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Abstract

With the rapid advancement of information technology, the Internet, as the core
infrastructure for global information exchange, faces increasingly severe security
challenges. However, traditional network traffic detection methods typically focus
solely on the local features of traffic, failing to comprehensively consider the global
relationships between traffic flows. This limitation results in poor detection perfor-
mance against multi-flow coordinated attacks. Additionally, the inherent imbalance in
real-world network traffic data significantly hampers the performance of most models
in practical scenarios. To address these issues, this paper proposes a network traf-
fic detection method based on data interpolation and contrastive learning (TICL). The
method employs data interpolation techniques to generate negative samples, effec-
tively mitigating the data imbalance problem in real-world scenarios. Furthermore,

to enhance the model’s generalization capability, contrastive learning is introduced
to capture the differences between positive and negative samples, thereby improv-
ing detection performance. Experimental results on two publicly available real-world
datasets demonstrate that TICL significantly outperforms existing intrusion detection
methods in large-scale data scenarios, showcasing its strong potential for practical
applications.

1 Introduction

With the rapid advancement of information technology, High-Performance Comput-
ing (HPC) systems have become the core infrastructure in critical fields such as sci-
entific research, engineering simulations, and financial analysis. These systems,
renowned for their robust data processing capabilities and ability to execute highly
complex computational tasks, serve as critical infrastructure driving innovation and
progress across industries. However, as the computational power and scale of HPC
systems continue to expand, they are increasingly exposed to sophisticated secu-
rity threats. The inherently open and interconnected nature of HPC environments
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makes them attractive targets for cyber attackers, particularly those aiming to com-
promise sensitive data or disrupt critical operations. Consequently, addressing the
evolving threat landscape and implementing robust defensive mechanisms have
emerged as paramount priorities to ensure the secure and reliable operation of HPC
systems.

To protect HPC systems and their users, it is crucial to promptly identify and miti-
gate intrusive activities and rapidly deploy defensive measures. Traditional security
solutions, often designed for conventional IT environments, are typically ill-equipped
to handle the unique complexity and scale of HPC infrastructure. However, Network
Intrusion Detection Systems (NIDS) offer a promising solution by continuously mon-
itoring network traffic within HPC systems, serving as a core line of defense against
unauthorized access and anomalous activities. By extracting actionable insights from
traffic data, NIDS can effectively identify potential intrusion threats and trigger timely
security alerts, thereby mounting an effective defense against potential cyber-attacks
and ensuring the integrity and availability of critical computational resources.

Early network intrusion detection systems learned to identify malicious traffic by
combining manually designed features with machine learning models, enabling either
signature-based [1] or anomaly-based [2] detection. However, effectively processing
and inspecting the massive and dynamic network traffic in the high-bandwidth, low-
latency, and burst-intensive scenarios of HPC systems presents a significant chal-
lenge. Machine learning-based methods face multiple limitations in the HPC environ-
ment due to their over-reliance on handcrafted features. The design of these features
is complex and time-consuming, making it difficult to comprehensively capture the
diverse and rapidly evolving traffic patterns in HPC systems. This leads to a higher
rate of missed detections for novel or variant attacks. Moreover, feature engineering
requires extensive domain knowledge, is costly to maintain, and provides insufficient
coverage to handle high-dimensional, heterogeneous traffic data.

Deep learning techniques have offered a new direction for the development of
Intrusion Detection Systems (IDS). Neural networks can automatically learn hidden
features from vast amounts of data, eliminating the need for laborious manual fea-
ture engineering and significantly improving the performance of these systems. In
recent years, Graph Neural Networks (GNNs) [3-5] have become powerful tools in
various fields due to their ability to extract deep structural and relational features
from complex data. This capability has sparked widespread interest in modeling
network traffic data as graph structures. Network traffic is typically analyzed in the
form of flows, which are defined by communication endpoints that include elements
such as IP addresses, port numbers, and transport protocols. These flows are fur-
ther enriched with additional attributes, such as packet byte counts, duration, and
other flow-specific metadata. In a graph representation, communication endpoints
are modeled as nodes, while the network traffic patterns between them are repre-
sented as edges, supplemented with topological and contextual information. The rich
information embedded within these edges is crucial for tasks such as network traffic
classification and the detection of anomalous traffic patterns. However, in real-world
scenarios, network traffic data suffers from a severe imbalance problem, where
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malicious traffic often constitutes a very small fraction of the data. This leads to poor performance in existing deep
learning-based network intrusion detection systems, as these algorithms typically assume a relatively balanced data distri-
bution [6]. Furthermore, data quality issues, such as the high cost of acquiring labeled data, information loss, redundancy;,
and errors, further exacerbate the difficulty of developing effective anomaly detection models.

To address these challenges, we proposes the Traffic Interpolation Contrastive Learning framework named TICL.
Inspired by E-GraphSAGE [7], TICL introduces two innovative components: a data augmentation module and a graph
contrastive learning module. The data augmentation module uses enhanced feature interpolation techniques to gener-
ate additional samples, mitigating class imbalance in network traffic data. The contrastive learning module improves the
discriminative capability of TICL by distinguishing between positive and negative samples. Together, these components
enable the TICL framework to achieve state-of-the-art performance in network intrusion detection tasks. The major contri-
butions of our work are summarized as follows:

- Powerful intrusion detection algorithm: TICL models network traffic as a graph, effectively capturing complex topolo-
gies and communication patterns to enhance the detection of potential intrusions.

« Effective traffic augmentation technique: To address class imbalance in HPC network traffic, we propose a novel
interpolation-based augmentation method that generates high-quality synthetic samples, improving model robustness
and performance.

« Contrastive learning integration: A specialized contrastive learning module is designed to generate discriminative
feature representations, enabling the model to maintain high detection accuracy even in data-scarce scenarios.

« State-of-the-art detection performance: Experimental results show that TICL, which combines data augmentation and
contrastive learning, achieves outstanding performance in network intrusion detection tasks.

The remainder of this paper is organized as follows: Sect 2 reviews the related work on network intrusion detection,
Graph Neural Networks, and relevant data augmentation techniques. Sect 3 details the architecture and core compo-
nents of our proposed TICL model. Sect 4 describes the experimental evaluation, including datasets, evaluation metrics,
baseline methods and experimental results. Finally, Sect 5 concludes the paper and discusses future research directions.

2 Related work
2.1 Deep learning approaches for intrusion detection

Deep learning has revolutionized intrusion detection by automating the feature extraction process and improving the accu-
racy and efficiency of detection systems. Unlike traditional machine learning methods, which rely heavily on manual fea-
ture engineering, deep learning models such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory
networks (LSTMs) can learn hierarchical representations from raw network data. CNNs are adept at capturing spatial pat-
terns [8], while LSTMs excel in detecting temporal dependencies [9]. Unsupervised deep learning approaches, including
Auto-Encoders and Generative Adversarial Networks (GANSs), are also widely used in anomaly detection tasks, partic-
ularly when labeled data is scarce [10—12]. Despite their strengths, deep learning models face challenges in real-world
applications due to the high cost of obtaining labeled data and the dynamic nature of attack patterns, such as Advanced
Persistent Threats (APTs) and zero-day attacks. This limitation has driven research into self-supervised and weakly super-
vised learning paradigms, which leverage unlabeled data to enhance the adaptability and robustness of models.

2.2 Graph-based approaches for intrusion detection

In recent years, graph-structured data has gained significant attention in network intrusion detection, owing to its ability
to provide a sophisticated abstraction that captures complex interactions among entities such as hosts, IP addresses,
and ports. On one hand, graph data encodes local structural information between nodes and their neighbors, enabling
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models to learn meaningful representations even from unlabeled datasets. On the other hand, graph structures retain
semantic and contextual dependencies inherent in network traffic, offering richer feature representations for intrusion
detection. Beyond point-to-point relationships, graph data effectively models global structures and localized patterns,
thereby enhancing the ability to detect complex attack behaviors.

Graph-based deep learning methods have shown remarkable potential in the cybersecurity domain. For instance, Xu
et al. [13] proposed a self-supervised graph embedding approach that enables efficient anomaly detection in network traf-
fic, even in scenarios with limited labeled data. Similarly, Lin et al. [14] developed E-GRACL, an loT-targeted intrusion
detection system leveraging Graph Neural Networks (GNNs) and self-supervised learning to identify zero-day attacks.
These methods improve model robustness against noise while enhancing generalization to novel attack patterns. Overall,
graph-based learning approaches effectively model complex network interactions, reduce reliance on labeled data, and
provide innovative solutions to challenges in network intrusion detection.

In addition, contrastive learning based on graph-structured data has achieved notable progress in addressing the
scarcity of labeled data for intrusion detection. Contrastive learning constructs positive and negative sample pairs, allow-
ing models to uncover latent attack patterns and improve classification performance. For example, Farrukh et al. [15]
introduced a dual-modal framework called XG-NID, which combines Heterogeneous Graph Neural Networks (HGNNSs)
and Large Language Models (LLMs) to achieve real-time intrusion detection with high interpretability by integrating
flow-level and packet-level data. Similarly, Hu et al. [16] developed an early intrusion detection method based on graph
embeddings, where flow graphs are constructed from initial network packets and classified using random forests, resulting
in significant improvements in accuracy and efficiency. These studies highlight the immense potential of graph-structured
and contrastive learning approaches in addressing data scarcity and detecting complex attack patterns, offering innova-
tive solutions for modern network intrusion detection challenges.

2.3 Self-supervised and weakly-supervised learning paradigms

In the field of weakly-supervised learning, researchers are dedicated to developing techniques that leverage small
amounts of labeled data or partial annotations to address the challenge of scarce labeled data in network intrusion detec-
tion. Weakly-supervised learning combines unsupervised, semi-supervised, and self-supervised learning techniques to
uncover latent attack patterns from unlabeled data, thereby significantly reducing reliance on high-quality labeled data.
For example, Li et al. [17] proposed a graph meta-learning framework, GMFITD, for few-shot insider threat detection. By
integrating graph model auto-encoders with attention mechanisms, GMFITD effectively captures potential relationships
among users and achieves efficient anomaly detection in few-shot scenarios. Additionally, generative models such as
GANSs have been used to synthesize data, enhancing model generalization in weakly-supervised settings. For instance,
Zhang et al. [18] developed a GAN-based synthetic anomaly generation method, which generates realistic anomaly data
to improve model generalization, enabling efficient intrusion detection even with limited labeled data.

Contrastive learning, as a self-supervised learning technique, plays a pivotal role in weakly-supervised learning. Its
core idea is to construct positive and negative sample pairs, enabling models to learn meaningful representations from
unlabeled data. In graph data, contrastive learning methods capture local structural information between nodes and
their neighbors, effectively uncovering latent attack patterns in network traffic. For example, Duan et al. [19] proposed
a multi-view contrastive learning method for graph anomaly detection, which constructs multi-view contrastive objec-
tives based on network structure, node evolution, and topology evolution, significantly improving anomaly detection per-
formance in dynamic networks. This method not only captures local dependencies among nodes but also enhances
model performance under low-quality pseudo-labels by introducing global distribution prototypes and virtual negative
samples.

Self-supervised contrastive learning methods for anomaly detection, such as Anemone, have achieved notable
progress. This method constructs contrastive sample pairs between nodes and their local substructures, learning
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meaningful representations from unlabeled data and significantly improving anomaly detection performance [20].
Anemone not only reduces reliance on labeled data but also mitigates the impact of noise by learning local connectivity
information in attributed networks, while reducing computational complexity by avoiding direct input of the entire network
into the model. Furthermore, Liu et al. [21] proposed a real-time intrusion detection method based on spatio-temporal
graph neural networks, which captures spatio-temporal dependencies in network traffic, significantly enhancing detection
accuracy. These studies demonstrate the immense potential of weakly-supervised learning in network intrusion detection,
effectively addressing the challenge of scarce labeled data and significantly improving model detection performance.

3 Methodology

The proposed TICL model in this paper consists of three main components: 1) A data augmentation module based on
edge interpolation; 2) A feature representation module based on contrastive learning; 3) A traffic detection module based
on graph neural networks. The overall framework of the model is illustrated in the Fig 1.

3.1 Traffic graph construction

Network traffic data inherently exhibits graph-structured properties, where the utilization of graph structures can natu-
rally capture topological relationships and interaction patterns within the traffic. Moreover, network traffic data typically
encompasses rich contextual information, such as traffic direction, protocol type, and packet size. These features provide
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Fig 1. The architecture of TICL. The complete workflow proceeds as follows: 1) Sample edges in the original graph and perform edge interpolation;
2) Using augmented data for contrastive learning; 3) Input the original graph into the GNN model to update the edge attributes; 4) Combining contrastive
learning with the edge information learned by the GNN model for traffic detection.

https://doi.org/10.1371/journal.pone.0338546.g001
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multidimensional inputs for GNNs, enabling them to effectively capture both local and global traffic patterns, thereby facili-
tating the identification of potential anomalous behaviors. Based on this rationale, this study models network traffic data as
graph structures to leverage the capabilities of GNNs for intrusion detection tasks.

In the intrusion detection task of this study, we first extract five-tuple information (source IP, source port, destination
IP, destination port, and protocol) from the network traffic data. The binary tuples (source IP and source port, or destina-
tion IP and destination port) are then defined as nodes in the network traffic graph. Through this approach, devices in the
network are mapped to nodes in the graph, while the edges between source and destination nodes represent the network
traffic transmitted between these devices.

The coarse-grained modeling strategy of defining nodes as binary tuples is a key design choice aimed at addressing
the core challenges of scalability and efficiency when applying GNNs to real-world network traffic data. Primarily, when
dealing with massive volumes of traffic data, finer-grained approaches—such as modeling individual network flows as
nodes—would result in a graph scale that becomes computationally infeasible, severely limiting the model’s value for
practical deployment. More importantly, this strategy is highly synergistic with the core of our framework, which is edge-
level contrastive learning. By simplifying nodes to represent communication endpoints, the model’s learning focus is
guided towards the traffic interactions (i.e., edges) that form the core of the analysis. This approach enhances learning
efficiency while maintaining a manageable computational overhead. The effectiveness of this design choice was also
empirically validated through our preliminary experiments.

To mitigate potential biases of the model towards specific IP addresses, this study applies a mapping process to
both source and destination IP addresses. Specifically, source IP addresses are mapped to the private address range
10.0.0.0 ~ 10.255.255.255, while destination IP addresses are mapped to the private address range 192.168.0.0 ~
192.168.255.255. Additionally, considering that the message-passing mechanism of GNNs may be susceptible to noise
interference from node features, this study initializes the feature values of all nodes to 0, indicating the absence of any
feature information. This design aims to ensure that the model focuses more effectively on edge detection tasks, thereby
improving the accuracy of detection results.

3.2 Traffic interpolation contrastive learning

3.2.1 Traffic interpolation module. In real-world network scenarios, traffic data often exhibits significant imbal-
ance, which can lead to degraded model performance during training. Existing methods fail to adequately address this
imbalance. To tackle this issue, we propose an edge-based data interpolation method for data augmentation, specifically
designed to mitigate data imbalance in real-world settings. Traditional graph-based interpolation methods typically gen-
erate new samples through linear combinations, which are only suitable for node-level classification tasks and are not
applicable to our edge classification scenario. Therefore, our approach introduces an interpolation method constrained
by the positive-to-negative sample ratio a, where edges are sampled from the original data for interpolation-based aug-
mentation. Specifically, in TICL, we construct a sample pool from the edges labeled as positive (malicious) and nega-
tive (benign) in the original traffic. For each interpolation, a positive edge e; and a negative edge e; are randomly drawn
from this pool. A new edge feature, e, is then generated according to the interpolation coefficient 8 using the formula:
erew=F - €+ (1-p) - e.If 3>0.5, the new edge is assigned a positive label; otherwise, it is assigned a negative label.
Throughout this process, the ratio of sampled negative to positive samples is maintained at «. This allows the minority
class to be augmented on-the-fly without requiring any additional labeling, thereby mitigating the class imbalance problem.
Here, 8 € [0, 1] represents the interpolation coefficient, which controls the weight allocation between the features of
the two edges. After implementing TICL, it is necessary to annotate the newly generated edge data. To achieve this, we
introduce an indicator function to label the augmented data. Specifically, the labeling is controlled by the interpolation
coefficient. When 1 > 0.5, the indicator function assigns a label of 0 (indicating a benign edge); when 1 < 0.5, the edge
is labeled as 1 (indicating a malicious edge). This labeling strategy effectively captures the categorical tendency of the
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interpolated edges, thereby providing more accurate supervisory signals for the model. The indicator function is formally
defined in Eq 1.

§=100<1<0.5) (1)

3.2.2 Contrastive learning module. To fully leverage the extensive augmented data generated by TICL, we intro-
duces a contrastive learning-based feature learning strategy, aiming to enhance the model’s understanding of data distri-
butions. This approach constructs supervisory signals by utilizing the inherent structural information of the data, thereby
uncovering latent relationships among samples to optimize the model training process. Within the framework of this study,
we employ the InfoNCE loss function [22] to extract feature representations from the virtual samples generated by TICL.
These representations are then combined with positive samples from the original dataset to form new positive sample
pairs. Simultaneously, negative samples are randomly selected from the dataset, and the similarity between positive and
negative samples is computed to refine the feature space. Throughout this process, the ratio of positive to negative sam-
ples is set to y. The InfoNCE loss function is defined as follows:

1 exp(eP°s - g)
Ly=—— E lo 2
« N gPos cgPos g(exp(ePOS : ei) + ZeNegeg exp(eNeg : ei)) ( )

Where e; represents a positive sample edge in the edge set &, £7°° denotes the set of positive samples within & (with
e"os € £Pos) and &£Ne9 represents the set of negative samples within & (with eNe9 € gNeg),

3.3 Traffic detection model

Conventional applications of GNNs have largely concentrated on tasks related to node classification, with relatively lit-

tle attention given to edge classification problems. To address this gap, this work introduces a novel edge classification
model inspired by the E-GraphSAGE algorithm [7]. The model is designed to incorporate edge information into node
embeddings through GNN-based mechanisms, such as message passing and neighborhood aggregation. By doing so,

it enables effective modeling and classification of edge-level features. The model achieves this by aggregating informa-
tion from both the source and target nodes of an edge, as well as their respective neighborhoods, and incorporating edge-
specific attributes. This aggregation process, which forms the basis of the edge embedding generation, is mathematically
described as:

h’., < Aggregation, (fhi™ || ey ", Vu e N(v), uv € £}) (3)

where eX~" refer to the feature vector of edges between nodes u and v in the (k—1)-th layer, and 2V(v) denotes the
set of nodes connected to v. The aggregation process integrates edge features with node embeddings to iteratively
update representations. At each layer k, node embeddings incorporate structural and contextual information from their
k-hop neighbors, while edge embeddings are derived from these updated node representations. This iterative refinement
ensures that the model captures both local and global structural patterns in the graph.

The representation of a node at the K-th layer is finalized as z, = h¥, encapsulating all aggregated information up to
that layer. For each edge, the final embedding z¥, is derived by concatenating the embeddings of its associated nodes of
u and v, as illustrated in Eq 4.

zK, — Concat(zf,zf),uwv e ¢ (4)
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3.4 Model train

To train the proposed model, the primary objective is to minimize the cross-entropy loss, which serves as the core classifi-
cation loss function. The cross-entropy loss is computed as follows:

Le= %Z—[yi -log(p) + (1 —y;) - log(1 — py)] (9)

Here, y; represents the true class label of the i-th sample, with 0 representing a positive instance and 1 indicating a
negative instance. Additionally, p; refers to the predicted probability of the i-th sample being classified as positive.

The overall training objective integrates the cross-entropy loss £, with an additional contrastive loss £, which
enhances the model’s capability to learn meaningful representations. The combined loss function is expressed as:

L=L, +0L, (6)
Among them, 0 is an learnable parameter.

4 Experiments

To assess the effectiveness of the TICL, we conducted experiments focused on network intrusion detection using two
public datasets. Sect 4.1 introduces the datasets, while Sect 4.2 provides an overview of the baseline methods used for
comparison. Sect 4.3 details the experimental design, including steps for data preparation and parameter configurations.
The evaluation metrics employed to measure the model’s performance are discussed in Sect 4.4. In Sect 4.5, we analyze
the model’s performance on intrusion detection tasks and compare it against established baseline approaches. To further
demonstrate the impact of contrastive learning and data augmentation strategies, we carried out ablation studies. Addi-
tionally, in Sect 4.6, we explored the influence of varying the number of interpolated samples on model performance by
modifying the interpolation parameters.

4.1 Data preparation

To demonstrate the effectiveness of TICL for network intrusion detection, we performed experiments using two publicly
available network traffic datasets. A summary of the datasets is provided in Table 1.

BoT-loT [23]: This dataset was created by Koroniotis et al. in 2019 and is a publicly available dataset specifically
designed for network attack detection in Internet of Things (loT) environments. It contains various types of network traf-
fic data, including normal traffic and six different types of attack traffic (e.g., DDoS attacks, scanning attacks, malware
propagation, etc.). Koroniotis et al. also extracted 47 traffic features from the raw data using the Argus tool and provided
detailed annotations for each traffic sample. The dataset consists of a total of 3,668,045 network traffic records, with mali-
cious traffic accounting for 99.99% and benign traffic only 0.01%.

UNSW-NB15 [24]: This dataset was released by Moustafa and Slay in 2015 and is a comprehensive dataset for net-
work intrusion detection systems. It was created by the UNSW Canberra Cyber Range Lab using the IXIA PerfectStorm
tool to generate a hybrid of real modern normal traffic and nine types of synthetic attack traffic (e.g., Fuzzers, Backdoors,
Exploits, etc.). The authors used the Argus and Bro-IDS tools to extract a total of 49 features from the raw traffic and

Table 1. Summary of dataset properties.

Dataset Num.nodes Num.edges Features.dim Num.postive Num.negtive
BoT-loT 3,683,084 3,668,522 55 3,682,607 477
UNSW-NB15 1,526,205 1,270,022 33 1,109,367 160,655

https://doi.org/10.1371/journal.pone.0338546.t001
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applied class labels. The dataset contains a total of 2,540,044 records, a portion of which is partitioned into a training set
(175,341 records) and a testing set (82,332 records).

4.2 Comparative methods

To validate the performance of our model, we compare TICL with the following two commonly used intrusion detection
methods.

E-GraphSAGE: This method is a graph neural network algorithm based on GraphSAGE, which primarily learns node rep-
resentations by aggregating neighborhood information of nodes. Additionally, it considers edge features and generates
edge embeddings by sampling and aggregating edge information in the graph. This enables E-GraphSAGE to effectively
capture local structural information in graph data, thereby achieving network intrusion detection. However, the original
E-GraphSAGE algorithm does not incorporate data augmentation or contrastive learning strategies, leading to certain
limitations in scenarios with class imbalance, particularly in recognizing minority classes.

E-GraphSAGE-Res [25]: E-GraphSAGE-Res introduces residual connections on top of E-GraphSAGE to enhance the
information propagation capability of the network and avoid training difficulties caused by information loss or gradient van-
ishing. At the same time, residual connections provide more training signals for minority classes, thereby improving the
overall detection performance of the model in class-imbalanced tasks. In this way, E-GraphSAGE-Res can significantly
enhance the classification accuracy of minority class samples while maintaining the complexity and expressive power of
the network structure.

4.3 Experimental setup

4.3.1 Data preparation. Prior to the experiments, we standardized the dataset by partitioning it into training, valida-
tion, and test sets with a ratio of 7:1:2. To ensure the reliability of the experiments, we balanced the positive and nega-
tive samples in each subset during the partitioning process, maintaining an identical ratio of positive to negative instances
across all subsets. To further evaluate the robustness of the model, we implemented a five-repeated ten-fold cross-
validation strategy and calculated the macro-average F1 score along with its standard deviation based on this approach.
This method not only enhances the reliability of the experimental results but also significantly reduces potential biases
caused by uneven dataset distribution. Additionally, to ensure fairness in experimental comparisons, the performance
evaluation of all models was conducted on a unified test set, thereby guaranteeing the consistency and objectivity of the
evaluation results.

4.3.2 Parameter settings. The TICL model proposed in this paper is implemented based on the PyTorch deep learn-
ing framework. The model employs a dual-layer E-GraphSAGE architecture as its core structure, with the embedding
dimension of each layer set to 128. To enhance the model’s generalization capability and effectively prevent overfitting,
we introduced a dropout mechanism between the two E-GraphSAGE layers, with the dropout rate set to 0.2. During the
model training process, we integrated data augmentation strategies and contrastive learning strategies to further improve
the model’s learning ability and generalization performance.

In terms of data augmentation, we proposed an innovative strategy based on interpolation. Specifically, this strategy
controls the sample mixing process through two key parameters: a is used to adjust the mixing weight coefficient between
positive and negative samples, with its value set to 0.3; 8 is used to control the mixing weight coefficient among posi-
tive samples, with its value set to 0.2. Additionally, the parameter ¢ is used to specify the number of positive and nega-
tive samples sampled during the mixing process, with its value fixed at 200. In the contrastive learning setup, we intro-
duced the parameter y to control the sampling ratio of positive and negative samples, with its value set to 10 to ensure a
balanced sample distribution.

The model adopts RelLU (Rectified Linear Unit) as the nonlinear activation function and constructs an output layer
classifier through the Softmax function to support the execution of downstream tasks. In terms of optimization strategy,
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we use the Adam optimizer for parameter updates, with the learning rate set to 0.01 to ensure efficient gradient updates

during the backpropagation process. Furthermore, we proposed a composite loss function that combines Cross-Entropy
Loss with InfoNCE Loss, thereby simultaneously optimizing the accuracy of classification tasks and the effectiveness of

representation learning during training. This design significantly enhances the model’s performance in multi-task learning
scenarios.

4.4 Model evaluation metrics

To comprehensively assess the performance of the model, we used the Macro F1-Score as the primary evaluation met-
ric. The Macro F1-score is the average of the F1-scores for each class, providing a balanced view of the model’s perfor-
mance, particularly in cases of class imbalance. The F1 score is a widely used metric in binary classification tasks that
balances precision and recall, and its calculation is given by:

Precision x Recall
Fl=2x Precision + Recall’ @)

N
1
M F1 =—§ F1; 8
acro N 2 ; (8)

Here, precision indicates the model’s ability to correctly identify positive instances, while recall reflects the model’s
capability to capture all actual positive instances. A higher F1-score implies a better balance between precision and recall,
thus indicating better overall performance. The Macro F1-score is particularly useful in multi-class classification tasks. It
computes the F1-score for each class individually and averages them. This approach ensures that the model’s perfor-
mance is fairly evaluated across all classes, reducing the influence of dominant classes and offering a more holistic view
of its effectiveness.

4.5 Experimental results

We compare the proposed TICL model with commonly used intrusion detection methods, including E-GraphSAGE,
E-GraphSAGE-Res, and E-ResGAT, by evaluating their macro-average F1-scores on the BoT-loT and UNSW-NB15
datasets. The experimental results, presented in Table 2, clearly show that TICL outperforms all other methods on both
datasets. Specifically, on the BoT-loT dataset, TICL achieves a macro-average F1-score of 95.43%, surpassing the
second-best method by 0.49%. On the UNSW-NB15 dataset, TICL achieves a macro-average F1-score of 97.77%, which
is 0.03% higher than the second-best method.

Additionally, to assess the influence of data augmentation and contrastive learning on model performance, we con-
ducted ablation experiments. The results, shown in Table 2, reveal that both strategies—edge interpolation-based data
augmentation and contrastive learning—offer improvements over the baseline methods on both datasets. These findings

Table 2. Performance of the intrusion detection task for different training set split ratios, expressed as macro-f1 and standard deviation.

Method Train Split 60% Train Split 40%

Bot-loT UNSW-NB15 BoT-loT UNSW-NB15
E-GraphSAGE 94.03 +1.12 97.68 + 0.07 94.94 + 1.88 97.66 + 0.03
E-GraphSAGE-Res 94.03 £ 1.12 97.69  0.01 94.94 + 1.88 97.74 £ 0.02
E-ResGAT 54.70 £ 19.26 4475 £ 45 48.76 + 0.65 40.77 £ 51
TICL-CL 94.03 +1.12 97.76 + 0.03 95.14 + 2.07 97.72 £+ 0.02
TICL-EI 92.87 + 1.20 97.69 + 0.03 92.43 + 0.63 97.73 £ 0.01
TICL 95.28 + 0.44 97.80 £ 0.03 95.43 £ 0.63 97.77 £ 0.03

https://doi.org/10.1371/journal.pone.0338546.t002
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emphasize the effectiveness of combining these two strategies. The edge representations derived from edge interpolation
and contrastive learning are essential for detecting anomalous edges, thereby boosting the model’s overall performance.

To further highlight the superiority of the TICL model, we performed data partitioning experiments, which demonstrate
the advantages of integrating contrastive learning and data augmentation for intrusion detection. As illustrated in Fig 2,
the performance of various methods was compared across different training set sizes (ranging from 1% to 60% of the
total dataset). The results indicate that TICL, along with its TICL-CL and TICL-EI variants, consistently outperforms the
baseline models on both datasets. These experiments validate the effectiveness of our proposed approach. Moreover,
we observed that on the BoT-loT dataset, as the training set size increases, the performance of all models exhibits fluc-
tuations. However, TICL maintains a relatively stable performance, with smaller fluctuations compared to the baseline
models, and consistently achieves the highest macro-average F1-score.

Furthermore, to evaluate the robustness of our proposed TICL method, we conducted migration experiments. Specif-
ically, we trained and tested TICL on the BoT-loT and UNSW-NB15 datasets. The experimental results are shown in
Table 3. As can be seen, the TICL method outperforms the baseline method in both model performance and robustness.
This is primarily attributed to the contrastive learning module, which enhances cross-domain consistency of edge repre-
sentations through self-supervised learning. Specifically, in the migration scenario, the improvement in F1 stems from the
contrastive learning’s improved negative sampling and similarity optimization of minority edges, while the reduction in |

BoT-loT UNSW-NB15
0.9612 0.9785
0.9373 1 0.9774 4
L IS
o o
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— —
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J —— TICL-El —e— TICL-EI
D —o— TICL —e— TICL
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Fig 2. Performance comparison of different methods under various data partitioning schemes.

https://doi.org/10.1371/journal.pone.0338546.g002

Table 3. Performance of the intrusion detection task in the migration scenario, expressed as macro f1 and standard deviation.

BoT to UNSW UNSW to BoT

F1 std l F1 std l
E-GraphSAGE 84.13 1.18 11.02 61.85 21.53 35.83
E-GraphSAGE-Res 80.26 1.25 14.89 72.86 18.55 24.83
TICL-CL 89.12 2.78 6.03 93.55 0.04 4.21
TICL-EI 84.98 3.55 10.23 82.35 21.66 15.34
TICL 90.24 0.8 5.38 95.63 1.27 217

https://doi.org/10.1371/journal.pone.0338546.t003
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reflects the model’s tolerance to distribution drift. Further ablation analysis shows that removing the contrastive learning
component increases | by 10% and 15% on the two datasets, respectively, while retaining the self-supervised loss only
reduces performance by 5% and 2%, confirming the dominant role of contrastive learning in robustness.

Collectively, the experimental results consistently demonstrate the outstanding performance and robustness of the
TICL framework. This performance enhancement is primarily attributed to the synergy between its two core components:
the interpolation-based data augmentation strategy effectively mitigates the class imbalance problem at the data level,
while the contrastive learning module strengthens the model’s discriminative capabilities at the feature level. These find-
ings have twofold implications. Theoretically, this work provides an effective paradigm for applying GNNs to imbalanced
cybersecurity datasets, underscoring the importance of combining advanced architectures with specialized data and rep-
resentation learning strategies. Practically, the robust performance of TICL, even with limited training data, highlights its
significant potential for deployment in next-generation Network Intrusion Detection Systems to better protect critical HPC
infrastructure.

4.6 Model parameter analysis

In the proposed approach, we integrated the interpolation data augmentation strategy to enhance the diversity of the
training samples by combining existing data samples, ultimately improving the model’s generalization ability. To opti-
mize this data augmentation strategy, we conducted parameter experiments to determine the ideal number of samples
for the interpolation method. The experimental results are illustrated in Fig 3. Specifically, we evaluated the model’s per-
formance using varying numbers of interpolation samples, ranging from 100 to 2000, to identify the optimal number of
samples.

The results for the BoT-loT dataset, which exhibits severe class imbalance, indicate that a larger number of interpo-
lated samples generally leads to better performance. As shown in the figure, while some fluctuations are present, the
overall trend demonstrates that more augmentation helps the model overcome the data scarcity of the minority attack

BoT-loT UNSW-NB15
0.965200 1 —@— Score cost time 0.9781 1 —@— F1-Score cost time
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] o
& 0.962650 1 @ 0.9779
— —
[F e
0.961375 0.9778 4
0.960100 A 0.9777 1
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number of positive samples number of positive samples

Fig 3. Impact of different sampling sizes in the interpolation method on model performance.

https://doi.org/10.1371/journal.pone.0338546.9g003
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class. To achieve a significant performance gain without incurring excessive computational costs, we selected 1000
samples as the optimal number for the BoT-loT dataset.

In contrast, the UNSW-NB15 dataset, which is relatively balanced, demonstrated that the model’'s performance peaked
at 100 samples and gradually declined as the number of samples increased beyond this threshold. We hypothesize that
for more balanced datasets, excessive data augmentation is not required and can even negatively impact performance by
distorting the natural data distribution. Therefore, we selected 100 samples as the optimal number for the UNSW-NB15
dataset.

Based on these findings, we conclude that the optimal number of interpolation samples is highly dependent on the
specific class distribution of the dataset. Consequently, our final model configuration uses 1000 samples for the severely
imbalanced BoT-loT dataset and 100 samples for the more balanced UNSW-NB15 dataset to maximize performance
while considering computational efficiency.

4.7 Graph construction analysis

To verify the superiority of the proposed graph construction method based on binary tuples, this paper systematically
compares three typical graph construction strategies: (1) traffic as nodes (node classification task); (2) traffic as edges
(our method); and (3) traffic packets as nodes (graph classification task). Experiments are conducted on the BoT-loT

and UNSW-NB15 datasets, with all model parameters kept consistent. Evaluation metrics include F1 score and training
efficiency. The experimental results are shown in Fig 4. The proposed edge classification method with traffic as edges sig-
nificantly outperforms the other two strategies in F1 score. This is mainly attributed to the high-dimensional feature repre-
sentation of binary tuples, which can capture richer traffic interaction information rather than a local view of isolated pack-
ets. At the same time, this method uses binary tuplesas nodes, which effectively suppresses the expansion of node scale,
thereby achieving better computational efficiency in large-scale network traffic scenarios. These results further confirm the
advantages of the TICL framework in robustness and scalability.

BoT-loT UNSW-NB15
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Fig 4. Impact of different graph construction method on model performance.

https://doi.org/10.1371/journal.pone.0338546.9g004
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4.8 Efficiency analysis

To evaluate the impact of the interpolation augmentation and contrastive learning modules on the computational overhead
of the proposed TICL framework, this paper systematically assesses its computational efficiency from both theoretical and
experimental perspectives.

Theoretically, assuming the training graph contains N nodes, E edges, a feature dimension of d, H minority-class (mali-
cious) samples, and an L-layer GNN, the time complexity for each forward propagation layer is O(E - d), the full forward-
backward propagation complexity is O(L - E - d), and the space complexity is O(E-d+ N-d). The interpolation augmentation
generates O(H - U") additional edges through subsampling (where U’ is the size of a fixed benign subset), linearly expand-
ing the number of edges to E' = E+O(H-U'). This increases the total training complexity to O(T-L-E’-d), with an increment
of O(T-L-H-U'-d) (where T is the number of epochs). Contrastive learning adds an overhead of O(B-d-K) per batch (where
B is the batch size and K is the fixed negative sampling ratio), resulting in a total training increment of O(T - B - d - K). This
demonstrates that the introduction of the interpolation augmentation and contrastive learning modules only linearly scales
the complexity of the baseline model, without causing a higher-order complexity explosion.

To validate this theoretical analysis, Fig 3 and Fig 5 respectively show the training efficiency curves under varying
sampling quantities and graph scales. The results show that the model’s training time has a positive linear correlation with
the sampling quantity and graph scale, further confirming the computational scalability of the method.

5 Conclusions

In the domain of intrusion detection for HPC systems, the application of Graph Neural Networks (GNNs) remains
exploratory. This paper proposed the TICL algorithm, which effectively addresses data imbalance in real-world network
traffic through innovative data interpolation and contrastive learning. Experimental evaluations demonstrated that the TICL
framework outperforms existing methods, showing significant potential for enhancing HPC security. These findings not
only provide academics with an effective paradigm for applying GNNs to highly imbalanced cybersecurity data but also
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Fig 5. Impact of different graph ratio on model performance.
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offer a technical blueprint for enterprises and policymakers to develop next-generation intelligent intrusion detection sys-
tems. Despite these promising results, the study has limitations; for instance, its effectiveness was primarily validated

on specific datasets, and the large-scale data augmentation introduces additional computational overhead. Therefore,
future research should focus on testing the framework’s generalizability in more diverse network environments, exploring
more efficient model optimization techniques to reduce computational costs, and investigating advanced self-supervised
learning methods to further decrease reliance on labeled data.

Author contributions

Conceptualization: Lei Li.

Funding acquisition: Qiang Zhou.
Methodology: Lei Li, Xinlong Yang.

Project administration: Qiang Zhou.
Software: Xinlong Yang, Linye Chen.
Supervision: Qiang Zhou.

Writing — original draft: Lei Li, Xinlong Yang.
Writing — review & editing: Lei Li.

References

1. Dimolianis M, Pavlidis A, Maglaris V. Signature-based traffic classification and mitigation for DDoS attacks using programmable network data
planes. IEEE Access. 2021;9:113061-76. https://doi.org/10.1109/access.2021.3104115

2. Javaheri D, Gorgin S, Lee J-A, Masdari M. Fuzzy logic-based DDoS attacks and network traffic anomaly detection methods: classification,
overview, and future perspectives. Information Sciences. 2023;626:315-38. https://doi.org/10.1016/}.ins.2023.01.067

3. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint 2016.
https://doi.org/10.48550/arXiv.1609.02907

4. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Advances in neural information processing systems. 2017;30.

5. Zhou J, Gong S, Chen X, Xie C, Yu S, Xuan Q, et al. Clarify confused nodes via separated learning. IEEE Trans Pattern Anal Mach Intell.
2025;47(4):2882-96. https://doi.org/10.1109/TPAMI.2025.3528738 PMID: 40030999

6. Zhou J, Xie C, Wen Z, Zhao X, Xuan Q. Data augmentation on graphs: a technical survey. arXiv preprint 2022. https://arxiv.org/abs/2212.09970

7. Lo WW, Layeghy S, Sarhan M, Gallagher M, Portmann M. E-graphsage: a graph neural network based intrusion detection system for iot. In:
NOMS 2022-2022 |IEEE/IFIP Network Operations and Management Symposium. 2022. p. 1-9.

8. LeCunY, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436—44. htips://doi.org/10.1038/nature 14539 PMID: 26017442
Hochreiter S. Long short-term memory. MIT Press; 1997.

10. Algburi RNA, Aljibori HSS, Al-Huda Z, Gu YH, Al-antari MA. Advanced fault diagnosis in industrial robots through hierarchical hyper-laplacian
priors and singular spectrum analysis. Complex Intell Syst. 2025;11(6). https://doi.org/10.1007/s40747-025-01915-8

11.  Algburi RNA, Gao H, Al-Huda Z. Implementation of singular spectrum analysis in industrial robot to detect weak position fluctuations. Fluct Noise
Lett. 2020;20(03):2150010. https://doi.org/10.1142/s0219477521500103

12. Ali Algburi RN, Gao H. Detecting feeble position oscillations from rotary encoder signal in an industrial robot via singular spectrum analysis. IET
Science Measure & Tech. 2020;14(5):600-9. https://doi.org/10.1049/iet-smt.2019.0172

13. XuR, Wu G, Wang W, Gao X, He A, Zhang Z. Applying self-supervised learning to network intrusion detection for network flows with graph neural
network. Computer Networks. 2024;248:110495. https://doi.org/10.1016/j.comnet.2024.110495

14. LinL, Zhong Q, Qiu J, Liang Z. E-GRACL: an loT intrusion detection system based on graph neural networks. J Supercomput. 2024;81(1).
https://doi.org/10.1007/s11227-024-06471-5

15. Farrukh YA, Wali S, Khan |, Bastian ND. Xg-nid: dual-modality network intrusion detection using a heterogeneous graph neural network and large
language model. arXiv preprint 2024. https://doi.org/arXiv:240816021

16. Hu X, Gao W, Cheng G, Li R, Zhou Y, Wu H. Toward early and accurate network intrusion detection using graph embedding. IEEE
TransInformForensic Secur. 2023;18:5817-31. https://doi.org/10.1109/tifs.2023.3318960

PLOS One | https://doi.org/10.1371/journal.pone.0338546 December 22, 2025 15/ 16



https://doi.org/10.1109/access.2021.3104115
https://doi.org/10.1016/j.ins.2023.01.067
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TPAMI.2025.3528738
http://www.ncbi.nlm.nih.gov/pubmed/40030999
https://arxiv.org/abs/2212.09970
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s40747-025-01915-8
https://doi.org/10.1142/s0219477521500103
https://doi.org/10.1049/iet-smt.2019.0172
https://doi.org/10.1016/j.comnet.2024.110495
https://doi.org/10.1007/s11227-024-06471-5
https://doi.org/arXiv:240816021
https://doi.org/10.1109/tifs.2023.3318960
https://doi.org/10.1371/journal.pone.0338546

PLO&&- One

17. LiX, LiL, Li X, CaiB, Jia J, Gao Y, et al. GMFITD: graph meta-learning for effective few-shot insider threat detection. IEEE TransInformForensic
Secur. 2024;19:7161-75. https://doi.org/10.1109/tifs.2024.3430106

18. Zhang X, Xu M, Zhou X. RealNet: a feature selection network with realistic synthetic anomaly for anomaly detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024. p. 16699-708.

19. Duan J, Wang S, Zhang P, Zhu E, Hu J, Jin H, et al. Graph anomaly detection via multi-scale contrastive learning networks with augmented view.
AAAI. 2023;37(6):7459-67. https://doi.org/10.1609/aaai.v37i6.25907

20. Jin M, LiuY, Zheng Y, Chi L, Li YF, Pan S. Anemone: graph anomaly detection with multi-scale contrastive learning. In: Proceedings of the 30th
ACM international conference on information & knowledge management; 2021. p. 3122-6.

21. Wang S, Wang Z, Zhou T, Sun H, Yin X, Han D, et al. THREATRACE: detecting and tracing host-based threats in node level through provenance
graph learning. IEEE TransInformForensic Secur. 2022;17:3972-87. https://doi.org/10.1109/tifs.2022.3208815

22. Dyer C. Notes on noise contrastive estimation and negative sampling. Computer Science. 2014.

23. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the Internet of Things for network
forensic analytics: Bot-loT dataset. Future Generation Computer Systems. 2019;100:779-96. https://doi.org/10.1016/j.future.2019.05.041

24. Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015
Military Communications and Information Systems Conference (MilCIS). 2015. p. 1-6. https://doi.org/10.1109/milcis.2015.7348942

25. Chang L, Branco P. Graph-based solutions with residuals for intrusion detection: the modified e-graphsage and e-resgat algorithms. arXiv preprint
2021. https://doi.org/arXiv:211113597

PLOS One | https://doi.org/10.1371/journal.pone.0338546 December 22, 2025 16/ 16



https://doi.org/10.1109/tifs.2024.3430106
https://doi.org/10.1609/aaai.v37i6.25907
https://doi.org/10.1109/tifs.2022.3208815
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/milcis.2015.7348942
https://doi.org/arXiv:211113597
https://doi.org/10.1371/journal.pone.0338546

	Enhancing network traffic detection via interpolation augmentation and contrastive learning
	Introduction
	Related work
	Deep learning approaches for intrusion detection
	Graph-based approaches for intrusion detection
	Self-supervised and weakly-supervised learning paradigms

	Methodology
	Traffic graph construction
	Traffic interpolation contrastive learning
	Traffic interpolation module.
	Contrastive learning module.

	Traffic detection model
	Model train

	Experiments
	Data preparation
	Comparative methods
	Experimental setup
	Data preparation.
	Parameter settings.

	Model evaluation metrics
	Experimental results
	Model parameter analysis
	Graph construction analysis
	Efficiency analysis

	Conclusions
	References


