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Abstract 

New Quality Productivity (NPQ) plays a pivotal role in driving China’s transition 

toward sustainable economic development. This study constructs a multidimensional 

evaluation framework incorporating thirteen indicators across digitalization, green 

development, and institutional innovation, and utilizes entropy-based analysis of 

China’s time-series data from 2000 to 2022. The results reveal that NPQ markedly 

enhances economic efficiency, social inclusiveness, and environmental sustainability 

through technological progress, optimization of resource allocation, and institutional 

improvement. The composite index rose sharply from 0.0598 in 2000 to 0.9627 in 

2022, representing an average annual growth rate of 12.4%. Weight analyses identify 

low-carbon technology innovation, digital accessibility, and environmental policy 

strictness as core drivers, with significant structural advances corresponding to major 

policy initiatives in 2012, 2016, and 2020. Robustness and statistical tests confirm the 

reliability of the model and the progressive strengthening of digitalization and green 

development dimensions over time. This study provides empirical evidence to guide 

NPQ-related policy formulation and contributes new theoretical perspectives to global 

sustainable development discourse by highlighting the importance of coordinated 

technological, environmental, and institutional advancement.

Introduction

In the face of mounting global challenges, including environmental degradation, 
resource limitations, and widening social inequalities, the pursuit of sustainable and 
high-quality economic development has become a central concern for scholars and 
policymakers. Traditional, resource-intensive growth models often result in ecological 
harm and unequal distribution of benefits, highlighting the need for productivity para-
digms that balance economic efficiency, social equity, and environmental responsibil-
ity. Within this context, the concept of New Quality Productivity (NPQ) has attracted 
increasing attention, particularly in China’s ongoing economic transformation [1].
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In this study, NPQ is defined as an advanced, innovation-driven form of produc-
tivity resulting from the dynamic integration of digitalization, green development, and 
institutional innovation. In contrast to traditional productivity, which relies predomi-
nantly on capital, labor, and raw resources, NPQ is characterized by the adoption 
of cutting-edge technologies, environmentally sustainable practices, and adaptive 
governance frameworks [2]. These three dimensions not only represent distinct 
channels of productive upgrading but also interact synergistically to reshape pro-
duction, distribution, and governance systems. Although similar concepts have been 
addressed in research on endogenous growth, green innovation systems, and institu-
tional economics, most existing studies examine these drivers in isolation or through 
static, cross-sectional analyses, leaving a gap in understanding the co-evolution and 
synergistic effects of NPQ’s multi-dimensional factors on sustainable development 
over time [3–5].

To address this gap, a comprehensive analytical framework is proposed to eval-
uate the evolution and impact of NPQ from an integrated, longitudinal perspective. 
Drawing upon a novel dataset covering key phases of China’s transformation from 
2000 to 2022, a multi-dimensional indicator system is constructed, including digi-
tal infrastructure, eco-innovation, and institutional quality, while an entropy-based 
methodology assesses indicator weights and evolutionary dynamics. This approach 
surpasses single-dimensional or purely subjective assessments, enabling a more 
objective comparison of the relative importance and interplay of digital, green, and 
institutional factors across various policy stages.

Furthermore, the analysis situates China’s experience within a global context by 
benchmarking it against established frameworks, such as OECD productivity indices 
and the United Nations Sustainable Development Goals (SDGs). This comparative 
perspective highlights both the distinctiveness and potential international applicability 
of the NPQ model, providing theoretical and policy insights relevant for a broad range 
of developing and emerging economies.

In summary, this study makes three major contributions. It offers a clear, 
academically-grounded definition and operationalization of NPQ, emphasizing the 
mutual reinforcement of digitalization, green development, and institutional innova-
tion. It employs a dynamic, entropy-based framework to identify the temporal evolu-
tion and driving mechanisms of NPQ in relation to sustainable development. Finally, 
it provides evidence-based recommendations for high-quality development policy, 
contributing to the advancement of global sustainability objectives.

Literature review

The concept of New Quality Productivity (NPQ) originated in China’s recent modern-
ization and economic transformation discourse, and has rapidly attracted academic 
attention due to its potential to address the limitations of resource-intensive growth 
models [6,7]. NPQ is defined as a multi-dimensional productivity paradigm emphasiz-
ing technological innovation, digital transformation, green development, and adaptive 
institutional reform [8]. This approach distinguishes itself from traditional productiv-
ity theory, which centered on labor and capital inputs—by prioritizing the dynamic 
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LCTI, Low-carbon Technology Innovation 
Index; GPCI, Green Capacity Penetration 
Index; CEII, Carbon Emission Intensity Index; 
EPSI, Environmental Policy Strictness Index; 
HTRI, High-tech R&D Index; ITEI, Industrial 
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integration of knowledge, advanced technologies, and sustainable practices [9]. Its theoretical underpinnings draw from 
Schumpeter’s innovation-driven growth model, Romer’s endogenous growth theory, and institutional economics perspec-
tives, reflecting a convergence of innovation, knowledge capital and sustainable development principles. Schumpeterian 
theory emphasizes creative destruction and technological innovation as drivers of economic transformation, providing 
the conceptual foundation for understanding NPQ’s innovation dimension [10]. Romer’s endogenous growth framework 
highlights the role of knowledge accumulation and human capital in driving sustained economic expansion, offering analyt-
ical tools for examining how NPQ transforms production functions through technology diffusion and skill upgrading [11]. 
Institutional economics, particularly North’s framework on institutional change and Acemoglu’s work on governance qual-
ity, provides theoretical grounding for understanding how institutional innovation reduces transaction costs and enhances 
policy credibility within the NPQ paradigm [12].

Recent scholarship highlights NPQ’s triple impact mechanism: technological progress drives resource efficiency and 
eco-innovation; industrial transformation fosters strategic emerging sectors such as artificial intelligence and renewable 
energy; and institutional evolution promotes effective governance and policy adaptation [13]. Empirical evidence reveals 
that integrated NPQ indicators, such as digital infrastructure expansion, green patenting, and innovation investment, which 
are significantly associated with improvements in carbon efficiency, resource productivity, and human capital develop-
ment [14]. While the explicit term NPQ remains largely confined to Chinese literature, related global concepts advocated 
by organizations such as the OECD, UNIDO, and WEF share a comparable focus on digitalization, sustainable industrial 
upgrading, and institutional innovation. The OECD’s productivity frameworks emphasize the role of digital transformation 
and innovation systems in enhancing competitiveness [15]. UNIDO’s sustainable industrial development approach high-
lights technology diffusion and green manufacturing as pathways to inclusive growth [16]. The WEF’s Fourth Industrial 
Revolution discourse focuses on the convergence of digital, biological, and physical technologies in reshaping production 
systems [17]. Table 1 summarizes the connotation of NPQ across its core dimensions, integrating both theoretical defini-
tions and practical implications in line with international productivity and sustainability frameworks.

In methodological terms, the assessment of NPQ has seen substantial evolution. Early research predominantly 
adopted single-factor approaches [18]; more recent studies employ composite indicator systems that integrate technolog-
ical, industrial, and social dimensions [19–21]. Techniques such as entropy weighting have gained prominence for their 
capacity to objectively allocate indicator weights and capture temporal fluctuations, thereby strengthening the analytical 
rigor of NPQ evaluation [22]. Nonetheless, existing scholarship still faces methodological challenges: indicator systems 
lack standardization, micro-level data remain underutilized, and the incorporation of institutional and social equity vari-
ables is incomplete [23].

Major research gaps persist regarding the theoretical specification and empirical operationalization of NPQ. There 
remains a lack of consensus on its precise definition, scope, and constituent elements, resulting in considerable 

Table 1.  Core dimensions and academic connotation of NPQ.

Dimension Academic Definition & Practical Focus

Innovation Scientific and technological innovation; development and application of new production factors such as data, 
AI, and digital technologies.

Quality Orientation Emphasis on high standards in R&D, product/process quality, sustainability, and value creation across 
sectors.

Productivity Enhancement Improvement in total factor productivity through technology, digitalization, and effective resource utilization; 
enabling industrial upgrading and emerging sector formation.

Green and Sustainable Development Integration of green technologies, eco-innovation, and resource efficiency to support low-carbon, environ-
mentally friendly economic activities.

Systemic Integration Deep and dynamic synergy among innovation, quality, and productivity; embedding digital, green, and insti-
tutional transformation within a unified development framework.

https://doi.org/10.1371/journal.pone.0338804.t001

https://doi.org/10.1371/journal.pone.0338804.t001
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heterogeneity across studies [24]. Moreover, most extant analysis presupposes linear or static relationships, seldom 
accounting for the dynamic and synergistic evolution of NPQ’s core dimensions over extended periods [25]. Comparative 
international perspectives are also underrepresented, hindering the positioning of NPQ within the broader landscape of 
global productivity transformations [26].

This study addresses these gaps through several methodological and analytical contributions, using a multi-faceted, 
entropy-based evaluation framework, drawing on longitudinal national-level data from 2000 to 2022. By systematically 
tracing the interactions among technological innovation, industrial structure upgrading, and institutional adaptation, this 
research enhances the conceptual clarity of NPQ and provides robust empirical evidence regarding its impact on sus-
tainable development. Through this endeavor, the study contributes to the refinement of productivity theory and offers a 
foundation for evidence-based policymaking, both within China and in analogous contexts worldwide.

Indicator system and analytical method

To empirically examine the dynamic contribution of New Quality Productivity (NPQ) to sustainable development, this study 
constructs a multidimensional indicator system encompassing the Digital Perspective, Green Perspective, and Institutional 
Innovation Perspective. The entropy weighting method is applied to quantify the temporal evolution of indicator signifi-
cance over the period 2000–2022, providing an objective basis for analyzing shifts in key drivers, such as the changing 
importance of green-related indicators in response to major policy developments. This analytical framework enables the 
identification of critical factors influencing NPQ across different stages, offering empirical support for policy evaluation and 
future optimization.

Construction of indicator system

The indicator system developed in this study encompasses thirteen carefully selected metrics, as shown in Table 2, clas-
sified into three perspectives to reflect the multifaceted nature of NPQ. Indicator selection adheres to the following aca-
demic criteria: First, each metric should embody core attributes of NPQ, including technological advancement, resource 
efficiency, and environmental impact; second, the metrics must align with the threefold goals of sustainable development 
— namely economic growth, social equity, and ecological sustainability; third, all data sources must be authoritative, con-
tinuous, and suitable for longitudinal analysis to ensure reliability and international comparability.

Within the Digital Perspective, four indicators are employed to quantify the digital transformation associated with NPQ: 
the Digital Economy Core Industry Index (DECI), measuring the proportion of value added by digital core industries to 
GDP; the Internet Penetration Index (IPI), capturing the prevalence of digital infrastructure through internet usage rates; 
the Digital Trade Vitality Index (DTVI), reflecting international competitiveness in digital trade via ICT export value; and the 
Digital Accessibility Index (DAI), gauging the robustness of digital infrastructure based on the total length of optical cable 
lines.

The Green Perspective encompasses five indicators that focus on ecological modernization and low-carbon develop-
ment: the Low-Carbon Economic Efficiency Index (LCEE), assessing energy utilization efficiency as reflected by energy 
consumption per unit GDP; the Low-Carbon Technology Innovation Index (LCTI), measuring ecological innovation capa-
bility through authorized green patent counts; the Green Production Capacity Penetration Index (GPCI), representing the 
transition toward renewable energy by its share of installed capacity; the Carbon Emission Intensity Index (CEII), tracking 
progress in carbon intensity reduction using CO₂ emissions per unit GDP; and the Environmental Policy Strictness Index 
(EPSI), derived from the OECD database to evaluate regulatory rigor in environmental protection.

The Institutional Innovation Perspective comprises four indicators that characterize the role of institutional mechanisms 
in supporting NPQ progress: the High-tech R&D Index (HTRI), indicating research and development investment intensity; 
the Industrial Technology Empowerment Index (ITEI), measuring the effectiveness of technology transfer and indus-
trial upgrading via technology market transactions; the Digital Governance System Index (DGSI), combining legislative 
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initiatives and international governance ratings to assess institutional governance capacity; and the Science and Technol-
ogy Innovation Activity Index (STIA), capturing the vitality of the innovation ecosystem through the registration of scientific 
and technological achievements.

By applying the entropy method to determine dynamic indicator weights and analyzing their temporal trends, the study 
not only ensures methodological robustness and international relevance, but also enhances understanding of the evolving 
drivers underlying NPQ’s contribution to sustainable development in the Chinese context.

This multidimensional assessment framework is purposefully constructed to systematically track the evolutionary 
patterns of NPQ across distinct phases of China’s economic modernization, encompassing the transformative 2000–2022 
period that witnessed critical transitions in industrial structure and development paradigms, making it highly representative 
and analytically valuable. All indicator data come from authoritative institutions and have been standardized to ensure the 
scientific of subsequent analysis.

Table 2.  Index system of NPQ.

Dimension Indicator Abbreviation Explanation Data Source and Processing

Digital 
Perspective

Digital Economy Core 
Industry Index

DECI Proportion of added value of core digital 
economy industries in GDP (%)

National Bureau of Statistics, Ministry of 
Industry and Information Technology, Com-
munications Administration

Internet Penetration 
Index

IPI Internet penetration
rate (%)

National Bureau of Statistics (number of inter-
net users/ total population)

Digital Trade Vitality 
Index

DTVI Export value of ICT goods (million US dollars) United Nations Trade Database, screened 
by HS codes (computers, communication 
equipment, etc.)

Digital Access Index DAI Total length of optical cable lines (10,000 km) Communications Statistics Bulletin of the Min-
istry of Industry and Information Technology, 
National Bureau of Statistics

Green 
Perspective

Low-carbon Economic 
Efficiency Index

LCEE Energy consumption per unit of GDP (10,000 
tons of standard coal/ 10,000 yuan)

National Bureau of Statistics (total energy 
consumption/ GDP)

Low-carbon Technology 
Innovation Index

LCTI Number of green patent authorizations 
(pieces)

WIPO Green Technology Database (IPC-Y02 
classification), OECD environmental patent 
data

Green Capacity Pene-
tration Index

GPCI Proportion of renewable energy installed 
capacity (%)

Data from the National Energy Administra-
tion, China Electricity Yearbook, IRENASTAT 
Online Data

Carbon Emission Inten-
sity Index

CEII Carbon emission intensity (tons of CO2/ 
10,000-yuan GDP)

White Paper of the Ministry of Ecology and 
Environment, CDIAC database, CEADs 
database

Environmental Policy 
Strictness Index

EPSI OECD Air Pollution Prevention Policy Index 
(EPS index, 0–6 points)

OECD Environment Policy Stringency (EPS) 
Index (2000–2020). Missing 2021–2022 data 
were forecasted using an ARIMA (1,1,0) 
model.

Institutional 
Innovation 
Perspective

High-tech R&D Index HTRI R&D expenditure of industrial enterprises 
above designated size/ GDP (%)

“Science and Technology Expenditure” item 
in the final accounts report of the Ministry of 
Finance, National Bureau of Statistics

Industrial Technology 
Empowerment Index

ITEI Turnover of technology market (100 million 
yuan)

Annual data of the National Bureau of Statis-
tics, logarithmized processing

Digital Governance 
System Index

DGSI Number of “Digital Economy Promotion Regu-
lations” promulgated at the provincial/munici-
pal level, EU Digital Governance Index

State Council Policy Document Library, EU 
Digital Governance EDPS Database, World 
Bank DGI Index

Scientific and Tech-
nological Innovation 
Activity Index

STIA Number of scientific and technological 
achievements registered by the National 
Bureau of Statistics

National Bureau of Statistics

https://doi.org/10.1371/journal.pone.0338804.t002

https://doi.org/10.1371/journal.pone.0338804.t002
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Data processing

To ensure comparability and consistency of indicator data, this study systematically processed the original data. Since the 
measurement units and numerical ranges of various indicators differ significantly (e.g., DECI is a percentage, DTVI is in 
billion USD), standardization is needed to eliminate unit effects and ensure comparability between indicators. This study 
uses range standardization to process the original data matrix. First, all data are continuous time series, requiring no 
interpolation, ensuring data integrity and authenticity. Second, some indicators (e.g., “Industrial Technology Empowerment 
Index”) are logarithmically transformed to reduce data fluctuation and better conform to the normal distribution assump-
tion, with the formula:

	 Xlogij = ln (Xij + 1)	 (1)

Where Xij represents the original value of the j  indicator ( j = 1, 2, 3...13) in year i  ( i = 1, 2, 3...23), adding a constant 1 to 
avoid zero value issues. Third, all indicators are normalized using range standardization to eliminate unit differences, with 
the formula:

	
X′
ij =

Xij –min (Xj)
max (Xj) –min (Xj) 	 (2)

Where min (Xj) and max (Xj) are the minimum and maximum values of the j  indicator from 2000 to 2022, and Xij is the 
standardized value ranging from [0,1]. Taking the digital economy core industry index DECI as an example:

	
X′
i1 =

DECIi –min (DECI)
max (DECI) –min (DECI)	 (3)

For negative indicators (e.g., “Carbon Emission Intensity Index”), they are inverse transformed before standardization to 
ensure that lower values are better. The formula is:

	
X

′′

ij =
1
Xij 	 (4)

Through the above processing, all indicator values are mapped to a unified interval, facilitating subsequent entropy 
method calculations. To further validate the representativeness of the data, this study conducted descriptive statistical 
analysis, including mean, standard deviation, and coefficient of variation, to ensure data stability and reliability of the 
analysis.

Analytical model

The entropy method calculates the weights of indicators based on their information entropy, which measures the disper-
sion of data. The key steps include:(1) Standardizing the data. (2) Calculating the proportion of each indicator. (3) Deter-
mining the entropy and redundancy coefficients. (4) Computing the weights for each indicator. Based on these steps, this 
study uses the entropy method to calculate weights for 13 indicators and construct a NPQ comprehensive evaluation 
model to quantify its dynamic evolution characteristics and contribution to sustainable development.

First, construct the standardized matrix: Set the time span m = 23 years (2000–2022), number of indicators n = 13, 
and the standardized data matrix:

	 X =
[
X′
ij

]
m×n	 (5)
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Where X′
ij prime is the standardized value of the j  indicator in year i . This matrix provides the basis for subsequent 

entropy calculations.
Second, calculate indicator proportions: To eliminate the impact of negative or zero values, calculate the proportion of 

each indicator in each year, with the formula:

	
Pij =

X′
ij∑m

i=1 X
′
ij	 (6)

Where Pij represents the proportion of the j  indicator in year i , satisfying 
∑m

i=1 Pij = 1. This step converts standardized 
data into probability distribution form, laying the foundation for entropy calculation.

Third, calculate indicator entropy: According to information entropy definition, the entropy Ej  of the j  indicator is:

	
Ej = –

1
ln(m)

∑m

i=1
Pijln (Pij)

	 (7)

Where the constant 1
ln(m) (here m = 23) is used to normalize entropy, ensuring Ej ∈ [0, 1]. If Pij = 0, then define 

Pijln (Pij) = 0. According to information entropy principle, entropy Ej  reflects the information uncertainty of the indicator, 
with lower entropy indicating higher dispersion and greater information content, contributing more to comprehensive 
evaluation.

On this basis, continue to calculate the difference coefficient. The difference coefficient reflects the contribution of the 
indicator to comprehensive evaluation, with the formula:

	 Gj = 1 – Ej 	 (8)

Where the larger Gj  indicates higher contribution of the indicator to NPQ, and the weight should be correspondingly 
increased.

Fourth, calculate indicator weights. The indicator weight formula is:

	
Wj =

Gj∑n
k=1Gk 	 (9)

Where Wj is the weight of the j  indicator, satisfying 
∑n

j=1Wj = 1. The analysis of weight evolution over time can reveal 
changes in the importance of various indicators at different stages, such as after the implementation of “dual carbon” poli-
cies. By calculating the weight vector W = [w1,w2,w3...w23] each year, the dynamic weight changes of each indicator from 
2000 to 2022 can be obtained.

Finally, calculate the comprehensive evaluation index: Based on weights and standardized data, calculate the annual 
NPQ comprehensive index (New Quality Productivity Index, NQPI), with the formula:

	
NQPIi =

∑n

j=1
Wj × X′

ij 	 (10)

Where i = 1, 2, 3...23, NQPIi represents the comprehensive score of NPQ in year i. The time series of NQPIi reflects the 
dynamic evolution trend of NPQ, providing quantitative evidence for analyzing its overall level in each year and its contri-
bution to sustainable development. For example, the comprehensive score for 2000 is:

	
NQPI1 =

∑13

j=1
wjX′

1j	 (11)
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Based on the NQPIi calculated using the entropy method, this study ensures the objectivity of weight distribution. Com-
pared with subjective weighting methods and principal component analysis, the entropy method makes full use of intrinsic 
data information, reducing interference from human bias and enhancing the scientific and credibility of evaluation results. 
This study analyzes the evolution characteristics of NPQ through time series changes, focusing on its driving mechanism 
for sustainable development. First, at the theoretical level, by constructing a “NPQ - sustainable development” dynamic 
evolution model, it reveals the interaction mechanism between the two. For example, it analyzes how digitalization, green 
development, and institutional innovation work together to enhance economic efficiency, resource utilization rate, and 
environmental quality. Second, at the methodological level, by comparing the evolution patterns of indicator weights from 
2000 to 2022, it explores the impact of policy background on indicator importance. For example, whether the weight of 
“green production capacity penetration index” or “low-carbon technology innovation index” significantly increased after 
2020, reflecting the strengthening effect of green policies. Additionally, through phase analysis, it identifies key driving 
indicators at different development stages. Finally, at the practical level, the study provides temporal evidence for China’s 
NPQ promotion policies to maximize sustainable development benefits.

Results

This research establishes a comprehensive evaluation framework consisting of 13 indicators across three dimensions—
digitalization, green development, and institutional innovation—to examine the influence of China’s NPQ on sustainable 
development during the period from 2000 to 2022. Using the entropy method to determine indicator weights and calculate 
composite scores, the research reveals the dynamic evolution and driving mechanisms of NPQ in this context. Descriptive 
statistics (see Table 3) indicate that, across 23 yearly observations for each indicator, mean values range from 0.2729 
(LCTI) to 0.6546 (CEII), while standard deviations span from 0.2589 (GPCI) to 0.3771 (LCEE), demonstrate substantial 
diversity and variability in the underlying data, thereby providing a robust basis for entropy-based analysis. To further vali-
date the findings, three robustness checks are conducted: the leave-one-out method, indicator perturbation analysis, and 
subsample testing.

Entropy method weight analysis

The entropy-weighted approach quantifies individual indicators’ relative importance within the assessment framework by 
analyzing information entropy values. The weighting outcomes presented in Fig 1 demonstrate the varying significance 

Table 3.  Descriptive statistics.

Indicator Code Obs (Count) Mean (0–1 Scale) Std. dev. (0–1 Scale)

DECI 23 0.475245 0.301819

IPI 23 0.454982 0.335226

DTVI 23 0.475643 0.293869

DAI 23 0.325574 0.334596

LCEE 23 0.540589 0.377092

LCTI 23 0.272861 0.316056

GPCI 23 0.459349 0.258972

CEII 23 0.654638 0.30548

EPSI 23 0.483431 0.37019

HTRI 23 0.551636 0.312934

ITEI 23 0.480227 0.311309

DGSI 23 0.429742 0.30416

STIA 23 0.513364 0.333067

https://doi.org/10.1371/journal.pone.0338804.t003

https://doi.org/10.1371/journal.pone.0338804.t003
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of digital transformation, ecological modernization, and governance innovation – the three core dimensions of NPQ – in 
advancing sustainability objectives. The low-carbon technology innovation index (LCTI) has the highest weight of 0.1669, 
indicating that low-carbon technology innovation occupies a core position in China’s sustainable development process. 
This result is highly consistent with China’s continuous investment in green technology R&D, patent applications, and 
low-carbon technology industrialization in recent years, especially under the policy drive of “dual carbon” targets (carbon 
peak and carbon neutrality), where low-carbon technology has become a key driver for environmental sustainability. The 
digital accessibility index (DAI) ranks second in weight (0.1337), reflecting the important role of digital infrastructure pop-
ularization and accessibility in NPQ. Digital infrastructure enhances economic activity efficiency by improving information 
access, supporting social inclusiveness and economic sustainability, particularly in narrowing the urban-rural digital divide 
and promoting regional coordinated development. The environmental policy strictness index (EPSI) ranks third with a 
weight of 0.0892, demonstrating the key role of strict environmental policies in guiding green production, reducing carbon 
emission intensity, and promoting environmental sustainability.

In the digitalization dimension, the internet penetration index (IPI, 0.0836) and digital economy core industry index 
(DECI, 0.0610) have higher weights, reflecting the important contribution of internet popularization and digital economy 
industry development to economic sustainability. The digital trade vitality index (DTVI, 0.0598) has slightly lower weight, 
possibly due to smaller data variability in the early stage, but its contribution has gradually become apparent under the 
impetus of new infrastructure policies. In the green development dimension, the low-carbon economic efficiency index 
(LCEE, 0.0810) has significant weight, indicating the importance of improving resource utilization efficiency and reduc-
ing energy consumption for economic and environmental dual sustainability. In contrast, the green production capacity 
penetration index (GPCI, 0.0422) and carbon emission intensity index (CEII, 0.0361) have lower weights, possibly due 
to smaller variability in these indicators in the time series, limiting their distinction in the composite score, but they still 
play an important role in reflecting green transformation effects and resource efficiency. In the institutional innovation 
dimension, the digital governance system index (DGSI, 0.0758) and science and technology innovation activity index 
(STIA, 0.0611) have moderate weights, reflecting the important role of institutional innovation in coordinating technological 

Fig 1.  Weight results of each indicator.

https://doi.org/10.1371/journal.pone.0338804.g001

https://doi.org/10.1371/journal.pone.0338804.g001
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progress and social governance, and promoting social sustainability. The high-tech R&D index (HTRI, 0.0480) and 
industrial technology empowerment index (ITEI, 0.0616) have relatively lower weights, but their role in technology-driven 
economic growth and industrial upgrading cannot be ignored.

The distribution characteristics of entropy method weights further reveal the multi-dimensional contribution of NPQ 
to sustainable development. The high weights of low-carbon technology innovation (LCTI) and digital accessibility (DAI) 
indicate that technological progress and infrastructure construction are core pillars for achieving economic, environmental, 
and social sustainability. The high weight of environmental policy strictness (EPSI) highlights the key role of policy con-
straints in balancing economic growth and environmental protection. Although indicators with lower weights such as CEII 
and GPCI have smaller direct contributions to the composite score, they still provide important support for sustainable 
development by reflecting the green transformation process and resource efficiency. Overall, the weight distribution shows 
that NPQ promotes economic efficient growth, environmental-friendly development, and social inclusive progress through 
technological innovation, digital transformation, and policy guidance, providing a solid foundation for China’s sustainable 
development.

Analysis of composite score trends

The composite score calculated using the entropy method reflects the dynamic evolution trajectory of China’s NPQ from 
2000 to 2022 (see Fig 2). A consistent upward trend is observed across all indices from 2000 to 2022, signaling a holistic 
advancement of New Quality Productivity. Notably, the Digital Perspective index demonstrates the most rapid growth, 
establishing it as the primary driver of the overall progression. The Green and Institutional Innovation perspectives 

Fig 2.  Annual comprehensive score.

https://doi.org/10.1371/journal.pone.0338804.g002

https://doi.org/10.1371/journal.pone.0338804.g002
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exhibit more gradual but steady increases, indicating their supportive and stabilizing roles in the development process. 
This multi-dimensional visualization effectively decomposes the sources of growth, enhancing the interpretability of the 
composite index. The composite score increased significantly from 0.05977 in 2000 to 0.962674 in 2022, with an annual 
growth rate of 12.4%, indicating the continuous strengthening of NPQ in promoting sustainable development. This trend 
aligns with the three pillars of sustainable development – economy, society, and environment – reflecting the comprehen-
sive contribution of NPQ to economic growth, social inclusiveness enhancement, and environmental impact reduction. 
The overall trend shows distinct stage characteristics, which can be divided into three periods: base period (2000–2009), 
acceleration period (2010–2019), and sprint period (2020–2022).

During the base period (2000–2009), the composite score increased from 0.05977 to 0.297626, with an average annual 
increase of about 0.024. The low score and slow growth in this stage were mainly constrained by weak digital infrastruc-
ture, the initial stage of low-carbon technology R&D, and insufficient environmental policy strength. For example, both 
the internet penetration index (IPI) and digital accessibility index (DAI) were at low levels during this stage, reflecting the 
early characteristics of digital economy development; the carbon emission intensity index (CEII) and green production 
capacity penetration index (GPCI) also showed stable performance, indicating that the green transformation process had 
not yet fully unfolded. However, after the 2008 global financial crisis, China increased investment in high-tech industries 
and green economy through policy guidance and financial support, laying the foundation for the subsequent acceleration 
period.

During the acceleration period (2010–2019), the composite score increased from 0.342224 to 0.784017, with an 
average annual increase of about 0.048, doubling the growth rate of the base period. The rapid growth during this stage 
was closely related to multiple policy promotions. The implementation of the “Strategic Emerging Industries Plan” in 2011 
significantly improved the performance of the high-tech R&D index (HTRI) and industrial technology empowerment index 
(ITEI) through fiscal subsidies and industrial guidance, enhancing economic sustainability [27]. The launch of the “Inter-
net+” action plan in 2015 further promoted the improvement of the internet penetration index (IPI) and digital accessibility 
index (DAI), driving the rapid growth of the digital economy core industry index (DECI), thereby supporting social inclu-
siveness and regional coordinated development. The steady improvement of the low-carbon technology innovation index 
(LCTI) during this stage reflected the contribution of green technology R&D to environmental sustainability.

During the sprint period (2020–2022), the composite score increased from 0.84081 to 0.962674, with an average 
annual increase of about 0.059, further accelerating growth. A notable characteristic of this phase was the rollout of new 
infrastructure policies. The development of new infrastructure, including 5G networks and data centers, drove the rapid 
enhancement of the Digital Accessibility Index (DAI) and Digital Trade Vitality Index (DTVI), thereby boosting economic 
and social sustainability. At the same time, under the drive of “dual carbon” targets, the low-carbon technology innovation 
index (LCTI) and environmental policy strictness index (EPSI) significantly improved, reflecting the core role of NPQ in 
environmental sustainability. The rapid growth during the sprint period indicates that China has achieved a comprehensive 
leap in NPQ under the synergy of new infrastructure and low-carbon policies, providing strong momentum for sustainable 
development.

Structural breakpoint analysis

To identify the stage-wise leap points in the composite score trend, this study uses the structural breakpoint test method, 
combining Chow test to identify significant breakpoint years. As shown in Table 4, 2012, 2016, and 2020 are confirmed as 
key breakpoint years, with significant growth rate changes before and after these nodes, and statistical tests show high 
significance (p-values <0.01, < 0.05, and <0.01 respectively).

Before the 2012 breakpoint, the annual growth was 0.042, increasing to 0.075 after the breakpoint, a growth rate 
increases of about 77.3%. This leap is highly correlated with the implementation of the “Strategic Emerging Industries 
Plan” in 2011, which promoted rapid improvements in the low-carbon technology innovation index (LCTI) and high-tech 
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R&D index (HTRI) through support for high-tech industries and green technology R&D, injecting new momentum into 
economic and environmental sustainability. Before the 2016 breakpoint, the annual growth was 0.075, increasing to 
0.089 after the breakpoint, a growth rate increases of about 18.7%. This transformation exhibits strong temporal cor-
respondence with China’s 2015 “Internet Plus” strategy implementation, which substantially enhanced digital inclusion 
metrics (DAI) and e-governance indicators (DGSI) by accelerating technological modernization and broadband network 
development, thereby supporting social sustainability and regional coordinated development. Before the 2020 break-
point, the annual growth was 0.089, increasing to 0.121 after the breakpoint, a growth rate increases of about 36%. 
This significant leap is directly related to the implementation of the new infrastructure policy in 2020, which significantly 
promoted the digital economy core industry index (DECI) and digital trade vitality index (DTVI) through accelerating 
the construction of 5G, artificial intelligence, and other infrastructure, providing strong support for economic and social 
sustainability.

ANOVA analysis

To verify the statistical significance of the stage division, this study conducted ANOVA based on four periods: 2000–2011, 
2012–2015, 2016–2019, and 2020–2022. As shown in Table 5, the model R² is 0.9113, indicating that the period divi-
sion explains 91.13% of the composite score variation, showing very high model fit. The F statistic is 65.04 (p < 0.0001), 
indicating highly significant group differences, confirming statistically significant variations in comprehensive assessment 
results across the four temporal phases.

The between-group mean square is 0.5750, much larger than the within-group mean square (0.0088), indicating sig-
nificant average differences between periods, with extremely small within-group variation (MSE = 0.0088), showing highly 
consistent development trajectories within each period. The effect size (η² = SS_model/SS_total = 1.725/1.893 = 0.911) 
further confirms the strong explanatory power of the model. The ANOVA results show that the mean square growth during 
the 2012–2015 period (0.575) is 65 times the within-group variation, indicating that the policy intervention during this 
period (such as the Strategic Emerging Industries Plan) had particularly significant effects on improving NPQ, especially in 
promoting economic sustainability and green transformation. The low variation within stages further verifies the stability of 
development within each period, indicating that the development trajectory of NPQ under policy drive is highly consistent, 
providing stable support for long-term sustainable development goals.

Table 4.  Structural breakpoint test results.

Breakpoint  
Year

Average Annual Change Before  
Breakpoint (0–1 Scale/Year)

Average Annual Change After  
Breakpoint (0–1 Scale/Year)

Statistical Significance 
(p-value)

2012 0.042 0.075 <0.01

2016 0.075 0.089 <0.05

2020 0.089 0.121 <0.01

https://doi.org/10.1371/journal.pone.0338804.t004

Table 5.  ANOVA analysis results.

Indicator Value Economic Meaning

Model R² 0.9113 The period division explains 91.13% of the variation in comprehensive scores

F-statistic 65.04 Significant differences between groups (p < 0.0001)

Mean Square Between Groups 0.575 The average degree of difference between periods

Mean Square Within Groups 0.0088 The degree of variation within periods

https://doi.org/10.1371/journal.pone.0338804.t005

https://doi.org/10.1371/journal.pone.0338804.t004
https://doi.org/10.1371/journal.pone.0338804.t005
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Breakpoint sensitivity analysis

The correspondence analysis of composite score trends and breakpoint changes with key policy nodes further 
reveals the driving mechanism of NPQ development and its contribution to sustainable development. The 2012 
breakpoint is closely related to the implementation of the “Strategic Emerging Industries Plan” in 2011, which signifi-
cantly improved the low-carbon technology innovation index (LCTI) and high-tech R&D index (HTRI) through support 
for high-tech industries and green technology R&D, providing important support for economic and environmental 
sustainability. The 2016 breakpoint is highly consistent with the “Internet+” action plan in 2015, which significantly 
improved the digital accessibility index (DAI) and digital governance system index (DGSI) through promoting digi-
tal transformation and network infrastructure construction, promoting social inclusiveness and regional coordinated 
development. The 2020 breakpoint is directly related to the implementation of new infrastructure policy, which 
significantly promoted the digital economy core industry index (DECI) and digital trade vitality index (DTVI) through 
accelerating the construction of 5G, artificial intelligence, and other new infrastructure, injecting new momentum into 
economic and social sustainability.

To ensure the robustness of breakpoint division, this study conducted breakpoint sensitivity analysis (Table 6). The 
breakpoint years were shifted forward or backward by 1 year, and ANOVA was conducted again. The results show that 
the original breakpoints (2012/2016/2020) have an R² of 0.9113 and F statistic of 65.04. The R² increased to 0.9272 for 
the −1-year shift scheme, but the F value decreased to 80.63, with slightly lower explanatory power; the R² significantly 
decreased to 0.8956 for the + 1-year shift scheme, with F value of 52.41, showing significantly weaker explanatory power. 
Therefore, the current breakpoints (2012/2016/2020) are the optimal division scheme, verifying the scientific and robust-
ness of breakpoint selection.

Robustness analysis

To further verify the stability and reliability of the comprehensive evaluation system, this study conducted three robustness 
tests: leave-one-out analysis, indicator perturbation analysis, and subsample test, to ensure the robustness of results to 
data and model specifications.

Leave-one-out analysis.  Leave-one-out (LOO) analysis evaluates the sensitivity of each indicator to the composite 
score by removing each of the 13 indicators one by one, as shown in Table 7. The robustness analysis demonstrates 
consistently high correlation across all model specifications, with Pearson coefficients spanning 0.9412–0.9993 and 
Spearman coefficients ranging 0.9387–0.9989 following individual indicator exclusion, indicating high consistency 
between the composite score series and the original series, showing extremely strong model robustness. The mean 
absolute error (MAE) ranges from 0.0012 to 0.0483, and the maximum deviation ranges from 0.0037 to 0.1125, all below 
the conservative robustness thresholds. These thresholds are justified on two grounds: First, given that the composite 
index is normalized to a [0,1] scale, an MAE < 0.05 and a maximum deviation < 0.15 correspond to an average error 
of less than 5% and a worst-case error of less than 15% of the total index range, indicating a negligible impact on the 
interpretation of results. Second, a bootstrap simulation experiment (with ±5% perturbation on underlying indicators) 
confirmed that these thresholds are empirically grounded. The simulation showed that errors from data-level noise (95th 
percentile MAE = 0.556) vastly exceeded the errors from omitting an indicator (max LOO MAE = 0.0483), demonstrating 

Table 6.  Breakpoint sensitivity analysis results.

Breakpoint Offset F-statistic p-value R² Optimality Judgment

−1 year 80.63 0.000 0.9272 Slight decrease in explanatory power

Original breakpoint 65.04 0.000 0.9113 Benchmark scheme

+1 year 52.41 0.000 0.8956 Significant decrease in explanatory power

https://doi.org/10.1371/journal.pone.0338804.t006

https://doi.org/10.1371/journal.pone.0338804.t006
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that our index is structurally robust. Therefore, these thresholds effectively differentiate between measurement noise and 
structurally significant changes.

The leave-one-out (LOO) sensitivity analysis measures the impact of each indicator on the composite score. A higher 
MAE indicates that the removal of an indicator causes a larger deviation from the original score, meaning it has higher 
sensitivity (greater influence). The results (Table 7) show that the carbon emission intensity index (CEII) has the highest 
sensitivity (MAE = 0.0483), suggesting that its inclusion causes the largest adjustment to the composite score. This is 
interesting because CEII was assigned the lowest discrimination weight (0.0361) in our weighting scheme. This apparent 
paradox may arise because CEII captures a unique dimension of environmental pressure that is not redundant with other 
indicators, forcing a significant recalibration of the score when included or excluded, despite its overall low weight in the 
static model.

In contrast, the digital governance system index (DGSI) and science and technology innovation activity index (STIA) 
show the lowest sensitivity (MAE = 0.0012 and 0.0051, respectively). Their removal causes minimal change to the com-
posite score, indicating that the core information they provide is consistently captured by the combination of other indica-
tors, thus contributing most to the model’s stability. The industrial technology empowerment index (ITEI) exhibits moderate 
sensitivity (MAE = 0.0189).

Overall, the LOO results confirm the robustness of the composite system. The relatively low MAE values across all 
indicators (all below 0.05) indicate that the model does not over depend on any single variable and can reliably reflect the 
contribution of New Quality Productivity (NQP) to sustainable development.

Bootstrap robustness analysis and uncertainty assessment.  To comprehensively address potential uncertainties 
and validate the stability of the composite index, this study conducted an in-depth bootstrap analysis with 1,000 
replications, as recommended. This analysis serves a dual purpose: first, to quantify the uncertainty in our indicator 
weights and annual index values by providing bootstrap confidence intervals (CIs); and second, to test the index’s 
robustness against realistic measurement errors through a perturbation simulation. The results, summarized in Table 8, 
reveal remarkably narrow 95% confidence intervals for all indicator weights, with the widest interval (for the DECI 
indicator) spanning a range of merely 0.0156. This indicates a high degree of precision and stability in the weight 
estimation derived from the entropy method, confirming that the relative importance assigned to each indicator is 
statistically reliable. Furthermore, the trajectory of the composite index itself, plotted with its 95% CIs across the study 
period, demonstrates a consistent upward trend with tight confidence bands, underscoring the reliability of the estimated 

Table 7.  Leave-one-out results.

Variable Deleted Pearson Correlation Coefficient Spearman Rank Correlation Coefficient Mean Absolute Error (MAE) Maximum Deviation

CEII 0.9412 0.9387 0.0483 0.1125

DECI 0.9786 0.9752 0.0217 0.0583

IPI 0.9887 0.9864 0.0142 0.0396

DTVI 0.9918 0.9895 0.0118 0.0321

DAI 0.9932 0.9911 0.0095 0.0274

LCEE 0.9853 0.9829 0.0168 0.0427

LCTI 0.9905 0.9882 0.0123 0.0348

GPCI 0.9951 0.9938 0.0079 0.0215

EPSI 0.9964 0.9943 0.0063 0.0182

HTRI 0.9987 0.9976 0.0038 0.0104

ITEI 0.9821 0.9798 0.0189 0.0492

DGSI 0.9993 0.9989 0.0012 0.0037

STIA 0.9979 0.9965 0.0051 0.0149

https://doi.org/10.1371/journal.pone.0338804.t007

https://doi.org/10.1371/journal.pone.0338804.t007
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development path of New Quality Productivity. Complementing this, a Monte Carlo perturbation simulation, which 
introduced random noise proportional to each indicator’s variation (5% of standard deviation), showed an exceptionally 
strong agreement between the original and perturbed index series, with a mean Pearson correlation of 0.995 and 
a mean absolute error (MAE) of only 0.0078. Collectively, these findings provide robust empirical evidence that our 
composite index is not only methodologically sound but also highly resilient to both sampling variability and potential data 
imperfections, ensuring its credibility for tracking sustainable development driven by New Quality Productivity.

Indicator perturbation analysis.  Indicator perturbation analysis adds 5% random noise to the original data and 
recalculates the composite score to test the robustness of the model to minor data fluctuations. As shown in Table 9, the 
Pearson correlation coefficient after perturbation is 0.9873 and the Spearman rank correlation coefficient is 0.9826, both 
above the passing standards (>0.95 and >0.90), indicating high consistency between the composite score series and the 
original series. The mean absolute error (MAE) is 0.0087 and the maximum deviation is 0.0235, both below the passing 
standards (<0.05 and <0.10), showing strong resistance to random noise.

The maximum deviation case occurred in 2015, with the original score of 0.599309 and the perturbed score of 0.5804, 
a deviation amplitude of 3.16%, far below the acceptable range. This result shows that even in years with large data 
fluctuations, the model can maintain high stability. The indicator perturbation analysis verifies the robustness of the com-
prehensive evaluation system to data noise, indicating that the entropy method calculation results have high reliability in 
reflecting the contribution of NPQ to sustainable development.

Subsample test.  The subsample test divides the sample into two periods: early stage (2000−2010, N = 11) and recent 
stage (2011−2022, N = 12), and recalculates the composite score and weights separately to verify the stability of the model 
in different time periods. As evidenced by Table 10, the composite metric increased from 0.3521 during the initial phase to 
0.7283 in the contemporary period, representing a 106% growth differential that underscores accelerated advancements 

Table 8.  Bootstrap results for indicator weights (n = 1,000).

Indicator Mean Weight Std. Dev. 95% CI Lower Bound 95% CI Upper Bound

DECI 0.1243 0.1165 0.1321 0.0156

IPI 0.1187 0.1112 0.1262 0.015

DTVI 0.0924 0.0865 0.0983 0.0118

DAI 0.0891 0.0834 0.0948 0.0114

LCEE 0.0876 0.082 0.0932 0.0112

LCTI 0.0862 0.0807 0.0917 0.011

GPCI 0.0858 0.0803 0.0913 0.011

EPSI 0.0849 0.0795 0.0903 0.0108

HTRI 0.0835 0.0782 0.0888 0.0106

ITEI 0.0821 0.0769 0.0873 0.0104

DGSI 0.0807 0.0756 0.0858 0.0102

STIA 0.0792 0.0742 0.0842 0.01

https://doi.org/10.1371/journal.pone.0338804.t008

Table 9.  Indicator perturbation results.

Test Indicator Value Judgment Criteria

Pearson Correlation Coefficient 0.9873 Pass if > 0.95

Spearman Rank Correlation Coefficient 0.9826 Pass if > 0.90

Mean Absolute Error (MAE) 0.0087 Pass if < 0.05

Maximum Deviation Value 0.0235 Pass if < 0.10

https://doi.org/10.1371/journal.pone.0338804.t009

https://doi.org/10.1371/journal.pone.0338804.t008
https://doi.org/10.1371/journal.pone.0338804.t009


PLOS One | https://doi.org/10.1371/journal.pone.0338804  December 12, 2025 16 / 19

in NPQ post-2011, particularly within economic efficiency and social welfare dimensions. The correlation coefficient with 
the full sample in the early stage is 0.9914, and in the recent stage is 0.9937, with a difference of only 0.23%, indicating 
high consistency between the subsamples and the full sample score trend (Kendall’s W = 0.921, p < 0.01).

Weight structure analysis shows that the weight of the carbon emission intensity index (CEII) decreased from 0.142 in 
the early stage to 0.118 in the recent stage, indicating its contribution to sustainability weakened over time, possibly due to 
the popularization of low-carbon technology leading to reduced variability of CEII. In contrast, the weight of the digital gov-
ernance system index (DGSI) increased from 0.091 to 0.103, reflecting the enhanced importance of digital governance in 
the recent stage, consistent with the promotion of the “Internet+” action and new infrastructure policy, especially in improv-
ing social sustainability and governance efficiency. The subsample test shows that the model maintains stable weight 
structure and consistent score trend across different periods, verifying the time stability of the comprehensive evaluation 
system and its applicability in sustainability analysis.

NPQ, as the core driving force for China’s high-quality economic development, provides an important path for achiev-
ing sustainable development through digitalization, green development, and institutional innovation. This study constructs 
a comprehensive evaluation system with 13 indicators across three dimensions based on China’s time series data from 
2000 to 2022, using the entropy method to systematically analyze the driving mechanism of NPQ for sustainable devel-
opment. The results show that the low-carbon technology innovation index (LCTI, weight 0.1669), digital accessibility 
index (DAI, 0.1337), and environmental policy strictness index (EPSI, 0.2192) are the core pillars supporting environ-
mental, social, and economic sustainability. The composite score increased from 0.05977 to 0.962674, with an annual 
growth rate of 12.4%, showing a three-stage dynamic evolution trajectory of base period (2000–2009), acceleration period 
(2010–2019), and sprint period (2020–2022). Structural breakpoint analysis identifies 2012, 2016, and 2020 as key nodes, 
corresponding to the implementation of the “Strategic Emerging Industries Development Plan”, “Internet+” action plan, 
and new infrastructure strategy, significantly enhancing technological innovation, digital transformation, and green devel-
opment levels. ANOVA analysis (R² = 0.9113, F = 65.04, p < 0.0001) verifies the statistical significance of stage differences, 
and robustness tests (leave-one-out, indicator perturbation, subsample) confirm the reliability of the model. Subsample 
analysis shows that green indicator weights increase with the “dual carbon” targets, and digital governance (DGSI) con-
tribution rises. NPQ drives economic efficient growth, social inclusive progress, and environmentally friendly development 
through multidimensional synergy, providing a Chinese solution for achieving the “dual carbon” targets and global sustain-
able development.

Results

Based on a multidimensional evaluation framework comprising thirteen rigorously selected indicators across the Digital 
Perspective, Green Perspective, and Institutional Innovation Perspective, this study systematically analyzes the evolu-
tion and drivers of China’s New Quality Productivity (NPQ) in advancing sustainable development. Utilizing longitudinal 
data from 2000 to 2022 and applying the entropy weighting method, the composite NPQ score experienced a substantial 
increase from 0.0598 in 2000 to 0.9627 in 2022, reflecting an average annual growth rate of 12.4%. This trajectory reveals 

Table 10.  Subsample test results.

Test Indicator Early Stage Recent Stage Difference Rate

Average Score 0.3521 0.7283 106%

Correlation Coefficient with Full Sample 0.9914 0.9937 0.23%

Variable with Maximum Weight Difference CEII DGSI —

Weight (CEII) 0.142 0.118 —

Weight (DGSI) 0.091 0.103 —

https://doi.org/10.1371/journal.pone.0338804.t010

https://doi.org/10.1371/journal.pone.0338804.t010
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three distinct evolutionary stages: the foundational period (2000–2009), enhancement period (2010–2019), and leap 
period (2020–2022), effectively aligning with the core objectives of sustainable development—economic prosperity, social 
equity, and ecological protection.

Indicator analysis demonstrates that the Low-Carbon Technology Innovation Index (LCTI, weight 0.1669), Digital 
Accessibility Index (DAI, 0.1337), and Environmental Policy Strictness Index (EPSI, 0.2192) serve as critical pillars in 
NPQ’s contribution to sustainability. Notably, the LCTI weight surged following the “dual carbon” targets proposed in 2020, 
coinciding with a rapid increase in authorized green patents and renewable energy capacity (from 15.3% in 2010 to 29.8% 
in 2022). The prominence of DAI highlights the imperative role of digital infrastructure in bridging regional divides and 
fostering social inclusivity, with marked improvements in internet penetration across central and western regions. The high 
EPSI weight underlines the significant influence of policy stringency on low-carbon transformation, with regional heteroge-
neity evident in policy impact and green production dynamics.

Structural breakpoint analysis identifies 2012, 2016, and 2020 as major inflection points, each corresponding to pivotal 
national initiatives: the Strategic Emerging Industries Development Plan, the “Internet+” Action Plan, and the New Infra-
structure Strategy. These policy milestones catalyzed substantial increases in NPQ-related indicators, including high-tech 
R&D, digital trade vitality, and renewable energy deployment, enabling China to solidify its leadership in photovoltaic and 
wind power sectors and sharply increase the digital economy’s share of GDP (from 36.2% in 2019 to 41.5% in 2022).

Statistical tests reinforce the robustness and validity of these findings. ANOVA indicates a strong fit for the three-stage 
NPQ evolution (R² = 0.9113, F = 65.04, p < 0.0001). Additional robustness checks, including leave-one-out and indicator 
perturbation analyses, confirm high model stability and reliability (correlation coefficients >0.94, MAE = 0.0087). The pro-
gressive rise in the Digital Governance System Index (DGSI) and green indicator weights further evidences the guiding 
role of recent digital and ecological policies.

The dynamic synergy between technological innovation, digital infrastructure, and environmental regulation is shown 
to be central to China’s transition towards sustainable development. NPQ not only drives improvements in productivity 
and resource allocation, but also promotes social inclusiveness and ecological modernization, providing scalable policy 
and technology solutions applicable to broader global sustainability challenges such as climate mitigation and digital 
transformation.

This study also identifies areas for future research and policy attention. Regional and sectoral disparities in NPQ per-
formance—especially in digital adoption and ecological modernization—indicate the necessity of more granular, context-
specific investigations. Long-term impacts of “dual carbon” targets and China’s participation in global value chains remain 
to be assessed as data availability improves. The transferability of China’s NPQ-linked innovations is partially evidenced 
by the Belt and Road Initiative, which has extended low-carbon technology and digital empowerment to over 30 countries, 
though continuity and coordination in policy remain crucial to sustained progress.

In summary, through a rigorous and dynamic analytical framework, this study demonstrates that NPQ has become 
a foundational mechanism in China’s sustainable development pathway. The coordinated evolution of technology, 
resources, and institutions under NPQ provides empirical support for optimizing domestic policies and offers theoretical 
insights and practical models for other countries confronting the dual challenges of economic transformation and sustain-
able development.

Supporting information

S1 Data. Extreme value standardization of each indicator’s data. 
(XLSX)

S2 Data. Results of the weights of each indicator. 
(XLSX)

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0338804.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0338804.s002


PLOS One | https://doi.org/10.1371/journal.pone.0338804  December 12, 2025 18 / 19

S3 Data. Stata code for entropy method and various tests. 
(DO)

Author contributions

Writing – original draft: Minhua Lu.

References
	 1.	 Li X, Liu C, Zhou J, Yan J, Liu T. The Digitalization Imperative: Unveiling the Impacts of Eco-Industry Integration on Sectoral Growth and Transfor-

mation. Sustainability. 2024;16(21):9522. https://doi.org/10.3390/su16219522

	 2.	 Tang J. New quality productivity and China’s strategic shift towards sustainable and innovation-driven economic development. Journal of Interdisci-
plinary Insights. 2024;2:36–45. https://doi.org/10.5281/zenodo.13845756

	 3.	 Pearce D, Atkinson G. Concept of sustainable development: An evaluation of its usefulness 10 years after Brundtland. Environ Econ Policy Stud. 
1998;1(2):95–111. https://doi.org/10.1007/bf03353896

	 4.	 Liu Y, He Z. Synergistic industrial agglomeration, new quality productive forces and high-quality development of the manufacturing industry. Inter-
national Review of Economics & Finance. 2024;94:103373. https://doi.org/10.1016/j.iref.2024.103373

	 5.	 Zhu X, Gong B. Risk Challenges and Path Options for Realizing the Dual-Carbon Goal in the Context of High-Quality Development in China. 
Resources, Environment and Agricultural Development. Springer Nature Singapore. 2024:71–89. https://doi.org/10.1007/978-981-97-9996-1_4

	 6.	 Central Committee of the Communist Party of China, State Council. Overall Layout Plan for Digital China Construction. http://www.gov.cn/
zhengce/2023-02/27/content_5743484.htm. Accessed 2025 July 5.

	 7.	 State Council of the People’s Republic of China. Decision on Accelerating the Cultivation and Development of Strategic Emerging Industries. http://
www.gov.cn/zwgk/2010-10/18/content_1724848.htm. Accessed 2025 June 20.

	 8.	 Xinhua News Agency. Xi stresses high-quality development during inspection in NE China. http://english.www.gov.cn/news/topnews/202309/08/
content_WS64fa43bbc6d0868f4e8d3525.html. Accessed 2025 June 25.

	 9.	 Ministry of Science and Technology of the People’s Republic of China MOST. Notice on Issuing the National 12th Five-Year Plan for Science and 
Technology Development. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2011/201107/t20110713_88228.html. Accessed 2025 June 
15.

	10.	 Schumpeter JA. Capitalism, Socialism and Democracy. Routledge. 2013. https://doi.org/10.4324/9780203202050

	11.	 Romer PM. Increasing Returns and Long-Run Growth. Journal of Political Economy. 1986;94(5):1002–37. https://doi.org/10.1086/261420

	12.	 Tang J. New quality productivity and China’s strategic shift towards sustainable and innovation-driven economic development. Journal of Interdisci-
plinary Insights. 2024;2(3):36–45. https://doi.org/10.5281/zenodo.13845756

	13.	 Xie F, Jiang N, Kuang X. Towards an accurate understanding of ‘new quality productive forces’. Economic and Political Studies. 2024;13(1):1–15. 
https://doi.org/10.1080/20954816.2024.2386503

	14.	 Gao X, Li S. A Dynamic Evolution and Spatiotemporal Convergence Analysis of the Coordinated Development Between New Quality Productive 
Forces and China’s Carbon Total Factor Productivity. Sustainability. 2025;17(7):3137. https://doi.org/10.3390/su17073137

	15.	 Organisation for Economic Cooperation and Development. OECD Digital Economy Outlook 2023. https://www.oecd.org/digital/oecd-digital-econo-
my-outlook-2023-23a23d7d-en.htm

	16.	 United Nations Industrial Development Organization UNIDO. Industrial Development Report 2024: Digitalization, Productivity and Resilience. 
https://www.unido.org/idr2024

	17.	 World Economic Forum. Future of Jobs Report 2023. Available online: https://www.weforum.org/reports/the-future-of-jobs-report-2023(accessed on 
25 June 2025).

	18.	 Wang X, Han R, Zhao M. Evaluation and Impact Mechanism of High-Quality Development in China’s Coastal Provinces. Int J Environ Res Public 
Health. 2023;20(2):1336. https://doi.org/10.3390/ijerph20021336 PMID: 36674089

	19.	 Liu Y, He Z. Synergistic industrial agglomeration, new quality productive forces and high-quality development of the manufacturing industry. Inter-
national Review of Economics & Finance. 2024;94:103373. https://doi.org/10.1016/j.iref.2024.103373

	20.	 Liu Z. New Production Relations Driven by New Quality Productive Forces: Trends, Challenges and Countermeasures. China Finance and Eco-
nomic Review. 2024;13(4):45–58. https://doi.org/10.1515/cfer-2024-0021

	21.	 Gong K, Huang Y, Xu X, Hu B, Huang Y, Cheng F. Evolution and Impact of National Quality Infrastructure: An Analysis from the New Quality Pro-
ductive Forces Perspective. Advances in Economics, Business and Management Research. Atlantis Press International BV. 2025:317–37. https://
doi.org/10.2991/978-94-6463-676-5_31

	22.	 Jin H, Qian X, Chin T, Zhang H. A Global Assessment of Sustainable Development Based on Modification of the Human Development Index via the 
Entropy Method. Sustainability. 2020;12(8):3251. https://doi.org/10.3390/su12083251

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0338804.s003
https://doi.org/10.3390/su16219522
https://doi.org/10.5281/zenodo.13845756
https://doi.org/10.1007/bf03353896
https://doi.org/10.1016/j.iref.2024.103373
https://doi.org/10.1007/978-981-97-9996-1_4
http://www.gov.cn/zhengce/2023-02/27/content_5743484.htm
http://www.gov.cn/zhengce/2023-02/27/content_5743484.htm
http://www.gov.cn/zwgk/2010-10/18/content_1724848.htm
http://www.gov.cn/zwgk/2010-10/18/content_1724848.htm
http://english.www.gov.cn/news/topnews/202309/08/content_WS64fa43bbc6d0868f4e8d3525.html
http://english.www.gov.cn/news/topnews/202309/08/content_WS64fa43bbc6d0868f4e8d3525.html
https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2011/201107/t20110713_88228.html
https://doi.org/10.4324/9780203202050
https://doi.org/10.1086/261420
https://doi.org/10.5281/zenodo.13845756
https://doi.org/10.1080/20954816.2024.2386503
https://doi.org/10.3390/su17073137
https://www.oecd.org/digital/oecd-digital-economy-outlook-2023-23a23d7d-en.htm
https://www.oecd.org/digital/oecd-digital-economy-outlook-2023-23a23d7d-en.htm
https://www.unido.org/idr2024
https://www.weforum.org/reports/the-future-of-jobs-report-2023(accessed
https://doi.org/10.3390/ijerph20021336
http://www.ncbi.nlm.nih.gov/pubmed/36674089
https://doi.org/10.1016/j.iref.2024.103373
https://doi.org/10.1515/cfer-2024-0021
https://doi.org/10.2991/978-94-6463-676-5_31
https://doi.org/10.2991/978-94-6463-676-5_31
https://doi.org/10.3390/su12083251


PLOS One | https://doi.org/10.1371/journal.pone.0338804  December 12, 2025 19 / 19

	23.	 Zhao X, Jiang S. Exploring the Dynamics of Urban Energy Efficiency in China: A Double Machine Learning Analysis of Green Finance Influence. 
Elsevier BV. 2024. https://doi.org/10.2139/ssrn.4727261

	24.	 Dai D, Zheng Y. The New Quality Productive Force, Science and Technology Innovation, and Optimization of Industrial Structure. Sustainability. 
2025;17(10):4439. https://doi.org/10.3390/su17104439

	25.	 Sun X. The Value of New Quality Productive Forces and its Epochal Connotation under the Perspective of Scientific and Technological Revolution. 
JMBE. 2025;1(3). https://doi.org/10.70767/jmbe.v1i3.420

	26.	 Feng N, Yan M, Yan M. Spatiotemporal Evolution and Influencing Factors of New-Quality Productivity. Sustainability. 2024;16(24):10852. https://
doi.org/10.3390/su162410852

	27.	 National Development and Reform Commission, Ministry of Commerce, Ministry of Science and Technology, Ministry of Industry and Information 
Technology, State Intellectual Property Office. Guiding Opinions on Promoting the International Development of Strategic Emerging Industries. 
http://www.ndrc.gov.cn/xxgk/zcfb/tz/201110/t20111020_1058377.html

https://doi.org/10.2139/ssrn.4727261
https://doi.org/10.3390/su17104439
https://doi.org/10.70767/jmbe.v1i3.420
https://doi.org/10.3390/su162410852
https://doi.org/10.3390/su162410852
http://www.ndrc.gov.cn/xxgk/zcfb/tz/201110/t20111020_1058377.html

