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Abstract 

The ketogenic diet (KD) is a low-carbohydrate diet that induces and sustains a keto-

sis state and minimizes somatic glucose levels. Several psychological studies have 

described the positive effects of ketosis on cognitive functions for a wide range of neu-

ropsychiatric conditions (e.g., Alzheimer’s disease; epilepsy), leading to greater interest 

in the KD today. However, the psychological and cognitive effects of inducing ketosis via 

diet remain unclear, especially in healthy people. From an initial pool of thirty  

participants, eight undergraduate students performed a cognitive assessment before 

(baseline) and after three weeks (follow-up) of an isocaloric ketogenic diet. Several 

neuropsychological measures and psychometric tests have been administered to inves-

tigate psychological chronotype, sleep quality, eating habits, anxiety and cognitive com-

ponents of attention, inhibition, and memory. Non-parametric Bayesian analysis showed 

that the ketogenic diet affected cognitive functions. Participants performed cognitive 

tests faster at follow-up than at baseline, showing improvements in visual-motor cogni-

tive and processing speed components. However, they were less accurate on working 

memory tasks, suggesting a decreasing performance of higher cognitive functions. 

Finally, no differences in anxiety levels were found between baseline and follow-up. The 

results could have significant implications for identifying specific cognitive models of stu-

dents based on specific lifestyle habits and nutritional patterns, allowing the implementa-

tion of targeted interventions to improve university learning conditions.

Introduction

Background

The ketogenic diet is a very high-fat and low-carbohydrate diet that induces and 
sustains a ketosis state and minimizes somatic glucose levels in the body without 
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causing caloric restriction or malnutrition [1–4]. The hallmark of the KD is the produc-
tion of ketone bodies (mainly β-hydroxybutyrate, acetoacetate, and acetone) from 
the oxidation of fatty acids in the liver, which provides an alternative substrate to 
glucose for energy utilization [5,6]. The ketogenic diet (KD) is primarily characterized 
by a very low carbohydrate intake, typically less than 50 g per day, and often as low 
as 20–30 g/day in therapeutic settings, which shifts metabolism toward ketone body 
production [7,8]. Although fat intake is usually increased, the defining feature of KD is 
carbohydrate restriction rather than high fat per se [9]. Ketone bodies are nutritional 
biomarkers carrying antioxidative processes that promote mitochondrial integrity and 
support neuro synaptic function [10,11].

Positive effects of the KD have been described in the treatment of epilepsy in 
both adults and children [12–15]. It has also been suggested that the KD and the 
consequent increased circulating levels of ketone bodies could prevent age-related 
cognitive decline [16] by improving – among others – central nervous system insulin 
resistance [17,18]. Indeed, several recent studies have reported that ketosis could be 
effective in reducing cognitive decline in patients with Alzheimer’s disease and people 
with Mild Cognitive Impairment (MCI) [10,19,20].

The positive effects of ketosis in clinical populations have gained increased 
interest in the ketogenic diet [21,22], raising questions about its possible benefits in 
healthy populations. Despite this, studies with typical participants are still few and 
challenging to interpret due to methodological limits and differences. Some studies 
have explored the effect of medium-chain triglycerides (MCTs – a dietary supplement 
that promotes the production of ketone bodies) on cognitive functions in healthy older 
and young adults [23–25]. In detail, Ota and collaborators [23] showed that improve-
ments in cognitive tasks (digit span, visual memory span, Letter-Number sequencing 
Test, Trail-Making Test) following a single ketogenic meal containing 20 mg of MCTs, 
occurred mainly in older adults who had lower cognitive scores at baseline. Despite 
the small experimental sample (N = 19), it should be underlined that the improve-
ment in cognitive functions was correlated to the level of ketones in the plasma with 
higher ketone levels associated with greater cognitive improvement [23]. In Ashton 
et al. [24], a group of undergraduate students (N = 30) were split into three groups: 
placebo, 12 g MCT/day, and 18 g MCT/day. Participants were tested for five con-
secutive weeks on the following tasks: Trail-Making Test, Digit Span, Spatial Span, 
Cover Shift of Attention, and Rapid Visual Information Processing. The participants 
who took MCT (both 12 mg and 18 mg), compared to the placebo group, improved 
in the Trail-Making Test, in the digit span (forward/backward), and in the Spatial 
Span (backward). It is important to note that performance was slightly dependent 
on dosage. In particular, the 18 g MCT/day group’s performance in the Trial-Making 
Test (A) from the third week was significantly better than that of the placebo group. 
Similarly, the 12 g MCT/day group performed better from the fourth week than the 
control group [24]. In Yomogida et al. [25], a group of healthy older adults (N = 20) 
performed N-back and Go-Nogo tasks during functional magnetic resonance imaging 
in a double-blind-placebo-controlled study. Results showed that a single MCT meal 
improved performance on the N-back task than a placebo meal. However, when 
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participants were divided into two sub-groups based on the global level of cognitive function (higher or lower) assessed 
by the Mini-Mental State Examination (MMSE), the effects of MCT differed depending on the cognitive task. Indeed, the 
higher performance group showed improvement in the N-back task (indicating better working memory). In comparison, 
the lower performance group showed improvement in the Go-Nogo task (indicating better inhibitory control) after the MCT 
meal rather than after the placebo meal. The dorsolateral prefrontal cortex (dlPFC) showed smaller task-induced fMRI 
BOLD signal increases after MCT meals rather than a placebo. This suggests that the ketone bodies were consumed 
as extra brain energy, which underlies the better performance. Finally, when the authors considered the entire sample, 
performance on working memory was significantly better after MCT above all in the participants with smaller grey matter 
volume in the left dlPFC. Authors hypothesized that the participants with relatively reduced neurons benefited more from 
the extra energy source supplied by ketone bodies [25].

The studies mentioned above would suggest that MCTs alone might improve cognitive functions, by producing ketone 
bodies without the need for a traditional ketogenic diet. These effects are likely due, at least in part, to improved  
ketosis-induced mitochondrial metabolism [26].

Ketogenic diet and cognitive functions

Despite the positive effects of diet on psychological and cognitive functions [27,28], it can also have adverse effects on 
cognitive functions [29–31], on mood (i.e., depression) and self-esteem [32], as well as having been associated with 
increased stress responses [33]. A plausible explanation for the negative cognitive effects of dieting concerns participants’ 
anxiety and worries about dieting, which can impair cognition by interfering, for example, with working memory capacity 
[34]. The food-related ruminative worries characteristic of dietary restraint and dieting [35], combined with the increased 
sensations of hunger characterized by dieters, are hypothesized to be sufficient to increase cortisol secretions and neg-
atively influencing the working memory processes [36]. Furthermore, it has been highlighted that dietary supervision and 
adherence to specific dietary patterns are critical factors in determining cognitive outcomes [37,38].

It is important to note that studies investigating cognitive functions concerning diet displayed methodological differences 
regarding the population target investigated (e.g., old adults, young adults, or overweight people) and the type of diet 
involved (e.g., hypo-/iso-caloric, nutrient composition). Studies have only partially investigated the different components 
of cognitive functions, with tasks that were too simple for healthy participants. Moreover, studies have generally poorly 
controlled for psychological factors such as anxiety, chronotype, and sleep quality. Different macronutrients and specific 
diet programs have been associated with distinct cognitive outcomes (i.e., both improvements and worsening in cognitive 
functions), and meal composition can be more influential than meal size or timing, mainly when substantial nutritional 
variations from habitual meals are encountered [34,37,39,40]. These shortcomings make it difficult to compare results and 
make them less generalizable. In this regard, only a few studies have investigated cognitive functions in healthy partici-
pants during ketogenic diet regimes.

In a study by D’anci and Coll. [41], the authors tested the cognitive functions (visuospatial memory, memory span, and vig-
ilance) of a group of women (N = 19) who chose to undergo one of two weight-loss diets: a low-carbohydrate diet (N = 9) or a 
diet with macronutrient proportions typically recommended by the Academy of Nutrition and Dietetics (AND; N = 10). Results 
showed that the low-carbohydrate diet group had faster reaction times during the attentional vigilance task than the AND diet 
group, suggesting better-sustained attention in the low-carbohydrate diet group. However, the low- 
carbohydrate diet group performed worse on memory-based tasks (Reverse Digit Span Task, short and long-term map- 
recall) than the AND diet group. On the contrary, performance on the less cognitively demanding Forward Digit Span was 
not affected. Notably, the weight loss over the three weeks of diet was less than 2 kg and was similar between the two diet 
groups [41]. It is important to note that this study [41] did not employ isocaloric control groups, and therefore, the observed 
results may reflect differences in energy intake or weight loss in addition to ketosis. More recent randomized, isocaloric 
crossover trials [42,43] have addressed this issue by directly isolating the effects of macronutrient composition from those of 
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total energy intake. In another study, Iacovides et al. [42] tested cognitive functions (vigilance, visual learning, memory, work-
ing memory, and executive functions) of a small group of young adults (N = 11) undergoing the ketogenic diet and a high- 
carbohydrate diet. The authors reported that only processing speed was marginally faster following the KD than following the 
high-carbohydrate diet in the Two Back Test and the Groton Maze Learning Test, while participants were marginally slower 
in the Identification task after the KD than the high-carbohydrate diet [42]. Similarly, Shaw et al. [43] reported no effect of the 
KD on cognitive function (vigilance, sustained attention, and working memory), mood, and sleep in a small group of mili-
tary personnel (N = 8) compared to a carbohydrate-based diet [43]. However, in another study with a small group of military 
personnel (N = 7), a KD demonstrated beneficial effects on cognitive performance (vigilance, sustained attention, and working 
memory) during thirty-six hours of extended wakefulness compared with a carbohydrate-based diet [44].

Indeed, the expression of individual cognitive potential can be affected significantly by the interaction between physical 
and psychological fatigue [44,45], quality of sleep [46], anxiety [47], and psychological chronotype [48] – among others 
– in addition to the diet regime [49,50]. Furthermore, physical activity in general and different types of exercise programs 
can lead to cognitive improvements regardless of baseline cognitive level [51]. The lack of control variables/covariates in 
these studies makes the relationship between the KD and cognitive functions unclear.

The positive impact of ketones on cognitive function seems to be more noticeable in individuals with impaired glucose 
metabolism and some degree of cognitive decline [10,19,23,25]. However, studies in healthy participants have shown 
conflicting results, mainly due to methodological differences and the populations studied. High levels of ketone bodies 
induced through MCTs appear to enhance cognitive function [23–25]. On the other hand, research on diet-induced ketosis 
has shown only minor or no changes in cognitive performance [42,43].

On these premises, we explored the effect of the KD on a specific set of cognitive functions in a sample of healthy undergrad-
uate participants, by administering an isocaloric diet whose features were carbohydrate restriction, typically below 30 g per day, 
rather than exclusively a high-fat content. Expressing undergraduate students’ cognitive potential is fundamental as it consti-
tutes the basis for adequate learning in the university context. Each volunteer who showed interest in the research underwent a 
screening phase through a medical check-up and an online survey. The medical check-up excluded risk conditions for the par-
ticipants undergoing the diet. The online survey instead aimed to investigate the psychological chronotype, sleep quality, eating 
habits, sporting activities, and academic performance. For our exploratory study, we hypothesized that using several cognitive 
tasks, even more demanding than those used in previous studies and investigating different subcomponents of cognitive func-
tioning, would allow us to more clearly observe diet-induced ketosis’s effects on healthy young adults’ cognitive performance. We 
aimed to test whether, in addition to marginal improvements in performance on more straightforward cognitive tasks, there was 
also a change in performance on more demanding cognitive tasks. Indeed, some neuropsychological tests may not be sensitive 
enough to cognitive changes in healthy participants. We focused on complex executive control functions, including a complex 
working memory task, the Automated Operation Span Task [52]. Complex span tasks are considered accurate in measuring 
working memory capacity, and better performance on working memory tasks is related to better academic outcomes [53–55]. 
Indeed, active maintenance and working on a set of information are essential in forming new concepts and, therefore, for learning 
processes [53,56]. For these reasons, our study explored the effects of three weeks of KD on a group of healthy undergraduate 
students with no risks in undertaking the diet, selected in such a way as to minimize differences among participants in aspects 
such as psychological chronotype, quality sleep, eating habits, academic performance during the last year and sporting activity. 
Investigating cognitive models associated with particular lifestyle habits and dietary patterns could offer valuable insights into the 
impact of eating habits on individual characteristics and learning abilities, especially for more complex cognitive tasks.

Methods

Participants

Thirty undergraduate student volunteers, who were free from chronic diseases and psychiatric disorders for at least six 
months before the study, initially participated in the online screening survey. Six participants were excluded due to missing 
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or incomplete information, five due to sleep quality problems, three due to high total anxiety levels, and three due to a 
decided serotonin or morning chronotype. Additionally, three participants did not show up for the initial cognitive assess-
ment. A total of ten participants took part in the cognitive assessment at T0 before starting the ketogenic diet. Two par-
ticipants did not attend the second cognitive assessment after three weeks on the ketogenic diet. Thus, the final sample 
consisted of eight participants. None of the participants reported any side effects related to the dietary treatment.

Experimental procedure

The study followed a repeated measures design involving cognitive assessments at two time points (T0 or baseline, T1 
or follow-up) at the beginning and end of three weeks of an isocaloric ketogenic diet (see Fig 1 and S1 and S2 Tables in 
S1 File). Each participant who showed interest in the research underwent a screening phase through a medical check-up 
and an online survey. The medical check-up excluded risk conditions for the participants undergoing the diet. The online 
survey aimed to investigate the psychological chronotype, sleep quality, eating habits, sporting activities, and academic 
performance. The project was first advertised via social media and briefings at the University of Foggia. Subsequently, 
the researchers organized an online meeting to provide all the information on the project to the students who volunteered. 
The participants who signed the written informed consent underwent a medical examination to verify the absence of risks 
in embarking on the diet and completed the online questionnaires and the cognitive assessment (T0). After three weeks 
of the ketogenic diet, the participants underwent the cognitive assessment again (T1). A team of experts provided cus-
tomized meal plans based on individual preferences, daily calories by macronutrients, and other educational resources 
for pairing alternative foods. All research activities were conducted in close collaboration between researchers from 
medical and psychological background respectively from the Department of Clinical and Experimental Medicine and the 
Department of Humanistic Studies, Letters, Cultural Heritage, and Educational Sciences (University of Foggia). This study 
procedures were approved by the Ethics Committee of the University of Foggia [Foggia, 10/10/2022, Prot.007/CEpsi] and 
met the ethical standards of the 1964 Declaration of Helsinki (World Health Organization, 2013). The recruitment period 
for this study started on April 17, 2023, and ended on July 13, 2023.

Dietary intervention

The study participants followed an isocaloric ketogenic diet, in which 70–75% of their daily caloric intake derived from 
lipids and carbohydrate intake was limited to 5–10% (see S1 Table and S2 Table in S1 File). The amount of proteins in the 
diet was carefully calculated to maintain muscle mass and prevent excess protein from converting into glucose through 
gluconeogenesis. The mean BMI before and after the intervention was 27.7 and 27.8, respectively (p = 0.68, indicating no 
statistically significant difference).

Fig 1.  Study timeline.

https://doi.org/10.1371/journal.pone.0338877.g001

https://doi.org/10.1371/journal.pone.0338877.g001
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Adherence to the diet was checked weekly in the morning under fasting conditions, as ketone levels are known to vary 
throughout the day depending on dietary intake and physical activity, using Bayer Ketostix (Bayer Leverkunsen, Ger-
many). Dietary ketosis was defined following manufacturer indication, with urine Ketone value higher than 4 mg/L (see S1 
Fig in S1 File for individual test).

Screening survey

We conducted a screening survey using an online software (SurveyMonkey Inc.) to gather information on participants’ 
eating habits (such as consumption of alcoholic and sugary drinks, intake of caffeine and supplements), sports activities, 
and academic achievement over the past year. Additionally, participants completed the Morningness-Eveningness Ques-
tionnaire (MEQ-SA) [57] to assess their psychological chronotype, the Global Sleep Assessment Questionnaire (GSAQ) 
[58] to evaluate their sleep quality, and the State-Trait Inventory of Cognitive and Somatic Anxiety (STICSA) [59–62] to 
measure their anxiety levels. To ensure accurate cognitive performance results, we excluded participants with poor sleep 
quality (GSAQ total score greater than 30; [58]), those with distinctly morning or serotonin chronotypes (MEQ scores less 
than 31 and greater than 69; [57]), and participants with high anxiety scores (STICSA total score greater than 42; [63]).

Assessment of cognitive functions

A neuropsychological battery was administered to the participants to assess cognitive functions (see Table 1) at the 
beginning (T0) and the end (T1) of the ketogenic diet. The second session for each participant, took place at the same 
time of day, three weeks after the first session. Participants were tested individually by the same experimenters on week-
days, between 9.00 a.m. and 5.00 p.m.. The procedure was consistent for each participant and lasted about one hour per 
session. All tasks were completed in paper-and-pencil format, with the exception of the Automated Operation Span Task, 
administered via the E-Prime software (version 3.0; 2016). To minimize the impact of practice [64,65], alternative forms of 
the same cognitive tests at T0 and T1 were administered. Additionally, prior to the cognitive assessment (at T0 and T1), 
participants filled out the State-Trait Inventory of Cognitive and Somatic Anxiety (STICSA).

Statistical analysis

We utilized a Bayesian Wilcoxon signed-rank test to analyze the data. The Bayes factor (BF), specifically BF
10

, evaluates 
how much the observed data supports the alternative hypothesis (H1) over the null hypothesis (H0). Larger values of BF

10
 

indicate stronger support for H1. Bayes factors range from 0 to ∞, and a BF
10

 value > 3 suggests moderate support in favor 
of the alternative hypothesis, while a BF

10
 value > 10 indicates strong support in favor of the alternative hypothesis [71,72]. 

We used the Bayesian Wilcoxon signed-rank test because it provides a robust non-parametric alternative for paired com-
parisons in the presence of small sample sizes [73]. In such cases, parametric tests may result in inflated type I or type II 
error rates [74,75]. Analyses were conducted on raw data with JASP software (version 0.19; JASP Team, 2024).

Table 1.  Cognitive assessment.

Task Reference Cognitive domain functions

Digit Span – DS [66] Short-term verbal memory

Rey Auditory Learning Test – RALT [67] Long-term verbal memory

Digit Symbol Test – DST [68] Attention

Attentional Matrices – AM [69] Attention

Trail Making Test – TMT [68] Set-shifting

Stroop Test – StroopT [70] Cognitive inhibition

Automated Operation Span Task – Aospan [52] Working memory

https://doi.org/10.1371/journal.pone.0338877.t001

https://doi.org/10.1371/journal.pone.0338877.t001
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Results

Thirty undergraduate students (23 women and 7 men; mean age = 23.7, standard deviation = ± 6.3) completed an online 
screening survey. Out of these, 8 participants (6 women and 2 men; mean age = 22.9; standard deviation = ± 6.9) com-
pleted all phases of the research. This included two cognitive assessments (T0 and T1) conducted immediately before 
and after three weeks of an isocaloric ketogenic diet. Participants had similar sleep patterns (MEQ score between 31 and 
69), low anxiety levels (STICSA score < 42), and good sleep quality (GSAQ score < 30) (see Table 2).

None of the participants engaged in intensive sports activity (< 3 hours a week) or took any medications or supple-
ments. Additionally, participants had similar dietary habits (consuming < 3 sugary and alcoholic drinks per week and < 3 
coffees per day) and had passed at least four exams in the last academic year.

As shown in Table 3, participants at T1 performed faster in the DST (number of items reported correctly; BF
10

 = 25.303), 
the TMT (part A, BF

10
 = 3.931), the StroopT (part B, BF

10
 = 7.115; part C, BF

10
 = 3.184), and in solving the mathematical 

Table 2.  Descriptive statistics (N = 8).

Age MEQ GSAQ STICSA(t)

Mean 22.9 55.25 22.13 33

SD 6.9 8.6 3.27 5.6

Note. MEQ = Morningness-Eveningness Questionnaire; GSAQ = Global Sleep  
Assessment Questionnaire; STICSA = State-Trait Inventory of Cognitive and Somatic  
Anxiety.

https://doi.org/10.1371/journal.pone.0338877.t002

Table 3.  Bayesian Wilcoxon signed-rank results.

T0 T1 95% CI BF10

M SD M SD Lower Upper

DS 6.75 1.58 6.125 1.12 −0.370 1.203 0.621

RALT(i) 47.75 9.16 48.25 10.57 −0.582 0.658 0.347

RALT(d) 11.12 1.88 10.12 2.69 −0.161 1.375 1.160

DST 73.75 11.71 79 12.11 −5.643 −0.371 25.303

AM1(i) 9.75 0.46 9.75 0.46 −0.912 0.945 0.490

AM2(i) 18.87 1.12 18.62 1.59 −0.582 0.699 0.346

AM3(i) 26.62 3.33 27.62 1.40 −0.886 0.386 0.454

AM1(t) 23.68 10.40 22.29 6.86 −0.551 0.670 0.342

AM2(t) 32.31 10.82 29.96 7.97 −0.340 1.004 0.566

AM3(t) 40.36 6.24 37.55 8.31 −0.247 1.116 0.733

TMT(A) 31.17 7.99 25.98 4.22 0.067 1.896 3.931

TMT(B) 52.20 15.39 49.57 16.59 −0.417 0.845 0.457

StroopT(A) 12.75 2.21 11.61 1.55 −0.079 1.388 1.522

StroopT(B) 14.96 1.75 13.75 1.2 0.155 2.052 7.115

StroopT(C) 24.52 6.09 21.44 4.37 0.028 1.627 3.184

Aospan(A) 27.75 19.45 23.5 17.25 0.067 1.862 4.080

Aospan(B) 5.62 3.11 8.37 3.66 −1.973 −0.129 6.512

Aospan(C) 2680.32 1065.97 2121.78 843.05 0.464 3.653 45.075

Note. DS = Digit Span; RALT = Ray Auditory Learning Test, (i) immediate, (d) deferred; DST = Digit Symbol Test; AM = Attentional Matrices, (i) item, (t) 
time; TMT = Trial Making Test, (A) part A, (B) part B; StroopT = Stroop Test, (A) words (B) colored squares, (C) color words in incongruent colors; Ao-
span = Automated Operation Span Task, (A) Span Absolute Score, (B) Math Errors, (C) Math time.

https://doi.org/10.1371/journal.pone.0338877.t003

https://doi.org/10.1371/journal.pone.0338877.t002
https://doi.org/10.1371/journal.pone.0338877.t003
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expressions of the Aospan task (BF
10

 = 45.075), compared to T0. However, accuracy performance was lower in span 
absolute score (the sum of all correctly recalled set sizes, BF

10
 = 4.080) and in solving mathematical expressions of the 

Aospan task (BF
10

 = 6.512) at T1 compared to T0 (see Table 3). Finally, state anxiety measured with the STICSA did not 
differ between T0 and T1 (see Table 4). To confirm the results, the same analyses were recomputed by changing the 
Bayes Factor (BF

01
; H0 over H1) and formulating alternative hypotheses (i.e., T0 > T1 and T0 < T1). In summary, these 

analyses confirmed the earlier reported results.

Discussion and conclusion

This study aimed to explore the cognitive effects of an isocaloric ketogenic diet on a group of healthy young adults. The 
results showed that participants performed the DST, the TMT, and the StroopT and solved mathematical operations in the 
Aospan task faster at T1 than at T0. However, they performed the Aospan task less accurately. Indeed, participants had 
a lower absolute span score and solved fewer mathematical expressions correctly at T1 than at T0. Furthermore, partici-
pants’ anxiety levels did not differ between baseline and follow-up.

The results of the present explorative study suggest that ketosis may affect the components of cognitive functions dif-
ferently. First, we found a positive effect of ketosis on visual-motor cognition and processing speed components, as shown 
by the shorter time required to perform some tests at T1 compared to T0. These results are partly aligned with previous 
studies [41,42] that reported faster performance in cognitive attention and memory tasks following a low-carbohydrate 
diet. Several explanations have been proposed for improving cognitive abilities following a ketogenic diet. For example, 
it has been highlighted that ketone bodies improve the expression of the Brain-Derived Neurotrophy Factor (BDNF) [76]. 
The BDNF is an essential modulator of the synaptic long-term potentiation (LTP) process related to increased cognitive 
abilities in adults [77].

In contrast, the diet worsened participants’ accuracy on the Aospan task, suggesting a deterioration of higher cognitive 
functions in our sample. These results are partly not aligned with Ashton et al. [24], who reported ketosis-induced improve-
ments in cognitive function. However, it is crucial to consider the differences between studies with acute intake of MCTs 
and studies with dietary protocols. Indeed, the latter could be challenging for participants to follow [78], and an increase in 
physiological stress following a ketogenic diet has been documented [43]. In this regard, acute corticosteroid administra-
tion selectively impairs performance on working memory tasks but not in tasks that assess declarative memory or vigi-
lance tasks with a low working memory load [79].

Moreover, the ketogenic diet induces a metabolic switch from carbohydrate oxidation to fatty acid oxidation. Some 
human studies suggest that diets high in certain fats may be associated with reduced cognitive performance [80,81]. 
Other hypotheses have been proposed to explain the negative cognitive changes that diet can induce, including the 
disruption of neurogenesis [82] and altered membrane and vasculature functioning [83]. However, the mechanisms must 
still be fully understood [42]. It is also possible that our findings are partly due to the typical side effects that could occur 
during the ketogenic diet, including nausea and headaches, which could have affected cognitive performance. However, 
participants did not report any symptoms during the diet. Furthermore, participants were tested after three weeks of the 
ketogenic diet. Typically, the most prominent negative symptoms occur during the first two weeks of ketogenic adaptation 
[84,85] or after a prolonged period of ketosis that occurs beyond three weeks [1,86]. Finally, our results are in contrast 
with those of Shaw et al. [43], who reported no changes in cognitive functions after the ketogenic diet in a small sample 
of military personnel. In this case, the results of the studies likely differ due to the use of different cognitive tasks. The 

Table 4.  Anxiety state scores (STICSA).

T0 T1 95% CI BF10

M SD M SD Lower Upper

STICSA 32.37 6.18 30.5 5.15 −0.283 1.082 0.646

https://doi.org/10.1371/journal.pone.0338877.t004

https://doi.org/10.1371/journal.pone.0338877.t004
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Aospan task used in the present study requires reporting the correct sequence of letter presentation and solving mathe-
matical expressions simultaneously [52]. The high commitment of cognitive resources required by the task might make 
it a more sensitive tool for studying cognitive functions in experimental settings with healthy participants. Instead, in the 
study by Shaw et al. [43], the working memory task used was a standard one-back, which requires remembering the last 
number presented and reporting whether it is the same as the current one.

It is important to note that the main limitation of the present study is the small study sample. This limitation should be 
considered when interpreting the results of this study. However, by limiting our participants to healthy, normal-weight 
individuals free from chronic conditions and obesity and a non-aged sample, we accounted for several important con-
founding factors in existing studies. Furthermore, we controlled for important psychological and nutritional aspects to 
exclude further confounding effects on cognitive functions. Finally, it is worth noting that our sample size is similar to 
other studies investigating cognitive changes in the ketogenic diet [42–44]. A second limitation of the present study is 
the lack of an isocaloric control group with a different macronutrient distribution. This constitutes a potential confounder, 
making it difficult to attribute the observed effects exclusively to ketosis. Future studies should therefore employ ran-
domized, isocaloric, and preferably crossover designs to disentangle the specific contributions of macronutrient com-
position and total energy intake [42,43,78]. An additional limitation could be the lack of information on the participants’ 
menstrual cycle (being our cohort mostly composed of women (75%)). However, this aspect could be not relevant 
to our work. Indeed, although experimental evidence on the topic reports neuroimaging-detectable changes in brain 
activation and connectivity during the menstrual cycle [87], the effects of menstrual cycle phases on cognitive function 
reported in the literature are mixed [87,88], and a recent meta-analysis [89] did not observe any systematic and robust 
evidence of significant changes in cognitive performance due to menstrual cycle phases. Future studies should mea-
sure and control for the menstrual cycle phase (ideally with hormonal confirmation) or stratify analysis accordingly. Fur-
thermore, although participants who completed the dietary treatment did not report any side effects, we observed a high 
dropout rate among participants. This pattern is consistent with previous reports of adherence challenges in ketogenic 
diet interventions [90]. It is therefore possible that participants who did not attend the second cognitive assessment 
experienced difficulties in adhering to the dietary plan.

Based on our findings, future studies should investigate different components of cognitive functions. In addition to the 
dissociation between visual-motor and cognitive components, both explicit and implicit aspects of cognitive functions 
should be investigated. Evidence of a dissociation between performance on implicit/explicit tasks about chronotype is 
reported in the literature [91–93], as well as an important relationship between ketogenic diet, chronobiology, and cog-
nitive functions [94–96]. Furthermore, the role of stress in participants in dietary studies should be further investigated 
through self-reported and physiological measures concerning the diet. Stress can affect cognitive functions [97], and 
increases in physiological stress have been reported during a ketogenic diet [43]. Moreover, participants’ motivations for 
dieting should be investigated. Approaching a diet as an athlete, doing it for weight loss, or doing it within a university 
study context could influence the observed results.

Our results highlighted that the ketogenic diet impacted cognitive functions by improving the visuomotor and processing 
speed components. However, it also worsened the accuracy of a complex working memory task. Regarding this last point, 
it is known that individuals who perform well in working memory tasks can stay better focused on the task and that a good 
working memory is essential for learning processes [53,98]. For these reasons, our results could have important implica-
tions for research and learning contexts.
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