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Abstract

Janus kinase 3 (JAK3) is a hematopoietic-specific kinase implicated in cytokine
signaling and immune dysregulation and has recently been associated with cancer
progression. However, selective and potent JAK3 inhibitors remain underdeveloped.
In this study, we established a machine learning (ML)-based pipeline to identify novel
JAKS inhibitors with anti-cancer potential. A curated ChEMBL dataset of JAK3 inhibi-
tors was used to train multiple ML classifiers, with the Random Forest model achiev-
ing the highest performance (AUC=0.80, F1-score=0.92). This model was applied to
virtually screen 25,084 ChEMBL compounds, yielding 400 high-

confidence candidates (prediction score>0.9). Docking analysis identified ten

top binders (binding affinity <—8.5 kcal/mol), of which three CHEMBL49087,
CHEMBL4117527, and CHEMBL50064 exhibited optimal ADMET profiles. These
compounds underwent 200 ns molecular dynamics simulations, showing low RMSD
(0.10-0.20 nm), stable binding conformations, and preserved protein compactness.
MM/GBSA calculations revealed that CHEMBL4117527 displayed the strongest bind-
ing free energy (—29.5 kcal/mol), surpassing even the co-crystallized ligand (-17.7
kcal/mol). Our integrative approach combining machine learning, docking, pharmaco-
kinetics, molecular dynamics, and free energy analysis presents a robust computa-
tional strategy for JAK3 inhibitor discovery. These findings support CHEMBL4117527
as promising candidates for further experimental evaluation in cancer therapeutics.

1. Introduction

Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase belonging to the Janus kinase
(JAK) family, which also includes JAK1, JAK2, and TYK2. Among these, JAKS is unique
due to its exclusive expression in hematopoietic cells and its specific interaction with the
common gamma chain (yc) shared by cytokine receptors such as interleukin (IL)-2, IL-4,
IL-7, IL-9, IL-15, and IL-21 [1,2]. Through this signalling axis, JAK3 plays a central role
in lymphocyte proliferation, differentiation, and immune homeostasis [3]. Dysregulation
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of JAK3 signalling, either through gain-of-function mutations or constitutive activation,
has been implicated in a variety of immune disorders and malignancies, including acute
lymphoblastic leukemia, T-cell prolymphocytic leukemia, cutaneous T-cell lymphoma,
and certain solid tumors [4—6]. In contrast to other JAK family members that are ubig-
uitously expressed, JAK3'’s restricted distribution to hematopoietic and immune cells
offers a therapeutic advantage—selective inhibition of JAK3 can modulate pathological
immune responses or malignant signalling without widespread systemic immunosup-
pression [7]. However, designing selective JAK3 inhibitors remains challenging due to
the high homology of ATP-binding sites among JAK kinases, particularly between JAK1
and JAK2 [8]. This underscores the need for rational design strategies that prioritize
selectivity, safety, and minimized off-target effects, which have limited the clinical utility
of first-generation pan-JAK inhibitors such as tofacitinib and ruxolitinib [9,10]. Recent
studies have further revealed the involvement of JAK3 in tumors immune evasion and
microenvironmental crosstalk, suggesting that JAK3-targeted therapy could not only
suppress oncogenic signalling but also restore anti-tumor immunity [11,12]. Therefore,
selective inhibition of JAK3 represents a promising yet underexplored approach in can-
cer therapeutics, with potential applications extending beyond hematologic malignancies
to solid tumors exhibiting aberrant JAK/STAT pathway activation [13—15]. Traditional
drug discovery approaches for kinase inhibitors, although effective, are resource-
intensive and time-consuming. The integration of machine learning (ML) and computer-
aided drug design (CADD) now enables high-throughput identification of bioactive
compounds by learning molecular patterns that correlate with inhibitory potency [16,17].
ML-based strategies have demonstrated particular success in virtual screening, struc-
ture—activity relationship (SAR) modelling, and activity prediction for kinase families, yet
most studies stop at prediction and lack structural and energetic validation [18,19]. To
overcome these limitations, structure-based modelling and physics-driven simulations
provide complementary insights. Molecular docking elucidates binding orientations

and interaction energetics, while molecular dynamics (MD) simulations capture the
conformational stability and flexibility of protein—ligand complexes under physiological
conditions [20]. Furthermore, quantum chemical methods, particularly density functional
theory (DFT), allow for precise evaluation of frontier molecular orbitals (HOMO/LUMO)
and global reactivity descriptors, aiding in the optimization of electronic and physico-
chemical properties of potential inhibitors [21]. Despite increasing interest in Al-driven
kinase inhibitor discovery, few studies have integrated ML, docking, MD simulations, and
DFT into a single, end-to-end workflow focused on JAKS3 selectivity and stability. Previ-
ous efforts have largely been limited to predictive modelling or docking-based screen-
ing, without multi-level validation. To bridge this gap, the present study establishes a
machine learning-guided and simulation-validated computational pipeline for identifying
potent and selective JAK3 inhibitors. Specifically, we (i) curated and modelled a data-
set of JAK3 inhibitors using advanced ML algorithms, (ii) performed virtual screening
and molecular docking to assess binding interactions, (iii) evaluated dynamic stability
through MD simulations and free energy analysis, and (iv) characterized quantum chem-
ical descriptors via DFT to elucidate electronic reactivity and stability.
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2. Methodology
2.1. Dataset acquisition and preprocessing

To construct predictive models for Janus kinase 3 (JAK3) inhibitors, compound data were extracted from the ChEMBL
database [22]. The initial dataset was refined to retain only entries corresponding to binding assays (assay type ‘B’),
ensuring that only compounds with direct interaction evidence with the target protein were considered. Data records with
undefined or missing ICs, values, or where the activity relation was not equal to ‘=", were removed to maintain consistency
in activity thresholds. Duplicate entries, identified based on canonical SMILES, were also excluded to avoid bias from
repeated structures. A binary classification scheme was applied: compounds with ICs, values <500nM were labeled as
inhibitors (active, class 0), while those with ICs, values between 501 and 10,000 nM were labeled as non-inhibitors (inac-
tive, class 1). Compounds with ICs, values exceeding 10,000 nM were discarded as outliers. The cleaned dataset was
randomly divided into an 80:20 ratio for training and internal validation, maintaining label proportions through stratified
sampling. The withheld 20% served as an external validation set to evaluate model generalizability. Principal component
analysis (PCA) was conducted on normalized molecular weight data to examine the chemical diversity and potential clus-
tering of active and inactive compounds within the feature space.

2.2. Descriptor generation and feature refinement

Molecular descriptors were generated using MACCS (Molecular ACCess System) structural keys, which encode 166
binary features representing the presence or absence of predefined substructures [23]. These fingerprints are well-
established in cheminformatics due to their interpretability and computational efficiency. To reduce dimensionality and
enhance model interpretability, Recursive Feature Elimination (RFE) was applied using a Random Forest classifier as the
estimator [24]. RFE iteratively eliminates less informative features, retaining the subset that contributes most significantly
to classification performance. This step helps minimize the risks of overfitting and improves training efficiency.

2.3. model development and evaluation strategy

The scikit-learn library in python was used to train four supervised learning models including Random Forest (RF), Deci-
sion Tree (DT), Naive Bayes (NB), and Support Vector Machine (SVM). Each model utilized the selected MACCS descrip-
tors as input features.

» Decision Tree builds hierarchical decision rules based on feature thresholds to separate the classes.

+ Random Forest constructs decision trees ensemble and aggregates ensemble predictions, reducing overfitting and
variance.

» Support Vector Machine maps data into higher-dimensional space to find an optimal separating hyperplane, making it
suitable for non-linearly separable data [25].

» Naive Bayes applies probabilistic learning under the assumption of conditional independence among features.

Performance was assessed using several metrics: accuracy, precision, recall, F1-score, and area under the ROC curve
(AUC). These metrics were computed on both the internal validation split and the external test set to evaluate model
robustness and generalization. The formulas used are:

Precision = L
TP+ FP
TP+ TN

Accuracy =

TP + TN+ FP + FN
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TP
Recall = TP L FN
2 x Precision x Recall
F1—score =

Precision + Recall

Where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives respectively.

2.4, Molecular docking

To evaluate the binding potential of the top-ranked hits screened through machine learning, molecular docking studies were
conducted using the Glide module of Schrodinger Maestro Suite [26]. The crystal structure of human JAK3 protein (PDB ID:
3LXL) was retrieved from the Protein Data Bank. Missing residues were modeled using AlphaFold2-based structure predic-
tion to complete the target structure [27]. Protein preparation was performed using the Protein Preparation Wizard in Maestro,
which included assigning bond orders, adding missing hydrogen atoms, optimizing hydrogen bonding networks, and minimizing
the structure using the OPLS force field [28]. Ligand molecules were energy minimized and converted to 3D conformations,
followed by preparation using LigPrep. Docking was carried out using Glide in standard precision (SP) mode [29]. The receptor
grid was generated at the centroid of the co-crystallized ligand binding site, and default settings were used with flexible ligand
sampling. The top binding poses were selected based on Glide docking scores and visual inspection of interaction profiles.

2.5. ADMET evaluation

To assess the pharmacokinetic and safety profiles of the selected JAKS inhibitors, in silico ADMET (Absorption, Distribu-
tion, Metabolism, Excretion, and Toxicity) analysis was performed. Key physicochemical properties including Lipinski’s rule
of five, gastrointestinal absorption, blood-brain barrier permeability was predicted using the SwissADME online tool [30].
Toxicity risk assessments such as mutagenicity and tumorigenicity were evaluated using OSIRIS Property Explorer [31].
Compounds with favorable ADMET profiles were prioritized for further molecular dynamics studies.

2.6. Molecular dynamics simulations

To investigate the stability and conformational dynamics of ligand—JAK3 complexes, molecular dynamics (MD) simulations
were performed with GROMACS 2023.3 [32]. System preparation was carried out through the CHARMM-GUI interface,
which generated the protein and ligand topologies based on the CHARMMS36 all-atom force field [33]. Each complex

was placed in a cubic periodic box and solvated with TIP3P water molecules, followed by neutralization with appropriate
numbers of K* and CI- ions. Energy minimization was conducted using the steepest descent algorithm to relax unfavorable
contacts. The equilibrations were carried out in two stages: a 100 ps NVT run to stabilize temperature and a 100ps NPT
run to equilibrate pressure, both maintained at 303K and 1 bar. Subsequently, a 200 ns production simulation was exe-
cuted with a 2-fs integration step. Trajectory analyses included the calculation of root mean square deviation (RMSD); root
mean square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area (SASA) to assess structural
stability and flexibility. In addition, MM/GB(PB)SA free energy calculations were carried out using the gmx_MMPBSA pack-
age on snapshots extracted from the final 10 ns of each trajectory to evaluate binding energetics [34].

2.7. Density functional theory (DFT) calculations

The selected compounds were subjected to quantum chemical calculations to analyse their frontier molecular orbitals
(HOMO and LUMO) and global reactivity descriptors. Geometry optimization of each compound was carried out using
the Density Functional Theory (DFT) method with the B3LYP functional and the 6-311G(d,p) basis set, as implemented
in the Gaussian 16 software package [35]. The calculations were performed in an aqueous environment using the
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self-consistent reaction field (SCRF) approach to simulate solvent effects, thereby providing a realistic representation of
the compounds’ behaviour under physiological conditions. Default convergence criteria were applied, and no symmetry
constraints were imposed during optimization.

2.8. Toxicity prediction analysis

The toxicity profiles of the selected compounds were evaluated using the ProTox-Il web server (https://tox-new.charite.de/
protox_lI/), an established platform for in silico prediction of various toxicity endpoints based on machine learning—derived
models. The SMILES structures of the compounds were uploaded to the server, and multiple toxicity parameters were
predicted, including LDs, (median lethal dose), cytotoxicity, carcinogenicity, and immunotoxicity.

3. Results
3.1. Distribution of molecular weights and PCA

The distribution of molecular weights for the compounds analyzed is shown in Fig 1a. A prominent peak is observed
around 400 g/mol, suggesting that a significant number of the compounds fall within the optimal molecular weight range
for drug-like properties. This range is important for oral bioavailability and absorption, as it balances sufficient size for
molecular interaction while maintaining favorable permeability across biological membranes. To further explore the chem-
ical diversity of the dataset, Fig 1b presents a principal component analysis (PCA) plot, which visualizes the separation of
active and inactive compounds. In this analysis, compounds classified as active (red) and inactive (blue) are plotted along
the first two principal components, capturing the most significant variations in the dataset. While some overlap is evident
between the two classes, a general clustering trend is observed, indicating that molecular characteristics contribute to
distinguishing active from inactive compounds. This clustering provides valuable insight into the structural diversity and
potential features that differentiate the active inhibitors from non-inhibitors.

3.2. Model performance evaluation

To evaluate the ability of machine learning models to classify JAKS inhibitors, four algorithms Decision Tree, Random
Forest, Support Vector Machine (SVM), and Naive Bayes were employed. The models were assessed using several
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Fig 1. Distribution of Molecular Weights and PCA Analysis of modelling data. (a) Molecular weight distribution, with a peak around 400 g/mol. (b)
PCA plot showing clustering of active (red) and inactive (blue) compounds.

https://doi.org/10.1371/journal.pone.0338777.9001
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performance metrics: accuracy, precision, recall, and F1-score (Table 1). Fig 2a illustrates the ROC curves for each
model. Among the models tested, Random Forest exhibited the highest performance, achieving an area under the curve
(AUC) of 0.80. This indicates that Random Forest has a high ability to discriminate between active and inactive com-
pounds, showing the best trade-off between sensitivity and specificity. The Support Vector Machine (SVM) and Deep NN
follow closely with an AUC of 0.76, demonstrating strong classification ability but slightly lower performance than Random
Forest. Decision Tree and Naive Bayes showed lower discriminative power, with AUC values of 0.73 and 0.65, respec-
tively, reflecting their limited effectiveness in handling the complexity of the dataset. The confusion matrix for the Random
Forest model is shown in Fig 2b. With an F1 score of 0.92, the model demonstrated excellent performance in balancing
precision and recall, ensuring that both false positives and false negatives were minimized. Precision (0.87) indicates that
a significant proportion of the predicted active compounds were indeed active, while the recall (0.96) highlights the ability
of model to identify most of the true active compounds. This suggests that Random Forest is highly reliable in identifying
JAKS inhibitors while avoiding misclassifications.

3.3. External validation of random forest model

To assess the robustness and generalizability of the Random Forest model, an external validation was performed on a
separate test set. The external validation results are presented in Fig 3, which shows the ROC curve for the external data-
set. The model performed well, maintaining a high AUC of 0.75, indicating that the model’s ability to distinguish between

Table 1. Comparative assessment of four machine learning models using stratified 10-fold cross-validation.

Model TP FP TN FN Accuracy Precision Recall F1-score
Decision Tree 378 45 45 52 0.81 0.89 0.87 0.88
Random Forest 415 59 31 15 0.85 0.87 0.96 0.92
SVM 426 68 22 4 0.86 0.86 0.99 0.92
Naive Bayes 352 49 41 78 0.75 0.87 0.81 0.84
Deep NN 426 68 22 4 0.86 0.86 0.99 0.92

https://doi.org/10.1371/journal.pone.0338777.t001

a) b)

1.0 F1 Score: 0.92

400
0.8
=3 37 53
300
g
Z 0.6
2 g
.E et
£ = 200
°
= 4
E o4
— 15
02 100
] —— Decision Tree (AUC=0.73)
—— Random Forest (AUC=0.80)
—— SVM (AUC=0.76)
— Naive Bayes (AUC=0.76)
00{ # —— Deep NN (MLP) (AUC=0.76) 0
00 02 04 06 08 10 Predicted
False Positive Rate

Fig 2. Model Performance Evaluation. (a) ROC curves for Decision Tree, Random Forest, SVM, Naive Bayes, and Deep NN models. (b) Confusion
matrix for Random Forest, with an F1 score of 0.92.

https://doi.org/10.1371/journal.pone.0338777.9002
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Fig 3. External Validation of Random Forest Model. ROC curve for external validation of Random Forest, showing an AUC of 0.75 and an F1 score
of 0.92.

https://doi.org/10.1371/journal.pone.0338777.9g003

active and inactive compounds is consistent across different datasets. This result suggests that the model is not overfitting
to the training data and can generalize well to unseen compounds. Further analysis of the confusion matrix for the exter-
nal validation data shows that the F1 score remains 0.92, like the internal validation results. This consistent performance
across both training and external datasets confirms the robustness of the Random Forest model and its potential for real-
world applications. The model’s ability to maintain a high level of accuracy on unseen data is critical for its applicability in
the drug discovery process, where the validation set represents, compounds do not present in the training data.

3.4. Virtual screening of the ChEMBL database

To identify potential JAK3 inhibitors, the best-performing machine learning model Random Forest, was employed to vir-
tually screen a library of 25,084 compounds retrieved from the ChEMBL database. Given that fingerprint-based machine
learning models capture structural features that influence bioactivity, compounds predicted as active are expected to
share relevant substructural similarities with those in the training dataset. Out of the screened compounds, a total of

400 molecules received prediction scores exceeding 0.9, indicating a high likelihood of JAK3 inhibitory activity. These
high-confidence candidates were subsequently selected for structure-based validation through molecular docking studies.

3.6. Molecular docking analysis

To validate the virtual screening results and assess the binding potential of high-scoring compounds, molecular docking
was carried out using the Glide module in the Schrédinger Maestro Suite. The top 400 predicted JAKS inhibitors from

the ChEMBL database were docked against the JAK3 protein structure. Docking scores were used to rank the com-
pounds, and the ten best binders were selected for further interaction analysis (Table 2). CHEMBL49087 exhibited the
strongest binding affinity of —=9.903 kcal/mol, forming six hydrogen bonds with Glu106, Leu108, Arg156, Asn157, Asp170,
and Asp152, with bond lengths ranging between 1.73 and 2.69 A. Key hydrophobic contacts were observed with Ala56,
Leu156, and Met105, suggesting deep burial into the JAK3 binding pocket. CHEMBL537096 followed closely with a binding
energy of —9.824 kcal/mol, interacting via hydrogen bonds with Asp170, Glu106, Leu108, Arg119, Asp115, and Lys58. The

PLOS One | https:/doi.org/10.1371/journal.pone.0338777 December 12, 2025 7120



https://doi.org/10.1371/journal.pone.0338777.g003

PLO\Sﬁ\\.- One

Table 2. Binding affinities and interaction profiles of top 10 docked JAK3 inhibitors.

Compounds Binding Affinity (kcal/ | Hydrogen Bonds (Bond length) Other Interactions
mol)
CHEMBL49087 -9.903 Glu106(1.76), Ala56, Leu156, Met105, Val39, Ala169, Leu31
Leu108(2.07), Arg156(2.26), Asn157(2.69),
Asp170(1.83), Asp152(1.73)
CHEMBL537096 -9.824 Asp170(1.74), Ly58(2.20), Glu106(2.20), Ala169, Val39, Valg87, Met105, Ala56, Leu159,
Leu108(2.13), Arg119(2.76), Asp115(2.32) Leu31, Gly111, Tyr106
CHEMBL2365364 -9.168 Lys58(2.34), Leu108(1.70) Met105, Tyr107, Leu159, Ala56, Ala169, Val39
CHEMBL533775 -9.13 Leu108(2.05), Asp170(1.82) Asn35, Asp152, Asn157, Met105, Ala169, Val39,
Ala56, Leu159, Gly111
CHEMBL4117527 -9.051 Glu106(2.38), Leu108(2.12), Cys112(2.48), Ala169, Leu159, Val39, Val87, Ala56, Leu31,
Asp115(1.85) Tyr107, Met105, Gly111
CHEMBL2364957 -8.986 Leu108(2.03) Phe36, Asn157, Arg156, Cys112, Val39, Tyr107,
Leu159, Ala56, Lys58, Met105, Ala169
CHEMBL2078655 -8.886 Glu106(1.97), Leu108(2.25) Val39, Lys58, Met105, Ala169, Leu159, Ala565,
Tyr107, Leu31, Gly111
CHEMBL2220288 -8.854 Asp152(1.89), Asn157(2.46), Asp170(2.13) Leu31, Val39, Ala56, Leu159, Met105, Val87,
Gly34, Ala169, Arg156
CHEMBL50064 -8.581 Leu31(2.41), Lys58(1.96), Glu74(2.08), Gly111, Ala56, Leu159, Met105, Ala169, Val39
Cy112(2.10), Asp170(2.01)
CHEMBL4116294 -8.51 Leu108(2.16), Arg114(1.85), Asn157(2.13) Leu31, Leu159, Glu106, Ala56, Met105, Val87,
Cys112

https://doi.org/10.1371/journal.pone.0338777.t002

ligand formed additional hydrophobic contacts with Ala56, Leu159, Val39, and Gly111. Other strong candidates included
CHEMBL2365364, CHEMBL533775, and CHEMBL4117527, with binding affinities of —=9.168, —-9.13, and —9.051 kcal/

mol, respectively. These compounds exhibited several hydrogen bonding interactions involving residues such as Lys58,
Leu108, Cys112, and Asp115, with additional van der Waals contacts stabilizing the complexes. Notably, compounds

like CHEMBL2364957 and CHEMBL2078655 also showed favorable binding energies (—8.986 and —8.886 kcal/mol) and
interacted with important residues such as Cys112, Leu159, and Met105, which are implicated in JAK3 ligand recognition.
Overall, the molecular docking results (Fig 4) reveal that the selected compounds establish strong interactions within the
JAKS3 active site, supported by multiple hydrogen bonds and hydrophobic contacts. These findings suggest favorable bind-
ing orientations and support the selection of these molecules for subsequent molecular dynamics simulations.

3.7. ADMET evaluation

Following molecular docking, the top-performing compounds were subjected to ADMET analysis to assess their drug-likeness
and pharmacokinetic suitability. A total of ten compounds were evaluated using SwissADME and OSIRIS Property Explorer
tools, and the results are presented in Tables 3 and 4. All compounds showed high gastrointestinal absorption (GIA) and sat-
isfied Lipinski’s rule of five, Veber, and Egan filters (Table 3). Most also passed the Ghose filter, except for CHEMBL2220288,
which failed due to deviations in molar refractivity. Drug-likeness radar plots for each compound (Fig 5) illustrate the balance
across six key descriptors lipophilicity (LIPO), size, polarity (POLAR), solubility (INSOLU), saturation (INSATU), and flexibil-
ity (FLEX). In terms of toxicity profiles, most compounds showed no risk of mutagenicity, tumorigenicity, irritation, or repro-
ductive toxicity. However, CHEMBL2365364 and CHEMBL2364957 raised concerns regarding potential mutagenicity, and
CHEMBL2220288 showed a high risk for reproductive toxicity (Table 4). Based on the overall safety and ADMET profiles,
CHEMBL49087, CHEMBL4117527, and CHEMBL50064 were selected for further molecular dynamics (MD) simulations. The
Drug-Score metric—which integrates drug-likeness, toxicity, and pharmacokinetic properties—highlighted CHEMBL49087 and
CHEMBL50064 (score=0.73), and CHEMBL4117527 (score=0.70) as the most promising candidates.
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Fig 4. Visualization of key protein-ligand interactions, highlighting hydrogen bonds and hydrophobic contacts for the ten best-docked
compounds. (a) CHEMBL49087, (b) CHEMBL537096, (c) CHEMBL2365364, (d) CHEMBL533775, () CHEMBL4117527, (f) CHEMBL2364957, (g)
CHEMBL2078655, (h) CHEMBL2220288, (i) CHEMBL50064, (j) CHEMBL4116294.

https://doi.org/10.1371/journal.pone.0338777.9004

Table 3. Physicochemical and drug-likeness properties of top JAKS inhibitors.

Compounds GIA Lipinski Ghose Veber Egan Drug Score
CHEMBL49087 High Yes Yes Yes Yes 0.73
CHEMBL537096 High Yes Yes Yes No 0.28
CHEMBL2365364 High Yes Yes Yes Yes 0.38
CHEMBL533775 High Yes Yes Yes No 0.45
CHEMBL4117527 High Yes Yes Yes Yes 0.7
CHEMBL2364957 High Yes Yes Yes Yes 0.31
CHEMBL2078655 High Yes Yes Yes Yes 0.53
CHEMBL2220288 High Yes No Yes Yes 0.39
CHEMBL50064 High Yes Yes Yes Yes 0.73
CHEMBL4116294 High Yes Yes Yes Yes 0.38

https://doi.org/10.1371/journal.pone.0338777.t003

3.8. Binding stability analysis

To evaluate the dynamic behavior and structural stability of the protein—ligand complexes, molecular dynamics (MD) simu-
lations were extended to 200 ns using the GROMACS 2023.3 simulation package for CHEMBL49087, CHEMBL4117527,
CHEMBL50064, and the co-crystallized JAK3-ligand complex. Several trajectory analyses were conducted to assess
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Table 4. Predicted toxicity profiles of top JAK3 inhibitor candidates.

Compounds Mutagenic Tumorigenic Irritant Reproductive Effect
CHEMBL49087 No No No No
CHEMBL537096 No No No No
CHEMBL2365364 High No No No
CHEMBL533775 No No No No
CHEMBL4117527 No No No No
CHEMBL2364957 High No No Mild
CHEMBL2078655 No No No No
CHEMBL2220288 No No No High
CHEMBL50064 No No No No
CHEMBL4116294 No No No No

https://doi.org/10.1371/journal.pone.0338777.t004
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Fig 5. Radar plots of physicochemical descriptors for top 10 docked compounds. (a) CHEMBL49087, (b) CHEMBL537096, (c) CHEMBL2365364,
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CHEMBL4116294.

https://doi.org/10.1371/journal.pone.0338777.9005

the temporal evolution of each system. The RMSD of the carbon alpha atoms was first computed to evaluate the global
stability of the JAKS structure. As shown in Fig 6a, all systems achieved equilibrium within the first 10-20 ns of the
simulation and fluctuated minimally thereafter. The RMSD values remained between 0.10 and 0.20 nm for most of the
trajectory. Among the candidates, CHEMBL50064 exhibited the lowest RMSD (~0.12nm average), closely followed by
CHEMBL49087 (~0.13nm) and CHEMBL4117527 (~0.14 nm), which were comparable to the co-crystal (~0.13nm),
suggesting well-maintained structural integrity throughout the 200 ns simulation. To monitor ligand mobility within the
binding site, ligand RMSD values were computed relative to their initial docked positions (Fig 6b). All ligands remained
tightly anchored, with CHEMBL49087 and CHEMBL4117527 showing the most stable behavior, maintaining RMSD values
between 0.08 and 0.15nm. CHEMBLS50064 exhibited slightly higher fluctuations (~0.17 nm at its peak), but remained
within acceptable bounds, confirming minimal displacement and persistent binding within the active site. Moreover, the
snapshots of md trajectory were retrieved after every 20 ns and aligned to find the ligand stability within the binding site.
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The analysis revealed that all ligands remained stably bound with the active site (Supplementary Figure 1 in S1 Data).
The RMSF per residue was analyzed to assess local flexibility within the protein (Fig 6¢). All systems showed similar
fluctuation trends, with elevated RMSF values observed at the N-terminal (residues 1-20), loop regions (~residues
130-150), and C-terminal (~residues 290-300), as expected for solvent-exposed or disordered regions. In contrast, core
binding site residues (e.g., Leu108, Arg156, Asn157, and Asp170) remained highly stable, with RMSF values consis-
tently below 0.15nm, indicating preserved binding interactions. To quantify the overall compactness of the protein during
simulation, the radius of gyration (Rg) was calculated (Fig 6d). All complexes maintained steady Rg values within the
range of 1.94—-1.98 nm. CHEMBL50064 exhibited the most compact structure (avg. Rg=1.95nm), slightly more stable
than CHEMBL4117527 and CHEMBL49087 (both averaging ~1.96 nm), and comparable to the co-crystallized reference.
Additionally, SASA was evaluated to examine the extent of protein exposure to solvent molecules over time (Fig 7a). All
systems showed consistent SASA values between 168 and 172 nm?, with minimal fluctuations, suggesting stable protein
folding and solvent interaction dynamics. Specifically, CHEMBL4117527 had the highest average SASA (171.2 nm?),
followed by CHEMBL49087 (170.5 nm?) and CHEMBL50064 (169.7 nm?), which were all comparable to the co-crystal
(169.9 nm?). The number of hydrogen bonds formed between the ligands and the protein was monitored throughout the
simulation. As shown in Fig 7b, CHEMBL49087 and CHEMBL4117527 maintained a stable number of hydrogen bonds
(ranging between 3-5 bonds), with occasional transient breaks, especially in the first 50 ns. CHEMBL50064 exhibited a
slightly lower and more variable number of hydrogen bonds (ranging between 2—4 bonds), with more frequent disruptions
compared to the other compounds, which may contribute to its higher RMSD fluctuations. Furthermore, the protein-ligand
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contacts were compared from start and end frames, showing conserved residues involved in interactions with hit com-
pounds (Supplementary Figure 2 in S1 Data). These results suggest that CHEMBL49087 and CHEMBL4117527 establish
more stable interactions with the protein than CHEMBL50064.

3.9. MM/GBSA binding free energy analysis

To further quantify the binding affinities and energetic stability of the selected compounds with the JAK3 protein, both MM/GBSA
(Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson—Boltzmann Surface
Area) calculations were performed using the last 10 ns of the 200 ns molecular dynamics trajectories. This timeframe was
selected to ensure structural convergence and representative sampling of equilibrium states. The overall free energy compo-
nents, including van der Waals, electrostatic, polar solvation, and non-polar solvation contributions, were evaluated to under-
stand the driving forces governing ligand binding. As shown in Fig 8, the MM/GBSA results indicated that the co-crystallized
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ligand exhibited a total binding free energy of approximately —25.09 kcal/mol, dominated by van der Waals (—40.5 kcal/mol) and
electrostatic (—21.07 kcal/mol) interactions, partially offset by the polar solvation penalty (41.45 kcal/mol). Among the screened
hits, CHEMBL4117527 demonstrated the most favorable AG,, , (—29.5 kcal/mol), followed by CHEMBL49087 (-5.73 kcal/

mol) and CHEMBL50064 (—25.09 kcal/mol). The stronger affinity of CHEMBL4117527 can be attributed to a balanced contri-
bution from van der Waals (—40.31 kcal/mol) and electrostatic (15.14 kcal/mol) components, along with minimal desolvation
penalties. This energetic pattern supports the enhanced stability observed during the MD trajectory. To validate the MM/GBSA
results, complementary MM/PBSA calculations were performed (Fig 9). Both methods yielded consistent energetic profiles, with
CHEMBL4117527 again showing the most stable complex (AG,, ,=—26.09 kcal/mol), driven by favorable van der Waals (—40.31
kcal/mol) and electrostatic (15.14 kcal/mol) interactions. The agreement between GB and PB models underscores the robust-
ness of the binding free energy estimates and indicates that hydrophobic interactions play a major role in stabilizing the JAK3—
ligand complexes. Per-residue energy decomposition (Fig 10) was carried out to identify amino acids contributing significantly
to ligand stabilization within the binding pocket. Key residues such as Leu-31, Val-39, Met-87, Glu-106, Arg-155, and Leu-159
showed highly favorable energy contributions across all complexes, highlighting their central role in mediating hydrophobic and
electrostatic interactions with the inhibitors. Notably, Arg-155 and Leu-159 contributed the largest stabilization energies (—246.59
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https://doi.org/10.1371/journal.pone.0338777.9009

kcal/mol and —78.63 kcal/mol, respectively), indicating their importance in anchoring the ligands through hydrogen bonding and
hydrophobic contacts.

3.10. Quantum chemical descriptors

Density Functional Theory (DFT) calculations were employed to investigate the frontier molecular orbitals and global reac-
tivity descriptors of the three selected compounds (CHEMBL50064, CHEMBL49087, and CHEMBL4117527). The spatial
distributions of the HOMO and LUMO orbitals are illustrated in Fig 11, while the calculated quantum chemical parame-

ters are summarized in Table 5. The analysis revealed that CHEMBL50064 exhibited a HOMO energy of -5.93eV and a
LUMO energy of —1.67 eV, corresponding to a HOMO-LUMO energy gap of 4.26eV. CHEMBL49087 displayed a nearly
identical electronic profile (AE=4.24eV), whereas CHEMBL4117527 showed a narrower gap of 3.38¢V, indicating com-
paratively higher electronic reactivity. A smaller energy gap typically suggests greater chemical reactivity and enhanced
ability to participate in charge transfer processes. Further, CHEMBL50064 demonstrated the highest ionization potential
(5.93eV) and chemical hardness (5.09eV), suggesting strong resistance to electron removal and relatively stable electronic
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Fig 10. Per-residue free energy decomposition of JAK3-ligand complexes. (a) Co-crystallized ligand, (b) CHEMBL50064, (c) CHEMBL49087, and
(d) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.9010

configuration. In contrast, CHEMBL4117527 possessed the lowest hardness (4.31eV) and the highest chemical softness
(0.23eV), indicating a greater tendency to adapt its electron cloud during interactions with target residues. The electronega-
tivity values followed the order CHEMBL50064 > CHEMBL49087 > CHEMBL4117527, implying that CHEMBL50064 has the
strongest electron-withdrawing tendency, which may enhance its binding complementarity within a polar or charged binding
pocket. Overall, the DFT-derived descriptors indicate that CHEMBL4117527 is the most electronically reactive among the
studied compounds, potentially favouring dynamic interactions within the protein active site, whereas CHEMBL50064 and
CHEMBL49087 exhibit higher chemical stability and moderate electrophilicity. These findings suggest complementary elec-
tronic characteristics that may underlie their differential binding affinities and biological activities.

3.11. Toxicity predictions

Toxicity predictions from the ProTox-II analysis revealed that all three compounds exhibited low acute toxicity, with LDs,
values ranging from 1300 to 2000 mg/kg, placing them within toxicity class IV. Both CHEMBL50064 and CHEMBL49087
displayed LDs, values of 2000 mg/kg, while CHEMBL4117527 showed a slightly lower value (1300 mg/kg), suggesting mod-
erate oral tolerance (Table 6). None of the compounds demonstrated cytotoxic, carcinogenic, or immunotoxic behaviour, as
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9

Fig 11. Frontier molecular orbital distributions of the selected compounds obtained from DFT calculations at the B3LYP/6-311G (d, p) level of

theory. (a) CHEMBL50064, (b) CHEMBL49087, and (c) CHEMBL4117527.

https://doi.org/10.1371/journal.pone.0338777.9011

Table 5. Calculated quantum chemical descriptors of the selected compounds using the B3LYP/6-311G (d, p) method.

CHEMBL50064 CHEMBL49087 CHEMBL4117527
Eromo -5.93 eV -5.91 eV -5.24 eV
E uvo -1.67 eV -1.67 eV -1.86 eV
lonization Potential 5.93 eV 5.91eV 5.24 eV
Electron Affinity 1.67 eV -1.67 eV 1.86 eV
Electronegativity 6.76 eV 6.75 eV 6.17 eV
Electrophilicity Index -6.76 eV -6.75 eV -6.17 eV
Chemical Hardness 5.09 eV 5.08 eV 4.31eV
Chemical Softness 0.19 eV 0.19 eV 0.23 eV

https://doi.org/10.1371/journal.pone.0338777.t005

all were predicted to be inactive across these endpoints. This indicates a favourable in silico safety profile for the designed
compounds. Collectively, the ProTox-Il predictions support the non-toxic and drug-like nature of the candidate molecules,
aligning well with the previously obtained ADMET and DFT findings. The absence of major toxicity alerts further reinforces

their potential as safe and stable therapeutic leads for downstream optimization and biological evaluation.

4. Discussion

Janus kinase 3 (JAK3) plays a distinctive role among the JAK family members due to its selective expression in hema-
topoietic cells and involvement in yc cytokine receptor-mediated signalling, which governs lymphocyte development,
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Table 6. Predicted toxicity parameters of the selected compounds obtained from the ProTox-Il server.

CHEMBL50064 CHEMBL49087 CHEMBL4117527
LD50 2000 mg/kg 2000 mg/kg 1300 mg/kg
Cytotoxicity Inactive Inactive Inactive
Carcinogenicity Inactive Inactive Inactive
Immunotoxicity Inactive Inactive Inactive

https://doi.org/10.1371/journal.pone.0338777.t006

proliferation, and immune regulation. Aberrant JAK3 activation has been reported in several hematologic malignancies
and solid tumors, highlighting its relevance as a potential therapeutic target [1,5,36]. While pan-JAK inhibitors such as
tofacitinib and ruxolitinib have demonstrated clinical success in autoimmune diseases, selective inhibition of JAK3 remains
limited because of the high sequence similarity within ATP-binding pockets of JAK1, JAK2, and JAK3 [6,7].

The present study introduces an integrated computational framework combining machine learning (ML) with molecular
docking, molecular dynamics (MD) simulations, and free-energy calculations to identify and validate potential JAK3 inhib-
itors. Compared with earlier computational studies that relied primarily on predictive modelling [15,16], this work incorpo-
rates multi-tier validation using long-timescale MD simulations and energetic decomposition.

The Random Forest model developed here showed strong predictive capability (AUC=0.80; F1=0.92), consistent with
accuracies reported for kinase-target ML models such as JAK2 and BTK [37]. Virtual screening of the ChEMBL library
identified 400 high-confidence candidates, of which CHEMBL4117527, CHEMBL49087, and CHEMBL50064 exhibited
the most favourable docking affinities (< —9.0 kcal mol-"). The observed binding of these ligands to key residues Leu108,
Arg156, and Asp170 matches those reported for known JAK3 inhibitors PF-06651600 and RB1 [8,13].

ADMET and ProTox-1l analyses indicated favourable pharmacokinetic and safety profiles, consistent with current efforts
to design safer, more selective JAK3 inhibitors [14,38]. MD simulations confirmed the dynamic stability of the protein—
ligand complexes over 200 ns trajectories; all maintained low RMSD values (0.10—0.20 nm) and stable hydrogen-bond
occupancy [39,40].

Binding-free-energy calculations further supported CHEMBL4117527 as the most stable complex, with AGbind values
of —29.5 kcal mol-* (MM/GBSA) and —26.1 kcal mol-* (MM/PBSA), consistent with typical high-affinity kinase inhibitors
[17,41]. Residue decomposition identified Leu31, Val39, Arg155, and Leu159 as major contributors to stability, in agree-
ment with earlier reports highlighting hydrophobic pocket residues as determinants of JAK3 selectivity [42].

Quantum-chemical analysis using density-functional theory (DFT) provided complementary insights into electronic
reactivity. CHEMBL4117527 displayed the smallest HOMO-LUMO energy gap (3.38eV) and highest chemical softness
(0.23eV), implying a greater propensity for charge transfer within the active site—an observation consistent with prior
DFT-guided inhibitor design studies [21,43].

Compared with existing work, this study contributes three main advances: (i) integration of ML-based screening with
physics-based post-validation in a single pipeline for JAK3; (ii) use of dual free-energy approaches (MM/GBSA and MM/
PBSA) for cross-validation; and (iii) linkage of these energetic findings with orbital-level DFT descriptors.

Nonetheless, certain limitations should be acknowledged. The use of 2D fingerprints in ML modelling may overlook
3D conformational and stereo electronic features that influence kinase selectivity. MM/GBSA and MM/PBSA methods
approximate solvent and entropic effects and therefore may underestimate total binding energies. Finally, the absence of
experimental validation is a key limitation; biochemical assays and cell-based evaluations are required to verify inhibitory
potency and cytotoxic selectivity.

Future work should include in vitro and in vivo validation of the identified compounds to confirm their biological activity.
Free-energy perturbation (FEP) and meta dynamics simulations could refine energy predictions, while analog devel-
opment of CHEMBL4117527 through structure—activity relationship (SAR) exploration may yield next-generation JAK3
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inhibitors with improved efficacy and safety. Expanding this computational workflow to other JAK isoforms could further
clarify selectivity determinants across the kinase family.

5. Conclusion

This study establishes an integrated machine learning—guided and simulation-validated framework for the discovery of
selective JAKS inhibitors. By combining data-driven virtual screening with molecular docking, long-timescale molecular
dynamics simulations, and free energy and quantum chemical analyses, the research provides a multi-level validation
strategy that bridges predictive modeling with biophysical accuracy. The findings identify CHEMBL4117527 as a promising
JAKS inhibitor exhibiting favorable stability, strong binding energetics, and optimal pharmacokinetic and safety profiles.
These results advance current knowledge by demonstrating that Al-assisted modeling, when coupled with physics-based
methods, can accelerate kinase-focused drug discovery with improved reliability. Looking forward, this approach can be
extended to experimental validation, structure—activity optimization, and clinical translation, offering a scalable pathway for
developing next-generation therapeutics targeting JAK3-driven cancers and immune disorders.
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S1 Data. Figure S1. The alignment of trajectory snapshots to analyze protein-ligand stability. a) Co-crystal structure, b)
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