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Abstract 

Janus kinase 3 (JAK3) is a hematopoietic-specific kinase implicated in cytokine 

signaling and immune dysregulation and has recently been associated with cancer 

progression. However, selective and potent JAK3 inhibitors remain underdeveloped. 

In this study, we established a machine learning (ML)-based pipeline to identify novel 

JAK3 inhibitors with anti-cancer potential. A curated ChEMBL dataset of JAK3 inhibi-

tors was used to train multiple ML classifiers, with the Random Forest model achiev-

ing the highest performance (AUC = 0.80, F1-score = 0.92). This model was applied to 

virtually screen 25,084 ChEMBL compounds, yielding 400 high- 

confidence candidates (prediction score > 0.9). Docking analysis identified ten 

top binders (binding affinity ≤ –8.5 kcal/mol), of which three CHEMBL49087, 

CHEMBL4117527, and CHEMBL50064 exhibited optimal ADMET profiles. These 

compounds underwent 200 ns molecular dynamics simulations, showing low RMSD 

(0.10–0.20 nm), stable binding conformations, and preserved protein compactness. 

MM/GBSA calculations revealed that CHEMBL4117527 displayed the strongest bind-

ing free energy (–29.5 kcal/mol), surpassing even the co-crystallized ligand (–17.7 

kcal/mol). Our integrative approach combining machine learning, docking, pharmaco-

kinetics, molecular dynamics, and free energy analysis presents a robust computa-

tional strategy for JAK3 inhibitor discovery. These findings support CHEMBL4117527 

as promising candidates for further experimental evaluation in cancer therapeutics.

1.  Introduction

Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase belonging to the Janus kinase 
(JAK) family, which also includes JAK1, JAK2, and TYK2. Among these, JAK3 is unique 
due to its exclusive expression in hematopoietic cells and its specific interaction with the 
common gamma chain (γc) shared by cytokine receptors such as interleukin (IL)-2, IL-4, 
IL-7, IL-9, IL-15, and IL-21 [1,2]. Through this signalling axis, JAK3 plays a central role 
in lymphocyte proliferation, differentiation, and immune homeostasis [3]. Dysregulation 
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of JAK3 signalling, either through gain-of-function mutations or constitutive activation, 
has been implicated in a variety of immune disorders and malignancies, including acute 
lymphoblastic leukemia, T-cell prolymphocytic leukemia, cutaneous T-cell lymphoma, 
and certain solid tumors [4–6]. In contrast to other JAK family members that are ubiq-
uitously expressed, JAK3’s restricted distribution to hematopoietic and immune cells 
offers a therapeutic advantage—selective inhibition of JAK3 can modulate pathological 
immune responses or malignant signalling without widespread systemic immunosup-
pression [7]. However, designing selective JAK3 inhibitors remains challenging due to 
the high homology of ATP-binding sites among JAK kinases, particularly between JAK1 
and JAK2 [8]. This underscores the need for rational design strategies that prioritize 
selectivity, safety, and minimized off-target effects, which have limited the clinical utility 
of first-generation pan-JAK inhibitors such as tofacitinib and ruxolitinib [9,10]. Recent 
studies have further revealed the involvement of JAK3 in tumors immune evasion and 
microenvironmental crosstalk, suggesting that JAK3-targeted therapy could not only 
suppress oncogenic signalling but also restore anti-tumor immunity [11,12]. Therefore, 
selective inhibition of JAK3 represents a promising yet underexplored approach in can-
cer therapeutics, with potential applications extending beyond hematologic malignancies 
to solid tumors exhibiting aberrant JAK/STAT pathway activation [13–15]. Traditional 
drug discovery approaches for kinase inhibitors, although effective, are resource- 
intensive and time-consuming. The integration of machine learning (ML) and computer- 
aided drug design (CADD) now enables high-throughput identification of bioactive 
compounds by learning molecular patterns that correlate with inhibitory potency [16,17]. 
ML-based strategies have demonstrated particular success in virtual screening, struc-
ture–activity relationship (SAR) modelling, and activity prediction for kinase families, yet 
most studies stop at prediction and lack structural and energetic validation [18,19]. To 
overcome these limitations, structure-based modelling and physics-driven simulations 
provide complementary insights. Molecular docking elucidates binding orientations 
and interaction energetics, while molecular dynamics (MD) simulations capture the 
conformational stability and flexibility of protein–ligand complexes under physiological 
conditions [20]. Furthermore, quantum chemical methods, particularly density functional 
theory (DFT), allow for precise evaluation of frontier molecular orbitals (HOMO/LUMO) 
and global reactivity descriptors, aiding in the optimization of electronic and physico-
chemical properties of potential inhibitors [21]. Despite increasing interest in AI-driven 
kinase inhibitor discovery, few studies have integrated ML, docking, MD simulations, and 
DFT into a single, end-to-end workflow focused on JAK3 selectivity and stability. Previ-
ous efforts have largely been limited to predictive modelling or docking-based screen-
ing, without multi-level validation. To bridge this gap, the present study establishes a 
machine learning-guided and simulation-validated computational pipeline for identifying 
potent and selective JAK3 inhibitors. Specifically, we (i) curated and modelled a data-
set of JAK3 inhibitors using advanced ML algorithms, (ii) performed virtual screening 
and molecular docking to assess binding interactions, (iii) evaluated dynamic stability 
through MD simulations and free energy analysis, and (iv) characterized quantum chem-
ical descriptors via DFT to elucidate electronic reactivity and stability.
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2.  Methodology

2.1.  Dataset acquisition and preprocessing

To construct predictive models for Janus kinase 3 (JAK3) inhibitors, compound data were extracted from the ChEMBL 
database [22]. The initial dataset was refined to retain only entries corresponding to binding assays (assay type ‘B’), 
ensuring that only compounds with direct interaction evidence with the target protein were considered. Data records with 
undefined or missing IC₅₀ values, or where the activity relation was not equal to ‘=’, were removed to maintain consistency 
in activity thresholds. Duplicate entries, identified based on canonical SMILES, were also excluded to avoid bias from 
repeated structures. A binary classification scheme was applied: compounds with IC₅₀ values ≤ 500 nM were labeled as 
inhibitors (active, class 0), while those with IC₅₀ values between 501 and 10,000 nM were labeled as non-inhibitors (inac-
tive, class 1). Compounds with IC₅₀ values exceeding 10,000 nM were discarded as outliers. The cleaned dataset was 
randomly divided into an 80:20 ratio for training and internal validation, maintaining label proportions through stratified 
sampling. The withheld 20% served as an external validation set to evaluate model generalizability. Principal component 
analysis (PCA) was conducted on normalized molecular weight data to examine the chemical diversity and potential clus-
tering of active and inactive compounds within the feature space.

2.2.  Descriptor generation and feature refinement

Molecular descriptors were generated using MACCS (Molecular ACCess System) structural keys, which encode 166 
binary features representing the presence or absence of predefined substructures [23]. These fingerprints are well- 
established in cheminformatics due to their interpretability and computational efficiency. To reduce dimensionality and 
enhance model interpretability, Recursive Feature Elimination (RFE) was applied using a Random Forest classifier as the 
estimator [24]. RFE iteratively eliminates less informative features, retaining the subset that contributes most significantly 
to classification performance. This step helps minimize the risks of overfitting and improves training efficiency.

2.3.  model development and evaluation strategy

The scikit-learn library in python was used to train four supervised learning models including Random Forest (RF), Deci-
sion Tree (DT), Naïve Bayes (NB), and Support Vector Machine (SVM). Each model utilized the selected MACCS descrip-
tors as input features.

•	 Decision Tree builds hierarchical decision rules based on feature thresholds to separate the classes.

•	 Random Forest constructs decision trees ensemble and aggregates ensemble predictions, reducing overfitting and 
variance.

•	 Support Vector Machine maps data into higher-dimensional space to find an optimal separating hyperplane, making it 
suitable for non-linearly separable data [25].

•	 Naïve Bayes applies probabilistic learning under the assumption of conditional independence among features.

Performance was assessed using several metrics: accuracy, precision, recall, F1-score, and area under the ROC curve 
(AUC). These metrics were computed on both the internal validation split and the external test set to evaluate model 
robustness and generalization. The formulas used are:

	
Precision =

TP
TP+ FP	

	
Accuracy =

TP+ TN
TP+ TN+ FP+ FN 	
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Recall =

TP
TP+ FN	

	
F1 – score =

2 × Precision × Recall
Precision+ Recall 	

Where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives respectively.

2.4.  Molecular docking

To evaluate the binding potential of the top-ranked hits screened through machine learning, molecular docking studies were 
conducted using the Glide module of Schrödinger Maestro Suite [26]. The crystal structure of human JAK3 protein (PDB ID: 
3LXL) was retrieved from the Protein Data Bank. Missing residues were modeled using AlphaFold2-based structure predic-
tion to complete the target structure [27]. Protein preparation was performed using the Protein Preparation Wizard in Maestro, 
which included assigning bond orders, adding missing hydrogen atoms, optimizing hydrogen bonding networks, and minimizing 
the structure using the OPLS force field [28]. Ligand molecules were energy minimized and converted to 3D conformations, 
followed by preparation using LigPrep. Docking was carried out using Glide in standard precision (SP) mode [29]. The receptor 
grid was generated at the centroid of the co-crystallized ligand binding site, and default settings were used with flexible ligand 
sampling. The top binding poses were selected based on Glide docking scores and visual inspection of interaction profiles.

2.5.  ADMET evaluation

To assess the pharmacokinetic and safety profiles of the selected JAK3 inhibitors, in silico ADMET (Absorption, Distribu-
tion, Metabolism, Excretion, and Toxicity) analysis was performed. Key physicochemical properties including Lipinski’s rule 
of five, gastrointestinal absorption, blood-brain barrier permeability was predicted using the SwissADME online tool [30]. 
Toxicity risk assessments such as mutagenicity and tumorigenicity were evaluated using OSIRIS Property Explorer [31]. 
Compounds with favorable ADMET profiles were prioritized for further molecular dynamics studies.

2.6.  Molecular dynamics simulations

To investigate the stability and conformational dynamics of ligand–JAK3 complexes, molecular dynamics (MD) simulations 
were performed with GROMACS 2023.3 [32]. System preparation was carried out through the CHARMM-GUI interface, 
which generated the protein and ligand topologies based on the CHARMM36 all-atom force field [33]. Each complex 
was placed in a cubic periodic box and solvated with TIP3P water molecules, followed by neutralization with appropriate 
numbers of K⁺ and Cl⁻ ions. Energy minimization was conducted using the steepest descent algorithm to relax unfavorable 
contacts. The equilibrations were carried out in two stages: a 100 ps NVT run to stabilize temperature and a 100 ps NPT 
run to equilibrate pressure, both maintained at 303 K and 1 bar. Subsequently, a 200 ns production simulation was exe-
cuted with a 2-fs integration step. Trajectory analyses included the calculation of root mean square deviation (RMSD); root 
mean square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area (SASA) to assess structural 
stability and flexibility. In addition, MM/GB(PB)SA free energy calculations were carried out using the gmx_MMPBSA pack-
age on snapshots extracted from the final 10 ns of each trajectory to evaluate binding energetics [34].

2.7.  Density functional theory (DFT) calculations

The selected compounds were subjected to quantum chemical calculations to analyse their frontier molecular orbitals 
(HOMO and LUMO) and global reactivity descriptors. Geometry optimization of each compound was carried out using 
the Density Functional Theory (DFT) method with the B3LYP functional and the 6-311G(d,p) basis set, as implemented 
in the Gaussian 16 software package [35]. The calculations were performed in an aqueous environment using the 
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self-consistent reaction field (SCRF) approach to simulate solvent effects, thereby providing a realistic representation of 
the compounds’ behaviour under physiological conditions. Default convergence criteria were applied, and no symmetry 
constraints were imposed during optimization.

2.8.  Toxicity prediction analysis

The toxicity profiles of the selected compounds were evaluated using the ProTox-II web server (https://tox-new.charite.de/
protox_II/), an established platform for in silico prediction of various toxicity endpoints based on machine learning–derived 
models. The SMILES structures of the compounds were uploaded to the server, and multiple toxicity parameters were 
predicted, including LD₅₀ (median lethal dose), cytotoxicity, carcinogenicity, and immunotoxicity.

3.  Results

3.1.  Distribution of molecular weights and PCA

The distribution of molecular weights for the compounds analyzed is shown in Fig 1a. A prominent peak is observed 
around 400 g/mol, suggesting that a significant number of the compounds fall within the optimal molecular weight range 
for drug-like properties. This range is important for oral bioavailability and absorption, as it balances sufficient size for 
molecular interaction while maintaining favorable permeability across biological membranes. To further explore the chem-
ical diversity of the dataset, Fig 1b presents a principal component analysis (PCA) plot, which visualizes the separation of 
active and inactive compounds. In this analysis, compounds classified as active (red) and inactive (blue) are plotted along 
the first two principal components, capturing the most significant variations in the dataset. While some overlap is evident 
between the two classes, a general clustering trend is observed, indicating that molecular characteristics contribute to 
distinguishing active from inactive compounds. This clustering provides valuable insight into the structural diversity and 
potential features that differentiate the active inhibitors from non-inhibitors.

3.2.  Model performance evaluation

To evaluate the ability of machine learning models to classify JAK3 inhibitors, four algorithms Decision Tree, Random 
Forest, Support Vector Machine (SVM), and Naïve Bayes were employed. The models were assessed using several 

Fig 1.  Distribution of Molecular Weights and PCA Analysis of modelling data. (a) Molecular weight distribution, with a peak around 400 g/mol. (b) 
PCA plot showing clustering of active (red) and inactive (blue) compounds.

https://doi.org/10.1371/journal.pone.0338777.g001

https://tox-new.charite.de/protox_II/
https://tox-new.charite.de/protox_II/
https://doi.org/10.1371/journal.pone.0338777.g001
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performance metrics: accuracy, precision, recall, and F1-score (Table 1). Fig 2a illustrates the ROC curves for each 
model. Among the models tested, Random Forest exhibited the highest performance, achieving an area under the curve 
(AUC) of 0.80. This indicates that Random Forest has a high ability to discriminate between active and inactive com-
pounds, showing the best trade-off between sensitivity and specificity. The Support Vector Machine (SVM) and Deep NN 
follow closely with an AUC of 0.76, demonstrating strong classification ability but slightly lower performance than Random 
Forest. Decision Tree and Naïve Bayes showed lower discriminative power, with AUC values of 0.73 and 0.65, respec-
tively, reflecting their limited effectiveness in handling the complexity of the dataset. The confusion matrix for the Random 
Forest model is shown in Fig 2b. With an F1 score of 0.92, the model demonstrated excellent performance in balancing 
precision and recall, ensuring that both false positives and false negatives were minimized. Precision (0.87) indicates that 
a significant proportion of the predicted active compounds were indeed active, while the recall (0.96) highlights the ability 
of model to identify most of the true active compounds. This suggests that Random Forest is highly reliable in identifying 
JAK3 inhibitors while avoiding misclassifications.

3.3.  External validation of random forest model

To assess the robustness and generalizability of the Random Forest model, an external validation was performed on a 
separate test set. The external validation results are presented in Fig 3, which shows the ROC curve for the external data-
set. The model performed well, maintaining a high AUC of 0.75, indicating that the model’s ability to distinguish between 

Table 1.  Comparative assessment of four machine learning models using stratified 10-fold cross-validation.

Model TP FP TN FN Accuracy Precision Recall F1-score

Decision Tree 378 45 45 52 0.81 0.89 0.87 0.88

Random Forest 415 59 31 15 0.85 0.87 0.96 0.92

SVM 426 68 22 4 0.86 0.86 0.99 0.92

Naïve Bayes 352 49 41 78 0.75 0.87 0.81 0.84

Deep NN 426 68 22 4 0.86 0.86 0.99 0.92

https://doi.org/10.1371/journal.pone.0338777.t001

Fig 2.  Model Performance Evaluation. (a) ROC curves for Decision Tree, Random Forest, SVM, Naïve Bayes, and Deep NN models. (b) Confusion 
matrix for Random Forest, with an F1 score of 0.92.

https://doi.org/10.1371/journal.pone.0338777.g002

https://doi.org/10.1371/journal.pone.0338777.t001
https://doi.org/10.1371/journal.pone.0338777.g002
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active and inactive compounds is consistent across different datasets. This result suggests that the model is not overfitting 
to the training data and can generalize well to unseen compounds. Further analysis of the confusion matrix for the exter-
nal validation data shows that the F1 score remains 0.92, like the internal validation results. This consistent performance 
across both training and external datasets confirms the robustness of the Random Forest model and its potential for real-
world applications. The model’s ability to maintain a high level of accuracy on unseen data is critical for its applicability in 
the drug discovery process, where the validation set represents, compounds do not present in the training data.

3.4.  Virtual screening of the ChEMBL database

To identify potential JAK3 inhibitors, the best-performing machine learning model Random Forest, was employed to vir-
tually screen a library of 25,084 compounds retrieved from the ChEMBL database. Given that fingerprint-based machine 
learning models capture structural features that influence bioactivity, compounds predicted as active are expected to 
share relevant substructural similarities with those in the training dataset. Out of the screened compounds, a total of 
400 molecules received prediction scores exceeding 0.9, indicating a high likelihood of JAK3 inhibitory activity. These 
high-confidence candidates were subsequently selected for structure-based validation through molecular docking studies.

3.6.  Molecular docking analysis

To validate the virtual screening results and assess the binding potential of high-scoring compounds, molecular docking 
was carried out using the Glide module in the Schrödinger Maestro Suite. The top 400 predicted JAK3 inhibitors from 
the ChEMBL database were docked against the JAK3 protein structure. Docking scores were used to rank the com-
pounds, and the ten best binders were selected for further interaction analysis (Table 2). CHEMBL49087 exhibited the 
strongest binding affinity of –9.903 kcal/mol, forming six hydrogen bonds with Glu106, Leu108, Arg156, Asn157, Asp170, 
and Asp152, with bond lengths ranging between 1.73 and 2.69 Å. Key hydrophobic contacts were observed with Ala56, 
Leu156, and Met105, suggesting deep burial into the JAK3 binding pocket. CHEMBL537096 followed closely with a binding 
energy of –9.824 kcal/mol, interacting via hydrogen bonds with Asp170, Glu106, Leu108, Arg119, Asp115, and Lys58. The 

Fig 3.  External Validation of Random Forest Model. ROC curve for external validation of Random Forest, showing an AUC of 0.75 and an F1 score 
of 0.92.

https://doi.org/10.1371/journal.pone.0338777.g003

https://doi.org/10.1371/journal.pone.0338777.g003
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ligand formed additional hydrophobic contacts with Ala56, Leu159, Val39, and Gly111. Other strong candidates included 
CHEMBL2365364, CHEMBL533775, and CHEMBL4117527, with binding affinities of –9.168, –9.13, and –9.051 kcal/
mol, respectively. These compounds exhibited several hydrogen bonding interactions involving residues such as Lys58, 
Leu108, Cys112, and Asp115, with additional van der Waals contacts stabilizing the complexes. Notably, compounds 
like CHEMBL2364957 and CHEMBL2078655 also showed favorable binding energies (–8.986 and –8.886 kcal/mol) and 
interacted with important residues such as Cys112, Leu159, and Met105, which are implicated in JAK3 ligand recognition. 
Overall, the molecular docking results (Fig 4) reveal that the selected compounds establish strong interactions within the 
JAK3 active site, supported by multiple hydrogen bonds and hydrophobic contacts. These findings suggest favorable bind-
ing orientations and support the selection of these molecules for subsequent molecular dynamics simulations.

3.7.  ADMET evaluation

Following molecular docking, the top-performing compounds were subjected to ADMET analysis to assess their drug-likeness 
and pharmacokinetic suitability. A total of ten compounds were evaluated using SwissADME and OSIRIS Property Explorer 
tools, and the results are presented in Tables 3 and 4. All compounds showed high gastrointestinal absorption (GIA) and sat-
isfied Lipinski’s rule of five, Veber, and Egan filters (Table 3). Most also passed the Ghose filter, except for CHEMBL2220288, 
which failed due to deviations in molar refractivity. Drug-likeness radar plots for each compound (Fig 5) illustrate the balance 
across six key descriptors lipophilicity (LIPO), size, polarity (POLAR), solubility (INSOLU), saturation (INSATU), and flexibil-
ity (FLEX). In terms of toxicity profiles, most compounds showed no risk of mutagenicity, tumorigenicity, irritation, or repro-
ductive toxicity. However, CHEMBL2365364 and CHEMBL2364957 raised concerns regarding potential mutagenicity, and 
CHEMBL2220288 showed a high risk for reproductive toxicity (Table 4). Based on the overall safety and ADMET profiles, 
CHEMBL49087, CHEMBL4117527, and CHEMBL50064 were selected for further molecular dynamics (MD) simulations. The 
Drug-Score metric—which integrates drug-likeness, toxicity, and pharmacokinetic properties—highlighted CHEMBL49087 and 
CHEMBL50064 (score = 0.73), and CHEMBL4117527 (score = 0.70) as the most promising candidates.

Table 2.  Binding affinities and interaction profiles of top 10 docked JAK3 inhibitors.

Compounds Binding Affinity (kcal/
mol)

Hydrogen Bonds (Bond length) Other Interactions

CHEMBL49087 −9.903 Glu106(1.76),
Leu108(2.07), Arg156(2.26), Asn157(2.69), 
Asp170(1.83), Asp152(1.73)

Ala56, Leu156, Met105, Val39, Ala169, Leu31

CHEMBL537096 −9.824 Asp170(1.74), Ly58(2.20), Glu106(2.20), 
Leu108(2.13), Arg119(2.76), Asp115(2.32)

Ala169, Val39, Val87, Met105, Ala56, Leu159, 
Leu31, Gly111, Tyr106

CHEMBL2365364 −9.168 Lys58(2.34), Leu108(1.70) Met105, Tyr107, Leu159, Ala56, Ala169, Val39

CHEMBL533775 −9.13 Leu108(2.05), Asp170(1.82) Asn35, Asp152, Asn157, Met105, Ala169, Val39, 
Ala56, Leu159, Gly111

CHEMBL4117527 −9.051 Glu106(2.38), Leu108(2.12), Cys112(2.48), 
Asp115(1.85)

Ala169, Leu159, Val39, Val87, Ala56, Leu31, 
Tyr107, Met105, Gly111

CHEMBL2364957 −8.986 Leu108(2.03) Phe36, Asn157, Arg156, Cys112, Val39, Tyr107, 
Leu159, Ala56, Lys58, Met105, Ala169

CHEMBL2078655 −8.886 Glu106(1.97), Leu108(2.25) Val39, Lys58, Met105, Ala169, Leu159, Ala565, 
Tyr107, Leu31, Gly111

CHEMBL2220288 −8.854 Asp152(1.89), Asn157(2.46), Asp170(2.13) Leu31, Val39, Ala56, Leu159, Met105, Val87, 
Gly34, Ala169, Arg156

CHEMBL50064 −8.581 Leu31(2.41), Lys58(1.96), Glu74(2.08), 
Cy112(2.10), Asp170(2.01)

Gly111, Ala56, Leu159, Met105, Ala169, Val39

CHEMBL4116294 −8.51 Leu108(2.16), Arg114(1.85), Asn157(2.13) Leu31, Leu159, Glu106, Ala56, Met105, Val87, 
Cys112

https://doi.org/10.1371/journal.pone.0338777.t002

https://doi.org/10.1371/journal.pone.0338777.t002
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3.8.  Binding stability analysis

To evaluate the dynamic behavior and structural stability of the protein–ligand complexes, molecular dynamics (MD) simu-
lations were extended to 200 ns using the GROMACS 2023.3 simulation package for CHEMBL49087, CHEMBL4117527, 
CHEMBL50064, and the co-crystallized JAK3-ligand complex. Several trajectory analyses were conducted to assess 

Fig 4.  Visualization of key protein-ligand interactions, highlighting hydrogen bonds and hydrophobic contacts for the ten best-docked 
compounds. (a) CHEMBL49087, (b) CHEMBL537096, (c) CHEMBL2365364, (d) CHEMBL533775, (e) CHEMBL4117527, (f) CHEMBL2364957, (g) 
CHEMBL2078655, (h) CHEMBL2220288, (i) CHEMBL50064, (j) CHEMBL4116294.

https://doi.org/10.1371/journal.pone.0338777.g004

Table 3.  Physicochemical and drug-likeness properties of top JAK3 inhibitors.

Compounds GIA Lipinski Ghose Veber Egan Drug Score

CHEMBL49087 High Yes Yes Yes Yes 0.73

CHEMBL537096 High Yes Yes Yes No 0.28

CHEMBL2365364 High Yes Yes Yes Yes 0.38

CHEMBL533775 High Yes Yes Yes No 0.45

CHEMBL4117527 High Yes Yes Yes Yes 0.7

CHEMBL2364957 High Yes Yes Yes Yes 0.31

CHEMBL2078655 High Yes Yes Yes Yes 0.53

CHEMBL2220288 High Yes No Yes Yes 0.39

CHEMBL50064 High Yes Yes Yes Yes 0.73

CHEMBL4116294 High Yes Yes Yes Yes 0.38

https://doi.org/10.1371/journal.pone.0338777.t003

https://doi.org/10.1371/journal.pone.0338777.g004
https://doi.org/10.1371/journal.pone.0338777.t003
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the temporal evolution of each system. The RMSD of the carbon alpha atoms was first computed to evaluate the global 
stability of the JAK3 structure. As shown in Fig 6a, all systems achieved equilibrium within the first 10–20 ns of the 
simulation and fluctuated minimally thereafter. The RMSD values remained between 0.10 and 0.20 nm for most of the 
trajectory. Among the candidates, CHEMBL50064 exhibited the lowest RMSD (~0.12 nm average), closely followed by 
CHEMBL49087 (~0.13 nm) and CHEMBL4117527 (~0.14 nm), which were comparable to the co-crystal (~0.13 nm), 
suggesting well-maintained structural integrity throughout the 200 ns simulation. To monitor ligand mobility within the 
binding site, ligand RMSD values were computed relative to their initial docked positions (Fig 6b). All ligands remained 
tightly anchored, with CHEMBL49087 and CHEMBL4117527 showing the most stable behavior, maintaining RMSD values 
between 0.08 and 0.15 nm. CHEMBL50064 exhibited slightly higher fluctuations (~0.17 nm at its peak), but remained 
within acceptable bounds, confirming minimal displacement and persistent binding within the active site. Moreover, the 
snapshots of md trajectory were retrieved after every 20 ns and aligned to find the ligand stability within the binding site. 

Table 4.  Predicted toxicity profiles of top JAK3 inhibitor candidates.

Compounds Mutagenic Tumorigenic Irritant Reproductive Effect

CHEMBL49087 No No No No

CHEMBL537096 No No No No

CHEMBL2365364 High No No No

CHEMBL533775 No No No No

CHEMBL4117527 No No No No

CHEMBL2364957 High No No Mild

CHEMBL2078655 No No No No

CHEMBL2220288 No No No High

CHEMBL50064 No No No No

CHEMBL4116294 No No No No

https://doi.org/10.1371/journal.pone.0338777.t004

Fig 5.  Radar plots of physicochemical descriptors for top 10 docked compounds. (a) CHEMBL49087, (b) CHEMBL537096, (c) CHEMBL2365364, 
(d) CHEMBL533775, (e) CHEMBL4117527, (f) CHEMBL2364957, (g) CHEMBL2078655, (h) CHEMBL2220288, (i) CHEMBL50064, (j) 
CHEMBL4116294.

https://doi.org/10.1371/journal.pone.0338777.g005

https://doi.org/10.1371/journal.pone.0338777.t004
https://doi.org/10.1371/journal.pone.0338777.g005
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The analysis revealed that all ligands remained stably bound with the active site (Supplementary Figure 1 in S1 Data). 
The RMSF per residue was analyzed to assess local flexibility within the protein (Fig 6c). All systems showed similar 
fluctuation trends, with elevated RMSF values observed at the N-terminal (residues 1–20), loop regions (~residues 
130–150), and C-terminal (~residues 290–300), as expected for solvent-exposed or disordered regions. In contrast, core 
binding site residues (e.g., Leu108, Arg156, Asn157, and Asp170) remained highly stable, with RMSF values consis-
tently below 0.15 nm, indicating preserved binding interactions. To quantify the overall compactness of the protein during 
simulation, the radius of gyration (Rg) was calculated (Fig 6d). All complexes maintained steady Rg values within the 
range of 1.94–1.98 nm. CHEMBL50064 exhibited the most compact structure (avg. Rg ≈ 1.95 nm), slightly more stable 
than CHEMBL4117527 and CHEMBL49087 (both averaging ~1.96 nm), and comparable to the co-crystallized reference. 
Additionally, SASA was evaluated to examine the extent of protein exposure to solvent molecules over time (Fig 7a). All 
systems showed consistent SASA values between 168 and 172 nm², with minimal fluctuations, suggesting stable protein 
folding and solvent interaction dynamics. Specifically, CHEMBL4117527 had the highest average SASA (171.2 nm²), 
followed by CHEMBL49087 (170.5 nm²) and CHEMBL50064 (169.7 nm²), which were all comparable to the co-crystal 
(169.9 nm²). The number of hydrogen bonds formed between the ligands and the protein was monitored throughout the 
simulation. As shown in Fig 7b, CHEMBL49087 and CHEMBL4117527 maintained a stable number of hydrogen bonds 
(ranging between 3–5 bonds), with occasional transient breaks, especially in the first 50 ns. CHEMBL50064 exhibited a 
slightly lower and more variable number of hydrogen bonds (ranging between 2–4 bonds), with more frequent disruptions 
compared to the other compounds, which may contribute to its higher RMSD fluctuations. Furthermore, the protein-ligand 

Fig 6.  Molecular dynamics analysis of JAK3–ligand complexes over a 200 ns simulation. (a) RMSD of JAK3 complexes. (b) RMSD of ligand 
atoms. (c) RMSF analysis. (d) Radius of gyration profiles of complexes.

https://doi.org/10.1371/journal.pone.0338777.g006

https://doi.org/10.1371/journal.pone.0338777.g006
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contacts were compared from start and end frames, showing conserved residues involved in interactions with hit com-
pounds (Supplementary Figure 2 in S1 Data). These results suggest that CHEMBL49087 and CHEMBL4117527 establish 
more stable interactions with the protein than CHEMBL50064.

3.9.  MM/GBSA binding free energy analysis

To further quantify the binding affinities and energetic stability of the selected compounds with the JAK3 protein, both MM/GBSA 
(Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson–Boltzmann Surface 
Area) calculations were performed using the last 10 ns of the 200 ns molecular dynamics trajectories. This timeframe was 
selected to ensure structural convergence and representative sampling of equilibrium states. The overall free energy compo-
nents, including van der Waals, electrostatic, polar solvation, and non-polar solvation contributions, were evaluated to under-
stand the driving forces governing ligand binding. As shown in Fig 8, the MM/GBSA results indicated that the co-crystallized 

Fig 7.  SASA and Hydrogen Bond Analysis for JAK3-Ligand Complexes over 200 ns Simulations. (a) SASA profiles of the co-crystal and top 
ligands (CHEMBL50064, CHEMBL49087, and CHEMBL4117527). (b) Hydrogen bond formation between the protein and the ligands throughout the 
simulation.

https://doi.org/10.1371/journal.pone.0338777.g007

https://doi.org/10.1371/journal.pone.0338777.g007
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ligand exhibited a total binding free energy of approximately –25.09 kcal/mol, dominated by van der Waals (–40.5 kcal/mol) and 
electrostatic (–21.07 kcal/mol) interactions, partially offset by the polar solvation penalty (41.45 kcal/mol). Among the screened 
hits, CHEMBL4117527 demonstrated the most favorable ΔG

bind
 (–29.5 kcal/mol), followed by CHEMBL49087 (–5.73 kcal/

mol) and CHEMBL50064 (–25.09 kcal/mol). The stronger affinity of CHEMBL4117527 can be attributed to a balanced contri-
bution from van der Waals (–40.31 kcal/mol) and electrostatic (15.14 kcal/mol) components, along with minimal desolvation 
penalties. This energetic pattern supports the enhanced stability observed during the MD trajectory. To validate the MM/GBSA 
results, complementary MM/PBSA calculations were performed (Fig 9). Both methods yielded consistent energetic profiles, with 
CHEMBL4117527 again showing the most stable complex (ΔG

bind 
= –26.09 kcal/mol), driven by favorable van der Waals (–40.31 

kcal/mol) and electrostatic (15.14 kcal/mol) interactions. The agreement between GB and PB models underscores the robust-
ness of the binding free energy estimates and indicates that hydrophobic interactions play a major role in stabilizing the JAK3–
ligand complexes. Per-residue energy decomposition (Fig 10) was carried out to identify amino acids contributing significantly 
to ligand stabilization within the binding pocket. Key residues such as Leu-31, Val-39, Met-87, Glu-106, Arg-155, and Leu-159 
showed highly favorable energy contributions across all complexes, highlighting their central role in mediating hydrophobic and 
electrostatic interactions with the inhibitors. Notably, Arg-155 and Leu-159 contributed the largest stabilization energies (–246.59 

Fig 8.  MM/GBSA binding free energy of JAK3–ligand complexes. Total and component energies (kcal/mol) for: (a) Co-crystallized ligand, (b) 
CHEMBL50064, (c) CHEMBL49087, and (d) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.g008

https://doi.org/10.1371/journal.pone.0338777.g008
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kcal/mol and –78.63 kcal/mol, respectively), indicating their importance in anchoring the ligands through hydrogen bonding and 
hydrophobic contacts.

3.10.  Quantum chemical descriptors

Density Functional Theory (DFT) calculations were employed to investigate the frontier molecular orbitals and global reac-
tivity descriptors of the three selected compounds (CHEMBL50064, CHEMBL49087, and CHEMBL4117527). The spatial 
distributions of the HOMO and LUMO orbitals are illustrated in Fig 11, while the calculated quantum chemical parame-
ters are summarized in Table 5. The analysis revealed that CHEMBL50064 exhibited a HOMO energy of –5.93 eV and a 
LUMO energy of –1.67 eV, corresponding to a HOMO–LUMO energy gap of 4.26 eV. CHEMBL49087 displayed a nearly 
identical electronic profile (ΔE = 4.24 eV), whereas CHEMBL4117527 showed a narrower gap of 3.38 eV, indicating com-
paratively higher electronic reactivity. A smaller energy gap typically suggests greater chemical reactivity and enhanced 
ability to participate in charge transfer processes. Further, CHEMBL50064 demonstrated the highest ionization potential 
(5.93 eV) and chemical hardness (5.09 eV), suggesting strong resistance to electron removal and relatively stable electronic 

Fig 9.  MM/PBSA binding free energy of JAK3–ligand complexes. Total and component energies (kcal/mol) for: (a) Co-crystallized ligand, (b) 
CHEMBL50064, (c) CHEMBL49087, and (d) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.g009

https://doi.org/10.1371/journal.pone.0338777.g009
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configuration. In contrast, CHEMBL4117527 possessed the lowest hardness (4.31 eV) and the highest chemical softness 
(0.23 eV), indicating a greater tendency to adapt its electron cloud during interactions with target residues. The electronega-
tivity values followed the order CHEMBL50064 > CHEMBL49087 > CHEMBL4117527, implying that CHEMBL50064 has the 
strongest electron-withdrawing tendency, which may enhance its binding complementarity within a polar or charged binding 
pocket. Overall, the DFT-derived descriptors indicate that CHEMBL4117527 is the most electronically reactive among the 
studied compounds, potentially favouring dynamic interactions within the protein active site, whereas CHEMBL50064 and 
CHEMBL49087 exhibit higher chemical stability and moderate electrophilicity. These findings suggest complementary elec-
tronic characteristics that may underlie their differential binding affinities and biological activities.

3.11.  Toxicity predictions

Toxicity predictions from the ProTox-II analysis revealed that all three compounds exhibited low acute toxicity, with LD₅₀ 
values ranging from 1300 to 2000 mg/kg, placing them within toxicity class IV. Both CHEMBL50064 and CHEMBL49087 
displayed LD₅₀ values of 2000 mg/kg, while CHEMBL4117527 showed a slightly lower value (1300 mg/kg), suggesting mod-
erate oral tolerance (Table 6). None of the compounds demonstrated cytotoxic, carcinogenic, or immunotoxic behaviour, as 

Fig 10.  Per-residue free energy decomposition of JAK3–ligand complexes. (a) Co-crystallized ligand, (b) CHEMBL50064, (c) CHEMBL49087, and 
(d) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.g010

https://doi.org/10.1371/journal.pone.0338777.g010
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all were predicted to be inactive across these endpoints. This indicates a favourable in silico safety profile for the designed 
compounds. Collectively, the ProTox-II predictions support the non-toxic and drug-like nature of the candidate molecules, 
aligning well with the previously obtained ADMET and DFT findings. The absence of major toxicity alerts further reinforces 
their potential as safe and stable therapeutic leads for downstream optimization and biological evaluation.

4.  Discussion

Janus kinase 3 (JAK3) plays a distinctive role among the JAK family members due to its selective expression in hema-
topoietic cells and involvement in γc cytokine receptor–mediated signalling, which governs lymphocyte development, 

Fig 11.  Frontier molecular orbital distributions of the selected compounds obtained from DFT calculations at the B3LYP/6-311G (d, p) level of 
theory. (a) CHEMBL50064, (b) CHEMBL49087, and (c) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.g011

Table 5.  Calculated quantum chemical descriptors of the selected compounds using the B3LYP/6-311G (d, p) method.

CHEMBL50064 CHEMBL49087 CHEMBL4117527

E
HOMO

−5.93 eV −5.91 eV −5.24 eV

E
LUMO

−1.67 eV −1.67 eV −1.86 eV

Ionization Potential 5.93 eV 5.91 eV 5.24 eV

Electron Affinity 1.67 eV −1.67 eV 1.86 eV

Electronegativity 6.76 eV 6.75 eV 6.17 eV

Electrophilicity Index −6.76 eV −6.75 eV −6.17 eV

Chemical Hardness 5.09 eV 5.08 eV 4.31 eV

Chemical Softness 0.19 eV 0.19 eV 0.23 eV

https://doi.org/10.1371/journal.pone.0338777.t005

https://doi.org/10.1371/journal.pone.0338777.g011
https://doi.org/10.1371/journal.pone.0338777.t005
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proliferation, and immune regulation. Aberrant JAK3 activation has been reported in several hematologic malignancies 
and solid tumors, highlighting its relevance as a potential therapeutic target [1,5,36]. While pan-JAK inhibitors such as 
tofacitinib and ruxolitinib have demonstrated clinical success in autoimmune diseases, selective inhibition of JAK3 remains 
limited because of the high sequence similarity within ATP-binding pockets of JAK1, JAK2, and JAK3 [6,7].

The present study introduces an integrated computational framework combining machine learning (ML) with molecular 
docking, molecular dynamics (MD) simulations, and free-energy calculations to identify and validate potential JAK3 inhib-
itors. Compared with earlier computational studies that relied primarily on predictive modelling [15,16], this work incorpo-
rates multi-tier validation using long-timescale MD simulations and energetic decomposition.

The Random Forest model developed here showed strong predictive capability (AUC = 0.80; F1 = 0.92), consistent with 
accuracies reported for kinase-target ML models such as JAK2 and BTK [37]. Virtual screening of the ChEMBL library 
identified 400 high-confidence candidates, of which CHEMBL4117527, CHEMBL49087, and CHEMBL50064 exhibited 
the most favourable docking affinities (≤ –9.0 kcal mol ⁻ ¹). The observed binding of these ligands to key residues Leu108, 
Arg156, and Asp170 matches those reported for known JAK3 inhibitors PF-06651600 and RB1 [8,13].

ADMET and ProTox-II analyses indicated favourable pharmacokinetic and safety profiles, consistent with current efforts 
to design safer, more selective JAK3 inhibitors [14,38]. MD simulations confirmed the dynamic stability of the protein–
ligand complexes over 200 ns trajectories; all maintained low RMSD values (0.10–0.20 nm) and stable hydrogen-bond 
occupancy [39,40].

Binding-free-energy calculations further supported CHEMBL4117527 as the most stable complex, with ΔGbind values 
of –29.5 kcal mol ⁻ ¹ (MM/GBSA) and –26.1 kcal mol ⁻ ¹ (MM/PBSA), consistent with typical high-affinity kinase inhibitors 
[17,41]. Residue decomposition identified Leu31, Val39, Arg155, and Leu159 as major contributors to stability, in agree-
ment with earlier reports highlighting hydrophobic pocket residues as determinants of JAK3 selectivity [42].

Quantum-chemical analysis using density-functional theory (DFT) provided complementary insights into electronic 
reactivity. CHEMBL4117527 displayed the smallest HOMO–LUMO energy gap (3.38 eV) and highest chemical softness 
(0.23 eV), implying a greater propensity for charge transfer within the active site—an observation consistent with prior 
DFT-guided inhibitor design studies [21,43].

Compared with existing work, this study contributes three main advances: (i) integration of ML-based screening with 
physics-based post-validation in a single pipeline for JAK3; (ii) use of dual free-energy approaches (MM/GBSA and MM/
PBSA) for cross-validation; and (iii) linkage of these energetic findings with orbital-level DFT descriptors.

Nonetheless, certain limitations should be acknowledged. The use of 2D fingerprints in ML modelling may overlook 
3D conformational and stereo electronic features that influence kinase selectivity. MM/GBSA and MM/PBSA methods 
approximate solvent and entropic effects and therefore may underestimate total binding energies. Finally, the absence of 
experimental validation is a key limitation; biochemical assays and cell-based evaluations are required to verify inhibitory 
potency and cytotoxic selectivity.

Future work should include in vitro and in vivo validation of the identified compounds to confirm their biological activity. 
Free-energy perturbation (FEP) and meta dynamics simulations could refine energy predictions, while analog devel-
opment of CHEMBL4117527 through structure–activity relationship (SAR) exploration may yield next-generation JAK3 

Table 6.  Predicted toxicity parameters of the selected compounds obtained from the ProTox-II server.

CHEMBL50064 CHEMBL49087 CHEMBL4117527

LD50 2000 mg/kg 2000 mg/kg 1300 mg/kg

Cytotoxicity Inactive Inactive Inactive

Carcinogenicity Inactive Inactive Inactive

Immunotoxicity Inactive Inactive Inactive

https://doi.org/10.1371/journal.pone.0338777.t006

https://doi.org/10.1371/journal.pone.0338777.t006
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inhibitors with improved efficacy and safety. Expanding this computational workflow to other JAK isoforms could further 
clarify selectivity determinants across the kinase family.

5.  Conclusion

This study establishes an integrated machine learning–guided and simulation-validated framework for the discovery of 
selective JAK3 inhibitors. By combining data-driven virtual screening with molecular docking, long-timescale molecular 
dynamics simulations, and free energy and quantum chemical analyses, the research provides a multi-level validation 
strategy that bridges predictive modeling with biophysical accuracy. The findings identify CHEMBL4117527 as a promising 
JAK3 inhibitor exhibiting favorable stability, strong binding energetics, and optimal pharmacokinetic and safety profiles. 
These results advance current knowledge by demonstrating that AI-assisted modeling, when coupled with physics-based 
methods, can accelerate kinase-focused drug discovery with improved reliability. Looking forward, this approach can be 
extended to experimental validation, structure–activity optimization, and clinical translation, offering a scalable pathway for 
developing next-generation therapeutics targeting JAK3-driven cancers and immune disorders.
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