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Abstract

Assigning case codes is a complex problem in medical data processing, which

includes multimodal data fusion and intellectual classification. Traditional case coding

methods often have difficulties in managing different data sources and the complexity

of the content of cases. This limits their effectiveness in actual application. To solve

this problem, we propose the MCoder-T model, an intelligent case coding model,

causal-to-mask attention mechanisms, integrated multimodal integration, and multi-

task learning optimization. MCoder-T effectively improves case coding automation

and classification accuracy by integrating text, medical images, and structured data.

Experimental results show that the MCoder-T model outperforms traditional methods

and other progressive models by several evaluation indicators, with an overall pro-

ductivity improvement of 7% to 18%. The MCoder-T model enhances the automation

of drop coding tasks and demonstrates reliable adaptability during multimodal data

fusion and demonstrates broad application potential.

Introduction

With the rapid development of information technology, data processing in the health-
care industry has entered the era of big data [1,2]. In this context, case coding plays
a crucial role as a central element of medical information management. Coding cases
is not only important for normalizing the diagnosis and treatment of diseases, but
is also closely linked to the financial rules of hospitals and patient management [3].
However, traditional methods of coding cases are based on manual input, which is
inefficient and prone to errors. As the types of medical data continue to grow, the bur-
den of manual coding becomes increasingly heavy. Therefore, the automated tech-
nology of coding cases based on deep learning [4,5] has become a hot research
topic, particularly in the field of multimodal data fusion and intelligent classification
[6–9].

Significant progress has been made in recent years in Automation of coding case
studies [10]. Traditional rules-based coding methods, while simple and intuitive, do
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not lack the flexibility and ability to Adaptation to complex data. This makes it inad-
equate for modern health environments [11,12]. Some studies have attempted to
encode random texts using NLP methods such as vector word patterns, HMM, and
CRF to extract disease codes from textual information [13]. However, most of these
methods are based solely on textual data and do not take account of Importance of
structured images and data [14]. With the widespread use of deep learning technolo-
gies such as CNN and RNN, a growing number of studies have begun integrating
deep learning with case coding [15]. Some researchers attempt to incorporate image
information into case coding by using CNN to extract features from medical images.
But the problem of insufficient fusion of image and text information remains [16,17].

Many innovative solutions have been proposed for the problem of multimodal data
connectivity [18,19]. Multimodal fusion methods based on GCN are widely used for
the joint analysis of medical images and text data [20,21]. Other studies used DAE
to reduce data size and extract characteristics, in combination with RL, to optimize
classification strategies and ensure the common coding of text and structured data
[22,23]. To process complex data, time series LSTM and GRU were used to predict
diseases. However, these methods often ignore the information interaction between
different methods [24]. Other methods, such as multimodal transformer-based pro-
cessing frameworks [25], while effectively handling long-term dependencies, con-
tinue to have difficulties in properly managing the relationships between the different
regimens in practical medical applications [26,27].

The combination of causal inference and multimodal fusion has become a new
area of research in the field of medical data processing [28,29]. Many studies have
introduced causation models to analyze causal links between different types of data,
allowing more accurate assumptions of the disease [30]. For example, NCCs have
been used to predict causal links between different medical events. However, they
continue to encounter restrictions in the processing of multimodal data [31]. GNN-
based models have also been proposed to establish links between images, text and
other structured data. However, these methods have limited possibilities for process-
ing incomplete or heavy data [32,33]. In addition, GAN is widely used to augment
data and generate synthetic data to improve model reliability especially with small
samples. However, their application in multimodal data fusion is still in progress study
[34,35].

The aim of the article is to offer an innovative model for case coding, MCoder-T,
which optimizes case coding automation through multimodal data fusion and intel-
ligent classification using deep learning methods. Our work goes beyond traditional
multimodal approaches to learning, such as the simple connection of properties, the
fusion of tensors and standard intermodal attention, and introduces a more structured
fusion strategy, which ensures accurate alignment of the properties while minimizing
intermodal disturbances. The work presented in this document focuses on three main
aspects: First, the MCoder-T model is introduced, effectively solving the problems of
merging multimodal data and intelligent classification with the mechanism of masked
cause and effect attention, solves the mechanism of the improved fusion PCMA and
the optimization strategy MTL + LoRA. Secondly, the effectiveness of the MCoder-T
model when testing the coding tasks for higher coding accuracy and a lower error

PLOS One https://doi.org/10.1371/journal.pone.0338807 January 7, 2026 2/ 18

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://github.com/MedMNIST/MedMNIST
https://github.com/MedMNIST/MedMNIST
https://doi.org/10.1371/journal.pone.0338807


i
i

“pone.0338807” — 2026/1/2 — 19:45 — page 3 — #3 i
i

i
i

i
i

rate, among other things. Finally, the paper explores the potential to extend the model to more areas of health data analy-
sis in future research. Three key contributions to this document:

1. The MCoder-T model is proposed, based on multimodal deep learning and significantly improving the level of
automation of case coding.

2. Integrating causal inferences and transmodal attention mechanisms improves the model’s ability to address complex
dependencies between different data sources.

3. Experimental validation demonstrates the excellent performance of the MCoder-T on real health data sets and
proves its feasibility in practical applications.

Theory method
Datasets

In the experiments presented in this document, we selected two data sets on medical records, which are accessible to
the COVID-19 Radiography Database and MedMNIST. These datasets cover a wide range of applications, including lung
imaging data and medical image classification tasks, and effectively support the fusion of multimodal data and medical
image analysis in coding cases and tasks of intelligent classification. Table 1 summarizes the main characteristics of these
two datasets.

The COVID-19 Radiography Database contains a large number of chest X-ray images, primarily used for the diagno-
sis of COVID-19 [36]. The dataset includes three categories of labels: normal, pneumonia, and COVID-19. The diversity
of image data and the definition of labels make it the best option for teaching and evaluating a deep learning model. The
MedMNIST dataset focuses on the classification of medical images and contains multiple data pieces that solve various
problems in the classification of diseases such as tuberculosis, covers breast cancer and netting diseases. Its wide image
samples and various label categories provide broad data resources for case coding and intelligent classification models
[37].

During data preprocessing, COVID-19 chest X-ray data bank line image was standardized, to ensure image size
consistency for entry into a deep learning model for training. All images have been resized and normalized to a fixed
resolution to eliminate differences in brightness and contrast between the images. Additionally, data extension tech-
niques, including random rotation, translation, and scaling, were used to improve model robustness and simulate different
shooting angles and patient position changes to increase model generalization capability. The MedMNIST dataset pre-
processing process included similar steps. Standardized processing has been performed to resize each image, converting
a grayscale, ensuring consistency of the input image data format, and eliminating changes caused by differences between
devices. In order to increase the diversity of data sheets and improve training efficiency, data extension technologies such
as random cuts or color changes are also used.

Experimental details

In the experiment implemented in this document, a common deep learning framework for the education and evaluation of
the model, especially PyTorch . Its flexibility and powerful computing capabilities effectively support multimodal modeling
tasks. Experiment was implemented at a NVIDIA A100 high performance workstation equipped with a graphic processor.

Table 1. Key features and application scenarios of the datasets.

Dataset Type Number of Samples Number of Classes Format
COVID-19 Radiography Database Chest X-ray Images 14,000 Images Normal, Pneumonia, COVID-19 JPEG/PNG Images
MedMNIST Medical Images 200,000 Images Various Disease Categories PNG Images

https://doi.org/10.1371/journal.pone.0338807.t001
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The processor is equipped to provide a large computer resource 32 GB RAM and Intel Xeon to manage large data sets
and create models. All image data received a unified preprocessing, including variations, normalization, and data expan-
sion. To improve drive stability, apply arbitrary cutting, rotation, and scaling to each image. This actually enhanced the
diversity of data sets and improved the model’s capabilities. During training, the cross totropy loss function was used as
an optimization target.

In order to ensure the reproducibility of the experiment and the stability of the results, all experiments were evalu-
ated over several independent training periods. Each training session lasts about 10 hours, and the determined train-
ing duration depends on the size of the data sheet and the complexity of the model. During the training process, models
were monitored, the results of the respective times were evaluated, check sets were used, and overruns were avoided by
applying an early stop based on the accuracy of the check. After training, the model was evaluated in a test kit for final
evaluation. All experiments were conducted in the same physical environment and setting to ensure the unfairness and
consistency of the results.

Evaluation metrics

In this section, in phar coding MCoder-T Five evaluation indicators were used to fully evaluate the performance of the
model. These indicators evaluate models from several aspects such as classification accuracy, discrimination ability and
recall rate. Error prediction and label pairing accuracy effectively reflect the overall performance of the model [38,39].

Subset accuracy is a commonly used measure in multi-label classification tasks. N represents the number of sam-
ples, yi is the true label of the i-th sample, ŷi is the intended label of the model. returns 1 if the predicted label corresponds
exactly to the true one, otherwise 0. Subset accuracy measures the total compatibility of a model with multiple labeling
tasks. The higher the value, the more accurate the prediction of the model.

Subset Accuracy = 1
N

N

∑
i=1

𝕀(yi = ŷi) (1)

Macro mean AUC-ROC are used to measure the discriminative ability of a model in a multiclass task. Average macro
AUC Prevents class inequality from evaluating model performance. By providing a full representation of model perfor-
mance in all categories. As the AUC value approaches 1, the stronger the model can distinguish between positive and
negative samples.

Macro AUC-ROC = 1
C

C

∑
c=1

AUCc (2)

Macro Average F1 Score is a harmonic average between accuracy and recall. The F1 score takes into account both
model accuracy and recall. TPi is the true positive number of the digital label i, FPi is the false number, FNi is the false
negative number. Macro Average F1 The scores are in all categories F1 average score. This measure allows for a com-
plete assessment of the accuracy and revocability of the model in different categories and avoids prejudice against certain
categories.

Precisioni =
TPi

TPi + FPi
, Recalli =

TPi

TPi + FNi
(3)

F1i = 2 × Precisioni × Recalli
Precisioni + Recalli

(4)

Macro F1 Score = 1
C

C

∑
i=1

F1i (5)

PLOS One https://doi.org/10.1371/journal.pone.0338807 January 7, 2026 4/ 18

https://doi.org/10.1371/journal.pone.0338807


i
i

“pone.0338807” — 2026/1/2 — 19:45 — page 5 — #5 i
i

i
i

i
i

Hamming loss measures the percentage of false label predictions in multiple label classification tasks. L represents the
number of labels for each sample. yij is the true value of the j-th label for the i-th sample. ŷij is the level predicted by the
model. 𝕀 is an index function that returns 1 if the predicted label is different from the actual label, and returns 0 if it is. The
smaller the Hamming loss, the more accurate the model label will be.

Hamming Loss = 1
N

N

∑
i=1

1
L

L

∑
j=1

𝕀(yij ≠ ŷij) (6)

The Jackcard Index is used to measure the similarity of planned and actual labels. The higher the Jackcard index,
the higher the match between the model’s intended label and the actual label. For the multi-label classification task, the
Jaccard Index effectively assesses the coverage capacity of the model’s labels.

Jmacro =
1
N

N

∑
i=1

TPi

TPi + FPi + FNi
(7)

On these five evaluation metrics, you can fully and carefully evaluate the model’s performance in the MCoder-T case
coding task. The combination of these measurements allows for a more modern understanding of the model’s strengths
and weaknesses and provides the basis for further optimization.

Method
Overview of our network

The MCoder-T model is an intelligent fall coding and classification system based on multi-modal deplaning, and by inte-
grating text, images and structured data improve the efficiency of automation and classification of fall coding. This model
consists of three basic modules, as shown in Fig 1. This modules guarantees that the model can perform efficient and
accurate classification tasks in the management of complex case data and at the same time resolve the main technical
challenges of the multimodal data fusion solution.

The MCoder-T model integrates three main technical components to solve the problems of multimodal medical data
processing. The Causal Mask Attention module uses a specialized attention mechanism that preserves time sequences
in clinical data [40]. This component processes inputs by selectively focusing on the relevant characteristics of the differ-
ent data types while maintaining the chronological integrity. In medical coding applications, this consistent treatment helps
establish dependencies between different data sources and creates a solid foundation for further steps in coding analysis.
The transmodal fusion module uses a structured approach to bringing together information from different sources of med-
ical data. This component enables precise coordination of different data types through controlled interaction mechanisms
[41]. The concept prevents common fusion problems such as data conflicts or feature degradations and allows each data
module to effectively promote the overall representation while maintaining its distinctive properties. The Optimization Mod-
ule incorporates dual strategies for model enhancement. The Multi-task learning enables simultaneously learn related clin-
ical objectives and promote reliable functional recognition in the different areas of the tasks. Efficient for the parameters
of fine-tuning technology reduces the calculation requirements when adapting the model and at the same time maintains
the performance standards [42,43]. This combined approach ensures efficient operation for primary medical coding tasks
while retaining flexibility for secondary clinical applications.

The MCoder-T model is based on modules based on these three technologies. The model shows excellent perfor-
mance in case coding applications. The design of the model allows the processing of complex and multimodal data,
improves both the accuracy and efficiency of coding and contributes greatly to the automation and intelligence of medical
data processing.
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Fig 1. Architecture of the MCoder-T model for multimodal medical coding and intelligent classification.

https://doi.org/10.1371/journal.pone.0338807.g001

Causal masked attention module for multimodal data processing

The Causal Mask Attention module is responsible for processing the input data of the main components of the MCoder-T
model. It takes into account time dependencies and complex interactions between modalities in multimodal data using a
M-Causalformer. Unlike the standard self-attention mechanism that allows all tokens to exercise global caution, our causal
variant introduces a targeted limitation. The main feature of this module is to extract and protect efficient functions from
multimodal data. These characteristics are correctly oriented and oriented by the mechanism of attention of the causal
mask. This provides accurate information for subsequent merger and classification missions. Fig 2 shows the structure of
this module.

The conventional self-attention mechanism calculates the relationship between each characteristic and all other char-
acteristics in a bilateral way. which is not optimal for modeling sequential data where the future does not have to have an
impact on the past. To address this, the causal mask attention mechanism limits the flow of information by introducing a
mask matrix, ensuring that each token can interact only with previous tokens and itself during the calculation, thereby pre-

serving the causal dependence in the data. Q, K, and V represent respectively a query, key and value matrix.
QKT

√dk
calcu-

lates the similarity between features, softmax The function converts the similarity to weight. These weights are used to
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Fig 2. Architecture of the causal masked attention mechanism.

https://doi.org/10.1371/journal.pone.0338807.g002

calculate the sum of the weights to get the output.

Attention(Q,K,V) = softmax (QK
T

√dk
)V (8)

The key technical differentiator is the masked matrix M. This matrix plays a decisive role in the calculation of points
of attention. It is defined as an upper triangular matrix with values of negative infinity −∞ in the positions that represent
future tokens, effectively zeroing them out after the softmax operation. This ensures that each token can only attend to
previous tokens and prevents any future information leakage. This stands in direct contrast to the standard self-attention,
which applies no such restriction and uses a fully visible mask. This directed mechanism constrains the information flow
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and allows the model to learn causal dependencies during inference.

Mij = {
0 if i ≥ j

−∞ if i < j
(9)

After you enter the mask matrix, change the attention formula. The mask matrix M is added to the result of the simi-
larity calculation to ensure and avoid the limitation of the cause mask, that future information enters the current informa-
tion. Thus, the model guarantees the accuracy of cause and effect when processing multimodal data. Formally, the causal
masked attention is computed by adding the mask matrix M to the scaled dot-product scores. This formulation ensures
that the influence of future tokens is masked out, guaranteeing the causality of the model when processing multimodal
data sequences.

Z = Attention(Q,K,V) = softmax (QK
T

√dk
+M)V (10)

The output of the attention module into the cause mask is then processed step by step by a processing block, the step
by step gains a deeper characteristic embodiment. These properties form a vector full of properties through intermodal
interaction and fusion to provides detailed information for the following classification and coding tasks.

Fine-grained cross-modal feature alignment and fusion with PCMA

The enhanced transmodal fusion module is a key component of the MCoder-T model. It combines PCMA technology and
focuses on optimizing the orientation and interaction of the various modal data functions. This approach differs from con-
ventional multimodal merger strategies. Unlike earlier fusion methods, such as simple concatenation, which often combats
functional errors, or late fusion methods, which may not make sufficient use of intermodal correlations, our PCMA mecha-
nism operates through structured intermediate fusion. In contrast to standard modal cross-attention that allows for unlim-
ited flow of information, the PCMA introduces a pattern of controlled interaction through its ”allowable attention mech-
anism” that effectively mitigates excess information and violations. This module solves the problem of multimodal data
fusion, ensuring that different modalities contribute to complete functional information and do not disturb each other dur-
ing the fusion process, improves the effect of multimodal data fusion and improves the accuracy of medical record coding
tasks. Fig 3 shows the structural diagram of the module.

In this module, the fusion of transmodal features is performed through a PCMA transformer. First, the input feature is
converted to a unified representation by linear transformation. The core innovation lies in the constrained cross-modal
attention mechanism, which allows models to effectively capture relationships between various modalities only within
carefully defined allowed pairs. A and B represent the index set of the pairing modality, and P represents the entire valid
pairing relationship. This constraint ensures that any modality interaction occurs only in the allowed pairing, thereby pre-
venting interference from irrelevant features.

AllowedAttention(A,B) = {(i, j) ∣ i ∈ A, j ∈ B, (i, j) ∈ P} (11)

Another integration of the PCMA modular cross functions is carried out. Xt and Xs represent functions of different
modes, while head1, … , headh represent the emission of several attention heads. Concat represents a bonding operation,
WO is the weight matrix. Multihead PCMA Through the parallel processing of several attention heads, modular transverse
fusion is enhanced, learning the relationship between modalities from different points of view and enhancing the fusion
effect.

MultiHeadPCMA(Xt,Xs) = LayerNorm (Xt + Concat(head1, … , headh)WO) (12)
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Fig 3. Architecture of the fine-grained cross-modal fusion module using PCMA.

https://doi.org/10.1371/journal.pone.0338807.g003

After that PCMA operation is processed by position coding and the feed-forward network. x represents the input char-
acteristic.W1 andW2 are the weight matrices, and b1 and b2 are the bias terms. ReLU Is an activation function. This pro-
cess processes the features of each location to improve the ability to display information. Features facilitates learning and
effective extraction of information.

FeedForward(X) =W2 ⋅ ReLU(W1 ⋅ X + b1) + b2 (13)

This module enables the successful integration of functions of different modes thanks to modular functional interac-
tions, position coding and layer normalization and provides a precise basis for optimization and classification of subse-
quent tasks.

Integration of multi-task learning and LoRA for efficient model optimization

The multi-task optimization module combines MTL and LoRA technologies to improve model generalizability and opti-
mization efficiency. In our multi-task learning framework, we design two specific auxiliary tasks alongside the primary
medical coding task to enhance feature learning: a contrastive learning task that maximizes mutual information between
different modalities of the same case while minimizing similarity across different cases, which improves cross-modal align-
ment; and a disease severity prediction task that classifies cases into mild, moderate, and severe categories based on
clinical indicators, providing complementary clinical context to the main coding task. The main function of this module is
to enable models to learn a more complete representation of features through multitasking learning. On the other hand,
LoRA technology allows you to effectively correct large deep learning models with a low adjustment, by effectively reduc-
ing computing costs while maintaining high productivity. Fig 4 shows the structure of this module.

Multitask learning uses common model parameters, so that the model can optimize multiple tasks simultaneously.
These auxiliary tasks are carefully selected to be clinically relevant, but differ from the main purpose of coding, so they
provide additional learning signals and there is no contradictory optimization. In the process, LoRA optimizes the model
by introducing a low-rank matrix and reduces computation costs. B and A respectively represent a low storage matrix and
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Fig 4. Architecture of the multi-task learning and LoRA integration module.

https://doi.org/10.1371/journal.pone.0338807.g004

an upper projection matrix, ΔW indicates the update of the model parameters. The model parameters are adjusted using
an updated low-rank matrix format and reduce computation complexity while maintaining performance.W0 represents the
previously trained weight, x which represents the input data, ΔW = B ⋅ A ⋅ x is an updated LoRA parameter.

h =W0 ⋅ x + ΔW =W0 ⋅ x + B ⋅ A ⋅ x (14)

In MTL, we optimize the performance of multiple tasks through a joint loss function. The total loss function integrates
the primary medical coding task with the auxiliary contrastive learning and severity prediction tasks, where each task con-
tributes to the overall learning objective according to its designated weight. The number of the weight of the mission is
𝜆k. This multitasking optimization allows the model to learn more extensive features from different tasks and improve the
generalization ability for each task.

ℒtotal(𝜃s, 𝜃1, … , 𝜃K) =
K

∑
k=1

𝜆kℒk(𝜃s, 𝜃k) (15)

h =W0 ⋅ x + (BA)x (16)

In multi tasking learning, 𝜃LoRAs represents a shared parameter that is refined. Thus MCoder-T The model can perform
task optimization and precise low level adaptation at the same time. Efficiency and scalability in multi tasking environ-
ments were guaranteed.

ℒtotal =
K

∑
k=1

𝜆kℒk(𝜃LoRAs , 𝜃k) (17)
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Multitasking Learnen und LoRA through the combination of technologies, The MCoder-T model significantly improves
performance for multiple tasks and reduces computation costs for model adjustment. This module ensures that the model
works efficiently for case coding tasks and can be extended to other related tasks, has improved both overall performance
and efficiency.

Experiment
Comparative experiments and analysis

In this section, the experiments of MCoder-T and everal comparison models on Explore several comparative models of
the COVID-19 and MedMNIST dataset and provide a detailed analysis of the results. Using five key evaluation metrics,
we compare the performance of the MCoder-T model with other comparison models. Table 2 presents the experimental
results.

As shown in Fig 5, the MCoder-T model significantly outperforms other comparison models on both the COVID-19
and MedMNIST datasets. Initially, MCoder-T achieved 55.2% of the total COVID-19 dataset in terms of subset accuracy
and improved by approximately 12.7% (49.0%) compared to MedConGTM. Across the MedMNIST dataset, he showed
an improvement of 9.8%, from 51.0% with LLaMA-3 to 56.0%. This result shows that MCoder-T can better recognize
multi-labels, reduce missed predictions, and improve classification accuracy. Regarding the macro mean F1, MCoder-T
reached 64.8% in the overall COVID-19 dataset, representing a 3.7% improvement over CRAKUT (62.5%). and repre-
sents a 3.2% improvement in the overall MedMNIST data set from 63.0% in CRAKUT to 65.5%. The F1 rating is a har-
monious average accuracy and memory, and the MCoder-T is characterized by a balance of these two aspects while pro-
viding accuracy and memory in managing multi-label issues. For macro-average AUC-ROC, MCoder-T reached 91.2%
across the COVID-19 dataset, an improvement of approximately 3.2% compared to MedConGTM (88.0%). Across the

Table 2. Performance comparison under standard and robustness settings on COVID-19 and MedMNIST datasets.

Model Dataset Setting Subset Accuracy(%) Macro F1(%) Macro AUC-ROC Jaccard Index(%) Hamming Loss(%)
MCoder-T COVID-19 Standard 55.2 64.8 91.2 60.1 3.4

+20% Noise 53.1 63.2 90.1 58.3 3.7
-30% Data 52.8 62.9 89.8 58.0 3.8

MedMNIST Standard 56.0 65.5 92.0 60.8 3.0
+20% Noise 54.3 64.1 91.2 59.2 3.3
-30% Data 54.0 63.8 90.9 58.9 3.4

MedConGTM [44] COVID-19 Standard 49.0 61.0 88.0 56.0 4.5
+20% Noise 45.2 58.3 85.1 53.1 5.2

MedMNIST Standard 49.5 61.5 88.5 57.0 4.8
+20% Noise 46.1 59.0 86.3 54.5 5.4

CRAKUT [45] COVID-19 Standard 51.1 62.5 87.5 58.0 4.2
+20% Noise 47.8 60.1 84.9 55.8 4.8

MedMNIST Standard 51.5 63.0 88.0 59.0 4.4
+20% Noise 48.3 60.8 85.7 56.9 5.0

GCFormer [46] COVID-19 Standard - 63.5 - 59.0 4.1
+20% Noise - 60.8 - 56.5 4.6

MedMNIST Standard - 64.0 - 59.5 4.3
+20% Noise - 61.5 - 57.2 4.8

DRCNN-ATT [47] COVID-19 Standard - 64.0 - 59.5 3.8
+20% Noise - 61.2 - 57.0 4.3

MedMNIST Standard - 64.5 - 60.0 3.9
+20% Noise - 61.8 - 57.8 4.4

LLaMA-3 [48] COVID-19 Standard 50.0 61.5 87.0 57.0 4.6
+20% Noise 46.5 58.9 84.2 54.2 5.2

MedMNIST Standard 51.0 62.5 87.5 58.0 5.0
+20% Noise 47.8 60.1 85.0 55.5 5.6

https://doi.org/10.1371/journal.pone.0338807.t002
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Fig 5. Performance comparison of MCoder-T and baseline models under standard settings.

https://doi.org/10.1371/journal.pone.0338807.g005

MedMNIST dataset, MCoder-T outperformed LLaMA-3 (87.5%) by 4.5%, demonstrating its ability to perform more pre-
cise differences in multi-class tasks. especially for tasks for coding complex cases in which it better recognizes differ-
ent categories. Regarding the Jaccard index, MCoder-T scored 60.1% in the overall COVID-19 dataset, which is 7.3%
higher than MedConGTM (56.0%). According to the entire MedMNIST dataset, the Jaccard MCoder T-index was 60.8%,
which is 5.1% better than LLaMA-3 (58.0%). The Jaccard index reflects the ability to match the model’s labels, and an
improvement in this index shows that the MCoder-T can match the labels more accurately. For Hamming loss, which
measures the number of mispredicted markers, MCoder-T reached 0.034 across the COVID-19 dataset, which is 26.1%
less than LLaMA-3 (0.046). After the entire MedMNIST dataset, it reduced losses by 40%. A lower Hamming loss means
that MCoder-T has a lower error rate in label prediction, reducing the number of mispredicted labels and further improving
the accuracy of case coding.

In addition to the standard performance evaluation, we further investigated the model’s robustness to address practical
clinical requirements. As shown in Table 2, MCoder-T demonstrates superior resilience against noisy inputs and missing
data compared to baseline models. Under the +20% noise condition, MCoder-T maintains stable performance across both
datasets, with only marginal performance degradation (e.g., Macro F1 score decreases by 1.6% on COVID-19 and 1.4%
on MedMNIST), whereas other models exhibit significantly larger performance drops. This robustness can be attributed
to our architectural design: the mask’s causal attention mechanism effectively filters out insignificant noise samples, lim-
iting information flows, while the PCMA fusion module by its controlled interaction scheme prevents the spread of errors
on the modules. In addition, MCoder-T maintains competitive performance in case of -30% data shortage and verifies its
ability to process incomplete clinical records. These results together confirm that MCoder-T not only achieves exceptional
accuracy, but also possesses important resistance properties for real-world clinical application.

As in Fig 6, MCoder-T consistently outperforms all comparative models, particularly in the area of merging multimodal
data and optimizing multitasking learning. This suggests that MCoder-T can effectively manage data from different modes,
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Fig 6. Comparison of experimental results for MCoder-T and baseline models.

https://doi.org/10.1371/journal.pone.0338807.g006

can make full use of information from any fashion and avoid problems of information loss and inconsistency, thereby sig-
nificantly improving the performance of the coding task.

Ablation experiments and analysis

To further verify the contribution of each module to the MCoder-T model, we conducted ablation experiments by remov-
ing individual modules and studying their impact on overall performance [49]. Experimental data are presented in Table 3.
By comparing indicator changes before and after the removal of different modules, we can clearly define the improvement
and optimization of each module’s impact on performance observe.

The experimental results show that after removing the attention module from the cause-effect mask, the perfor-
mance of the model in all indicators, including the subset accuracy, macro-average F1 score, macro-average AUC-
ROC, Jacques index, and Hamming loss. For example, after removing this module, the accuracy of the entire COVID-
19 data set decreased from 55.2% to 51.1%, representing a decrease of about 7.4%. Also the average macro F1 score
fell from 64.8% to 62.1%. This power balance shows, that the attention module of the causal mask plays an important
role in detecting the causal dependence between the modalities and reinforcing the multimodal data fusion played. After
removing the module, model performance also decreased across all metrics, especially in macro averages. AUC-ROC
decreased from 91.2% to 89.0% and decreased by approximately 2.4%. This result indicates that the PCMA module plays
a key role in fine grain fusion of features, effectively aligns and interacts with multimodal data, avoids information loss, and
improves model performance by distinguishing different categories. After the removal of the multitask learning optimiza-
tion module, model productivity decreased, particularly with the Jacques Index and Hamming loss. The Jacques index fell
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Table 3. Ablation study results of MCoder-T model by removing individual modules.

Model Dataset Subset Accuracy (%) Macro F1 (%) Macro
AUC-ROC

Jaccard Index (%) Hamming Loss (%)

MCoder-T COVID-19 55.2 64.8 91.2 60.1 3.4
MedMNIST 56.0 65.5 92.0 60.8 3.0

W/o Causal Masked Attention COVID-19 51.1 62.1 87.5 56.3 4.0
MedMNIST 51.5 62.5 88.0 57.0 4.2

W/o PCMA Fusion COVID-19 52.3 62.8 89.0 57.8 3.9
MedMNIST 52.7 63.3 89.5 58.2 4.1

W/o Multi-task Learning
Optimization

COVID-19 52.9 63.2 88.5 58.0 3.8
MedMNIST 53.2 63.7 89.0 58.5 4.0

https://doi.org/10.1371/journal.pone.0338807.t003

from 60.1% to 58.0%, down 3.5%. While multitask learning improves the model’s ability to generalize different tasks, its
impact on the case coding task is relatively small. Also after deleting this module, the model retained some performance,
but lost the advantages of multitask optimization, which shows that this module is important for processing multitask sce-
narios. Fig 7 shows the results of the tests carried out after the module has been removed.

However, although ablation experiments on individual modules can confirm the independent contribution of each mod-
ule, they do not fully show synergy effects between the modules. To further test the coherence and collaboration between

Fig 7. Effect of MCoder-T model after module ablation.

https://doi.org/10.1371/journal.pone.0338807.g007
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the modules, we carried out remote experiments with several modules, to evaluate the synergy effects of module opti-
mization in the task of multimodal data fusion and case coding [50]. Table 4 shows the experimental results after ablation
of several modules.

As shown in Fig 8, after the elimination of the mask causal attention module and the PCMA module, the performance
of the model decreased significantly on all evaluation indicators. in particular in the accuracy of the subset and the macro
mean F1 score. According to the COVID-19 database, subset accuracy after deletion of these two modules decreased
from 55.2% to 50.5%, or about 8.5%. According to MedMNIST, it decreased by about 8.9%, from 56.0% to 51.0%. This
indicates that the The absence of these modules significantly reduces the fusion capacity of the information, which affects
model productivity for multi-label classification tasks. If the mask causal attention module and the MTL optimization mod-
ule are removed, model performance decreases, particularly with the macromean AUC-ROC and the Jacques index.
According to the COVID-19 database, the macromean AUC-ROC decreased from 91.2% to 88.0%, or approximately
3.5%. In addition, the decrease in the MedMNIST dataset has is about 3.8%, from 92.0% to 88.2%. This decrease in per-
formance shows the critical role that the MTL optimization module plays in the overall performance of the model, partic-
ularly in multitask scenarios in which it assists the model optimization for all tasks. In addition, the deletion of the PCMA
module and the MTL optimization module has resulted in power fluctuations, in particular in the average macro index F1
and the Jacques index. According to the COVID-19 dataset, the mean macroindex F1 decreased from 64.8% to 62.5%, a

Table 4. Ablation study results of MCoder-T model by removing multiple modules.

Model Dataset Subset Accuracy (%) Macro F1 (%) Macro
AUC-ROC

Jaccard Index (%) Hamming Loss (%)

MCoder-T COVID-19 55.2 64.8 91.2 60.1 3.4
MedMNIST 56.0 65.5 92.0 60.8 3.0

W/o Causal Masked Attention +
PCMA

COVID-19 50.5 61.3 87.8 55.8 4.1
MedMNIST 51.0 61.5 88.2 56.2 4.3

W/o Causal Masked Attention +
MTL Optimization

COVID-19 51.2 62.0 88.0 56.5 4.0
MedMNIST 51.7 62.3 88.5 56.8 4.2

W/o PCMA + MTL Optimization COVID-19 52.0 62.5 88.3 57.0 3.9
MedMNIST 52.5 62.8 88.8 57.2 4.0

https://doi.org/10.1371/journal.pone.0338807.t004

Fig 8. Ablation study results of multiple modules in MCoder-T model for investigating the interaction of module combinations.

https://doi.org/10.1371/journal.pone.0338807.g008
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decrease of approximately 3.6%. For MedMNIST, the decrease was 3.7% from 65.5% to 62.8%. These results show that
the optimization module PCMA and the optimization module MTL have a significant impact on the efficient merging of the
functions of the different modes and the optimization of multitask productivity. Without this module, the model struggles
with complex tasks.

Through multi-modular ablation experiments, we have confirmed the importance of each module in the MCoder-T
model and demonstrated the synergy effects between these modules. The collaboration of these modules is crucial for the
effective management of numerous modeling tasks and the precise prediction of coding cases. Therefore, the removal of
each module has a significant impact on the overall model performance and confirms the effectiveness of the MCoder-T
model development and optimization strategy in Tasks of multimodal learning.

Conclusion

In this article, we propose the MCoder-T model, a case coding and intelligent classification system based on multimodal
deep learning. By combining the causal M-Causalformer, PCMA, and MTL+LoRA, MCoder-T integrates text, images and
structured data efficiently and improves automation efficiency and classification accuracy of case coding tasks. Through
a number of comparative and ablation experiments, we have demonstrated the important advantages of the model over
existing models across several evaluations, particularly in multimodal data fusion, model accuracy, and computational effi-
ciency. Experimental results show that MCoder-T not only ensures efficient operation when performing coding tasks, but
also demonstrates a strong generalization capability. It can be extended to other related tasks.

Future research aims to further optimize the integration of multimodal functions and the possibilities of joint learning of
tasks of the MCoder-T model. be. In particular, with regard to learning efficiency and real-time performance of the model
in large-scale multitasking environments, Future work could introduce more methods of self-controlled learning and dis-
persion strategies, to further increase the speed of model conclusions and the efficiency of calculations. The MCoder-T
model will be applied to a larger number of medical records and real clinical scenarios, to test its effectiveness in practi-
cal applications and to investigate how to model smarter healthcare solutions such as supportive diagnostics, can provide
personalized treatment and health management [51,52].
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