S6 in [S1 Data](#)). SD was maintained at 0.5‰ in all cases.

Macronutrient concentrations and standard deviations for the different dietary sources (SI3, Table S5 in [S1 Data](#)) were calculated based on values for dietary items likely available to past HGFs as given in [107], as well as studies on the total percentage of fat in prey animal bodies to account for differences between modern meat cuts and traditional use including, e.g., marrow and organs [108–113]. Prior information included in the model set the lower and upper limits for dietary protein contribution to 5–45% [101], based on physiological needs required to stay healthy and prevent protein poisoning [114].

Results


$\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$

The quality of newly measured archaeological $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values was assessed via atomic weight C:N, with ratios between 3.0–3.4 accepted as representing sufficiently well-preserved collagen [115,116] (SI3, Table S1 in [S1 Data](#)).

One low outlier was identified in both $\delta^{13}\text{C}_{\text{col}}$ (burial 59 at -21.5‰ , $R_1 = 3.44$, $\lambda_1 = 3.20$, $\alpha = 0.05$) and $\delta^{15}\text{N}_{\text{col}}$ (burial 57 at 12.5‰ , $R_1 = 3.54$, $\lambda_1 = 3.21$, $\alpha = 0.05$) (SI2, Fig S3 in [S1 File](#)), which were subsequently omitted from statistical evaluation, including mean values. Afterwards, both $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values did not depart significantly from a normal distribution (Shapiro-Wilk W -test: $\delta^{13}\text{C}_{\text{col}}$, $p = 0.0874$; $\delta^{15}\text{N}_{\text{col}}$, $p = 0.9926$). Adding the new human values to those of Wood et al. [2] and Schulting et al. [1] provided an overall average of $-20.0 \pm 0.4\text{‰}$ ($n = 59$) for $\delta^{13}\text{C}_{\text{col}}$. The new dentine-based measurements were slightly lower ($-20.2 \pm 0.4\text{‰}$, $n = 19$) than the bone collagen values ($-19.9 \pm 0.3\text{‰}$, $n = 40$) by a small but statistically significant margin (Student's t -test, $p = 0.0172$). The new dentine $\delta^{15}\text{N}_{\text{col}}$ values (average = $16.5 \pm 0.7\text{‰}$, $n = 19$) were similarly slightly different from the bone collagen values ($16.0 \pm 0.8\text{‰}$, $n = 41$; Student's t -test, $p = 0.0207$), resulting in a new overall average of $16.1 \pm 1.0\text{‰}$ ($n = 59$) (SI2, Fig S3 in [S1 File](#)). Considering the consistency in the measurements of standards between both laboratories (SI1, Table S1 in [S1 File](#)), these minimal differences are most likely a result of the different age stages captured by the sampled tissues and will be discussed further in an upcoming publication (Eckelmann et al., in prep.).

Overall, the human data were narrowly distributed (Fig 2) and even if outliers were included, variation was low ($\delta^{13}\text{C}_{\text{col}}$ CV = 2.2% ; $\delta^{15}\text{N}_{\text{col}}$ CV = 5.7%). This translated into a continued absence of any significant difference between the sexes, as previously reported by Schulting et al. [1], taking into consideration the new isotopic data and updated sex identifications (Student's t -test $\delta^{13}\text{C}_{\text{col}}$, $p = 0.9700$, $\delta^{15}\text{N}_{\text{col}}$, $p = 0.4932$) (SI2, Fig S4 in [S1 File](#)). Similarly, no significant difference between the North and South sections of the cemetery was found (Student's t -test, $\delta^{13}\text{C}_{\text{col}}$, $p = 0.0825$, $\delta^{15}\text{N}_{\text{col}}$, $p = 0.0534$) (SI2, Fig S5 in [S1 File](#)).

The new faunal analyses revealed unusually high $\delta^{13}\text{C}_{\text{col}}$ values of Onega perch, from -17.5 to -11.8‰ after lipid-correction (SI3, Table S3 in [S1 Data](#)). While there are some instances of similarly high values known from freshwater fish in other areas, [117], none have been found in Finnish lakes [65,118–120]. Fish from Finnish lakes usually show values of ca. -25 to -19‰ (ibid.) and, as they are in similar environments, they should be expected to be at least broadly comparable isotopically to Lake Onega. Further investigation revealed a recent substantial shift in perch feeding ecology in Lake Onega, due to the lake's colonization by the Baikal amphipod *Gmelinoides fasciatus* [121]. This invasive species

Fig 2. Summary of available $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ data from YOO and Lake Onega. Human (black circles) and faunal (symbols) values from YOO are plotted in front of 65% ellipses for freshwater fish (blue), reindeer (red) and other terrestrial animals (green) from the wider geographic supra-region included in dietary model 2 (see SI3, Table S3 in [S1 Data](#) for all baseline isotope values included). YOO faunal values, except for reindeer, modified from Schulting et al. [1] including a different (+2‰) adjustment for changes in $\delta^{13}\text{C}$ value of atmospheric CO_2 of modern data. One reindeer is likely affected by a suckling effect (1). Perch samples were omitted from dietary modelling due to anomalous values, except for one individual that was also sampled for CSIA (2) to facilitate comparison between CSIA and bulk collagen isotope values.

<https://doi.org/10.1371/journal.pone.0338887.g002>

now provides up to 80% of the diet of young perch [122], likely indicating a shift in foraging behavior towards its prey's littoral habitat. As this shift is recent and may have affected $\delta^{13}\text{C}_{\text{col}}$ values we decided to exclude the perch values from the FRUITS models.

The two measured archaeological reindeer samples exhibited relatively high $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values (average $\delta^{13}\text{C} -18.1 \pm 0.8\text{‰}$, $\delta^{15}\text{N} 7.8 \pm 1.9\text{‰}$), with one individual's $\delta^{15}\text{N}_{\text{col}}$ being unusually high at 9.7‰. Considering that the value was measured on the root of a first molar and the next highest Holocene reindeer $\delta^{15}\text{N}_{\text{col}}$ values are ca. 8.5‰ [123,124], this potentially derives from a suckling effect. The second value at 5.9‰ was measured on a third molar and is therefore not affected by a suckling effect, being in line with other Fennoscandian reindeer values [125,126].

Overall, the initial assessment of the baseline information indicates a substantial difference between human $\delta^{15}\text{N}_{\text{col}}$ values ($16.6 \pm 0.7\text{‰}$) and the assumed trophic baseline, with the highest value from Lake Onega being the zander measurement at 9.9‰. This offset exceeds both the assumed trophic offsets of ca. 3.0‰ commonly applied in ecology studies, as well as the 5.5‰ often used in archaeological studies [103] when considered against the strictly local baseline values. It is also within the trophic offsets' upper limit when compared to the baseline data for the wider supra-region used in dietary model 2 (average ca. $10.3 \pm 2.3\text{‰}$; SI3, Table S3 in [S1 Data](#)). Although waterbirds do have a tendency towards higher values, as demonstrated also by the $\delta^{15}\text{N}_{\text{col}}$ of the black-throated diver and the osprey previously analyzed from YOO [1], and were surely hunted, they would have only been available seasonally, though this could have been extended if kept in a storable form.

$\delta^{13}\text{C}_{\text{apa}}$

There are no firmly established quality criteria for the preservation of carbon isotope values in enamel apatite, but enamel is by far the best-preserved skeletal tissue, being more resistant to diagenesis than bone and results derived from it widely

accepted as reliable [127,128]. Similarly to the bulk collagen isotope values, the $\delta^{13}\text{C}_{\text{apa}}$ measurements showed a limited variability between samples with a mean for the sampled individuals of $-15.5 \pm 0.4\text{‰}$ (see SI2, Fig S3 in [S1 File](#)). The $\Delta^{13}\text{C}_{\text{apa-coll}}$ spacing averaged $4.8 \pm 0.4\text{‰}$, consistent with that expected for a tissue offset, given isotopically homogenous protein and energy fractions in the diet [129–131].

$\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$

All six archaeological human and three modern fish samples analyzed for $\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$ passed general quality control criteria. However, no measurements were reported for methionine as it fell below the detection limit, or for $\delta^{15}\text{N}_{\text{Tyrosine}}$ which was also below detection for the archaeological samples and showed poor peak separation for the modern samples. Details on quality controls and results for the individual amino acid measurements are provided in supplementary information (SI1; SI2, Fig S1-2 in [S1 File](#); SI3, Table S2 in [S1 Data](#)).

As with the bulk collagen values, $\delta^{13}\text{C}_{\text{AA}}$ and $\delta^{15}\text{N}_{\text{AA}}$ results showed a high degree of similarity among the human individuals (average SD 0.4‰ for $\delta^{13}\text{C}_{\text{AA}}$; 1.3‰ for $\delta^{15}\text{N}_{\text{AA}}$), whereas the three measured fish exhibited a greater variability (average SD: 1.1‰ for $\delta^{13}\text{C}_{\text{AA}}$; 2.0‰ for $\delta^{15}\text{N}_{\text{AA}}$). Even after excluding the perch, which similar to its $\delta^{13}\text{C}_{\text{col}}$ had substantially higher $\delta^{13}\text{C}_{\text{EAA}}$ values than the other fish and humans, the two remaining fish retained a wider range of observed values than the humans. Human $\delta^{13}\text{C}_{\text{EAA}}$ closely resembled those of the zander, and to a lesser extent the vendace, with divergence in the $\delta^{13}\text{C}_{\text{NEAA}}$ values remaining below 3‰ . In $\delta^{15}\text{N}_{\text{AA}}$, zander and vendace varied in $\delta^{15}\text{N}_{\text{AAtr}}$ values, which is expected as zander are fully carnivorous and vendace are mixed feeders. Human $\delta^{15}\text{N}_{\text{AAtr}}$ were mostly aligned with those of the zander. $\delta^{15}\text{N}_{\text{AAsrc}}$ values were broadly similar across species for $\delta^{15}\text{N}_{\text{Lys}}$ values but showed notable interspecies differences for $\delta^{15}\text{N}_{\text{Phe}}$ (on average by 3.7‰).

The human $\delta^{13}\text{C}_{\text{Glx}}$ values were relatively low ($-28.9 \pm 0.1\text{‰}$), if not the lowest measured to date on an archaeological human population; conversely, the corresponding $\delta^{15}\text{N}_{\text{Glx}}$ values ($\delta^{15}\text{N}_{\text{Glx}} = 26.0 \pm 1.1$) were at the high end of reported values from archaeological human samples with the lowest value from YOO being 24.8‰ . Similarly high or higher values so far originate overwhelmingly with coastal populations [98]. In general, $\delta^{15}\text{N}_{\text{AAtr}}$ values were high compared to other known data, which also applied to $\delta^{15}\text{N}_{\text{Lys}}$, $\delta^{15}\text{N}_{\text{Ser}}$, and $\delta^{15}\text{N}_{\text{Gly}}$. $\delta^{15}\text{N}_{\text{Phe}}$ was an exception with a more common range of $3.7\text{–}5.6\text{‰}$. This resulted in a high $\delta^{15}\text{N}_{\text{Glx-Phe}}$ offset at $21.0 \pm 1.4\text{‰}$ ($n=6$) for YOO, compared to, e.g., $22.9 \pm 2.4\text{‰}$ ($n=11$) for marine mammal hunters in northern Japan [98], and $18.3 \pm 0.9\text{‰}$ ($n=2$) and $17.4 \pm 0.9\text{‰}$ ($n=2$) for Mesolithic coastal HGFs in Croatia [132] and Scotland [32]. The geographically closest measurements from a medieval inland site in Finland by comparison only had values of $7.9 \pm 2.2\text{‰}$ ($n=5$) [133].

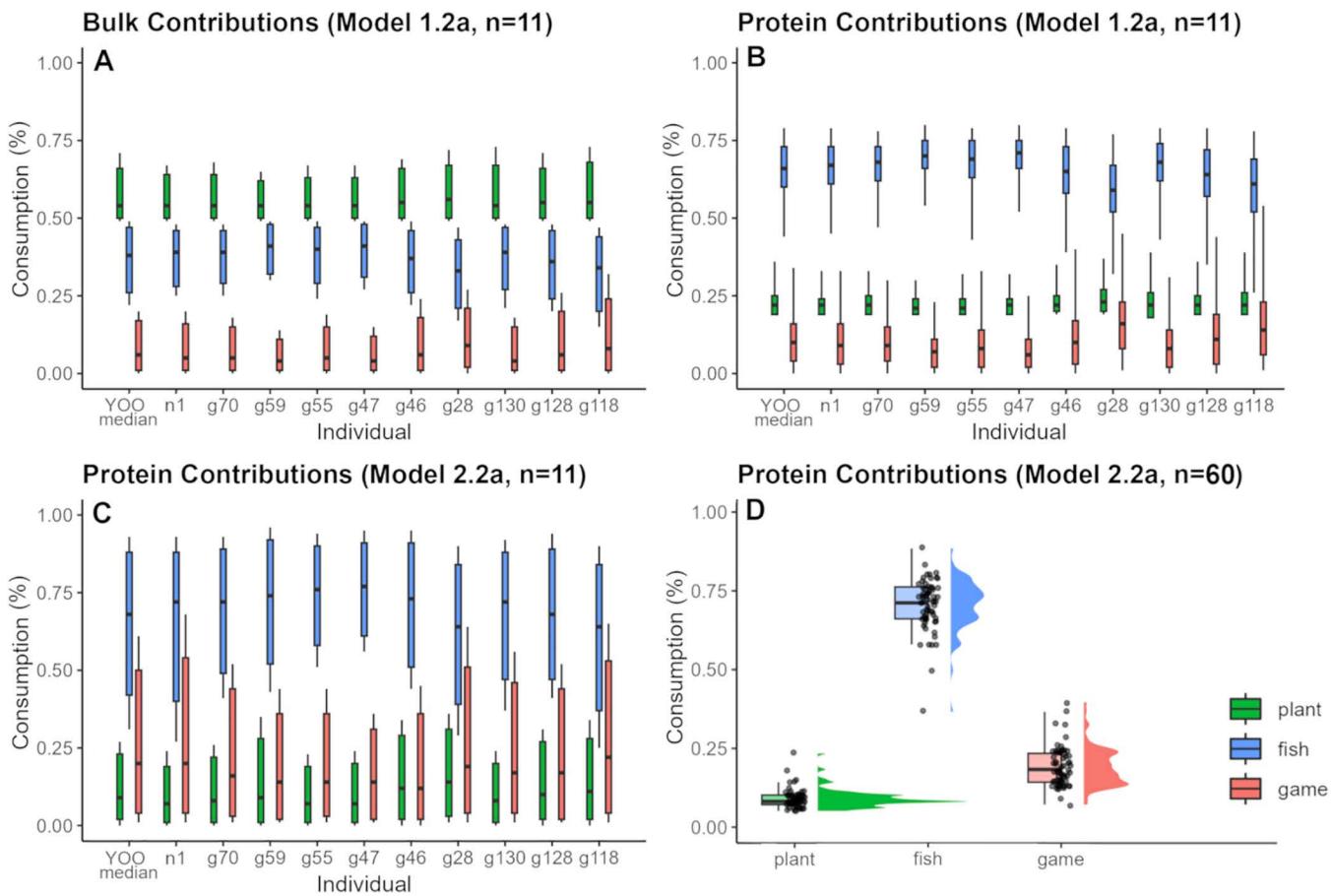
The $\delta^{13}\text{C}_{\text{AA}}$ fingerprinting approach was attempted, but while both PCA1 (86.6% of the variation) and PCA2 (7.9% of the variation) were partially successful at separating the basal producer groups, the overlap between freshwater components, fungi and bacteria remained high (SI2, Fig S6 in [S1 File](#)). The situation was similar with the LDA, indicating high discrimination in the first and second axis (80.4% and 16.1% respectively) and a better spatial differentiation, but only 74.5% of values were successfully re-categorized in the confusion matrix due to the high overlap between freshwater producers and the other categories (SI2, Fig S7 in [S1 File](#)) [36]. While we did therefore not consider the separation between groups sufficient to attempt percentage assessments of dietary contributions from each of these variables to the YOO diet, the placement of both YOO human and the Lake Onega fish samples on the graphs is of some interest. First, in both analyses the YOO humans and Lake Onega fish plot closely together indicating a very high degree of similarity in their essential amino acid profiles, and thus, protein sources. Their tight clustering is consistent with humans sourcing the majority of their proteins from the same trophic chain as the Lake Onega fish. Second, both fish and humans plotted separately from the terrestrial plants and showed a higher degree of similarity with bacteria and, to a lesser degree, fungi and freshwater components. If we were only looking at the human values, this could indeed be interpreted as a potential indicator of fungal consumption. However, as the fish showed very similar positioning, it is more likely that these values are indicative of input of allochthonous litter and nutrient cycling through the Lake Onega hydrological system, rather than of direct dietary intake.

FRUITS dietary estimate results

The results obtained both for individuals and the overall average for YOO did not vary substantially between the model variants using different trophic offsets and applying restricted or broader baseline values and overall relation of dietary sources was maintained (Table 2, complete output in SI3 Table S6 in S1 Data). This general consistency between models indicates that they do not significantly affect results in our case and that the model estimates are robust, within the parameters applied. Standard deviations were small, and model convergence as estimated through FRUITS-derived Markov chains was acceptable [21,34].

Bulk diet model 1, based on combined $\delta^{13}\text{C}_{\text{col}}$, $\delta^{13}\text{C}_{\text{apa}}$ and $\delta^{15}\text{N}_{\text{col}}$ data, estimated that for the average individual at YOO ca. 55% of dietary intake was derived from terrestrial plants, ca. 40% from aquatic resources and only ca. 5% from terrestrial game (Fig 3A). It also estimated the contribution to the $\delta^{15}\text{N}$ signal, signifying the protein portion, as deriving ca. 70% from aquatic resources, ca. 20% from terrestrial plants and only ca. 10% from terrestrial game. (Fig 3B) This deviates from model 2, using only $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ to assess protein contributions, which indicated a higher contribution of meat than plants to the protein signal (Fig 3C-D). However, as model 2 had fewer proxies, higher standard deviations and lower model convergence, the model 1 results are likely more reliable from a modelling perspective, although this demonstrates that overlap between the estimates for plant and game contributions exists. The overall isotopic variation between individuals is very restricted, the ten individuals for which $\delta^{13}\text{C}_{\text{apa}}$ values were available span the range of that restricted distribution, and the estimated dietary proportions in model 2 do not diverge between individuals with and without apatite values (One-way PERMANOVA, $p=0.5074$). Therefore, we consider the results from model 1 as representing the overall community at YOO.

Discussion


YOO and the wider Early Holocene (Northern European) HGFs

Within the broader dataset of archaeological HGF communities of the circum-Baltic region for which $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values are available, YOO forms a distinct isotopic cluster. This is characterized by notably high $\delta^{15}\text{N}_{\text{col}}$ values, comparable to communities with a substantial marine diet, and $\delta^{13}\text{C}_{\text{col}}$ values that, while still situated in the range of known freshwater

Table 2. Comparison of results for the different applied FRUITS dietary mixing models. Estimated contributions of source fractions to the complete diet and protein portion, respectively, according to FRUITS models based on the average $\delta^{13}\text{C}_{\text{col}}$, $\delta^{15}\text{N}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{apa}}$ values at YOO and varying according to the inclusion of either game/fish values only from Lake Onega (1.1, 2.1) or from a broader geographical range including Finland and north-western Russia in the source values (1.2, 2.2), and to varying TEF values for $\delta^{15}\text{N}_{\text{col}}$ ($a=5.5\text{‰}$, $b=4.6\text{‰}$, $c=3.6\text{‰}$).

Bulk Model 1	1.1a	SD	1.1b	SD	1.1c	SD	1.2a	SD	1.2b	SD	1.2c	SD
Plants	0.54	0.04	0.54	0.04	0.53	0.04	0.56	0.06	0.56	0.05	0.54	0.04
Game	0.04	0.03	0.03	0.02	0.02	0.02	0.07	0.06	0.01	0.01	0.04	0.04
Fish	0.42	0.05	0.44	0.04	0.45	0.04	0.37	0.07	0.42	0.05	0.41	0.05
Protein Model 1	1.1a	SD	1.1b	SD	1.1c	SD	1.2a	SD	1.2b	SD	1.2c	SD
Plants	0.22	0.03	0.22	0.03	0.21	0.03	0.23	0.05	0.23	0.04	0.22	0.03
Game	0.06	0.06	0.05	0.04	0.03	0.03	0.12	0.09	0.03	0.02	0.07	0.06
Fish	0.72	0.06	0.74	0.05	0.75	0.04	0.65	0.10	0.74	0.05	0.70	0.07
Protein Model 2	2.1a	SD	2.1b	SD	2.1c	SD	2.2a	SD	2.2b	SD	2.2c	SD
Plants	0.07	0.06	0.05	0.04	0.03	0.03	0.10	0.07	0.08	0.07	0.07	0.06
Game	0.14	0.11	0.09	0.07	0.06	0.05	0.23	0.16	0.16	0.13	0.11	0.10
Fish	0.79	0.11	0.86	0.08	0.91	0.05	0.67	0.15	0.76	0.12	0.81	0.10

<https://doi.org/10.1371/journal.pone.0338887.t002>

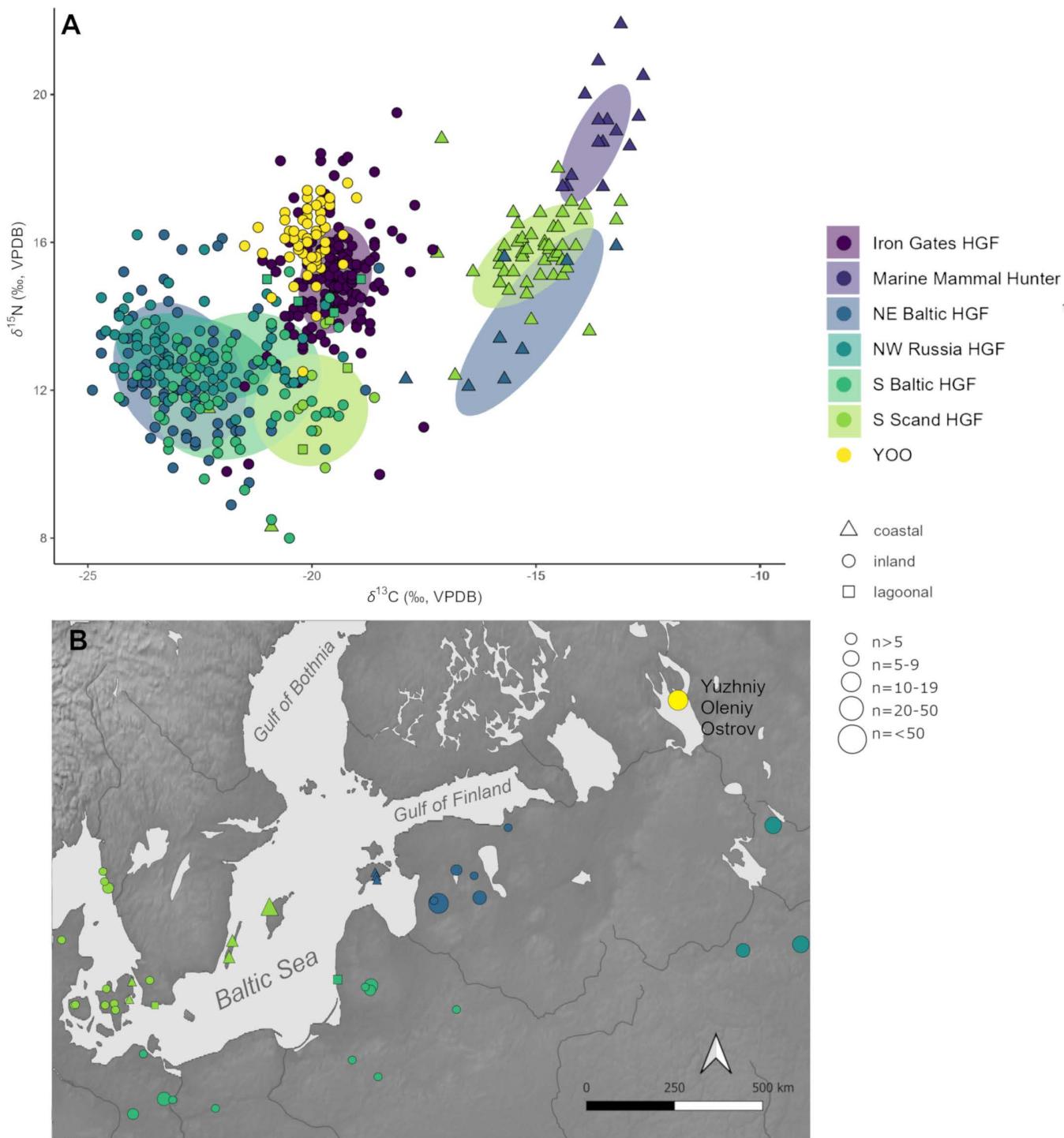


Fig 3. Summary of results of applied FRUITS dietary mixing models for multiple individuals from YOO. Estimated dietary proportion of fish, game and plants to the YOO diet for mean values (first value in graph A-C) and the ten individuals for whichapatite $\delta^{13}\text{C}$ values were available. A) Model 1.2a indicating estimated contribution of different food sources to bulk dietary intake. B) Contribution of protein based on model 1.2a using combined collagen andapatite measurements. C) Estimated contribution of protein based on model 2.2a only using collagen data shown for the same eleven individuals represented in A and B. D) Contribution of protein based on $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ summarized for the complete data set.

<https://doi.org/10.1371/journal.pone.0338887.g003>

contexts in this region, are higher than the majority of other known inland HGF sites of the eastern Baltic and north-western Russia (Fig 4). The higher $\delta^{13}\text{C}_{\text{col}}$ values, while not as unusual as the $\delta^{15}\text{N}_{\text{col}}$ values, are still unexpected, as the other comparable sites in the north-east European forest zone are located south of YOO and in general carbon isotope values would be expected to decrease in higher latitudes [134,135].

Generally, the $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values with the most consistent similarity to YOO are not those from the north-western Russian and eastern Baltic HGF sites geographically closest, but from the Mesolithic of the Danubian Iron Gates region (Romania and Serbia). This archaeological culture is known for its high reliance on freshwater and anadromous species and the significance of fish in their material culture and iconography, which is unique in Europe [144,171–173]. While it is expected that the YOO population also relied heavily on aquatic resources, as an effect of their importance in the local landscape and by comparison with modern HGF of the boreal forest zone, the majority of the other aforementioned Baltic and Russian sites are similarly found in aquatic landscapes. As they are also located in the northeast European forest zone, the expectation would have been for their isotope ecologies to be more in line with those of YOO, compared to the Iron Gates region.

Fig 4. Overview of $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values from YOO and other HGF sites in the northeast Baltic. A) $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values from YOO and other archaeological HGF sites (65% confidence for ellipses, separated for inland and coastal groups) focused on northeastern Europe clearly showing the unusually high $\delta^{15}\text{N}_{\text{col}}$ values of the YOO population compared to other boreal inland HGFs. Values from marine mammal hunters (Greenland and Hokkaido) and the Mesolithic of the Danubian Iron Gates region (Romania and Serbia) are included for comparative purposes [2,40,63,98,136–170]. B) Spatial distribution and sample size of the groups and sites included in A (for details see SI 2, Fig S8 in [S1 File](#)) [51]. The site map was created using Natural Earth public domain data [52].

<https://doi.org/10.1371/journal.pone.0338887.g004>

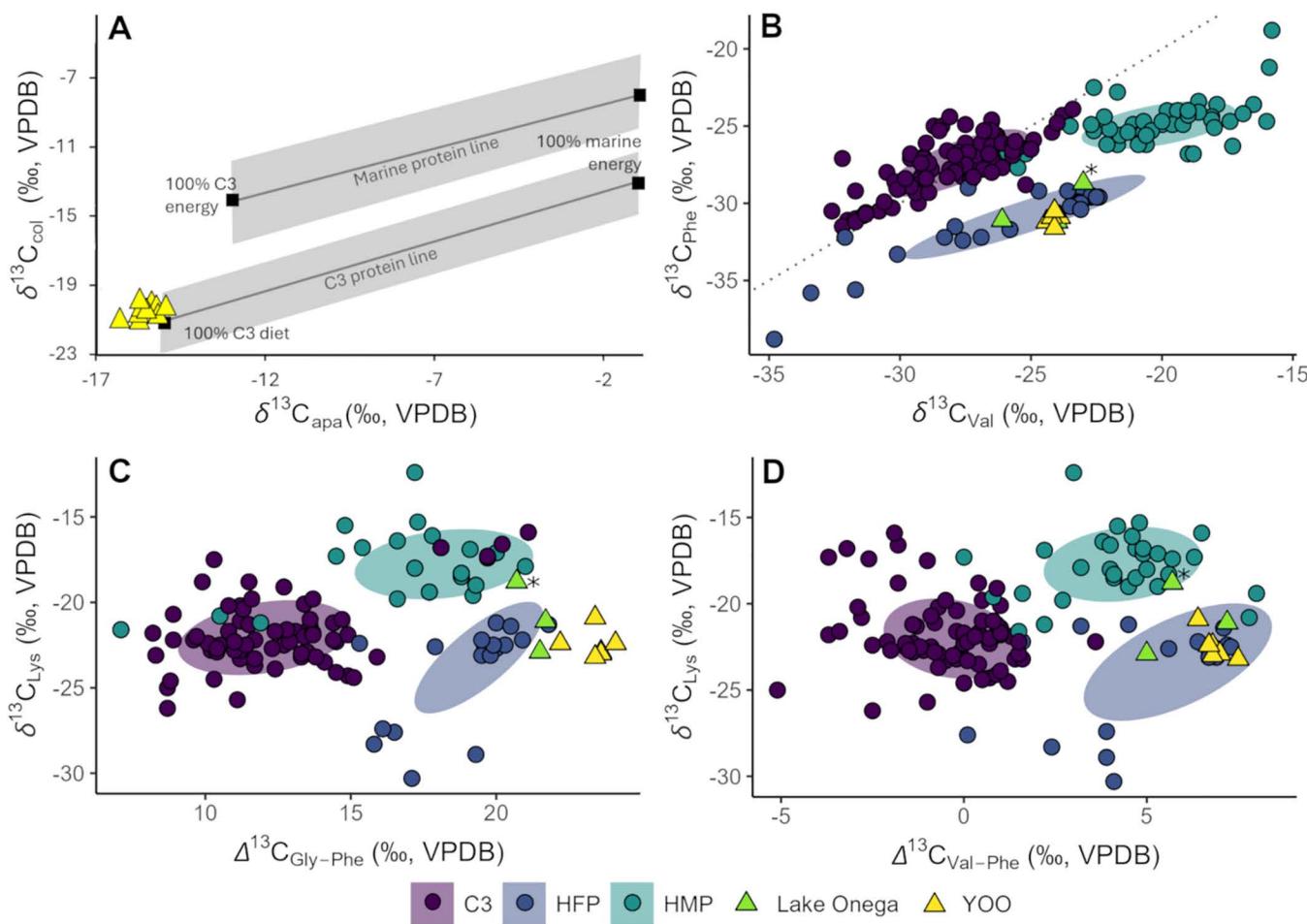
When viewed in the geographical context of north-western Russia and the circum-Baltic, the values most similar to YOO originate either from children potentially still affected by nursing signals (e.g., Zamostje in Russia, Kivisaare in Estonia) [63,167] or lagoonal sites (e.g., Šventoji in Lithuania and Skateholm in Sweden), which had marine contributions to the diet, especially in the form of seals [151,159]. Since the values from YOO reflect post-weaning values, of which two thirds were derived from adult bone collagen, the nursing effect is not what is driving the position of the YOO cluster. Instead, it is likely that the local isotope ecology of the Lake Onega area differs significantly from other sites of the northeast European forest zone represented here, leading to substantially higher human $\delta^{15}\text{N}_{\text{col}}$ and slightly raised $\delta^{13}\text{C}_{\text{col}}$ values. However, this is not visible in the admittedly very small local faunal sample, whose isotope values are largely comparable with values from other sites in this ecozone.

Considering the similarity of the YOO values to the lagoonal sites, especially Šventoji, two subsistence-based scenarios could be considered as causing the observed elevations. Firstly, that dietary items with marine or mixed freshwater-marine signals contributed at least periodically to the YOO diet. This may have occurred as a result of periodic trips to the coast (either the Baltic or White Sea, see Fig 1), exchange of goods, or through hunting of migratory birds. Anadromous fish, which contributed to the isotopic fingerprint of the Iron Gates Mesolithic [144], are not considered relevant to this study, as the migratory fish species in Lake Onega are estimated to have been landlocked since at least 7500 BCE [174].

The second possibility for explaining the distinct position of YOO is the potential that higher $\delta^{15}\text{N}_{\text{col}}$ and $\delta^{13}\text{C}_{\text{col}}$ values could have been acquired through hunting freshwater seals, as are found today in Lakes Saimaa (*Pusa saimensis*) and Ladoga (*Pusa hispida ladogensis*) and might have once also been present and hunted in Lake Onega. These seals are the local freshwater apex predators in their ecosystems and have consequently elevated $\delta^{15}\text{N}$ and to a lesser degree $\delta^{13}\text{C}$ values compared to their prey [120]. This latter scenario appeared particularly plausible as samples from Lake Saimaa freshwater ringed seals neatly slotted into a perceived gap in the $\delta^{15}\text{N}$ value distribution between available fish and human values for Onega and its surroundings [1].

$\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values alone, particularly lacking access to a broad local (aquatic) baseline, are not able to resolve these questions, but with the addition of the new $\delta^{13}\text{C}_{\text{apa}}$ and CSIA results presented here, it is possible to narrow down the most plausible contributing factors and their subsistence implications. Accordingly, both scenarios will be discussed in detail in the following sections, as well as potential alternative explanations.

No isotopic evidence for marine dietary input


In principle, even though the observed YOO $\delta^{15}\text{N}_{\text{col}}$ values are surprisingly high, they could be acquired with no marine input if a trophic offset between human consumers and diet at the higher end of the observed range is assumed and dietary protein was primarily derived from high in the aquatic food chain. However, ethnographic sources clearly indicate that HGFs can and in some cases do regularly transverse large distances in the course of seasonal moves [175–177]. Considering the presence of major rivers leading both north- and westwards, this could be considered a possibility for the YOO population as well and therefore the presence of marine dietary input cannot be ruled out without further assessment.

Additionally, it could also be possible to acquire very high $\delta^{15}\text{N}_{\text{col}}$ values more in line with expectations for marine ecosystems through intensive seasonal fowling of migrating waterbirds, e.g., as Cree communities in northern North America are known to practice [178]. Zooarchaeological finds attest to whooper swan (*Cygnus cygnus*) hunting at Mesolithic sites in Denmark [179,180]. Some of the bird species found at YOO and other Onega sites spend a substantial time of the year in marine habitats and accordingly can have more marine values even if caught in freshwater settings (e.g., the black-throated diver) from YOO with $\delta^{13}\text{C}_{\text{col}} -18.6\text{‰}$ and $\delta^{15}\text{N}_{\text{col}} 12.6\text{‰}$, [1]. The effect of such a partial marine signal might also contribute towards the observed slightly elevated carbon isotope values.

To try and clarify this matter, we employed $\delta^{13}\text{C}_{\text{apa}}$ and $\delta^{13}\text{C}_{\text{AA}}$ ratios, both of which can also serve as more sensitive marine tracers than $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values and confirm that an isotopically visible impact of marine sources to the YOO

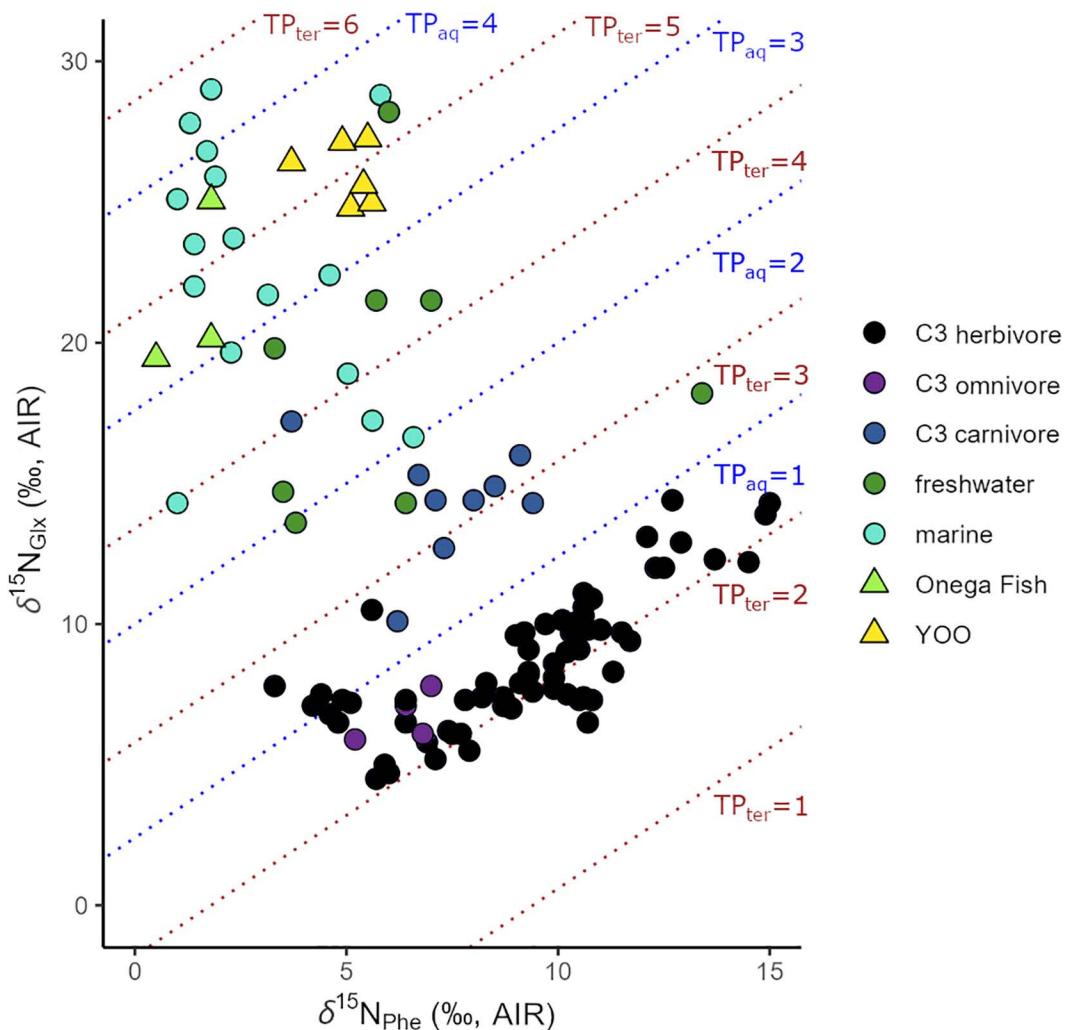
diet is highly unlikely. Experimental studies indicate that the relationship between $\delta^{13}\text{C}_{\text{col}}$ (reflecting primarily the protein portion) and $\delta^{13}\text{C}_{\text{apa}}$ (reflecting the complete dietary mix) forms two regression lines that reflect the origin of the consumed proteins and allows an assessment of the contribution of C3 and marine sources to the whole diet, rather than just the protein portion [28,29,181]. In the case of YOO (Fig 5a), this model is compatible with a fully C3/freshwater-based diet and indicates no relevant marine contribution. However, a caveat is that there is increasing evidence for a systematic offset between $\delta^{13}\text{C}$ values of bone apatite and enamel apatite [182–184], which complicates the application of these models to our data as the models were based on bone apatite measurements [144]. The available evidence suggests that enamel apatite carbon isotope values are enriched in ^{13}C compared to bone by ca. 0.6–1.8‰ [182–185] but the effect is not yet well understood.

The $\delta^{13}\text{C}_{\text{AA}}$ values similarly support a largely freshwater based isotope signal. There are multiple approaches to using $\delta^{13}\text{C}_{\text{AA}}$ to differentiate marine, freshwater and terrestrial signals, e.g., different metrics and statistical methods [23,30,38,87,169]. We chose to use a comparative approach common in archaeological studies [32,103,169], in which the

Fig 5. Overview of $\delta^{13}\text{C}_{\text{col}}$, $\delta^{13}\text{C}_{\text{apa}}$ and $\delta^{13}\text{C}_{\text{AA}}$ used to assess origin of dietary sources at YOO. A) The relationship between human $\delta^{13}\text{C}_{\text{apa}}$ and $\delta^{13}\text{C}_{\text{col}}$ values from YOO plotted against diet-specific regression lines after Froehle et al. [28] (following [186]). B-D) Bivariate plots of B) $\delta^{13}\text{C}_{\text{Phe}}$ vs. $\delta^{13}\text{C}_{\text{Val}}$, C) $\delta^{13}\text{C}_{\text{Lys}}$ vs. $\Delta^{13}\text{C}_{\text{Gly-Phe}}$ and D) $\delta^{13}\text{C}_{\text{Lys}}$ vs. $\Delta^{13}\text{C}_{\text{Val-Phe}}$, showing the values from YOO humans and Lake Onega fish compared with published data from humans and animals with known dietary background data (65% confidence ellipses) [35,40,42,132,139,169,187]. The perch with anomalous bulk $\delta^{13}\text{C}_{\text{col}}$ values (see Results) potentially associated with an altered feeding ecology is marked with an asterisk.

<https://doi.org/10.1371/journal.pone.0338887.g005>

results from YOO are compared to data from other populations with known dietary backgrounds. The proxies chosen for this comparison were $\delta^{13}\text{C}_{\text{Val}}$, $\delta^{13}\text{C}_{\text{Lys}}$ and $\delta^{13}\text{C}_{\text{Gly}}$, plotted against $\delta^{13}\text{C}_{\text{Phe}}$, $\Delta^{13}\text{C}_{\text{Gly-Phe}}$ and $\Delta^{13}\text{C}_{\text{Val-Phe}}$ respectively. The former are all tracers distinguishing between aquatic and terrestrial resources, and in the case of $\delta^{13}\text{C}_{\text{Val}}$ also between freshwater and marine resources, while the latter remain largely unaffected by trophic effects [39,40,169]. The results of these comparisons show that the YOO humans were largely consistent with other consumers of primarily freshwater-derived protein rather than with marine consumers (Fig 5). It is interesting to note that the modern perch from Lake Onega with anomalous bulk $\delta^{13}\text{C}_{\text{col}}$ has $\delta^{13}\text{C}_{\text{Lys}}$ values trending towards the marine range, providing another indicator of the isotopic plasticity of freshwater systems, especially those as complex as that of Lake Onega.


Overall, these results show that there is currently no convincing stable isotope evidence for detectable marine contributions to YOO diet, whether from migrating waterbirds or through human mobility. This is supported by recently published $^{87}\text{Sr}/^{86}\text{Sr}$ values which also indicate that the population probably permanently resided in the wider northern Onega area [66], and travel to either the White or the Baltic Sea from Lake Onega during the Late Mesolithic was unlikely to have been a regular occurrence. More likely, the slightly elevated $\delta^{13}\text{C}$ values are endogenous to at least parts of the Lake Onega hydrological system, potentially influenced by the size of the lake. Large lakes can be relatively ^{13}C -enriched as a result of more efficient exchange with atmospheric CO_2 . Another potential source of enrichment is carbonate bearing bedrock underneath the lake [188,189]. Moreover, freshwater systems generally exhibit a high degree of isotopic plasticity [190].

No seals required to explain observed $\delta^{15}\text{N}$

The second suggested explanation for the relatively high $\delta^{15}\text{N}_{\text{col}}$ values is the potential hunting of freshwater seal, based on the existence of remnant seal populations trapped in freshwater lakes due to post-glacial land uplift in the early Holocene. Today there are still populations remaining in Lake Saimaa (*P. saimensis*) in Finland and Lake Ladoga (*P. hispida ladogensis*) in Russia, and at least the latter was intensively hunted during the Stone Age [191,192]. While there is no modern population in Lake Onega, the question of whether one existed and became extirpated has been posed by both biological and archaeological studies [62,193], especially when the first $\delta^{13}\text{C}_{\text{col}}$ and $\delta^{15}\text{N}_{\text{col}}$ values from YOO emerged [2,63]. Even though comparative $\delta^{15}\text{N}_{\text{col}}$ values from Lake Saimaa would place seals at the perfect position in the food web ($12.4 \pm 1.0\text{‰}$, $n=23$ [1,120]) to close the perceived trophic gap between measured human ($16.1 \pm 0.1\text{‰}$) and the small number of available present-day fish $\delta^{15}\text{N}_{\text{col}}$ values (highest at 9.0‰) from Lake Onega, it is highly unlikely that a seal population (ever) existed in Lake Onega. While finds of seal bone have been reported, these currently amount to only two instances, comprising three bone fragments from Kladovets II [194] and two bones from Fofanovo XIII [195]. If compared to the prevalence of seal bone finds in the Ladoga area, where seal makes up about half of all identified mammalian bones [191,192], this is not convincing evidence for the presence of a local seal hunting tradition – although the number of fully investigated faunal assemblages from Onega is substantially smaller. In their palaeogeographical investigation, Ulichev and Ludikova [193] further concluded that a penetration of seal into Lake Onega through Lake Ladoga was improbable, citing the lack of an appropriate corridor facilitating this movement, given that Lake Onega is part of a different hydrological paleobasin than both the Baltic and Lake Ladoga [193]. The $\delta^{15}\text{N}_{\text{AA}}$ results confirm that seal are not necessary to explain the values observed in the archaeological human population, but that the unusually high $\delta^{15}\text{N}$ values are likely related to shifts at the aquatic baseline levels of Lake Onega.

As significantly more precise indicators of trophic relationships, the $\delta^{15}\text{N}_{\text{AA}}$ values we analyzed show that while bulk $\delta^{15}\text{N}_{\text{col}}$ for the Lake Onega fish are substantially lower than those of the human population (Fig 2), their $\delta^{15}\text{N}_{\text{Glx}}$ and $\delta^{15}\text{N}_{\text{Phe}}$ values place the YOO humans above the mixed feeders vendace and perch (the latter with possibly non-analogous feeding ecology), and at a comparable level to the predatory zander (Fig 6).

Thus, if the Mesolithic Lake Onega supported similar stocks of fish with a broadly comparable trophic structure, the trophic position of the YOO humans could have been attained by fish consumption.

Fig 6. $\delta^{15}\text{N}_{\text{Glx}}$ against $\delta^{15}\text{N}_{\text{Phe}}$ from collagen of YOO humans and Lake Onega fish. The blue and brown dotted lines mark trophic position estimates in the aquatic (blue) and terrestrial (brown) food chain [78,98]. They, as well as the animal references from a global background [32,35,49,98,132,196,197] should be considered as guidelines only [78].

<https://doi.org/10.1371/journal.pone.033887.g006>

While it is not possible to completely exclude the existence and consumption of seals at Lake Onega, the consequence of the previous assessments on the likelihood of seal ever having been present locally – which is low – with these values, is that there is currently no reason to believe seal was ever part of a regular subsistence strategy at the site or should be considered in the FRUITS modelling. Individuals might have occasionally had access to seal through human mobility and/or the exchange of seal meat, as evidenced by the rare finds of seal bones, but freshwater fish and aquatic bird consumption sufficiently explains the observed bulk $\delta^{15}\text{N}_{\text{col}}$ signal. Metabolic factors [198] or food processing, could have potentially further raised the values, e.g., preservation through fermentation, which is a common practice in many northern cultures and known to be practiced in the Mesolithic [199], has been observed as increasing $\delta^{15}\text{N}$ values by ca. 1.3‰ [200].

It should be noted that both the offset in bulk $\delta^{15}\text{N}_{\text{col}}$ values between present-day fish and YOO humans and the $\delta^{15}\text{N}_{\text{AA}}$ values suggest that modern Lake Onega may not be representative of the past in terms of $\delta^{15}\text{N}$ baselines. The difference in $\delta^{15}\text{N}_{\text{Phe}}$ values between modern fish ($1.4 \pm 0.6\text{‰}$) and ancient YOO humans ($5.0 \pm 0.6\text{‰}$) shows access to different

nitrogen pools, either due to temporal shifts in the Onega ecosystem or different feeding regimes. While not affecting the trophic relationships as seen through the $\delta^{15}\text{N}_{\text{Glx}}$ to $\delta^{15}\text{N}_{\text{Phe}}$ proxy, this indicates that the bulk isotope measurements of the modern fish likely do not represent the ecosystem of Lake Onega during the Late Mesolithic, which would make them less suitable for use in the FRUITS model. The ecology and structure of the lake's fish populations are likely to have been severely impacted by recent overfishing. Nevertheless, as the results of the models using the values from Lake Onega only (model 1.1 and 2.1) and the wider baseline approach (model 1.2 and 2.2) do not differ substantially from each other, the effect on the dietary reconstructions appears to be minimal.

Subsistence and dietary reconstructions

Regarding the protein portion of the diet, the results of the FRUITS models employed in this study suggest that freshwater fish (or other resources with a similar isotopic signal, e.g., waterbirds) were the dominant source at YOO with only a small contribution from terrestrial game (Table 2, Fig 3B–D). While not reflected in the material culture of the cemetery [52], a high contribution of aquatic resources to the protein intake is in line with expectations for boreal HGF cultures, and findings at other Mesolithic sites [63,152,158,167,168,201]. However, even though fish as the main source of protein is a common assessment both ethnographically and archaeologically, the low estimated contribution of hunted game ($12 \pm 9\%$) and relatively high suggested plant intake ($23 \pm 5\%$), even in the protein component of diet, do not conform with general notions of boreal HGF subsistence [201]. This problem is even more apparent in the estimated contributions of the three food sources to total dietary intake. By proposing that on average ca. 56% of the diet was derived from plants, the modeling results put a spotlight on a longstanding debate in archaeological research concerning both the overall importance of plant foods in pre-agrarian societies and the pitfalls of dietary reconstructions via mixing models. On one hand these results (plant food contribution at $56 \pm 6\%$, fish at $37 \pm 7\%$ and game at $7 \pm 6\%$) show a large degree of coherence between the different models we applied as well as with estimates at other north-eastern European inland HGF sites. While comparisons between different BMMs should always be treated with caution, similar proportions indicating dietary contributions of ca. 50–60% plants were estimated from early Holocene HGF remains at Narva Joaorg I, Veibri, and Tamula in Estonia [167], the younger Mesolithic phase at Zamostje in north-western Russia [63] and the earliest phases of Zvejnieki in Latvia [152]. On the other hand, these results deviate substantially from ethnographic records describing the dietary importance of different food sources in HGF societies, in which plant contribution in the boreal zone and higher latitudes is generally described as not exceeding ca. 25% [201,202]. The accuracy of these figures for the gathering component in many (especially historical) ethnographic reports has been extensively questioned, due to the prevalence of issues such as observer or reporting bias (e.g., due to gendered working patterns and male ethnographers interacting primarily with men, or a focus on more prestigious activities) [203–205]. Yet, the fact remains that a large divergence of 50–60% estimated and 25% described plant consumption should have impacted daily life sufficiently to be notable to observers. This raises the question of, whether, in contrast to usual concerns [206], BMMs may not have overestimated the dietary contribution of plants (see also [102]).

Relatively low plant consumption observed in modern and historical boreal HGFs are argued to be partially caused by the overall low plant productivity and strong seasonal restriction in the boreal forest zone, compared to more temperate environments, leading to an increased reliance on animal, and especially aquatic, resources [201]. However, it is also true that plant resources are chronically underestimated and understudied in hunter-gatherer research [207–209] and while lower in productivity than other ecosystems, boreal forest environments do produce seasonally bountiful crops, especially of berries and mushrooms. While mushrooms are surprisingly often absent as a food source in ethnographic records, fungi are an important resource in historical foraging across northern Europe produce bumper crops, are easily preserved and contain relatively high amounts of protein (10–35% dry weight according to [210]). The latter has seen them previously suggested as potentially impacting stable isotope values of consumers, specifically as raising $\delta^{15}\text{N}$ values [211], though so far there has not been much success in verifying their consumption via stable isotope analysis in archaeological samples. CSIA fingerprinting [37] could potentially help to fill this gap, but the attempt made in this study remains

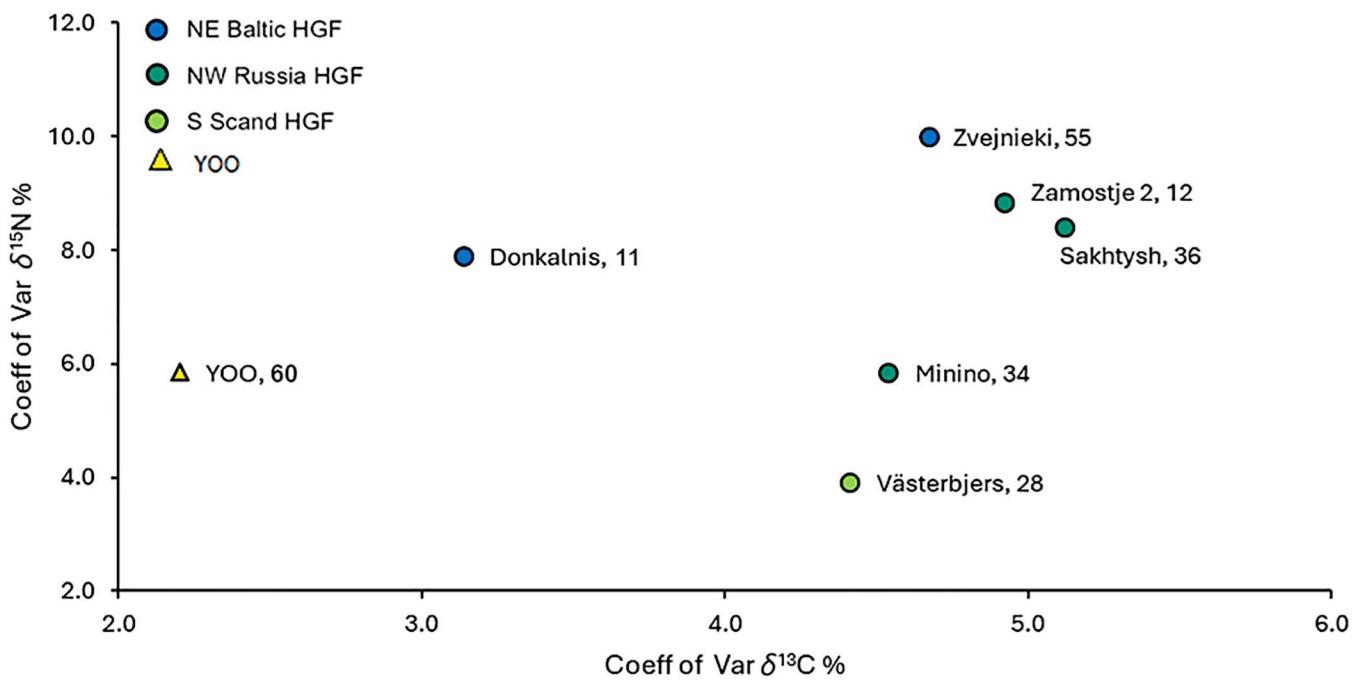
inconclusive due to an overlap of source values. Berries, however, can be easily harvested in large quantities and constitute a substantial part of wild foods consumed in most records for the boreal forest zone. Reportedly, 70–100 kg of lingon-berries (*Vaccinium vitis-idaea*) could be harvested within a day in good berry patches of Karelia in the middle of the 20th century [210,212] and modern Gwich'in women in northern North America reported harvesting ca. 12 L of different berries within a 3–4 hour harvesting event [213]. Wild tubers, tree cambium and some types of edible lichen may be less prominent but are often accessible in a wide seasonal window and have a long history of use, in addition to many other plants [209,210,214–219]. Tuber starch specifically has been previously identified in dental calculus at YOO [220]. Buckley and colleagues [221] further identified the widespread use of freshwater plants in the European Stone Age, many of which are also found in Karelia, e.g., waterlily (*Nymphaea* sp.) and bulrush (*Typha* sp.) [222], and could have contributed to diet. The YOO population apparently also exhibits a high incidence of caries (> 20%) (Zubova et al., in prep.) which has often been connected to carbohydrates in the diet, although that connection remains contested (for review see [223]).

Given these observations, it is not hard to imagine that plants did indeed play a larger role in prehistoric YOO subsistence than would be expected from most ethnographic accounts and a research tradition more focused on hunting and fishing. Nevertheless, we still consider it unlikely, that the plant component would be consistently underreported by more than half of total consumption, which would be necessary to account for values as high as the 57 ± 6% estimated for YOO. Even the highly effective Gwich'in berry harvesters are estimated at only providing ca. 5% of a household's overall traditional diet with game and fish being substantially more important [224].

One point supporting the possibility that our FRUITS models have overestimated plant consumption is the human $\delta^{13}\text{C}_{\text{EAA}}$ values, both in their substantial separation from the plant values in PCR and LDA (SI1, Fig S6 – 7 in [S1 File](#)), and their high similarity between humans and fish, specifically the zander. Even considering the fact that the modern fish are less than ideal proxies for prehistoric ones, it seems unlikely that an estimated 30–35% of protein originating from terrestrial sources, i.e., game and plants in the human diet (see [Table 2](#)) would not lead to a stronger divergence between human and fish $\delta^{13}\text{C}_{\text{EAA}}$ values.

Ultimately, while our models are internally coherent and their results align with findings from other sites under similar conditions, they remain constrained by the parameters provided. A key limitation, for instance, is the lack of local plant baseline values appropriate to the Mid-Holocene Lake Onega region, as well as the limited taxonomic range of sampled fauna. Nevertheless, the similarity of the few existing YOO faunal values (perch aside) to those from the wider region suggests they are likely representative. However, a major driver of the high plant estimates in the model is the prior restricting protein intake to 5–45% [101]. If this prior is disabled, the estimated plant contribution is almost halved (to ca. 30%) in favor of fish. Because the overall lipid content calculated for the freshwater fish and game source is low, and the protein content high, if the prior is engaged, the model compensates for these low energy sources by increasing the carbohydrate-rich plant portion. The health risks associated with high protein diets in areas with low plant productivity and low lipid availability – in its symptomatic form often referred to as ‘protein poisoning’ or ‘rabbit starvation’ – is a phenomenon known to the people of the boreal and subarctic regions [114], and both subsistence strategies that temporally exceed the ca. 45% physiological protein limit, as well as adaptive strategies to prevent this are common. Game and freshwater fish are often lean, but it is possible to target the fat that is present, a strategy pursued ethnographically by Cree hunters in a similar boreal environment to that of Karelia. This includes bone marrow and beaver tails, and an often high appreciation for these fatty parts [108]. If fat is included as a distinct food source in the FRUITS models, it too significantly affects the modelled dietary contributions from plants, fish and game and overall lowers the plant contribution (see SI2, Fig S9 in [S1 File](#)). Accordingly, one possible explanation for the discrepancy between the modelled results and ethnographic records could be a systematic underestimation of the lipid contribution to the diet. The lack of faunal preservation in the wider Onega area has so far not allowed the identification of specific fat acquiring strategies based on bone finds and modifications (e.g., high fragmentation typically associated with the extraction of bone grease [225]). The high prevalence of terrestrial fauna at YOO, the bone pendants produced from split long bones, which could be related to marrow extraction,

and the tail bones of a beaver recovered from one of the burials (burial 100) [52] (identification by K. Mannermaa), could be interpreted with their value as a fat resource in mind.


With the limited background data both in terms of isotopes and archaeological assemblages currently accessible to us, it is not possible to conclusively accept or reject the results of the dietary mixing models. Yet, while we do consider it possible that the plant dietary portion exceeded the often referenced 25% for boreal HGF, we would argue that the models likely underestimate the contribution of terrestrial game and fats to the YOO diet. A more realistic estimate might be the 30–40% plant diet suggested by Zvelebil for the European Mesolithic under consideration of lean freshwater fish, game and human physiological needs [209]. Bearing in mind the similarity of our models' proposed estimates to other previous BMM assessments for archeological north-eastern European inland HGF sites, a more systematic re-evaluation of the relationship between modelling results and ethnographic records and their implications should be conducted in the future.

Nevertheless, even with this conundrum maintained, all other evidence points to high-trophic-level aquatic resources as the key component of YOO diet, and an overall high-protein diet. This is attested by what seems to be a high diet-to-collagen fractionation in the human $\delta^{15}\text{N}$ values, which is linked to high protein content, with excessive (^{15}N -depleted) nitrogen being shed through enhanced urea excretion leading to ^{15}N -enriched tissue values [226–228]. The above supports applying a high TEF value (i.e., variant a, TEF = 5.5‰) for nitrogen in the dietary mixing model as the most appropriate choice. Similarly, while the connections between dietary changes and changes in individual amino acid isotope values are still poorly understood, experimental studies using animal models have linked varying $\delta^{13}\text{C}_{\text{Gly}}$ values with changes in macronutrient composition [229]. It has also been suggested that high $\delta^{13}\text{C}_{\text{Gly}}$ values may be connected to excess protein consumption and its synthesis into lipids, energy and glycine [23,36,40,230]. Changes in both proxies have further been linked to an overall imbalance in the ratio of protein to energy [22,231]. Accordingly, the extremely low $\delta^{13}\text{C}_{\text{Gly}}$ and relatively high $\delta^{13}\text{C}_{\text{Gly}}$ values we observed for the YOO individuals could tentatively be interpreted as being the result of a very high contribution of protein to the diet.

One site, one time, one diet?

One repeated observation for all the presented isotope proxies, which also translated into modelling results, is the relatively narrow range of values observed for the YOO humans. This implies limited variability in the diets of individuals, at least of isotopically distinct foods. While comparing isotopic variation between site is difficult both due to differences in baselines and high variation in numbers of recovered individuals, the values we observed at YOO showed intra-site consistency with a standard deviation of only 0.4‰ in $\delta^{13}\text{C}_{\text{col}}$ and 0.9‰ in $\delta^{15}\text{N}_{\text{col}}$ and coefficients of variation of 2.1% and 5.9% respectively (the two outlier values are retained to facilitate comparison with other sites, where outliers were similarly not removed; without the outlier SD for $\delta^{15}\text{N}_{\text{col}}$ is 0.8‰ and $\delta^{13}\text{C}_{\text{col}}$ 0.4‰). This is lower than seen in the nearest HGF sites with more than ten available measurements, even though, with the exception of Västerbjers on Gotland, Sweden, all are inland sites with a strong freshwater component (Fig 7). This low variation at YOO is surprising, as with 60 individuals the overall sample size is high and HGFs commonly tend to exhibit a higher baseline variability in dietary isotope values, compared to agropastoral societies, due to their generally more diverse resource base and the impact of mobility and seasonality. In the case of YOO though, the distribution forms a narrow cluster, whereas other sites in the wider region show a broader spread of values even with substantially smaller sample sizes.

In general, this likely indicates that the diet consumed by the people buried at YOO was overall very isotopically similar and there were no obvious subgroups that persistently engaged in different subsistence practices as observable in their isotope values. A potential reduction in the resource spectrum associated with the 8.2 ka event, driven by its colder and drier climate, could have contributed to this result. However, any direct impact on human diet due to the climatic downturn remains uncertain owing to a lack of data for human remains from pre- and post-8.2 ka event sites around the lake, and no evidence for related changes in material culture has been found so far [232]. Cultural practices, such as a high degree of food sharing, which may have been more strongly enacted in response to deteriorating environmental conditions, could

Fig 7. Coefficient of variation for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values measured from HGF individuals from circum-Baltic sites. Only sites with more than ten individuals analyzed are included (numbers refer to sample size). For Zvejnieki only HGF individuals are shown. For summary statistics see SI3, Table S7 in [S1 Data](#).

<https://doi.org/10.1371/journal.pone.0338887.g007>

similarly lead to reduced variability in isotope values. However, the most important factor influencing the observed homogeneity is likely the narrow temporal window of one to three centuries during which the cemetery was in use [1]. Most other northern HGF cemeteries were used over substantially longer periods compared to YOO, e.g., over a millennium at Zvejnieki, Zamostje and Minino [2,63,153]. Environmental changes affecting the local isoscape – e.g., changes in the distribution of the fauna, lake nitrogen cycle, or in subsistence practices over time – would have been substantially less likely to be impactful during the 100–300 years of activity at YOO.

The only exceptions to the observed homogeneity at the site are the two observed outliers: burial 59, with slightly lower $\delta^{13}\text{C}_{\text{col}}$ values, and burial 57, with substantially lower $\delta^{15}\text{N}_{\text{col}}$ values. Both cases were already identified as isotopically unusual previously [1] and belong to the most richly furnished burials at the site. In the case of burial 59 it needs to be noted that the measurements – while still done separately – were associated with the radiocarbon analysis as there was not enough bone collagen remaining for another run with appropriate calibration standards [1]. Considering the higher uncertainty of these measurements and the overall narrow range of $\delta^{13}\text{C}_{\text{col}}$ values at the site, there is a chance that the divergence between the values of 59 ($-21.5\text{\textperthousand}$) and the site mean (-20.0 ± 0.4), could be statistically significant but not interpretable in dietary or physiological terms. However, Schulting et al. [1] did also observe variation in freshwater reservoir effects between individuals and suggested they could be a result of acquiring fish from different parts of the large lake and its surrounding rivers. This could also explain the lower values of this individual. Support for this hypothesis may come from the individuals' strontium isotope values, which fall within the upper tail of the YOO distribution [66], possibly indicating a slightly divergent background from the majority of burials.

The $\delta^{15}\text{N}_{\text{col}}$ measurement for burial 57 ($12.5\text{\textperthousand}$ vs. the site mean of 16.1 ± 0.9) indicate their adult diet either accessed fish with very different $\delta^{15}\text{N}$ values than everyone else or, more likely, had a considerably more terrestrial (game) focused dietary intake than any other individual, ingesting ca. 50% less aquatic protein than the YOO average. The radiocarbon

analysis of this burial showed no ^{14}C offset compared to an analyzed elk tooth pendant from the same grave, supporting little impact from freshwater reservoirs on the carbon isotope signal [1]. Considering that this individual's mid-childhood isotope values ($\delta^{13}\text{C} = -20.1\text{‰}$ and $\delta^{15}\text{N} = 16.6\text{‰}$, Eckelmann et al. in prep.) conform to the YOO norm and their strontium isotope values similarly point to the areas commonly accessed by the YOO community in the north of Lake Onega [66], this could either indicate a dietary choice or time spent outside of the shared YOO subsistence culture in the decade before the individual's death. This burial is part of triple grave 55–57, one of the most richly furnished at the site [52], which also contained one of two identified individuals with non-local strontium values, further supporting the unique status of the individuals in this grave.

Conclusions

Within the archeological hunter-gatherer-fisher groups of the circum-Baltic, YOO forms a unique cluster distinguished by $\delta^{15}\text{N}$ values high enough to be comparable to Scandinavian coastal groups, combined with $\delta^{13}\text{C}$ values at the higher end of typical C3 terrestrial/freshwater environments. Assessing the various complementary isotope proxies, we argue that the distinct YOO isotopic signature was not derived from marine resource consumption and also reject the hypothesis of potential freshwater seal hunting at Lake Onega. Instead, we propose that the high human $\delta^{15}\text{N}$ values could have been acquired from resources within the Lake Onega system, with a high protein intake leading to a large diet-to-tissue offset. Overall, the multi-isotopic proxies confirm the dominance of protein from aquatic sources, in line with previous assessments. Attempts at modelling dietary proportions via the Bayesian mixing models FRUITS returned quantities of plant, game and fish consumption comparable to other inland HGF sites in north-eastern Europe, with surprisingly low contributions of terrestrial game and a surprisingly high importance of plant foods. Both findings contradict ethnographic data on boreal HGF subsistence, and we propose that the model may underestimate the consumption of animal-derived lipids, recommending further investigation of the discrepancy between archaeological dietary isotope mixing models and the ethnographic record. Lastly, we confirm that the inter-individual variation in isotopic values at YOO is very low in all measured proxies and no significant differences between individuals interred in different areas of the burial site or between sexes are observed. This relative homogeneity, compared with other sites, is likely a result of the cemetery's short duration of use, reflecting a specific set of cultural and economic practices, although the presence of two outliers also hints at diet choice or individual mobility. Other than the site's short period of use, a relative lack of mobility between YOO and other groups, as has been previously proposed, and common HGF practices of sustained within-group food sharing, could have contributed to the observed homogeneity. In the future more detailed observations of the dietary baseline at Lake Onega and its surrounding during, before and after the usage of the YOO burial site, other methods, e.g., dental calculus analyses, and a more extensive study of Lake Onega's paleo-ecosystem will provide further insights into past diets and lifeways at YOO.

Supporting information

S1 File. SI1–2 – Extended laboratory methods, results and figures.

(DOCX)

S1 Data. SI3 – Data.

(XLSX)

Acknowledgments

We thank the Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), RAS in St Petersburg, Russia for the permission to work with the materials from Yuzhniy Oleniy Ostrov, as well as Corrie Hyland, and the members of the Archaeology Department and Luomus Laboratory of Chronology of the University of Helsinki for their support and fruitful discussions. We also thank two anonymous reviewers for their valuable comments.

Author contributions

Conceptualization: Kristiina Mannermaa.

Data curation: Rebekka I. I. Eckelmann.

Formal analysis: Rebekka I. I. Eckelmann, Laura Arppe, Rick J. Schulting, Sambit Ghosh.

Funding acquisition: Kristiina Mannermaa.

Investigation: Rebekka I. I. Eckelmann, Laura Arppe, Sambit Ghosh, Jakub Trubač, Aneta Kuchařová.

Methodology: Rebekka I. I. Eckelmann.

Project administration: Kristiina Mannermaa.

Resources: Rick J. Schulting, Dmitry Gerasimov, Vyacheslav Moiseyev, Kristiina Mannermaa.

Supervision: Laura Arppe, Rick J. Schulting, Kristiina Mannermaa.

Validation: Matthew J. Wooller.

Visualization: Rebekka I. I. Eckelmann.

Writing – original draft: Rebekka I. I. Eckelmann, Laura Arppe, Sambit Ghosh, Jakub Trubač, Aneta Kuchařová.

Writing – review & editing: Rick J. Schulting, Matthew J. Wooller, Dmitry Gerasimov, Vyacheslav Moiseyev, Kristiina Mannermaa.

References

1. Schulting RJ, Mannermaa K, Tarasov PE, Higham T, Ramsey CB, Khartanovich V, et al. Radiocarbon dating from Yuzhniy Oleniy Ostrov cemetery reveals complex human responses to socio-ecological stress during the 8.2 ka cooling event. *Nat Ecol Evol*. 2022;6(2):155–62. <https://doi.org/10.1038/s41559-021-01628-4> PMID: 35087215
2. Wood RE, Higham TFG, Buzilhova A, Suvorov A, Heinemeier J, Olsen J. Freshwater radiocarbon reservoir effects at the burial ground of Minino, Northwest Russia. *Radiocarbon*. 2013;55(1):163–77. https://doi.org/10.2458/azu_js_rc.v55i1.16448
3. Vogel JC, Van Der Merwe NJ. Isotopic evidence for early maize cultivation in New York State. *Am antiq*. 1977;42(2):238–42. <https://doi.org/10.2307/278984>
4. Roberts P, Fernandes R, Craig OE, Larsen T, Lucquin A, Swift J, et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. *Rapid Commun Mass Spectrom*. 2018;32(5):361–72. <https://doi.org/10.1002/rcm.8044> PMID: 29235694
5. O'Leary MH. Carbon isotope fractionation in plants. *Phytochemistry*. 1981;20(4):553–67. [https://doi.org/10.1016/0031-9422\(81\)85134-5](https://doi.org/10.1016/0031-9422(81)85134-5)
6. Schoeninger MJ, DeNiro MJ, Tauber H. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. *Science*. 1983;220(4604):1381–3. <https://doi.org/10.1126/science.6344217> PMID: 6344217
7. Dufour E, Bocherens H, Mariotti A. Palaeodietary Implications of Isotopic Variability in Eurasian Lacustrine Fish. *Journal of Archaeological Science*. 1999;26(6):617–27. <https://doi.org/10.1006/jasc.1998.0379>
8. Katzenberg MA, Weber A. Stable Isotope Ecology and Palaeodiet in the Lake Baikal Region of Siberia. *J Archaeol Sci*. 1999;26:651–9.
9. Tieszen LL. Natural variations in the carbon isotope values of plants: Implications for archaeology, ecology, and paleoecology. *Journal of Archaeological Science*. 1991;18(3):227–48. [https://doi.org/10.1016/0305-4403\(91\)90063-u](https://doi.org/10.1016/0305-4403(91)90063-u)
10. Fry B. Stable Isotope Ecology. 2006.
11. Lee-Thorp JA. On isotopes and old bones*. *Archaeometry*. 2008;50(6):925–50. <https://doi.org/10.1111/j.1475-4754.2008.00441.x>
12. Deniro MJ, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. *Geochimica et Cosmochimica Acta*. 1981;45(3):341–51. [https://doi.org/10.1016/0016-7037\(81\)90244-1](https://doi.org/10.1016/0016-7037(81)90244-1)
13. Minagawa M, Wada E. Stepwise enrichment of ^{15}N along food chains: Further evidence and the relation between $\delta^{15}\text{N}$ and animal age. *Geochimica et Cosmochimica Acta*. 1984;48(5):1135–40. [https://doi.org/10.1016/0016-7037\(84\)90204-7](https://doi.org/10.1016/0016-7037(84)90204-7)
14. Balasse M, Tresset A. Early weaning of neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope Ratios. *Journal of Archaeological Science*. 2002;29(8):853–9. <https://doi.org/10.1006/jasc.2001.0725>
15. O'Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC. The diet-body offset in human nitrogen isotopic values: a controlled dietary study. *Am J Phys Anthropol*. 2012;149(3):426–34. <https://doi.org/10.1002/ajpa.22140> PMID: 23042579

16. Koyama T, Sudo M, Yoneyama T. Fractionation of Nitrogen Isotopes by Domestic Animals. *Nihon Chikusan Gakkaiho*. 1985;56(4):361–3. <https://doi.org/10.2508/chikusan.56.361>
17. Ambrose SH. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. *Journal of Archaeological Science*. 1991;18(3):293–317. [https://doi.org/10.1016/0305-4403\(91\)90067-y](https://doi.org/10.1016/0305-4403(91)90067-y)
18. Szpak P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. *Front Plant Sci*. 2014;5:288. <https://doi.org/10.3389/fpls.2014.00288> PMID: 25002865
19. Cheung C, Szpak P. Interpreting past human diets using stable isotope mixing models. *J Archaeol Method Theory*. 2020;28(4):1106–42. <https://doi.org/10.1007/s10816-020-09492-5>
20. Ishikawa NF. Use of compound-specific nitrogen isotope analysis of amino acids in trophic ecology: assumptions, applications, and implications. *Ecological Research*. 2018;33(5):825–37. <https://doi.org/10.1007/s11284-018-1616-y>
21. Fernandes R, Grootes P, Nadeau M-J, Nehlich O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). *Am J Phys Anthropol*. 2015;158(2):325–40. <https://doi.org/10.1002/ajpa.22788> PMID: 26175210
22. Jim S, Jones V, Ambrose SH, Evershed RP. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. *Br J Nutr*. 2006;95(6):1055–62. <https://doi.org/10.1079/bjn20051685> PMID: 16768826
23. Corr LT, Sealy JC, Horton MC, Evershed RP. A novel marine dietary indicator utilising compound-specific bone collagen amino acid $\delta^{13}\text{C}$ values of ancient humans. *Journal of Archaeological Science*. 2005;32(3):321–30. <https://doi.org/10.1016/j.jas.2004.10.002>
24. Ambrose SH, Norr L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. *Prehistoric Human Bone*. Springer Berlin Heidelberg. 1993. p. 1–37. https://doi.org/10.1007/978-3-662-02894-0_1
25. Sealy J, Armstrong R, Schrire C. Beyond lifetime averages: tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. *Antiquity*. 1995;69(263):290–300. <https://doi.org/10.1017/s0003598x00064693>
26. Froehle AW, Kellner CM, Schoeninger MJ. Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. *Am J Phys Anthropol*. 2012;147(3):352–69. <https://doi.org/10.1002/ajpa.21651> PMID: 22213005
27. Fernandes R, Nadeau M-J, Grootes PM. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. *Archaeol Anthropol Sci*. 2012;4(4):291–301. <https://doi.org/10.1007/s12520-012-0102-7>
28. Froehle AW, Kellner CM, Schoeninger MJ. FOCUS: effect of diet and protein source on carbon stable isotope ratios in collagen: follow up to. *Journal of Archaeological Science*. 2010;37(10):2662–70. <https://doi.org/10.1016/j.jas.2010.06.003>
29. Eerkens JW, Mackie M, Bartelink EJ. Brackish water foraging: isotopic landscapes and dietary reconstruction in Suisun Marsh, Central California. *Journal of Archaeological Science*. 2013;40(8):3270–81. <https://doi.org/10.1016/j.jas.2013.03.023>
30. Webb EC, Honch NV, Dunn PJH, Eriksson G, Lidén K, Evershed RP. Compound-specific amino acid isotopic proxies for detecting freshwater resource consumption. *Journal of Archaeological Science*. 2015;63:104–14. <https://doi.org/10.1016/j.jas.2015.08.001>
31. Ma Y, Grimes V, Van Biesen G, Shi L, Chen K, Mannino MA, et al. Aminoisoscapes and palaeodiet reconstruction: New perspectives on millet-based diets in China using amino acid $\delta^{13}\text{C}$ values. *Journal of Archaeological Science*. 2021;125:105289. <https://doi.org/10.1016/j.jas.2020.105289>
32. Martinoia V, Craig OE, Charlton S, Britton K, Sheridan A, Bones A, et al. High-resolution compound-specific $\delta^{15}\text{N}$ isotope dietary study of humans from the Scottish Mesolithic and Neolithic. *Archaeometry*. 2025;67(5):1309–26. <https://doi.org/10.1111/arcm.13089>
33. Etu-Sihvola H, Salo K, Naito YI, Kytökari M, Ohkouchi N, Oinonen M, et al. Isotopic insights into the early Medieval (600–1100 CE) diet in the Luis-tari cemetery at Eura, Finland. *Archaeol Anthropol Sci*. 2022;14(8). <https://doi.org/10.1007/s12520-022-01613-3>
34. Soncin S, Talbot HM, Fernandes R, Harris A, von Tersch M, Robson HK, et al. High-resolution dietary reconstruction of victims of the 79 CE Vesuvius eruption at Herculaneum by compound-specific isotope analysis. *Sci Adv*. 2021;7(35):eabg5791. <https://doi.org/10.1126/sciadv.abg5791> PMID: 34433561
35. Fontanals-Coll M, Soncin S, Talbot HM, von Tersch M, Gibaja JF, Colonese AC, et al. Stable isotope analyses of amino acids reveal the importance of aquatic resources to Mediterranean coastal hunter-gatherers. *Proc Biol Sci*. 2023;290(1993):20221330. <https://doi.org/10.1098/rspb.2022.1330> PMID: 36809804
36. Vane K, Cobain MRD, Larsen T. The power and pitfalls of amino acid carbon stable isotopes for tracing origin and use of basal resources in food webs. *Ecological Monographs*. 2025;95(1). <https://doi.org/10.1002/ecm.1647>
37. Larsen T, Taylor DL, Leigh MB, O'Brien DM. Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids. *Ecology*. 2009;90(12):3526–35. <https://doi.org/10.1890/08-1695.1> PMID: 20120819
38. Besser AC, Elliott Smith EA, Newsome SD. Assessing the potential of amino acid $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analysis in terrestrial and freshwater ecosystems. *Journal of Ecology*. 2022;110(4):935–50. <https://doi.org/10.1111/1365-2745.13853>
39. Halfman CM, Potter BA, McKinney HJ, Tsutaya T, Finney BP, Kemp BM, et al. Ancient Beringian paleodiets revealed through multiproxy stable isotope analyses. *Sci Adv*. 2020;6(36):eabc1968. <https://doi.org/10.1126/sciadv.abc1968> PMID: 32917621
40. Honch NV, McCullagh JSO, Hedges REM. Variation of bone collagen amino acid $\delta^{13}\text{C}$ values in archaeological humans and fauna with different dietary regimes: developing frameworks of dietary discrimination. *Am J Phys Anthropol*. 2012;148(4):495–511. <https://doi.org/10.1002/ajpa.22065> PMID: 22610935

41. O'Connell TC. "Trophic" and "source" amino acids in trophic estimation: a likely metabolic explanation. *Oecologia*. 2017;184(2):317–26. <https://doi.org/10.1007/s00442-017-3881-9> PMID: 28584941
42. Choy K, Yun HY, Fuller BT, Mannino MA. Enhanced dietary reconstruction of Korean prehistoric populations by combining $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ amino acids of bone collagen. *PLoS One*. 2024;19(3):e0300068. <https://doi.org/10.1371/journal.pone.0300068> PMID: 38536809
43. Chikaraishi Y, Ogawa NO, Ohkouchi N. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. *Earth, life, and isotopes*. 2010. p. 37–51.
44. McMahon KW, McCarthy MD. Embracing variability in amino acid $\delta^{15}\text{N}$ fractionation: mechanisms, implications, and applications for trophic ecology. *Ecosphere*. 2016;7(12). <https://doi.org/10.1002/ecs2.1511>
45. Nielsen JM, Popp BN, Winder M. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. *Oecologia*. 2015;178(3):631–42. <https://doi.org/10.1007/s00442-015-3305-7> PMID: 25843809
46. Ramirez MD, Besser AC, Newsome SD, McMahon KW. Meta-analysis of primary producer amino acid $\delta^{15}\text{N}$ values and their influence on trophic position estimation. *Methods Ecol Evol*. 2021;12(10):1750–67. <https://doi.org/10.1111/2041-210x.13678>
47. Chikaraishi Y, Steffan SA, Takano Y, Ohkouchi N. Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate. *Ecol Evol*. 2015;5(10):2048–59. <https://doi.org/10.1002/ece3.1491> PMID: 26045955
48. Hughes KL, Whiteman JP, Newsome SD. The relationship between dietary protein content, body condition, and $\Delta^{15}\text{N}$ in a mammalian omnivore. *Oecologia*. 2018;186(2):357–67. <https://doi.org/10.1007/s00442-017-4010-5> PMID: 29189940
49. Styring AK, Fraser RA, Arbogast R-M, Halstead P, Isaakidou V, Pearson JA, et al. Refining human palaeodietary reconstruction using amino acid $\delta^{15}\text{N}$ values of plants, animals and humans. *Journal of Archaeological Science*. 2015;53:504–15. <https://doi.org/10.1016/j.jas.2014.11.009>
50. Filatova VF. Мезолит бассейна Онежского озера (Mezolit bassejna Onežskogo ozera). 2004.
51. Natural Earth - Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales. [cited 24 Sep 2025]. Available: <https://www.naturalearthdata.com/>
52. Gurina NN. Оленистровский могильник. 1956.
53. Mannermaa K, Rainio R, Giryay EY, Gerasimov DV. Let's groove: attachment techniques of Eurasian elk (*Alces alces*) tooth pendants at the Late Mesolithic cemetery Yuzhniy Oleniy Ostrov (Lake Onega, Russia). *Archaeol Anthropol Sci*. 2021;13(1):3. <https://doi.org/10.1007/s12520-020-01237-5> PMID: 33343760
54. Karpin V. Landscape structure of Zaonezhye Peninsula. In: Lindholm T, Jakovlev J, Kravchenko A, editors. *Reports of the Finnish Environment Institute*. Helsinki: Finnish Environmental Institute; 2014. pp. 103–110.
55. Kondratyev KY, Filatov NN, Кондратьев КЯ, Филатов НН. Limnology and remote sensing: a contemporary approach. London: Springer. 1999.
56. Pushkarev NN. Рыболовство на Онежском озере. СПб: Тип. ВФ Киршбаума. 1900.
57. Filatov N, Rukhovets L. Ladoga Lake and Onego Lake (Lakes Ladozhskoye and Onezhskoye). *Encyclopedia of Earth Sciences Series*. Springer Netherlands. 2012. p. 429–32. https://doi.org/10.1007/978-1-4020-4410-6_197
58. Ravidonikas VI. Неолитический могильник на Южном Оленьем острове Онежского озера. Вступительная статья. In: Gurina NN, editor. МИА. 1956. p. 7–24.
59. Jacobs K. Returning to Oleni' ostrov: Social, Economic, and Skeletal Dimensions of a Boreal Forest Mesolithic Cemetery. *Journal of Anthropological Archaeology*. 1995;14(4):359–403. <https://doi.org/10.1006/jaar.1995.1018>
60. Dobrovolskaya MV, Mednikova MB. К реконструкции образа жизни и хозяйственной деятельности доисторических обитателей Онежского озера (по материалам Оленистровского могильника). *Кижский вестник*. 2007;11:258.
61. Simpson R, Cooper DML, Swanston T, Coulthard I, Varney TL. Historical overview and new directions in bioarchaeological trace element analysis: a review. *Archaeol Anthropol Sci*. 2021;13(1):24. <https://doi.org/10.1007/s12520-020-01262-4> PMID: 33520004
62. Vereshchagin HK, Nikolaev AI. Нерпа в Онежском озере. *Природа*. 1979;4:28–9.
63. Meadows J, Lozovskaya O, Bondetti M, Drucker DG, Moiseyev V. Human palaeodiet at Zamostje 2, central Russia: Results of radiocarbon and stable isotope analyses. *Quaternary International*. 2020;541:89–103. <https://doi.org/10.1016/j.quaint.2019.07.017>
64. Yoshii K, Melnik NG, Timoshkin OA, Bondarenko NA, Anoshko PN, Yoshioka T, et al. Stable isotope analyses of the pelagic food web in Lake Baikal. *Limnology & Oceanography*. 1999;44(3):502–11. <https://doi.org/10.4319/lo.1999.44.3.0502>
65. SYVÄRANTA J, HÄMÄLÄINEN H, JONES RI. Within-lake variability in carbon and nitrogen stable isotope signatures. *Freshwater Biology*. 2006;51(6):1090–102. <https://doi.org/10.1111/j.1365-2427.2006.01557.x>
66. Eckelmann R, Arppe L, Tarasov A, Pospieszczy L, Ackerman L, Heyd V, et al. Mobility and community at Mesolithic Lake Onega, Karelia, north-west Russia: insights from strontium isotope analysis. *Archaeol Anthropol Sci*. 2025;17(1):17. <https://doi.org/10.1007/s12520-024-02129-8> PMID: 39744507
67. Czermak A, Fernández-Crespo T, Ditchfield PW, Lee-Thorp JA. A guide for an anatomically sensitive dentine microsampling and age-alignment approach for human teeth isotopic sequences. *Am J Phys Anthropol*. 2020;173(4):776–83. <https://doi.org/10.1002/ajpa.24126> PMID: 32779777
68. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: The London atlas of human tooth development and eruption. *Am J Phys Anthropol*. 2010;142(3):481–90. <https://doi.org/10.1002/ajpa.21258> PMID: 20310064

69. Beaumont J, Gledhill A, Lee-Thorp J, Montgomery J. Childhood diet: a closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine*. *Archaeometry*. 2012;55(2):277–95. <https://doi.org/10.1111/j.1475-4754.2012.00682.x>
70. Hillson S. *Teeth*. Teeth, Second Edition. 2005; 1–373. <https://doi.org/10.1017/cbo9780511614477>
71. Hedges REM, Clement JG, Thomas CDL, O'Connell TC. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. *Am J Phys Anthropol*. 2007;133(2):808–16. <https://doi.org/10.1002/ajpa.20598> PMID: 17405135
72. O'Shea J, Zvelebil M. Oleneostrovski mogilnik: Reconstructing the social and economic organization of prehistoric foragers in Northern Russia. *Journal of Anthropological Archaeology*. 1984;3(1):1–40. [https://doi.org/10.1016/0278-4165\(84\)90011-4](https://doi.org/10.1016/0278-4165(84)90011-4)
73. Ventresca Miller A, Fernandes R, Janzen A, Nayak A, Swift J, Zech J, et al. Sampling and Pretreatment of Tooth Enamel Carbonate for Stable Carbon and Oxygen Isotope Analysis. *J Vis Exp*. 2018;(138):58002. <https://doi.org/10.3791/58002> PMID: 30176003
74. Snoeck C, Pellegrini M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition. *Chemical Geology*. 2015;417:394–403. <https://doi.org/10.1016/j.chemgeo.2015.10.004>
75. Revesz KM, Landwehr JM, Keybl JE. Measurement of delta¹³C and delta¹⁸O Isotopic Ratios of CaCO₃ by a Thermoquest Finnigan GasBench II Delta Plus XL Continous Flow Isotope Ratio Mass Spectrometer with Application to Devils Hole Core DH-11 Calcite. Open-File Report. US Geological Survey. 2001. <https://doi.org/10.3133/ofr01257>
76. Barst BD, Wooller MJ, O'Brien DM, Santa-Rios A, Basu N, Köck G, et al. Dried Blood Spot Sampling of Landlocked Arctic Char (*Salvelinus alpinus*) for Estimating Mercury Exposure and Stable Carbon Isotope Fingerprinting of Essential Amino Acids. *Environ Toxicol Chem*. 2020;39(4):893–903. <https://doi.org/10.1002/etc.4686> PMID: 32045959
77. Trifari MP, Wooller MJ, Rea L, O'Hara TM, Lescord GL, Parnell AC, et al. Compound-specific stable isotopes of amino acids reveal influences of trophic level and primary production sources on mercury concentrations in fishes from the Aleutian Islands, Alaska. *Sci Total Environ*. 2024;908:168242. <https://doi.org/10.1016/j.scitotenv.2023.168242> PMID: 37918743
78. O'Connell TC, Collins MJ. Comment on “Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen” [J. Hum. Evol. 93 (2016) 82–90]. *J Hum Evol*. 2018;117:53–5. <https://doi.org/10.1016/j.jhevol.2017.05.006> PMID: 28602430
79. Dombrosky J. A ~1000-year 13C Suess correction model for the study of past ecosystems. *The Holocene*. 2019;30(3):474–8. <https://doi.org/10.1177/0959683619887416>
80. Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI. A revised model for lipid-normalizing delta¹³C values from aquatic organisms, with implications for isotope mixing models. *Journal of Applied Ecology*. 2006;43(6):1213–22. <https://doi.org/10.1111/j.1365-2664.2006.01224.x>
81. Arsenault ER, Liew JH, Hopkins JR. Substrate composition influences amino acid carbon isotope profiles of fungi: implications for tracing fungal contributions to food webs. *Environ Microbiol*. 2022;24(4):2089–97. <https://doi.org/10.1111/1462-2920.15961> PMID: 35229441
82. Elliott Smith EA, Fox MD, Fogel ML, Newsome SD. Amino acid delta¹³C fingerprints of nearshore marine autotrophs are consistent across broad spatiotemporal scales: An intercontinental isotopic dataset and likely biochemical drivers. *Functional Ecology*. 2022;36(5):1191–203. <https://doi.org/10.1111/1365-2435.14017>
83. Fogel ML, Tuross N. Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. *Journal of Archaeological Science*. 2003;30(5):535–45. [https://doi.org/10.1016/s0305-4403\(02\)00199-1](https://doi.org/10.1016/s0305-4403(02)00199-1)
84. Gómez C, Larsen T, Popp B, Hobson KA, Cadena CD. Assessing seasonal changes in animal diets with stable-isotope analysis of amino acids: a migratory boreal songbird switches diet over its annual cycle. *Oecologia*. 2018;187(1):1–13. <https://doi.org/10.1007/s00442-018-4113-7> PMID: 29564539
85. Jarman CL, Larsen T, Hunt T, Lipo C, Solsvik R, Wallsgrove N, et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. *Am J Phys Anthropol*. 2017;164(2):343–61. <https://doi.org/10.1002/ajpa.23273> PMID: 28664976
86. Larsen T, Wooller MJ, Fogel ML, O'Brien DM. Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem?. *Rapid Commun Mass Spectrom*. 2012;26(13):1541–8. <https://doi.org/10.1002/rcm.6259> PMID: 22638971
87. Larsen T, Ventura M, Andersen N, O'Brien DM, Piatkowski U, McCarthy MD. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. *PLoS One*. 2013;8(9):e73441. <https://doi.org/10.1371/journal.pone.0073441> PMID: 24069196
88. Larsen T, Pollierer MM, Holmstrup M, D'Annibale A, Maraldo K, Andersen N, et al. Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: A case study from organic grasslands. *Soil Biology and Biochemistry*. 2016;99:21–7. <https://doi.org/10.1016/j.soilbio.2016.03.018>
89. Liew JH, Chua Kwj, Arsenault ER, Thorp JH, Suvarnaraksha A, Amirrudin A, et al. Quantifying terrestrial carbon in freshwater food webs using amino acid isotope analysis: Case study with an endemic cavefish. *Methods Ecol Evol*. 2019;10(9):1594–605. <https://doi.org/10.1111/2041-210x.13230>
90. Manlick PJ, Cook JA, Newsome SD. The coupling of green and brown food webs regulates trophic position in a montane mammal guild. *Ecology*. 2023;104(2):e3949. <https://doi.org/10.1002/ecy.3949> PMID: 36495220
91. Manlick PJ, Newsome SD. Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer. *Methods Ecol Evol*. 2022;13(8):1819–30. <https://doi.org/10.1111/2041-210x.13903>
92. McCarthy MD, Lehman J, Kudela R. Compound-specific amino acid delta¹⁵N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean. *Geochimica et Cosmochimica Acta*. 2013;103:104–20. <https://doi.org/10.1016/j.gca.2012.10.037>

93. Pollierer MM, Larsen T, Potapov A, Brückner A, Heethoff M, Dyckmans J, et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. *Ecological Monographs*. 2019;89(4). <https://doi.org/10.1002/ecm.1384>
94. Pollierer MM, Scheu S, Tiunov AV. Isotope analyses of amino acids in fungi and fungal feeding Diptera larvae allow differentiating ectomycorrhizal and saprotrophic fungi-based food chains. *Functional Ecology*. 2020;34(11):2375–88. <https://doi.org/10.1111/1365-2435.13654>
95. Scott JH, O'Brien DM, Emerson D, Sun H, McDonald GD, Salgado A, et al. An examination of the carbon isotope effects associated with amino acid biosynthesis. *Astrobiology*. 2006;6(6):867–80. <https://doi.org/10.1089/ast.2006.6.867> PMID: 17155886
96. Thorp JH, Bowes RE. Carbon sources in riverine food webs: new evidence from amino acid isotope techniques. *Ecosystems*. 2016;20(5):1029–41. <https://doi.org/10.1007/s10021-016-0091-y>
97. Chikaraishi Y, Steffan SA, Ogawa NO, Ishikawa NF, Sasaki Y, Tsuchiya M, et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. *Ecol Evol*. 2014;4(12):2423–49. <https://doi.org/10.1002/ece3.1103> PMID: 25360278
98. Naito YI, Honch NV, Chikaraishi Y, Ohkouchi N, Yoneda M. Quantitative evaluation of marine protein contribution in ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen: an investigation at the Kitakogane Jomon site. *Am J Phys Anthropol*. 2010;143(1):31–40. <https://doi.org/10.1002/ajpa.21287> PMID: 20333711
99. Itahashi Y, Ananyevskaya E, Yoneda M, Ventresca Miller AR, Nishiaki Y, Motuzaitė Matuzevičiūtė G. Dietary diversity of Bronze-Iron Age populations of Kazakhstan quantitatively estimated through the compound-specific nitrogen analysis of amino acids. *Journal of Archaeological Science: Reports*. 2020;33:102565. <https://doi.org/10.1016/j.jasrep.2020.102565>
100. Krajcarz MT, Krajcarz M, Kowalczyk R, Tung P, Bocherens H. New model for estimating trophic position in mammalian carnivores based on bone collagen individual amino acids nitrogen stable isotopes. *Palaeogeography, Palaeoclimatology, Palaeoecology*. 2025;674:113040. <https://doi.org/10.1016/j.palaeo.2025.113040>
101. Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. *PLoS One*. 2014;9(2):e87436. <https://doi.org/10.1371/journal.pone.0087436> PMID: 24551057
102. Pickard C, Bonsall C. Post-glacial hunter-gatherer subsistence patterns in Britain: dietary reconstruction using FRUITS. *Archaeol Anthropol Sci*. 2020;12(7). <https://doi.org/10.1007/s12520-020-01087-1>
103. Schulting RJ, MacDonald R, Richards MP. FRUITS of the sea? A cautionary tale regarding Bayesian modelling of palaeodiets using stable isotope data. *Quaternary International*. 2023;650:52–61. <https://doi.org/10.1016/j.quaint.2022.02.012>
104. Fernandes R, Nadeau MJ, Grootes PM. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. *Archaeol Anthropol Sci*. 2012;4:291–301. <https://doi.org/10.1007/S12520-012-0102-7>
105. Webb EC, Lewis J, Shain A, Kastrisianaki-Guyton E, Honch NV, Stewart A, et al. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. *STAR: Science & Technology of Archaeological Research*. 2017;3(1):28–44. <https://doi.org/10.1080/20548923.2016.1275477>
106. Scharlotta I, Bazaliskii VI, Kusaka S, Weber AW. Diet or mobility? Multi-isotopic (C, N, and Sr) dietary modeling at Shamanka II, Cis-Baikal, Siberia. *Archaeological Research in Asia*. 2022;29:100340. <https://doi.org/10.1016/j.ara.2021.100340>
107. US Department of Agriculture (USDA) ARSNDL. USDA National Nutrient Database for Standard Reference, Legacy. In: USDA [Internet]. Apr 2018 [cited 6 May 2025]. Available: <http://www.ars.usda.gov/nutrientdata>
108. Berkes F, Farkas CS. Eastern James Bay Cree Indians: Changing patterns of wild food use and nutrition. *Ecology of Food and Nutrition*. 1978;7(3):155–72. <https://doi.org/10.1080/03670244.1978.9990526>
109. Holand Ø. Seasonal variation in body composition of European roe deer. *Can J Zool*. 1992;70(3):502–4. <https://doi.org/10.1139/z92-075>
110. Hundertmark KJ, Schwartz CC. Predicting body mass of Alaskan moose (*Alces alces gigas*) using body measurements and condition assessment. *Alces*. 1998;34:83–9.
111. Huot J. Body composition of the George River caribou (*Rangifer tarandus caribou*) in fall and late winter. *Can J Zool*. 1989;67(1):103–7. <https://doi.org/10.1139/z89-016>
112. Thomas VG. Similar Winter Energy Strategies of Grouse, Hares and Rabbits in Northern Biomes. *Oikos*. 1987;50(2):206. <https://doi.org/10.2307/3566002>
113. Soprovich DW. Seasonal patterns of body composition and gut morphology of beaver (*Castor canadensis*). *University of Manitoba*. 1994.
114. Noli D, Avery G. Protein poisoning and coastal subsistence. *Journal of Archaeological Science*. 1988;15(4):395–401. [https://doi.org/10.1016/0305-4403\(88\)90037-4](https://doi.org/10.1016/0305-4403(88)90037-4)
115. DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. *Nature*. 1985;317(6040):806–9. <https://doi.org/10.1038/317806a0>
116. Guiry EJ, Szpak P. Quality control for modern bone collagen stable carbon and nitrogen isotope measurements. *Methods Ecol Evol*. 2020;11(9):1049–60. <https://doi.org/10.1111/2041-210x.13433>
117. Marchenko ZV, Svyatko SV, Grishin AE. $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ isotope analysis of modern freshwater fish in the south of Western Siberia and its potential for palaeoreconstructions. *Quaternary International*. 2021;598:97–109. <https://doi.org/10.1016/j.quaint.2021.06.006>
118. Salonen JK, Hiltunen M, Figueiredo K, Paavilainen P, Sinisalo T, Strandberg U, et al. Population structure, life cycle, and trophic niche of the glacial relict amphipod, *Gammaracanthus lacustris*, in a large boreal lake. *Freshwater Biology*. 2019;64(12):2176–88. <https://doi.org/10.1111/fwb.13404>

119. Strandberg U, Hiltunen M, Jelkänen E, Taipale SJ, Kainz MJ, Brett MT, et al. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes. *Sci Total Environ.* 2015;536:858–65. <https://doi.org/10.1016/j.scitotenv.2015.07.010> PMID: 26282609
120. Auttila M, Sinisalo T, Valtonen M, Niemi M, Viljanen M, Kurkilahti M, et al. Diet composition and seasonal feeding patterns of a freshwater ringed seal (*Pusa hispida saimensis*). *Marine Mammal Science.* 2014;31(1):45–65. <https://doi.org/10.1111/mms.12133>
121. Berezina NA, Panov VE. Establishment of the Baikalian amphipod *Gmelinoides fasciatus* (Amphipoda, Crustacea) in Lake Onega. *Entomol Rev.* 2003;2:171.
122. Georgiev AP, Sidorova AI, Shustov YuA, Lesonen MA. The Baikal Amphipod *Gmelinoides fasciatus* (Amphipoda, Crustacea) in the Diet of Perch in the Littoral Zone of Lake Onega (Age and Seasonal Characteristics). *Biol Bull Russ Acad Sci.* 2021;48(S1):S24–32. <https://doi.org/10.1134/s1062359021140089>
123. Losey RJ, Fleming LS, Nomokonova T, Gusev AV, Fedorova NV, Garvie-Lok S, et al. Human and dog consumption of fish on the lower Ob river of Siberia: evidence for a major freshwater reservoir effect at the Ust'-Polui Site. *Radiocarbon.* 2017;60(1):239–60. <https://doi.org/10.1017/rdc.2017.77>
124. Fjellström M, Eriksson G, Angerbjörn A, Lidén K. Approaching historic reindeer herding in northern Sweden by stable isotope analysis. *Journal of Nordic Archaeological Science.* 2020;19:63–75.
125. Salmi A-K, van den Berg M, Niinimäki S, Pelletier M. Earliest archaeological evidence for domesticated reindeer economy among the Sámi of Northeastern Fennoscandia AD 1300 onwards. *Journal of Anthropological Archaeology.* 2021;62:101303. <https://doi.org/10.1016/j.jaa.2021.101303>
126. Salmi A-K, Fjellström M, Äikäs T, Spangen M, Núñez M, Lidén K. Zooarchaeological and stable isotope evidence of Sámi reindeer offerings. *Journal of Archaeological Science: Reports.* 2020;29:102129. <https://doi.org/10.1016/j.jasrep.2019.102129>
127. Hoppe KA, Koch PL, Furutani TT. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. *Intl J of Osteoarchaeology.* 2003;13(1–2):20–8. <https://doi.org/10.1002/oa.663>
128. Lee-Thorp JA, van der Merwe NJ. Aspects of the chemistry of modern and fossil biological apatites. *Journal of Archaeological Science.* 1991;18(3):343–54. [https://doi.org/10.1016/0305-4403\(91\)90070-6](https://doi.org/10.1016/0305-4403(91)90070-6)
129. Jim S, Ambrose SH, Evershed RP. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. *Geochimica et Cosmochimica Acta.* 2004;68(1):61–72. [https://doi.org/10.1016/s0016-7037\(03\)00216-3](https://doi.org/10.1016/s0016-7037(03)00216-3)
130. Hedges REM. On bone collagen—apatite-carbonate isotopic relationships. *Intl J of Osteoarchaeology.* 2003;13(1–2):66–79. <https://doi.org/10.1002/oa.660>
131. Harrison RG, Katzenberg MA. Paleodiet studies using stable carbon isotopes from bone apatite and collagen: examples from Southern Ontario and San Nicolas Island, California. *Journal of Anthropological Archaeology.* 2003;22(3):227–44. [https://doi.org/10.1016/s0278-4165\(03\)00037-0](https://doi.org/10.1016/s0278-4165(03)00037-0)
132. Martinoia V, Karavanić I, Kubiak C, MacDonald R, Richards MP. High-resolution dietary analysis of the Late Upper Paleolithic Šandalja II (Croatia) humans confirms an aquatic food diet. *Journal of Archaeological Science: Reports.* 2024;53:104364. <https://doi.org/10.1016/j.jasrep.2023.104364>
133. Etu-Sihvola H, Salo K, Naito YI, Kytökari M, Ohkouchi N, Oinonen M, et al. Isotopic insights into the early Medieval (600–1100 CE) diet in the Luistari cemetery at Eura, Finland. *Archaeol Anthropol Sci.* 2022;14(8). <https://doi.org/10.1007/s12520-022-01613-3>
134. Bowen GJ, West JB. Isoscapes for Terrestrial Migration Research. *Tracking Animal Migration with Stable Isotopes.* Elsevier. 2019. p. 53–84. <https://doi.org/10.1016/b978-0-12-814723-8.00003-9>
135. Körner C, Farquhar GD, Wong SC. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. *Oecologia.* 1991;88(1):30–40. <https://doi.org/10.1007/BF00328400> PMID: 28312728
136. Antanaitis-Jacobs I, Ogrinc N. Chemical analysis of bone: stable isotope evidence of the diet of Neolithic and Bronze Age people in Lithuania. 2000 [cited 5 Jul 2025]. Available: <https://www.lituanistika.lt/content/41402>
137. Antanaitis-Jacobs I, Richards M, Daugnora L, Jankauskas R, Ogrinc N. Diet in early Lithuanian prehistory and the new stable isotope evidence. *Archaeologia Baltica.* 2009;12:12–30.
138. Bérziņš V, Brinker U, Klein C, Lübke H, Meadows J, Rudzīte M, et al. New research at Rīnukalns, a Neolithic freshwater shell midden in northern Latvia. *Antiquity.* 2014;88(341):715–32. <https://doi.org/10.1017/s0003598x0005064x>
139. Bonsall C, Lennon R, McSweeney K, Stewart C, Harkness D, Boronean V, et al. Mesolithic and Early Neolithic in the Iron Gates: A Paiaeodietary Perspective. *Journal of European Archaeology.* 1997;5(1):50–92. <https://doi.org/10.1179/096576697800703575>
140. Bonsall C, Cook G, Pickard C, McSweeney K, Sayle K, Bartosiewicz L, et al. Food for Thought: Re-Assessing Mesolithic Diets in the Iron Gates. *Radiocarbon.* 2015;57(4):689–99. https://doi.org/10.2458/azu_rc.57.18440
141. Borić D, Price TD. Strontium isotopes document greater human mobility at the start of the Balkan Neolithic. *Proc Natl Acad Sci U S A.* 2013;110(9):3298–303. <https://doi.org/10.1073/pnas.1211474110> PMID: 23401535
142. Borić D, Grupe G, Peters J, Mikić Ž. Is the Mesolithic–Neolithic Subsistence Dichotomy Real? New Stable Isotope Evidence from the Danube Gorges. *Eur j archaeol.* 2004;7(3):221–48. <https://doi.org/10.1177/1461957104056500>
143. Brinker U, Bérziņš V, Cerina A, Gerhards G, Kalnīņš M, Krause-Kyora B, et al. Two burials in a unique freshwater shell midden: insights into transformations of Stone Age hunter-fisher daily life in Latvia. *Archaeol Anthropol Sci.* 2020;12(5). <https://doi.org/10.1007/s12520-020-01049-7>

144. De Becdelièvre CA. Ecology and ethology of human populations living in the Danube Gorges ca. 9500–5500 BC: bioarchaeological perspectives on dietary behaviors and adaptive strategies during the mesolithic and neolithic transformations. Универзитет у Београду. 2020 [cited 20 Dec 2022]. Available: <https://nardus.mpn.gov.rs/handle/123456789/17795>
145. Eriksson G, Lidén K. Skateholm revisited: New stable isotope evidence on humans. 2003 [cited 5 Jul 2025]. Available: <https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-22600>
146. Eriksson G. Stable isotope analysis of human and faunal remains from Zvejnieki. Larsson L, Zagorska I, editors. Back to the origin New research in the Mesolithic-Neolithic Zvejnieki cemetery and environment, Northern Latvia. 2006; 183–215. Available: <https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-32089>
147. Fischer A, Olsen J, Richards M, Heinemeier J, Sveinbjörnsdóttir ÁE, Bennike P. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. *Journal of Archaeological Science*. 2007;34(12):2125–50. <https://doi.org/10.1016/j.jas.2007.02.028>
148. Gron KJ, Robson HK, Stewart NA, Rowley-Conwy P, Jensen OL, Montgomery J. Sex Determination and Isotopic Analysis of the Nivåfjord Mesolithic Burials, Zealand, Denmark. *DJA*. 2023;12(1):1–16. <https://doi.org/10.7146/dja.v12i1.136939>
149. Kabaciński J. The evidence for fishing in the Late Palaeolithic and Mesolithic of 1359 Northwestern Poland. In: François D, editor. *Les sociétés humaines face aux changements climatiques/ Human societies facing climate change*. Archaeopress Archaeology; 2024. <https://doi.org/10.32028/9781803278919>
150. Kotula A, Terberger T, Jungklaus B, Piezonka H, Schenk T, Schopper F. The Site Groß Fredenwalde, NE-Germany, and the Early Cemeteries of Northern Europe. *Open Archaeology*. 2023;9(1). <https://doi.org/10.1515/opar-2022-0348>
151. Lidén K, Eriksson G, Nordqvist B, Götherström A, Bendixen E. “The wet and the wild followed by the dry and the tame” – or did they occur at the same time? Diet in Mesolithic – Neolithic southern Sweden. *Antiquity*. 2004;78(299):23–33. <https://doi.org/10.1017/s0003598x00092899>
152. Meadows J, Bērziņš V, Legzdina D, Lübke H, Schmölcke U, Zagorska I, et al. Stone-age subsistence strategies at Lake Burtnieks, Latvia. *Journal of Archaeological Science: Reports*. 2018;17:992–1006. <https://doi.org/10.1016/j.jasrep.2016.03.042>
153. Meadows J, Bērziņš V, Brinker U, Lübke H, Schmölcke U, Staude A, et al. Dietary freshwater reservoir effects and the radiocarbon ages of prehistoric human bones from Zvejnieki, Latvia. *Journal of Archaeological Science: Reports*. 2016;6:678–89. <https://doi.org/10.1016/j.jasrep.2015.10.024>
154. Bondetti M, Scott S, Lucquin A, Meadows J, Lozovskaya O, Dolbunova E, et al. Fruits, fish and the introduction of pottery in the Eastern European plain: Lipid residue analysis of ceramic vessels from Zamostje 2. *Quaternary International*. 2020;541:104–14. <https://doi.org/10.1016/j.quaint.2019.05.008>
155. Meadows J, Robson HK, Groß D, Hegge C, Lübke H, Schmölcke U, et al. How Fishy was the Inland Mesolithic? New Data from Friesack, Brandenburg, Germany. *Radiocarbon*. 2018;60(5):1621–36. <https://doi.org/10.1017/rdc.2018.69>
156. Meadows J, Khramtsova A, Piezonka H, Krause-Kyora B, da Silva N, Kostyleva E, et al. Dietary 14C reservoir effects and the chronology of prehistoric burials at Sakhtysh, central European Russia. *Sci Adv*. 2024;10(8):eadk2904. <https://doi.org/10.1126/sciadv.adk2904> PMID: 38381818
157. Nehlich O, Borić D, Stefanović S, Richards MP. Sulphur isotope evidence for freshwater fish consumption: a case study from the Danube Gorges, SE Europe. *Journal of Archaeological Science*. 2010;37(5):1131–9. <https://doi.org/10.1016/j.jas.2009.12.013>
158. Piezonka H, Kostyleva E, Zhilin MG, Dobrovolskaya M, Terberger T. Flesh or fish? First results of archaeometric research of prehistoric burials from Sakhtysh IIa, Upper Volga region, Russia. *Doc praeh*. 2013;40:57–73. <https://doi.org/10.4312/dp.40.6>
159. Piličiauskas G, Jankauskas R, Piličiauskienė G, Dupras T. Reconstructing Subneolithic and Neolithic diets of the inhabitants of the SE Baltic coast (3100–2500 cal BC) using stable isotope analysis. *Archaeol Anthropol Sci*. 2017;9: 1421–37. <https://doi.org/10.1007/s12520-017-0463-z>
160. Piotrowska N, Tomczyk J, Pawełczyk S, Stanaszek ŁM. Radiocarbon AMS Dating of Mesolithic Human Remains from Poland. *Radiocarbon*. 2019;61(4):991–1007. <https://doi.org/10.1017/rdc.2018.66>
161. Robson HK, Gron KJ, Gröcke DR, Piličiauskienė G, Piličiauskas G. Carbon, nitrogen and sulphur isotope data of archaeological fish and mammal bone collagen from Lithuania. *Data Brief*. 2023;48:109065. <https://doi.org/10.1016/j.dib.2023.109065> PMID: 37006399
162. Robson HK, Skipitytė R, Piličiauskienė G, Lucquin A, Heron C, Craig OE, et al. Diet, cuisine and consumption practices of the first farmers in the southeastern Baltic. *Archaeol Anthropol Sci*. 2019;11(8):4011–24. <https://doi.org/10.1007/s12520-019-00804-9> PMID: 31565086
163. Henderson RC, Zariņa G, Czermak A, Schulting RJ, Henderson PA, Legzdīņa D, et al. Life histories at stone age Zvejnieki based on stable isotope profiles of tooth dentine. *Journal of Archaeological Science: Reports*. 2022;44:103496. <https://doi.org/10.1016/j.jasrep.2022.103496>
164. Terberger T, Burger J, Lüth F, Müller J, Piezonka H. Step by step – The neolithisation of Northern Central Europe in the light of stable isotope analyses. *Journal of Archaeological Science*. 2018;99:66–86. <https://doi.org/10.1016/j.jas.2018.08.004>
165. Terberger T, Gramsch B, Heinemeier J. The underestimated fish? - Early Mesolithic human remains from Northern Germany. Groningen University Library. 2012. p. 343–54.
166. Terberger T, Kotula A, Lorenz S, Schult M, Burger J, Jungklaus B. Standing upright to all eternity – The Mesolithic burial site at Groß Fredenwalde, Brandenburg (NE Germany). *Quartar*. 2015;62:133–54. https://doi.org/10.7485/QU62_6
167. Tõrv M. Persistent practices. A multi-disciplinary study of hunter-gatherer mortuary remains from c. 6500–2600 cal. BC, Estonia. University of Tartu. 2016. <https://dspace.ut.ee/handle/10062/51352?show=full>

168. Tõrv M, Eriksson G. Buried at home? Stable isotope analysis of the late hunter-gatherer cemetery population at Tamula, SE Estonia. *EJA*. 2023;27(2):98–128. <https://doi.org/10.3176/arch.2023.2.02>
169. Webb EC, Honch NV, Dunn PJH, Linderholm A, Eriksson G, Lidén K, et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. *Archaeol Anthropol Sci*. 2016;10(1):1–18. <https://doi.org/10.1007/s12520-015-0309-5>
170. Zagorska I, Meadows J, Iršėnas M. New Dates from Zvejnieki Burial Ground Graves with Anthropomorphic and Zoomorphic Figurines. *Archaeologia Baltica*. 2018;25:100–24. <https://doi.org/10.15181/ab.v25i0.1833>
171. Zivaljevic I. Big fish hunting: Interpretation of stone clubs from Lepenski Vir. *Proceedings of the . of Nature and Spirituality in Stone*. 2001.
172. Srejović D. Europe's first monumental sculpture: New discoveries at Lepenski Vir. London: Thames and Hudson. 1972.
173. Borić D. Body Metamorphosis and Animality: Volatile Bodies and Boulder Artworks from Lepenski Vir. *CAJ*. 2005;15(1):35–69. <https://doi.org/10.1017/s095977430500003x>
174. Ozerov MYu, Veselov AJe, Lumme J, Primmer CR. Genetic structure of freshwater Atlantic salmon (*Salmo salar* L.) populations from the lakes Onega and Ladoga of northwest Russia and implications for conservation. *Conserv Genet*. 2010;11(5):1711–24. <https://doi.org/10.1007/s10592-010-0064-1>
175. Luukkanen H, Fitzhugh WW. The Bark Canoes and Skin Boats of Northern Eurasia. Smithsonian Institution. 2020.
176. Pitulko VV, Kuzmin YV, Glascock MD, Pavlova EYu, Grebennikov AV. 'They came from the ends of the earth': long-distance exchange of obsidian in the High Arctic during the Early Holocene. *Antiquity*. 2019;93(367):28–44. <https://doi.org/10.15184/acy.2019.2>
177. Kelly RL. The lifeways of hunter-gatherers: The foraging spectrum. *The Lifeways of Hunter-Gatherers: The Foraging Spectrum*. 2010; 1–362. <https://doi.org/10.1017/CBO9781139176132>
178. Prevett JP, Lumsden HG, Johnson FC. Waterfowl kill by Cree hunters of the Hudson Bay Lowland, Ontario. *Arctic*. 1985;:185–92.
179. Andersen SH. Aggersund. En ertebølleboplads ved Limfjorden. *Kuml*. 1978;27:7–56.
180. Arnaud JEM. Bird-foraging patterns in the Mesolithic. In: Bonsall C, editor. *The Mesolithic in Europe: Papers presented at the Third International Symposium Edinburgh 1985*. 1990. p. 60–72.
181. Kellner CM, Schoeninger MJ. A simple carbon isotope model for reconstructing prehistoric human diet. *Am J Phys Anthropol*. 2007;133(4):1112–27. <https://doi.org/10.1002/ajpa.20618> PMID: 17530667
182. Zhu M, Sealy J. Multi-tissue stable carbon and nitrogen isotope models for dietary reconstruction: Evaluation using a southern African farming population. *Am J Phys Anthropol*. 2019;168(1):145–53. <https://doi.org/10.1002/ajpa.23731> PMID: 30379328
183. Salesse K. Archéo-biogéochimie isotopique, reconstitutions des régimes alimentaires et des schémas de mobilité, et interactions bio-culturelles. Les sépultures plurielles de la région X de la catacombe des Saints Pierre-et-Marcellin (Rome, Ier-IIe s. ap. J.-C. Dissertation, Université de Bordeaux. 2015. Available: <https://researchportal.vub.be/en/publications/arch%C3%A9o-biog%C3%A9ochimie-isotopique-reconstitutions-des-r%C3%A9gimes-alimentaires>
184. France CAM, Owsley DW. Stable Carbon and Oxygen Isotope Spacing Between Bone and Tooth Collagen and Hydroxyapatite in Human Archaeological Remains. *Int J Osteoarchaeol*. 2013;25(3):299–312. <https://doi.org/10.1002/oa.2300>
185. Loftus E, Sealy J. Technical note: interpreting stable carbon isotopes in human tooth enamel: an examination of tissue spacings from South Africa. *Am J Phys Anthropol*. 2012;147(3):499–507. <https://doi.org/10.1002/ajpa.22012> PMID: 22270879
186. Chinique de Armas Y, Pestle W. Assessing the association between subsistence strategies and the timing of weaning among indigenous archaeological populations of the Caribbean. *Intl J of Osteoarchaeology*. 2018;28(5):492–509. <https://doi.org/10.1002/oa.2695>
187. Brozou A, Fuller BT, Grimes V, Van Biesen G, Ma Y, Boldsen JL, et al. Aquatic resource consumption at the Odense leprosarium: Advancing the limits of palaeodiet reconstruction with amino acid $\delta^{13}\text{C}$ measurements. *Journal of Archaeological Science*. 2022;141:105578. <https://doi.org/10.1016/j.jas.2022.105578>
188. Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. *Ecology*. 2002;83(3):703–18. [https://doi.org/10.1890/0012-9658\(2002\)083\[0703:usitp\]2.0.co;2](https://doi.org/10.1890/0012-9658(2002)083[0703:usitp]2.0.co;2)
189. Melezik VA, Fallick AE, Brasier AT, Lepland A. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi-Jatuli to Shunga events. *Earth-Science Reviews*. 2015;147:65–98. <https://doi.org/10.1016/j.earscirev.2015.05.005>
190. Guiry E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: implications for the study of past subsistence and environmental change. *Front Ecol Evol*. 2019;7:477700. <https://doi.org/10.3389/FEVO.2019.00313>
191. Seitsonen S. Osteological material from the Stone Age and Early Metal Period sites in Karelian Isthmus and Ladoga Karelia. *Iskos*. 2008;16:266–83.
192. Seitsonen O, Seitsonen S, Broderick LG, Gerasimov DV. Burnt bones by Europe's largest lake: Zooarchaeology of the Stone Age and Early Metal period hunter-gatherers at Lake Ladoga, NW Russia. *Journal of Archaeological Science: Reports*. 2017;11:131–46. <https://doi.org/10.1016/j.jasrep.2016.11.034>
193. Ulichev VI, Ludikova AVAV. Почему кольчатая нерпа (*Pusa hispida* s.) не стала реликтом Онежского озера? Палеогеографический анализ [Why the ringed seal (*Pusa hispida* s.) did not become a relict of Lake Onega? Palaeogeographical analysis]. *География: развитие науки и образования Geography: Development of Science and Education* I. 2017.

194. Savvateev YuA, Veresčagin NK. Охотниче-промышленные животные и каменный инвентарь населения Карелии и южной части Кольского полуострова эпохи неолита и раннего металла. Мезолитические памятники Карелии. Мезолитические памятники Карелии. 1978; 181–215.
195. Askeyev IV, Yu. Tarasov A, Askeyev AO, Askeyev OV, Shaymuratova DN, Monakhov SP. Highly productive fishing in Lake Onega? New data on the subsistence basis of the Late Stone age populations in Russian Karelia. *Journal of Archaeological Science: Reports*. 2023;47:103771. <https://doi.org/10.1016/j.jasrep.2022.103771>
196. Drucker DG, Naito YI, Coromina N, Rufí I, Soler N, Soler J. Stable isotope evidence of human diet in Mediterranean context during the Last Glacial Maximum. *J Hum Evol.* 2021;154:102967. <https://doi.org/10.1016/j.jhevol.2021.102967> PMID: 33751963
197. Naito YI, Chikaraishi Y, Ohkouchi N, Drucker DG, Bocherens H. Nitrogen isotopic composition of collagen amino acids as an indicator of aquatic resource consumption: insights from Mesolithic and Epipalaeolithic archaeological sites in France. *World Archaeology*. 2013;45(3):338–59. <https://doi.org/10.1080/00438243.2013.820650>
198. Reitsema LJ. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition. *Am J Hum Biol.* 2013;25(4):445–56. <https://doi.org/10.1002/ajhb.22398> PMID: 23784719
199. Boethius A. Something rotten in Scandinavia: The world's earliest evidence of fermentation. *Journal of Archaeological Science*. 2016;66:169–80. <https://doi.org/10.1016/j.jas.2016.01.008>
200. Doering B. Effects of fermentation on the carbon and nitrogen isotopes of Chinook salmon. *Journal of Archaeological Science: Reports*. 2019;23:626–33. <https://doi.org/10.1016/j.jasrep.2018.11.035>
201. Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. *Am J Clin Nutr.* 2000;71(3):682–92. <https://doi.org/10.1093/ajcn/71.3.682> PMID: 10702160
202. Ströhle A, Hahn A. Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis. *Nutr Res.* 2011;31(6):429–35. <https://doi.org/10.1016/j.nutres.2011.05.003> PMID: 21745624
203. Watts J, Jackson JC, Arnison C, Hamerslag EM, Shaver JH, Purzycki BG. Building quantitative cross-cultural databases from ethnographic records: promise, problems and principles. *Cross-Cultural Research*. 2021;56(1):62–94. <https://doi.org/10.1177/10693971211065720>
204. Divale WT. Female status and cultural evolution: a study in Ethnographer Bias. *Behavior Science Research*. 1976;11(3):169–211. <https://doi.org/10.1177/106939717601100302>
205. Hill K, Kintigh K. Can Anthropologists Distinguish Good and Poor Hunters? Implications for Hunting Hypotheses, Sharing Conventions, and Cultural Transmission. *Current Anthropology*. 2009;50(3):369–78. <https://doi.org/10.1086/597981>
206. Cheung C, Szpak P. Interpreting Past Human Diets Using Stable Isotope Mixing Models—Best Practices for Data Acquisition. *J Archaeol Method Theory*. 2021;29(1):138–61. <https://doi.org/10.1007/s10816-021-09514-w>
207. Hather JG, Mason SLR. Introduction: some issues in the archaeobotany of hunter-gatherers. 2016. p. 1–14. <https://doi.org/10.4324/9781315427171-2>
208. Termansen SS, Astrup PM, Out WA, Johannsen NN. Rebooting the Study of Forager Plant Economies: The Potential of Submerged Archaeological Sites. *Environmental Archaeology*. 2024;:1–12. <https://doi.org/10.1080/14614103.2024.2393015>
209. Zvelebil M. Plant Use in the Mesolithic and its Role in the Transition to Farming. *Proc Prehist Soc.* 1994;60(1):35–74. <https://doi.org/10.1017/s0079497x00003388>
210. Núñez M. On the food resources available to man in Stone Age Finland. 1990.
211. O'Regan HJ, Lamb AL, Wilkinson DM. The missing mushrooms: Searching for fungi in ancient human dietary analysis. *Journal of Archaeological Science*. 2016;75:139–43. <https://doi.org/10.1016/j.jas.2016.09.009>
212. Rautavaara T. Marjat ja sienet. Oma Maa. 1959;12:134–46.
213. Parlee B, Berkes F, Gwich'in T. Health of the Land, Health of the People: A Case Study on Gwich'in Berry Harvesting in Northern Canada. *Eco-Health*. 2005;2(2):127–37. <https://doi.org/10.1007/s10393-005-3870-z>
214. Kolosova V, Belichenko O, Rodionova A, Melnikov D, Söukand R. Foraging in Boreal Forest: Wild Food Plants of the Republic of Karelia, NW Russia. *Foods*. 2020;9(8):1015. <https://doi.org/10.3390/foods9081015> PMID: 32751145
215. Bishop RR. Hunter-gatherer carbohydrate consumption: plant roots and rhizomes as staple foods in Mesolithic Europe. *World Archaeology*. 2021;53(2):175–99. <https://doi.org/10.1080/00438243.2021.2002715>
216. Kubiak-Martens L. New evidence for the use of root foods in pre-agrarian subsistence recovered from the Late Mesolithic site of Halsskov, Denmark. *Vegetation History and Archaeobotany*. 2002;:23–31.
217. Vanhanen S, Pesonen P. Wild plant gathering in Stone Age Finland. *Quaternary International*. 2016;404:43–55. <https://doi.org/10.1016/j.quaint.2015.10.036>
218. Bergman I, Östlund L, Zackrisson O. The use of plants as regular food in ancient subarctic economies: a case study based on Sami use of Scots pine innerbark. *Arctic Anthropol.* 2004;41(1):1–13. <https://doi.org/10.1353/arc.2011.0059> PMID: 21774149
219. Svanberg I, Ægissón S. Edible wild plant use in the Faroe Islands and Iceland. *Acta Soc Bot Pol.* 2012;81(4):233–8. <https://doi.org/10.5586/asbp.2012.035>

220. Mannermaa K, Arppe L, Batanina O, Hardy K, Eckelmann R, Kirkinen T, et al. A life history of a female hunter from Yuzhniy Ole-niy Ostrov (Karelia, Russia). The Archaeological Society of Finland; 2023. pp. 265–281. Available: <https://researchportal.helsinki.fi/en/publications/a-life-history-of-a-female-hunter-from-yuzhniy-oleniy-ostrov-kare>

221. Buckley S, Hardy K, Hallgren F, Kubiak-Martens L, Miliauskienė Ž, Sheridan A, et al. Human consumption of seaweed and freshwater aquatic plants in ancient Europe. *Nat Commun.* 2023;14(1):6192. <https://doi.org/10.1038/s41467-023-41671-2> PMID: 37848451

222. Doronina AY. Сосудистые растения Карельского перешейка (Ленинградская область). Moscow: T-vo nauch. izd. KMK; 2007.

223. Pezo L, Eggers S. *Caries Through Time: An Anthropological Overview. Contemporary Approach to Dental Caries.* InTech. 2012. <https://doi.org/10.5772/38059>

224. Kuhnlein HV, Turner NJ. *Traditional Plant Foods of Canadian Indigenous Peoples.* Routledge. 2020. <https://doi.org/10.4324/9781003054689>

225. Outram AK. A New Approach to Identifying Bone Marrow and Grease Exploitation: Why the “Indeterminate” Fragments should not be Ignored. *Journal of Archaeological Science.* 2001;28(4):401–10. <https://doi.org/10.1006/jasc.2000.0619>

226. Ambrose SH. Controlled Diet and Climate Experiments on Nitrogen Isotope Ratios of Rats. *Advances in Archaeological and Museum Science.* Kluwer Academic Publishers. p. 243–59. https://doi.org/10.1007/0-306-47194-9_12

227. Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, Passey B, et al. Nitrogen isotopes in mammalian herbivores: hair $\delta^{15}\text{N}$ values from a controlled feeding study. *Intl J of Osteoarchaeology.* 2003;13(1–2):80–7. <https://doi.org/10.1002/oa.655>

228. Koch PL. *Isotopic Study of the Biology of Modern and Fossil Vertebrates. Stable Isotopes in Ecology and Environmental Science.* Wiley. 2007. 99–154. <https://doi.org/10.1002/9780470691854.ch5>

229. Newsome SD, Wolf N, Peters J, Fogel ML. Amino acid $\delta^{13}\text{C}$ analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore. *Integr Comp Biol.* 2014;54(5):890–902. <https://doi.org/10.1093/icb/icu106> PMID: 25104856

230. Styring AK, Sealy JC, Evershed RP. Resolving the bulk $\delta^{15}\text{N}$ values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. *Geochimica et Cosmochimica Acta.* 2010;74(1):241–51. <https://doi.org/10.1016/j.gca.2009.09.022>

231. Newsome SD, Fogel ML, Kelly L, del Rio CM. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. *Functional Ecology.* 2011;25(5):1051–62. <https://doi.org/10.1111/j.1365-2435.2011.01866.x>

232. Герасимов ДВ. Мезолит Восточной Фенноскандии: хронология и периодизация. *АЕС.* 2024;(4):28–39. <https://doi.org/10.24852/2587-6112.2024.4.28.39>