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Abstract

In an era where digital communication accelerates the global spread of false narra-

tives, understanding how misinformation and disinformation propagate, especially

during crises such as the COVID-19 pandemic, is vital to public health and policy.

To delve into the diffusion mechanisms of misinformation (unintentionally false infor-

mation) and disinformation (intentionally false information), we introduce a novel

enhanced agent-based model (ABM) that integrates psycho-social factors and com-

munication networks, which are elements often overlooked in traditional equation-

based models (EBMs). We assess the two distinct techniques (ABMs and EBMs)

through the lens of six classical SEIRS-class models (S susceptible, E exposed, I

infected, R recovered). Beside the enhanced ABM, we also develop a simple ABM

to emulate the EBM structure. We compare the ABMs with the EBMs over their

entire parameter ranges in a total of 11110 experiments. Results show an overall

weak equivalence between the two types of models, even if, under certain condi-

tions, the outcomes of the EBMs and ABMs are similar. Furthermore, we evaluate the

two model types by fitting them to real-world infodemic data on vaccine acceptance

over 36 weeks using a multi-objective optimization procedure. The enhanced ABM

shows an exceptionally better fit to real-world data (Pearson’s correlation coefficient

𝜌 = 0.872 and normalized root mean of square error NRMSE = 0.055) than the EBM
(𝜌 = −0.067, NRMSE = 0.418) and the simple ABM (𝜌 = 0.391, NRMSE = 0.103).
These findings underscore the critical role of model structure in capturing infodemic

dynamics, and advocate for the use of ABMs when psycho-social influences and

network interactions are central to the phenomenon.
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Introduction

In 1995, a year that highlights the rising wave of internet-related development, Kevin
Kelly was writing [1]: “The central act of the coming era is to connect everything to
everything.” Nearly 30 years later, we are witnessing an unprecedented upsurge
in internet-based social media platforms and instruments for person-to-person and
person-to-group communication. Humans, more so than before, are now connected
in ways that foster high and ubiquitous access to information and to each other [2].
Our social networks are larger than in previous decades, in both number of actors
(nodes) and ties (edges), which makes way for new questions and calls for new anal-
ysis methodologies [3]. The field of complex systems provides such opportunities in
the form of network science, simulation of computational models, and specific con-
cepts (e.g., small worlds, co-evolution, emergence, etc.) [4,5].

Social communities can be considered multi-layered networks in which people
interact through a variety of relationships. This interpretation allows them to be inves-
tigated as complex networks [6,7]. When considering the available communication
channels (phone, messaging apps, social media platforms, etc.), the complexity of
these systems increases, both in size and relationship heterogeneity [8]. Topology-
based modeling is already intricate [9], but when we must also account for the con-
tent of the information exchange between nodes, modeling social networks overlaid
onto social media or communication networks becomes even more challenging. In a
complex systems perspective, humans can be seen as systems with agency (capa-
ble of autonomous decision-making and reasoning), while the interactions between
them are interpreted as signals: either information, energy, or matter over time. For
the specific case of information diffusion, this approach allows us to consider the
exchanged content.

In complex systems science, the chosen level of analysis typically depends on the
modeling purpose and can significantly impact the overall results [10,11]. To enhance
scientific communication and ensure replicability, researchers often employ a simpli-
fying interpretative method, which results into a model on one of three scales [12]:
a) macroscopic, when the whole network is represented as a black-box (i.e., with-
out understanding its internal behavior), and only large-scale variations of outcomes
are observed; b) mesoscopic, in which some parts of the network are differentiated,
but the level of granularity does not permit modeling individual nodes; and c) micro-
scopic, when each entity in the network has agency and manages its own dynamics
and psycho-social interactions.

Given this framework, the study of social-network information diffusion on a micro-
scopic level is of increasing interest. Network science has been investigating the
emergence of social ties and how ideas could travel through internet-enabled media,
such as political blog analysis [13] and election manipulation [14]. During the COVID-
19 pandemic, the diffusion of untrue or malicious information resulted in an infodemic
[15], and a co-evolution effect has been observed with the spread of the virus itself
[16]. Consequently, analyzing and predicting the effect of infodemics is of high inter-
est [17], and efforts have been focused on integrating epidemiological models of viral
spread with those of information diffusion [16,18].
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Study aim and hypothesis

The aim of this paper is to investigate two model types for the spread of mis- and disinformation: macroscopic equation-
based models (EBMs) and microscopic agent-based models (ABMs). We hypothesize that microscopic agent-based mod-
els are necessary to capture the elements of the human psycho-social context. To achieve this, we define a set of key
objectives:

1. Model development based on six classical viral spread EBMs that comprise the SEIRS-class, with S susceptible, E
exposed, I infected, R recovered:
• Develop a simple ABM parameterized to entail mis- and disinformation behaviors at microscopic level, which emu-
lates the assumptions of the classical EBMs.

• Develop an enhanced ABM that, aside from the simple ABM functionality, accounts for the communication network
and psycho-social interactions.

2. Inter-model equivalence of EBMs and ABMs:
• Perform a detailed cross-correlation analysis over the entire parameter range for all models
• Compare the models via a fitting experiment using real-world infodemic data

Background
Information diffusion models

A diffusion model is a framework, usually implemented mathematically or computationally, that represents the spread-
ing of entities or features in a space [19], which can be either topological or relational (i.e., a network) [20]. Even if they
were first developed in physical sciences, social sciences have widely adopted them, assuming that different kinds of fea-
tures could spread within a population [21]. Diffusion models provide a systematic way to understand and analyze the
dynamics of spread processes as a means of predicting their outcomes or investigating the factors that influence diffusion
[22]. Diffusion models are well established in different disciplines, such as epidemics [23,24], information spread [25,26],
opinion and strategy dynamics [27], and the economics of innovation [28,29]. In particular, the epidemic models derived
from Kermack and McKendrick’s seminal works [30–32] have received increased attention. The underlying assumptions
of these models are: a) an entity within a population could exist in one specific state (i.e., susceptible, infected, recov-
ered, or exposed); b) an infection could be transmitted by proximity to another individual (i.e., in the classic susceptible-
infected-recovered SIR model the number of newly infected individuals at time t depends on the product of suscepti-
ble and infected individuals, which stands for the number of interactions); and c) any state could be reached by internal
dynamics. Infodemic models equate “infection” with “knowledge”, thus proposing an analogous interpretation [33].

Diffusion models are generally characterized by four elements: the structure of the interactions, dynamics of the inter-
actions, possible states that model the diffused feature, and their dynamics. A classical approach to the diffusion model
(for instance, the one adopted by Kermack and McKendrick [30] which is derived from Newtonian mechanics), consists
of modeling a population as state variables. Each state typically varies over time according to a differential equation, such
that the structure of the model is an oriented graph where each node is a population subset in a given state, and the con-
nections depict functional dependencies. This approach is often called equation-based modeling [34,35]. In contrast, in
the last 30 years, an opposite paradigm has emerged, where the atomic unit of the model is not the state but the indi-
vidual decision-making entity itself [36], usually represented as a computational object [37]. When these computational
entities are agents (i.e., systems with agency [38]), the methodology is known as agent-based modeling [39,40].

In spread modeling, equation- and agent-based approaches are often seen as concurrent, with complementary
strengths and weaknesses [41,42], and there has been a long discussion regarding the preference for each of these
methods [43], as well as the effect of the interaction structure on diffusion over a network [21,25] or more generally on its
dynamics [44]. On the one hand, EBMs are much less computationally expensive, at the cost of assuming homogeneity of
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sub-populations and using a mean-field approximation to the structure of interactions [45]. On the other hand, the smaller
the population, the more individual features matter, and employing ABMs adheres closer to reality [46,47].

In epidemiology, there is an observable interest in assessing which methodology is better [48–52] and in identifying
strategies to develop hybrid models that encompass the best of both [46,53,54]. However, very few studies establish a
correlation between epidemics and infodemics [55].

Infodemics

According to the World Health Organization, “an infodemic is too much information including false or misleading informa-
tion in digital and physical environments during a disease outbreak” [56]. Based on the degree of misleading intentionality,
diffused untruths can be classified into [57,58]: a) misinformation, which spreads without the intention to mislead; b) dis-
information, which is produced purposely to cause harm (e.g., reporting manipulated statistics); c) malinformation, which
refers to broadcasting true information to cause harm, such as circulating a report without its original context; d) rumor,
which concerns the distribution of unverified information; and e) fake news, which are fabricated information mimicking
news content.

On the one hand, gossip and rumor-sharing contribute to building and maintaining social ties. The drive to express
views and perspectives in unreliable circumstances fuels the spread of mis- and disinformation [59], which has had detri-
mental effects on public health and politico-economic issues [60]. Notably, the waves of misinformation associated with
the COVID-19 pandemic have raised multiple psychological and psycho-social issues that led to inappropriate measures,
political instability, and mistrust in governing bodies [61–64]. Even when scientific inaccuracies are confined within seem-
ingly closed communities [65], they have widespread and destructive effects on social groups, especially marginalized
ones, leading to widescale societal changes and unrest [66].

On the other hand, misinformation and disinformation affect reliability and trust in social media networks as avenues for
the dissemination of news or other important verified facts. In general, the spread of untruths intended to manipulate the
perceptions of users has been recognized as a fundamental issue in democratic societies [67]. Subsequently, detecting
falsity in diffused information has become an important concern, and studies are looking to minimize affected users and
reduce propagation [68].

We surmise that proper analysis tools and models are necessary, to study not only the paths of misinformation but also
its long-term impact on human psycho-social behavior.

Methods

In this section we describe the equation- and agent-based models for mis- and disinformation diffusion, the comparative
analysis method, and tools for model implementation and development. All models and results are available in the Github
repository [69], including the scripts to create a docker image that runs the experiments for the two cases automatically.

Preliminary analysis: A psychological perspective on the infodemic infection mechanisms

Infodemic models have been relying on the concept of “misinformation epidemic” [70], with subsequent deterministic mod-
els based on the epidemic SIR-class equations [42]. While this assumptions is not without merit, information travels in an
inherently different manner than biological viruses, being affected by how communication is carried out and by individual-
ized factors such as the illusion of knowledge [71].

Thus, in this section we analyze whether the four states of susceptible, exposed, infected and recovered are suitable
for describing the spread of mis- and disinformation. Research on the psychology of misinformation has provided much
insight into the psychological processes underlying susceptibility to misinformation in multiple domains [72,73]. Cognitive
factors that contribute to supporting false beliefs include intuitive thinking (a lack of analytical thinking), cognitive failures
(forgetting sources), and illusory truth (familiarity).
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A recent model [74] proposes four psychological processes underlying susceptibility to health misinformation. Not only
individuals with a capability to reason accurately are less susceptible, but also their resilience increases with the moti-
vation to reason accurately. In contrast, directionally- and identity-motivated reasoning increases susceptibility, derived
from a desire to reach a preferred conclusion that is often consistent with one’s pre-existing views. These intertwining
mechanisms are not possible to be explicitly included in EBMs, but they are suitable for ABMs.

The exposed state is that in which a piece of information (e.g., news, blog posts, communication from social contacts)
takes a while to be processed, especially when its complexity makes it difficult to grasp, or requires repeated exposures
to generate belief. However, the mechanism behind the establishment of false and accurate belief is the same [75]. Peo-
ple are often biased to believe in the validity of information and “go with their gut” and intuition when deciding what is
true instead of deliberating [76]. For instance, 31% respondents in a U.S. survey (n = 2023) in March 2020 agreed that
COVID-19 was purposefully created and spread, despite the absence of any plausible evidence for its intentional devel-
opment [77]. People might have encountered conspiracy theories about the source of the virus many times, which might
have contributed to this widespread belief because simply repeating a claim makes it more believable than presenting it
only once [78]. Repetition increases belief in both misinformation and facts, and people get “infected”. Regardless of cog-
nitive ability and despite contradictory advice from an accurate source or accurate previous knowledge, there is a possibil-
ity that illusory truth persists months after the first exposure [79]. EBMs do not differentiate between repeated exposures,
even though they do account for incubation time, whereas in an ABMs it would only be a matter of adding a condition to a
state transition trigger. We thus put forward that the incubation rate should be redefined for infodemics.

But does belief really equate infection? [80] The exposure to false information is a strong contributor to the formation
of false beliefs. Access to high-quality information, whether true or not, is not necessary; instead, a range of precursors,
cognitive and socio-affective drivers, influence the formation and storage of false beliefs [75], which draws a parallel with
the properties of cells that determine whether they are or are not hosts to viral multiplication. But misinformation and its
siblings are not singular pieces that are passed on from person to person, nor are they easily identifiable by the “symp-
toms” of the “disease” they cause. Information and the knowledge it is stored as always come with related facts, untruths,
beliefs, consequences, premises, and relationships that either support or restrain the “infection”, thus affecting incuba-
tion, recovery, and loss of immunity. Where do we draw the line between infection and other beliefs that are not necessar-
ily true but not harmful either? For instance, the belief that leaving scissors open on the table leads to discord is not true,
but it serves the purpose of avoiding accidents caused by exposed blades. Perhaps the definition of the infected state in
infodemic models needs more interdisciplinary investigation.

Even with these limitations, there are enough arguments to analyze infodemics based on the four epidemiological
states. In what follows, we thus utilize the four SEIR states in the development of a simple ABM that emulates the corre-
sponding EBMs, following the parallel with biological virus spreads. The psychological perspective paints a larger picture,
for which we propose an enhanced ABM design that takes into account the properties of how information diffuses among
humans. Based on this preliminary analysis, we select the agent state variables to encode social navigation (coordinates,
orientation), the information they share with others (information status), and their cognitive engagement in communicat-
ing with others (energy). In terms of behavior, we choose to implement information-seeking based on access (amount
in observable vicinity), affinity to peer groups (homophily), one-on-one exchange, and communication through different
media (as information does not need physical contact between people to spread). The next sections describe in detail the
mechanisms employed for the models, with a conceptual representation in Fig 1 and with pseudocode available in the
supplementary material.

Equation-based models (SEIRS)

The prevalent equation-based models (EBMs) for infodemics are based on epidemic interpretations of how information is
transmitted throughout a population. They are macroscopic models, in which the persons engaged in receiving or relaying
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Fig 1. Conceptual representation of the two model types. The equation-based model (SEIRS) is structured as a finite-state machine in which popu-
lation subsets mass-transition between states based on probabilities. The agent-based model (ABM) is structured as layered complex networks in which
individuals transition between states based on local interactions.

https://doi.org/10.1371/journal.pone.0338614.g001

information lose their individuality. The main variables of the models become numbers reflecting portions of the popula-
tion in one of several distinct states: susceptible, infected, recovered or exposed (Fig 1a). In this study, we analyze six
such diffusion models: SI, SIS, SIR, SIRS, SEIR and SEIRS [42]. They are differentiated by how many states are defined
within the population and how many state transitions are allowed. For instance, in the SI model, the states are suscepti-
ble and infected, with the only transition S→ I; the SIS model also allows the reverse transition I→ S. For brevity, we only
describe model SEIRS in this section; all six models are listed in Appendix I.

SEIRS [81] consists of four equations as dynamic representations of the timewise state transitions of the four variables
(Fig 1a), defined as shown in Eq (1).

⎧⎪
⎨⎪
⎩

S′(t) = −𝛽N−1S(t)I(t) + 𝜉R(t),
E′(t) = 𝛽N−1S(t)I(t) − 𝜎E(t),
I′(t) = 𝜎E(t) − 𝛾I(t),
R′(t) = 𝛾I(t) − 𝜉R(t).

(1)

Where S(t), E(t), I(t), R(t) are the numbers of individuals with susceptible, exposed, infected, or recovered state,
respectively, at time t. Notations S′(t),E′(t), I′(t),R′(t) represent the first order derivatives of these variables and they
model how the states of the population change between two moments in time. N is the total number of individuals in the
population. The model parameters are: infection rate 𝛽, incubation rate 𝜎, recovery rate 𝛾, and immunity loss rate 𝜉.

Although SEIRS-class models can be expanded to include vital dynamics (asymmetrical birth and natural-cause death
rates) [82], the total population is constant in the classic version: N = S(t) + E(t) + I(t) + R(t).

The susceptible state is the nominal state of individuals and it models the population that can become either infected
with (models SI(S) and SIR(S)) or exposed to (models SEIR(S)) mis/disinformation. The population with exposed state
cannot infect other individuals, but can become infected after an incubation period. Those with infected state are able to
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spread the “infection” to the susceptible individuals and can become recovered after a period of time. The individuals with
recovered state are immune to the “infection” but can lose this immunity over time, at which point they transition to the
susceptible state.

Parameter 𝛽 represents the infection rate and is defined as the population percentage switching states from susceptible
to exposed (or infected) in the unit of time. Parameter 𝜎 represents the incubation rate and is defined as the population
percentage switching states from exposed to infected in the unit of time. Parameter 𝛾 represents the recovery rate and is
defined as the population percentage switching states from infected to recovered in the unit of time. Parameter 𝜉 repre-
sents the immunity loss rate and is defined as the population percentage switching states from recovered to susceptible in
the unit of time.

For the SEIRS models, the unit of time is chosen to match the modeled epidemic, e.g. days for rapidly spreading infec-
tions, or months for slower dynamics. In this study, we consider the unit of time to be equivalent to the unit of time of the
agent-based models, measured in ticks. Thus, we maintain the generality and scalability of the models.

Agent-based models

Agent-based models are built with two types of entities: (a) an agent is a simulated system capable of perception, action,
communication, and reasoning; (b) a cell is a simulated system part of the environment. The ABM unit of time is called a
tick. Its real-world equivalence is selected based on problem context and dynamics. During one tick, all behaviors defined
in the ABM (agents, cells, etc.) are executed in parallel asynchronously, by one step.

For this study, we propose an ABM structure to include the separation and dependence between the psycho-social
component and the communication medium. We base this choice on the argument that one network alone is not sufficient
to embody these types of dynamics, put forth by studies on epidemic-infodemic interactions [83] and opinion dynamics
[84]. Thus, agents model individuals (who can interact with the environment or each other) and the psycho-social network,
while cells model the communication channels and/or network (Fig 1b).

Network structures. The psycho-social network is formed of all agents in the ABM. From an information diffusion
perspective, this network appears as a graph with temporary edges, which are formed when two agents meet to directly
transmit information to each other. This reflects the real world in which two persons open ad-hoc point-to-point commu-
nication sessions (e.g., face-to-face, phone call) with each other, forming a connection, but are not actively transmitting
information to each other around-the-clock.

The social media/communication network (further referred to as the environment) is formed of all the cells in the ABM.
In this study, we interpret each cell as a platform (e.g., blogging, micro-blogging, forums, social apps), broadcasting entity
(e.g., newspaper website, television) or communication channel (e.g., VoIP apps). Equivalent to the real world, an agent
“navigates” among these platforms; in this paper, we visualize this process by allowing agents to travel across the cell
grid. While the cells are connected via adjacency to each other, we do not consider the network edges relevant in this
situation, as platforms themselves do not exchange information; instead, the agents carry it across media.

The environment thus represents the online (social) media network overlaid onto the direct point-to-point communica-
tion of the agents. The difference in behavior between direct communication and online media is that the latter functions
as a broadcast instead of a conversation. Blog posts, news articles, etc. are stored online and available for anyone in the
network. In the real world, this type of broadcast is not received by all individuals at the same time, as navigating through
personal media dashboards limits exposure (e.g., local news relayed within a region and not internationally, or social
media clusters formed of family members, etc.): we achieve this effect by implementing the agent movement functions as
they seek interactions and limiting their perception to a radius around themselves.

Information modeling. The relationship humans have with information has been studied at length [85,86]. The inter-
pretation we adhere to in this paper associates this interaction process with foraging behaviors, through which people
seek, select, consume and avoid information [87,88]. For agents, cells are both information sources and sinks. Agents
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generate information by “posting” on cells (interpreted as either new content, or interactions with existing content such
as commenting). When agents are infected, they might deposit mis- or disinformation, which is then picked up by other
agents. In complex systems, this process of communicating through the environment is known as stigmergy [89]. Agents
gain energy by consuming information and lose energy by posting, thus simulating engagement (e.g., scrolling through
dashboards, commenting) or exposure fatigue (e.g., avoiding news applets).

Aside from content deposited by agents on cells, we implement a generation mechanism through which information
“grows”. The underlying hypothesis is that information available in the environment can be generated by sources outside
that environment. Thus, there is an external component to the model which agents cannot affect, but that can influence
the agent or its group. For instance, the social cluster of an individual being influenced by the media, over which single
individuals do not have, in turn, an effect. Moreover, if cells are instances of online media platforms where agents interact
with content, the information they carry can be influenced by recommendation engine algorithms, which promote any type
of engagement, whether positive or negative [90], and thus become vectors for mis- and disinformation.

We developed two models: (a) the simple model is a direct translation of the finite-state machine of the EBMs into
agent behaviors in which misinformation spreads point-to-point between agents; (b) the enhanced model is built upon the
simple model by adding psycho-social components to the agent behaviors (e.g., homophily), as well as the misinformation
spread through the online (social) media network. All algorithms associated with the two models are detailed in Appen-
dices II and III. The two models are briefly described in the following sections Simple ABM and Enhanced ABM using the
ODD (Overview, Design Concepts and Details) Protocol [91].

Simple ABM.
Overview:
The purpose of the simple ABM is to model infodemics taking into account complex interactions between agents

based on the information model.
The state of an agent Ai (i = 1..N) is described by four variables: coordinates (xi, yi), orientation hi, information status

si, and energy level ei. Coordinates are discrete (integer) and spatially define the position of the agent in the environment.
Orientation is defined by the heading angle. Information status is a categorical variable s ∈ {susceptible, exposed, infected,
recovered} = {S,E,I,R} with four categories equivalent to the SEIRS model. Energy level is a continuous variable modeling
the interest of agents to communicate (receive and relay information) and thus to move through the environment.

The state of a cell Cj (j = 1..M2) is described by two variables: coordinates (xj, yj) and information quantity qj. Cells are
static, arranged on a torus, and visible in the model interface as an M × M square grid (agents leaving one border reap-
pear on the opposite side). Together, cells form the communication network. Coordinates are discrete (integer) and define
the position of the cell inside the grid. Information quantity is a continuous variable representing how much information
is available to agents in one particular communication channel (displayed in shades of green: lighter for less information,
darker for more). For this model all available information is considered true.

Fig 2 shows the initialization of the simple ABM at t = 0 ticks and the visualization of the model at t = 50 ticks.
The scheduler triggers the two main behaviors of the agent: Agent movement and Agent information status. The

agent information status describes how the agent’s state changes as a consequence of direct (point-to-point communica-
tion) and indirect (information posting and consumption) diffusion of information. The implementation of the scheduler is
explained in Appendix II.

Design concepts:
Agent movement. Agents move through the environment toward a new position with a specified heading. The agent’s

target is computed based on vicinity: choosing the cell (patch) with the highest amount of information in agent radius r and
viewing angle 𝜃. The meeting of two agents on the same cell represents two individuals simultaneously using the same
instance of a communication channel (e.g., a phone call, a messaging app, face-to-face conversation, etc.).

Agent information status. The categorical agent state variable s ∈ {S,E,I,R} defines the set of actions it can perform,
i.e. its behaviors (algorithms in Appendix III). The transitions between the four categories follow the rules of the EBMs
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Fig 2. Visual representation of the agent-based implementation of the diffusion model at two different time steps. The color of each cell (shades
of green) represents the level of information present in that specific area, while agents are depicted by arrows in a visual representation that shows both
the position and the current orientation: orange susceptible, magenta infected, blue recovered, and violet exposed.

https://doi.org/10.1371/journal.pone.0338614.g002

finite-state machine and are implemented via threshold tests with the probabilities of infection 𝛽 (relative to world and
population size), successful incubation 𝜎, recovery 𝛾, and immunity loss 𝜉.

The simple model implements diffusion using point-to-point communication between agents, meaning that mis- and dis-
information can only be transmitted when agents talk directly to each other. The point-to-point communication is estab-
lished by infected agents with closest susceptible agents. This is the epidemiological interpretation in which biological
viruses are transmitted through direct contact. Agents lose energy by moving through the world. This ABM is designed
to allow for disinterest or sudden interest, and thus implement vital dynamics (e.g., “death” by leaving the network or
“birth” by joining the network). However, to match the ABM to the classical SEIRS EBMs, we deactivated these functions.
Because in this case the environment does not provide or store false information, it does not affect the dynamics of the
infection spread, thus allowing for a fair comparison between the two modeling approaches.

While the movement path of agents is random, the starting location of all agents is deterministic. The agents sense

their environment and interact with other agents in their vicinity (d(Ai,Aj) =√(xi − xj)2 + (yi − yj)2 < r) directly (point-to-
point communication).

Details:
Each agent is initialized with a starting position, heading, and state (S,E,I, or R, depending on the submodel type). No

data is exchanged with the outside world. We consider the following 6 submodels for the simple ABM: SI, SIS, SIR, SIRS,
SEIR and SEIRS.

Enhanced ABM.
Overview:
The purpose of the enhanced ABM is to model infodemics taking into account complex interactions between agents

based on the information model and communication network structure.
The state of an agent Ai (i = 1..N) is described by five variables: coordinates, orientation, information status, energy

level, and group gi, which is a categorical variable that tags the agent as belonging to one of two social groups: g ∈
{G1,G2}.

The state of a cell Cj (j = 1..M) is described by three variables: coordinates, information quantity, and information type
cj, which is a categorical variable c ∈ {ctrue, cfalse}. Truthful information ctrue is displayed as green, while falsity cfalse is dis-
played as red, both in shades based on quantity. Cells are arranged in the same grid as the simple model.
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The scheduler triggers the main behaviors of the agent: Agent movement and information status. The agent informa-
tion status describes how the agent’s state changes as a consequence of direct (point-to-point communication) and indi-
rect (information posting and consumption) diffusion of information. The implementation of the scheduler is explained in
Appendix II.

Design concepts:
Agent movement and information status. Agent movement and information status are similar to the simple model.

The difference is that the S→ I and S→ E transitions can be triggered externally by false information from the environ-
ment. The infection rate 𝛽 is also adjusted to account for two infection sources (other agents and cells).

Homophily. In this extension, we implemented a simple mechanic based on group adherence: agents in groups G1
and G2 will only believe false information from agents in the same group. Thus, the S→ I and S→ E transitions become
conditional.

The enhanced model implements diffusion using both point-to-point and stigmergy communication between agents.
Thus, mis- and disinformation can be transmitted when agents talk directly to each other and when they interact with the
information shared through the communication network. Agents lose energy by moving through the world, but also when
posting information. The point-to-point communication is similar to the simple model, while stigmergy allows for mis- and
disinformation to spread through the shared media stored online, adding another informational dimension to the epidemio-
logical interpretation.

While the movement path of agents is random, the starting location of all agents is deterministic. The agents sense

their environment and interact with other agents in their vicinity (d(Ai,Aj) =√(xi − xj)2 + (yi − yj)2 < r) directly (point-to-
point communication) or indirectly (information posting and consumption) through the environment.

Details:
Each agent is initialized with a starting position, heading, and state (S,E,I, or R, depending on the submodel type). No

data is exchanged with the outside world. We consider the following 6 submodels for the enhanced ABM: SI, SIS, SIR,
SIRS, SEIR and SEIRS.
The differences in characteristics [92] between the EBM, the simple ABM, and the enhanced version of the ABM are sum-
marized in Table 1.

Implementation. Both the simple and enhanced ABM function on the same base structure (scheduling), detailed in
Appendix II together with the two model interfaces.

The scheduling of the model can be summarized into phases. The initialization phase loads the agent list and positions,
and the cell distribution with information quantities into the model (here, we choose the same initialization for all model
runs). The next phases execute agent behaviors.

First is the movement phase, in which an agent Ai chooses a target to move toward. The decision-making mechanism
considers a given radius de around agent Ai. Agents deplete a fixed amount of energy ec for each movement. Second,
the spreading phase, in which an agent Ai with status si = I spreads mis- or disinformation to the nearest neighbor Ak with
status sk = S. To be infected or exposed, Ak should be at a distance dik < dc (preset radius). Third, agent Ak changes sta-
tus to sk = E for models SEIR(S) or to sk = I for the others. Fourth, an agent Ai with si = I can recover to si = R for SIR(S),
SEIR(S). Model selection is possible through the ABM interface. Fifth, a recovered agent Ai with si = R can become sus-
ceptible in the case of models SIS, SIRS, SEIRS. (Deactivated function: an agent Ai with negative energy ei is removed
from the agent list, i.e., leaves the simulated society, which occurs whenever it expends more energy than it collects and
stores.) The cell behavior execution phase consists of the information qj on each cell Cj replenishing with a preset growth
rate up to a maximum limit.
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Table 1. Comparison of characteristics between the EBM, simple ABM, and enhanced ABM for infodemic modeling.

Feature EBM Simple ABM Enhanced ABM
Abstraction level High (far from abstract biology) Low (close to biology) Low (close to biology)
Nature: analysis level
(description level)

Synthetic: macroscopic
(population-level)

Many parameters: microscopic
(entity, individual-level)

Many parameters: microscopic
(entity, individual-level) with network
structure

Interactions (system
homogeneity)

Homogeneous mixing (mean-field) Point-to-point contact between
agents

Heterogeneous; Point-to-point &
indirect broadcast via cells; agents
interact with media and each other

Information spread Homogeneous population fractions;
no heterogeneity of information

By agent contact, no explicit
false/true informantion

By agent contact and via
environment (cells hold true/false
info); agents perceive and spread
content

Modularity and incrementality Little modular and incremental Modular and incremental Modular and incremental
Psycho-social aspects Not included Limited (energy/interest) Includes social influence,

psychological processes
Main structure and mathematical
resolution

Formalized: differential equations
(SEIRS-class)

Non-formalized: agents as
individuals moving in a grid; direct
interactions

Non-formalized: agents &
communication cells; includes
psycho-social and media networks

Runtime Low High High
Computational requirements,
scalability, flexibility

Low computation, high scalability
and low flexibility

Moderate computation, moderate
scalability and high flexibility

High computation (larger state
space, more interactions), moderate
scalability and high flexibility

States S, E, I, R (at aggregate level) S, E, I, R (at agent level) S, E, I, R (at agent level
Ease of implementation Moderate Complex Complex
Strengths Analytical tractability, fast

simulations, captures mean trends
Captures individual heterogeneity,
emergence

Models network/media effects,
higher realism

Limitations Ignores individual/social structure,
cannot capture emergence

No media/network effects,
computationally intense, less
realistic for infodemics

Computationally intensive, more
complex calibration

https://doi.org/10.1371/journal.pone.0338614.t001

Comparative analysis

Directly comparing EBMs and ABMs is crucial because these two approaches rely on fundamentally different assump-
tions about population structure and individual behavior. While EBMs offer analytical tractability by averaging over large
populations, ABMs explicitly represent individual heterogeneity and local interactions, which can strongly influence diffu-
sion dynamics but could be difficult to simulate when the number of agents exceeds a threshold. Thus, we compare pairs
of homonymous outcome variables from the same-class model (e.g., the SI EBM’s susceptible vs. the SI ABM’s suscepti-
ble): evolution over time and scale. We focus on the key parameters common to the two frameworks (𝛽, 𝛾, 𝜉, 𝜎), which we
vary across their entire ranges. This approach allows us to highlight the conditions under which the two representations
diverge.

To reduce the effect of randomness inherent to ABMs, we fix all initializations and the other ABM parameters. We thus
define the same starting coordinates and orientation for each agent in the initial population, and specify the same initial
distribution of information on cells and size of the homophily group. To account for probability-based choices (e.g., assign-
ing an agent to a group), we apply the standard practice in complex systems simulation of repeating ABM experiments
under the same initial conditions and averaging the set of outcomes before comparison with the EBM. In what concerns
the implementation framework, NetLogo is deterministic in the sense that one simulation returns the same results every
time on different devices, if it is initialized with the same seed (specifiable parameter).

The comparative analysis we perform in this study has two outcome measures which describe how well the ABM-
generated variables ya ∈ {S(t),E(t), I(t),R(t)} match the corresponding EBM-generated variables ye over a predetermined
period of simulated time, corresponding to a number of q samples (i.e., ticks within the chosen period).
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The Pearson correlation coefficient 𝜌 [93] is given by Eq (2).

𝜌 = cov(ya, ye)
𝜎ya𝜎ye

. (2)

Where 𝜎ya and 𝜎ye are the standard deviations. By calculating the sample-to-sample cross-sectional correlation
between ya and ye over q samples, we investigate whether this relationship is linear, which would mean that the transient
responses of the models are similar over time. This measure thus shows how well the two variables match longitudinally
(shape over time) and is defined over the interval [−1;1], where 1 is best match, –1 mirrored evolution, and 0 is complete
mismatch.

The normalized root mean of square error (NRMSE) is defined as in Eq (3).

NRMSE = √
1

q
∑q

k=1(yak − yek)2

ymax − ymin
. (3)

Where q is the number of samples, with ymax and ymin the maximum and minimum values of ya and ye (in this case,
for a constant total population size, the same for both variables). NRMSE is a dimensionless score for scale-independent
comparisons of model outcomes, defined over the interval [0;1], where 0 means best match and 1 worst [94].

Note that 𝜌 cannot be calculated when one of the contributing variables is zero; to avoid skewing the summary calcula-
tions, these were adjusted to match (1) or not-a-match (0) based on the NRMSE of the pair.

In this study, we use the combined outcome measures 𝜌 and NRMSE to assess the similarity of the model outcomes
as discrete signals: 𝜌 quantifies how well ya and ye match in shape, whereas NRMSE offers an estimate of the relative
differences between model outcomes. Together, the two metrics allow for an analysis of both transient and steady state
responses of the models, while providing an intuitive descriptor of why the models do not match. For instance, the com-
bination of 𝜌 = 0.9 and NRMSE = 0.8 means that the models show a similar outcome variation over time, but with large
differences in amplitude. In practical terms, this would mean that the two populations adapt in almost the same manner to
the spread of misinformation, but the amount of people affected differs widely.

Fitting to real-world data: Case study on vaccine acceptance

We also evaluate the two types of models in a fitting experiment. The real world data we choose for this case study
describes vaccine acceptance and disapproval during the pandemic. The model type is SIS, in which we consider the
susceptible state as “accepting the vaccine” and the infected state as “not accepting the vaccine”, with the possibility to
recover to susceptible state.

Infodemic real-world dataset. The data was collected via a global survey on COVID-19 beliefs, described in [95] from
23 countries between June 2020 and March 2021. The data are available in the section Data Availability of the same
paper [95]. One of the questions asked: “If a vaccine for COVID-19 becomes available, would you choose to get vacci-
nated?”. Martinelli and Veltri [96] then conducted a study on COVID-19 vaccine acceptance, which produced a dataset
expressing the percentage of the populating accepting of the vaccine. The dataset is longitudinal over 36 weeks, with a
sample of 2 weeks between measurements. From this dataset, we choose Romania as a case study.

Fitting method.We search for the enhanced ABM and the EBM parameters so that the model outputs Si(k) and Ii(k),
with i ∈ {ABM,EBM}, match the real world data described by the real world susceptible population SRW(k) and the real
world infected population IRW(k). Considering that the two signals are mirrored, for a parameter set 𝜋i and discrete time
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step k = 0..19, the multi-objective optimization problem is given by Eq (4).

min
𝜋i

( 𝜌(k)|Si(k),SRW(k) , NRMSE
−1(k)||Si(k),SRW(k)

), k = 0..19. (4)

The ABM parameter set is 𝜋ABM = {𝛽, 𝛾,PM,TF, IR,LS,IM ,LS,IP ,DS,I
P }, where 𝛽 ∈ [0,1] is the infection rate and 𝛾 ∈ [0,1] is

the recovery rate. PM ∈ [1,15] is the population multiplier and scales the number of agents from a initialization baseline
of 100. TF ∈ [1,336] ∩ ℕ is the time factor and determines the size of an ABM tick relative to the real world data sampling
time; thus, TF represents how many ABM ticks pass for each week in the real world. IR is the information regrowth rate.
LS,IM ∈ [1,100] ∩ ℕ and LS,IP ∈ [1,100] ∩ ℕ represent the energy loss of agents from movement and from posting information,
for susceptible and infected agents, respectively. Finally, DS,I

P ∈ [1,25] ∩ ℕ represent the delay between agents consuming
and posting information, for susceptible and infected agents, respectively.

The EBM parameter set is 𝜋EBM = {𝛽, 𝛾,TF}, where 𝛽 ∈ [0,1] is the infection rate and 𝛾 ∈ [0,1] is the recovery rate. TF

represents how many data points we are considering for each week in the real world, TF ∈ [1,336] ∩ ℕ.
For both, the population size is normalized to percentages and the two outcome variables of all models (suscepti-

ble and infected) are initialized to approximate the first datapoint of the real world data. To calculate the criteria 𝜌 and
NRMSE, we bin the model outputs to the size of the real-world dataset (19 points) by averaging.

The optimization procedure is performed using the Python hyper-optimization library Optuna, which provides samplers
and pruners and determines the importance of parameters and their interdependence. In this case study, we choose the
Tree-structured Parzen Estimator (TPE) sampler and the hyperband pruner.

Tools, frameworks, and software

The ABMs were implemented and simulated using NetLogo 6.3.0 [97]. The EBMs were implemented in Python 3.11.0 in
discrete form, with a time step equivalent to one ABM tick. All visualizations, plots, heatmaps and calculations were also
performed in Python 3.11.0. The following Python packages were used: matplotlib 3.7.1, numpy 1.24.3, scikit-learn 1.2.2,
scipy 1.10.1, optuna 3.5.0, optuna-dashboard 0.14.0.

Results
Evaluation of intermodel equivalence

In this section we present a selection of relevant results (limited by space considerations), with more examples in Appen-
dices IV and V, and a full set of simulation results in the repository. Results are generated from three instances of the
ABMs: a) a small variant of the simple ABM with a world size of M = 33 × 33 cells (the default world size in NetLogo), b)
a large variant of the simple ABM with M = 99 × 99 cells, and c) the enhanced ABM with M = 99 × 99 cells. These envi-
ronment sizes fall within research findings on the numbers of news outlets [98] in North America. For each of the three
ABM instances, we set up two experiments: Case I and Case II, with a difference in initialization values for E (zero for I,
nonzero for II). These cases along with the full lists of initialization and configuration parameters are included in the Github
repository [69].

Figs 3 and 4 show two examples of matching and non-matching model outcomes, respectively, as variations over 200
ticks, for the SEIRS model using 1000 runs of the simple ABM (small variant). In the matching case, the means of the
ABM-runs closely follow the outcomes of the EBM (equivalence measures for all six models are in Appendix IV). Even
though the ABM was initialized in the same manner at every run, the deviations of models outcomes show that infodemic
dynamics are sensitive to small individual variations happening at local agent level (caused by the probabilistic condi-
tions), whereas the EBM applies the same probabilities of state transitions at group level, i.e., mean.

Table 2 shows cumulative results (means and standard deviations) for parameter variations: 𝛽, 𝛾, 𝜎, 𝜉 ∈ [0.1;1] with a
step of 0.1 over 2000 ticks, resulting in 10 experiments for SI, 100 SIS and SIR each, 1000 SIRS and SEIR each, 10000
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Fig 3. Example of matching outcomes for the SEIRS model, ABM (left) vs. EBM (right), 𝛽 = 0.2, 𝛾 = 0.03, 𝜎 = 0.155, 𝜉 = 0.001 (means and
deviations for 1000 runs of the ABM).

https://doi.org/10.1371/journal.pone.0338614.g003

Fig 4. Example of non-matching outcomes for the SEIRS model, ABM (left) vs. EBM (right), 𝛽 = 0.9, 𝛾 = 0.2, 𝜎 = 0.9, 𝜉 = 0.9 (means and
deviations for 1000 runs of the ABM).

https://doi.org/10.1371/journal.pone.0338614.g004

SEIRS. Results are consistent for model size in the simple ABM case. Some models fare better (e.g., SIR) than others
(e.g., SIS) on average, but even so, none of the EBMs reproduce exactly the ABM response across the entire parameter
range. The enhanced ABM shows similar results, except for SIR, which is considerably less well matched.

Fig 5 shows the intermodel equivalence outcomes NRMSE and 𝜌 for models SIS and SI, obtained using parameter
variations 𝛽, 𝛾 ∈ [0.1;1] with a step of 0.05 over 10 ABM runs each and 2000 ticks. The results for S and I are similar due
to the mirror-effect in these two outcomes, which is expected. While there are parameter combinations and intervals for
which results match, this is not consistent over their entire range. The heatmaps for the SIS model show combinations for
which the ABM and the EBM are profoundly distinct in dynamics: an infodemic with high infection rate 𝛽 and mid-range
recovery rate 𝛾 will cause the ABM and EBM models to behave differently. The addition of the online social media network
in the enhanced ABM visibly shifts the matching/non-matching coverages.

Fig 6 shows the effect of homophily (conditional infection) on the enhanced ABM vs. simple ABM outcomes for groups
of different sizes NG1 = 80%, NG2 = 20% (total N = 1350 agents), over 200 ticks and 1000 runs (means and deviations).
While the exposed outcome seems similar enough, the others (susceptible, infected, recovered) show considerable
change in infodemic dynamics. Group sizes do not show an effect (see Appendix V), but this observation is enough to
raise questions regarding the many social group dynamics of the real world.
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Table 2. Cumulative results for intermodel equivalence across parameter variations: 𝛽, 𝛾, 𝜎, 𝜉 ∈ [0.1;1] with a step of 0.1, resulting in 10 experi-
ments for SI, 100 SIS and SIR, 1000 SIRS and SEIR, 10000 SEIRS. Case II configuration. Notations: NRMSE normalized root mean of square error, 𝜌
Pearson’s correlation coefficient, SD standard deviation, ABM agent-based model, EBM equation-based model, S susceptible, E exposed, I infected, R
recovered.

Model NRMSE 𝜌
S E I R S E I R

Simple ABM (small variant) vs. EBM (N= 150 agents); mean (SD)
SI 0.03 (0.01) - 0.03 (0.01) - 0.74 (0.16) - 0.74 (0.16) -
SIS 0.18 (0.24) - 0.18 (0.24) - 0.21 (0.75) - 0.21 (0.75) -
SIR 0.25 (0.18) - 0.01 (0.01) 0.25 (0.18) 0.68 (0.36) - 0.84 (0.10) 0.90 (0.07)
SIRS 0.19 (0.24) - 0.12 (0.18) 0.07 (0.09) 0.30 (0.67) - 0.45 (0.63) 0.32 (0.50)
SEIR 0.25 (0.15) 0.01 (0.00) 0.01 (0.00) 0.25 (0.15) 0.75 (0.35) 0.83 (0.12) 0.91 (0.06) 0.94 (0.04)
SEIRS 0.21 (0.26) 0.06 (0.08) 0.09 (0.14) 0.06 (0.08) 0.47 (0.61) 0.65 (0.42) 0.59 (0.56) 0.42 (0.47)
Simple ABM (large variant) vs. EBM (N= 1350 agents); mean (SD)
SI 0.04 (0.01) - 0.04 (0.01) - 0.70 (0.05) - 0.70 (0.05) -
SIS 0.18 (0.24) - 0.18 (0.24) - 0.14 (0.79) - 0.14 (0.79) -
SIR 0.30 (0.20) - 0.01 (0.01) 0.30 (0.20) 0.53 (0.39) - 0.82 (0.09) 0.89 (0.07)
SIRS 0.19 (0.24) - 0.12 (0.18) 0.07 (0.09) 0.24 (0.73) - 0.39 (0.69) 0.28 (0.58)
SEIR 0.31 (0.17) 0.01 (0.00) 0.01 (0.01) 0.31 (0.17) 0.58 (0.40) 0.81 (0.11) 0.90 (0.06) 0.93 (0.04)
SEIRS 0.22 (0.27) 0.06 (0.09) 0.10 (0.15) 0.06 (0.09) 0.41 (0.68) 0.65 (0.45) 0.55 (0.62) 0.39 (0.54)
Enhanced ABM vs. EBM (N= 1350 agents); mean (SD)
SI 0.03 (0.01) - 0.03 (0.01) - 0.75 (0.13) - 0.75 (0.13) -
SIS 0.11 (0.14) - 0.11 (0.14) - 0.35 (0.55) - 0.35 (0.55) -
SIR 0.20 (0.15) - 0.14 (0.23) 0.26 (0.18) 0.32 (0.29) - 0.36 (0.61) 0.62 (0.29)
SIRS 0.12 (0.16) - 0.09 (0.12) 0.06 (0.07) 0.37 (0.51) - 0.46 (0.48) 0.36 (0.43)
SEIR 0.19 (0.14) 0.01 (0.00) 0.17 (0.27) 0.28 (0.21) 0.55 (0.24) 0.81 (0.11) 0.38 (0.69) 0.69 (0.31)
SEIRS 0.14 (0.18) 0.06 (0.08) 0.11 (0.15) 0.05 (0.06) 0.48 (0.49) 0.64 (0.38) 0.54 (0.50) 0.43 (0.44)

https://doi.org/10.1371/journal.pone.0338614.t002

Fitting to real world data: Results

First, we applied the fitting procedure to the enhanced ABM. After 700 iterations, the best result has NRMSE|SABM,SRW
=

0.055 and 𝜌|SABM,SRW
= 0.872. The model parameter are: 𝛽 = 0.633, 𝛾 = 0.073, IR = 0.41, PM = 10.35, TF = 19, LSM = 28,

LIM = 4, DS
P = 23, DI

P = 25, LSP = 96, LIP = 22. Second, we applied the fitting procedure to the EBM. After 700 iterations, the
best result has NRMSE|SEBM,SRW

= 0.086 and 𝜌|SEBM,SRW
= 0.714. The model parameter are: 𝛽 = 338 ⋅ 10−6, 𝛾 = 672 ⋅

10−6, TF = 30. Fig 7 shows the results of these two fitting procedures against the real world data. While the EBM outputs
seem to follow an overall trend of decrease or increase, they do not capture the dynamics of people changing their opin-
ions over time. In this case the enhanced ABM manages to show how the proportions of the population invert their ratio at
weeks 18-22. This period corresponds to October 2020 when Romania faced a considerable increase in cases.

Further, we perform a comparative test with the parameters resulting from the enhanced ABM fitting procedure (where
applicable). Fig 8 shows the responses of the three models (enhanced and simple ABM, EBM) against real world data.
Table 3 presents the two outcomes (𝜌, NRMSE), with the best fit for the enhanced ABM, which shows that even when the
infection and recovery rates are determined to match the dynamics of real world data, the EBM response does not man-
age to illustrate these transient fluctuations. The simple ABM response comes closer, but the fit is still poor, highlighting
the importance of the online communication network as a misinformation facilitator.

Discussion

In this study we investigated EBMs and ABMs for the spread of mis- and disinformation. For this, we designed two mod-
els: a) a simple ABM as a direct translation of SEIRS-type EBMs’ underlining logic, and b) an enhanced ABM to reflect
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Fig 5. Intermodel equivalence outcomes for the SIS and SI models (result exemplification), where NRMSE is the normalized root mean of
square error, 𝜌 is Pearson’s correlation coefficient, 𝛽 is the infection rate, and 𝛾 is the recovery rate. Case I configuration.

https://doi.org/10.1371/journal.pone.0338614.g005
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Fig 6. Effect of homophily on the ABM model outcomes with NG1 = 80%, NG2 = 20% (total N= 1350 agents): simple model large variant (left)
and enhanced model (right) for 1000 runs (means and deviation).

https://doi.org/10.1371/journal.pone.0338614.g006

Fig 7. Results of the SIS model fitting against the real world data for the enhanced ABM (𝛽 = 0.633, 𝛾 = 0.073) averaged over 100 runs
(variance 5498.17) and for the EBM (𝛽 = 338 ⋅ 10−6, 𝛾 = 672 ⋅ 10−6).

https://doi.org/10.1371/journal.pone.0338614.g007

communication and online media networks, as well as homophily. Then, we performed an intermodel equivalence anal-
ysis. Results show that EBMs and ABMs display both matching and non-matching outcomes, depending on parame-
ter ranges. Our hypothesis that microscopic models (e.g., ABMs) are necessary to capture the elements of the human
psycho-social context is confirmed.

ABM and EBM discrepancies

The critical difference between these types of models is that EBMs assume individual homogeneity, whereas the ABM
structure allows for more complex reasoning, such as homophily, multiple pieces/types of information, believing views
opposite their own group, etc. While there are attempts to rework EBMs for various epidemics [51,99], in some cases
combining epidemics and infodemics in one state machine [100], these models have the same issue: losing individuality.

The main reason for the mismatch of these types of models is that the effects observed at population level (e.g., infec-
tion rate) are not observed at individual level (e.g., probability of infection) because humans, as psycho-social networks,
behave like a complex system in which the infodemic is an emergent process, and to paraphrase Kevin Kelly [1], even
made of the same building blocks, we would not find the beehive in the bee. The top-down approach of equation-based
modeling transforms a population into one black-box mass, whereas the bottom-up design of complex systems allows for
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Fig 8. Enhanced ABM outputs fitted against real world data, compared with the simple ABM and the EBM outputs obtained using the same
parameters (where applicable). 𝛽 = 0.633, 𝛾 = 0.073. Both ABM outputs are averaged over 100 runs and have a variance of 5498.17 for the
enhanced and 1577.25 for the simple versions.

https://doi.org/10.1371/journal.pone.0338614.g008

Table 3. Outcome measures (Pearson correlation coefficient 𝜌 and normalized root mean of squared error NRMSE) comparing the real-world
data with the outputs of the enhanced ABM, simple ABM and EBM, simulated with the parameters 𝛽 = 0.633, 𝛾 = 0.073, resulted from the
enhanced ABM fitting procedure. Notations: ABM agent-based model, EBM equation-based model.

ABM Enhanced ABM Simple EBM
𝜌 0.872 0.391 -0.067
NRMSE 0.055 0.103 0.418

https://doi.org/10.1371/journal.pone.0338614.t003

these diffusion processes to emerge naturally, from interactions between individuals. Strong emergence is the “magic”
that can explain multi-layered human interactions at large scale [101]. This is why, when the conditions allow it, the ABM
approach would be preferable to analyze, for instance, the effects of individual vs. mass-level interventions of information
manipulation (e.g., propaganda).

The SEIRS-type EBMs we analyzed here are not necessarily entirely wrong, but they are based on assumptions that
do not consider the whole nature of information diffusion. Epidemics driven by biological viruses assume some level of
physical contact, whereas information spreads through entirely different media and mechanics. Epidemic research has
modified these basic models to better represent various diseases, and the same should happen for infodemics. As they
are now, the SEIRS EBM models are missing the communication and online media networks, as well as psycho-social
attachments and beliefs, meaning that each person would have different infection rates based on information coming from
different sources.

Implications of the results

So, then, what? Models cannot be perfect imitations of the real world [102], but their level of wrongness matters when
humans are involved. Infodemic and epidemic models are useful for testing in a safe environment (simulation) various
interventions before deployment or adoption, and it is critical that the model predictions are as accurate as possible.

Concerning the corrective interventions on mis- and disinformation, EBMs do not currently offer ways to simulate or
evaluate these mechanisms, as they only show the outcomes of a population (or subset). Efficiency estimations of local
interventions require ABMs. Often, interventions to resist misinformation must overcome various cognitive and socio-
affective barriers. The most common types of correction are individual. Fact-based corrections directly address inaccu-
racies and provide accurate information [103]. Broader protection against different types of misleading tactics is offered
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by addressing the logical fallacies common in disinformation [104] or by challenging the plausibility of the misinformation
or the credibility of its source. Multiple approaches can be combined into a single correction [105]; however they all have
to be applied locally. In fact, effective regulatory actions must be implemented at individual level. Even though some cor-
rections can propagate through specific social groups, there is always an element of internally-generated intent if coer-
cive action at the population level is to be avoided. This is what in systems science is known as decentralized control, as
opposed to centralized, in which an authority body applies interventions at societal level.

As it currently stands, EBMs can still be useful. Because they provide mean trends within a population, EBMs can
supplement predictive ABM simulations and act as baselines for identifying unusual, unexpected, or outlier behaviors.
However, we suggest that EBMs should be revised when it comes to misinformation diffusion, so that the parameters of
the wide-scale infodemic would reflect the emergence from local behaviors. As the case study on vaccine acceptance
shows, the enhanced ABM fits the real world data better than the simple version. This suggests that adding elements to a
model can be helpful and sometimes even necessary to correctly interpret the behavior of the modeled system, especially
when it is generated from non-trivial interactions, such as information diffusion in an infodemic. Future studies should
consider the limitations and advantages of both ABMs and EBMs, and keep in mind that their outcomes are not always
equivalent.

Effect of the number of parameters

The enhanced ABM includes a larger number of parameters compared to the EBM, due to the increase in structural com-
plexity required to simulate individual-level mechanisms, which is absent when a system is studied in mean-field. Param-
eters such as energy dynamics, group membership, and environmental information flows represent psycho-social and
communication-related processes non-modelable in equation-based frameworks. To guarantee the same parameter
space would mean to lose adherence to real-world dynamics; thus, the increased dimensionality is not a modeling conve-
nience but a representational necessity.

Moreover, we believe that the superior performance of the ABM in fitting real-world data does not merely arise from
parameter abundance, but from a capacity to replicate emergent dynamics enabled by its structure. For instance, the
enhanced ABM reproduces non-monotonic behaviors observed in vaccine acceptance data, including an inversion in pub-
lic sentiment corresponding to a real-world event. These nonlinear transitions are a product of local agent interactions
which can not be encoded in the EBM’s aggregate-level formulation while maintaining a correspondence with the modeled
system. In this sense, the ABM does not merely fit better—it explains better.

Also, while in classical fitting problems the fitness typically increases with the number of parameters used to tune the
model’s behavior, this relationship does not always hold in causal models in general, and in ABMs specifically. If the
underlying structure is not well designed—meaning it fails to adequately represent the cause-effect relationships within
the system in some stylized functional form—then adding new parameters does not necessarily improve the fit; in fact, it
can even reduce it.

Finally, the fitting to empirical data was conducted via a multi-objective optimization procedure that penalizes poor gen-
eralization through metrics such as 𝜌 and NRMSE. With regard to intermodel equivalence assessment, the combination
of these metrics provide a summary perspective on outcome similarity. We chose them for their capacity to describe the
timewise longitudinal relationships between discrete signals through single-scalar quantities that are easily interpretable
through interoperable terminology across fields of science (modeling, statistics, sociology, engineering, etc.). These met-
rics do present limitations. Pearson’s correlation coefficient 𝜌 is famously sensitive to the smallest differences, which we
mitigate with the rougher NRMSE. Nonlinear correlations will not be captured by 𝜌 and NRMSE—but because the two
model types would represent the same phenomenon/process, we should not find noncausal nonlinearities between their
outcomes, which reinforces our conclusion that infodemic EBMs must be redefined.
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Conclusions and future developments

In this study, we evaluated the intermodel equivalence for infodemics. We designed agent-based models (ABMs) and
compared their outcomes with classical equation-based models (EBMs) inspired by viral epidemics. We found low equiv-
alence over the entire key parameter range, although the outcomes were similar for specific values. We also found that
ABMs can capture the dynamics of real world data better than EBMs. We surmise that ABMs and EBMs serve differ-
ent purposes with widely different structures (one is microscopic, the other macroscopic) and the decision of choosing
one over the other should be informed, with awareness to their limitations and the fact that they are not interchangeable.
Moreover, EBMs for infodemics should be revised from their counterparts modeling biological viral spreads.

Future developments include building an interaction topology between agents on a network and subsequently assess-
ing how the structure of interactions (i.e., the features of the network) and its dynamics (creating or destroying links
between agents) affect the results of the equation- and agent-based diffusion models. Moreover, we will implement and
investigate time- or location-variant parameters (e.g., variable infection rate), introduce vital dynamics to both types of
models and mitigation mechanisms, as well as different pieces of mis- and disinformation spreading concurrently through
the agent population.
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