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Abstract

The Freundlich isotherm parameters K and 1/n are typically regarded as empirical
constants. However, the underlying theoretical basis for the widespread applicability
of the Freundlich isotherm in describing adsorption processes for diverse organic
compounds remains unclear. In this study, we successfully elucidated the reason

by developing two optimal quantitative structure-activity relationship (QSAR) mod-
els: one correlating K with quantum chemical parameters and another linking 1/n to
these parameters. The modeling results demonstrated that both K and 1/n exhibit
strong correlations with specific quantum chemical descriptors, indicating that the
empirical Freundlich isotherm’s applicability is fundamentally linked to the molecular
structural characteristics of organic compounds. Key quantum parameters influencing
K were identified as 3 q(O+N), q(CH+) _, ELUMO, Fukui(-) .. and Wiberg(C-C)
suggesting that charge distribution, carbon bond energy, and active site energy are
the primary factors governing adsorption efficiency on activated carbon. The QSAR
model for 1/n yielded similarly novel and consistent insights, showing that the value
of 1/n also correlated with molecular structural characteristics. Both models were
rigorously validated and confirmed to be stable, robust, and accurate through stan-
dard statistical evaluations. These QSAR models can now be employed to identify
whether an organic compound would conform to the Freundlich Isotherm and pre-
dict the adsorption efficiency of this compound by activated carbon based on their
quantum chemical parameters. As to the practical implications, this study provides
a convenient reference method for assessing the applicability of activated carbon
adsorption in treating emerging organic pollutants in drinking water plants and a
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theoretical foundation for developing intelligent management systems in water treat-
ment facilities.

1 Introduction

In recent years, the widespread use of organic compounds (e.g., halogenated hydro-
carbons, benzene, and pollutants containing nitrogen or oxygen functional groups)

in industrial and agricultural production has led to their entry into the water environ-
ment through the pathways of agricultural runoff and industrial wastewater, which has
brought about great risks and impacts on the environment and human health [1,2].
Therefore, it is necessary to effectively control the impact of these organic com-
pounds on drinking water. Activated carbon adsorption (ACA) technology remains
employed in drinking water treatment plants worldwide due to its high efficiency, easy
operation and stable performance in removing some organic pollutants. However,

for some emerging organic compounds, the removal efficiencies by ACA are still not
clear, which needs experimental assessment individually. Nevertheless, the exper-
imental assessment of the removal efficiencies for specific pollutants constitutes a
labor-intensive process, and most of small or even middle-size drinking water plants
don’t have the sufficient analytic instruments and technicians. Therefore, establish-
ing a quantitative structure-activity relationship (QSAR) model based on quantum
chemical parameters of organic molecular structures holds significant reference value
for current drinking water treatment plants to evaluate their activated carbon units in
controlling emerging organic contaminants.

As a well-established cheminformatics methodology, QSAR quantitatively relates
measurable biological/chemical activities of compounds to their structural param-
eters using mathematical models and molecular descriptors [3,4]. Typically, it can
reliably predict key compound properties including metabolic activity and toxicity
profiles using only molecular descriptors derived from compound structures [5].
Current adsorption models predominantly focus on hydrophobic interactions as the
interpretation of adsorption results, particularly for nonpolar or weakly polar organic
compounds [6]. Hobbs et al. [7] employed the Freundlich isotherm to develop a
QSAR model for aromatic compound adsorption on powdered activated carbon.
However, the structural homogeneity of the selected adsorbates limited the universal
applicability of the model. Blum et al. [8] utilized molecular connectivity and (X/C) .
to develop a QSAR model in order to assess the adsorption of organic compounds
(both aromatic and aliphatic) by activated carbon. However, molecular structure
quantum parameters were not taken into account, therefore the QSAR model could
not fully predict or explain the adsorption properties of these compounds. Rao et al.
[9] built three different QSAR models: the octanol-water partition coefficient model
(K,, model), the linear solvation energy model (LSE model), and the molecular con-
nectivity indices theory (MCI) model, which were only validated by the experimental
adsorption data of Dewulf et al. [10] and Mader et al. [11] and were not correlated
with quantum chemical parameters of molecular structures, limiting the model’s
applicability. Utilizing partial least squares regression (PLS), Kamlet et al. established
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multivariate linear regression equations to elucidate specific solute-adsorbent interaction mechanisms. The models inte-
grated three key solvation parameters — dipolarity/polarizability (m*), hydrogen-bond donor acidity (a), and hydrogen-bond
acceptor basicity () — quantified through systematic analysis of removal kinetics of mono-nitroaromatic by activated
carbon adsorption [12]. However, the structures of the compounds studied are relatively homogeneous, and therefore the
adsorption mechanism may not be suitable for other kinds of organics with different structures.

According to the summary of existing results shown above, it can be seen that there were few researches establishing
QSAR models for the key parameters (K and 1/n) of Freundlich Isotherm, which are commonly considered as empirical
constants determining the removal efficiencies of organics by activated carbon adsorption. It is still not very clear why the
empirical Isotherm model has been applicable to so many organics for many years.

Therefore, the first aim of this study is to reveal whether the key parameters (K and 1/n) of Freundlich Isotherm are
correlated with some of the quantum parameters of organic molecular structure, then to explain why the empirical Isothem
model can be applicable for many organic compounds. Is this really a coincidence, or is it a special coincidence that just
happens to fall on the track of the laws of the world? If the QSAR model can be constructed successfully, it would be a
significant innovation result to let the question get an exact answer. The findings will further reveal which molecular quan-
tum parameters determine the applicability of the Freundlich isotherm,thereby provide novel theoretical insights into this
classical adsorption model.

The second aim of this study is to provide a kind of useful calculation model for current drinking water plants to evalu-
ate the possible efficiencies of their activated carbon units when the plants meet various emerging organic compounds.
The results would help the plants to overcome their weak points on the analytical instruments and technicians.

In future intelligent water treatment plant management systems, core processes like activated carbon adsorption will
require fundamental chemical interaction models and performance evaluation frameworks. This study will develop QSAR
models for Freundlich parameters (K and 1/n) of organic compound adsorption on activated carbon, which will significantly
contribute to building next-generation smart water management systems.

2 Materials and methods
2.1 Data sets

Table 1 summarizes the Freundlich adsorption isotherm (Eq. (1)) K and 1/n for these 47 organic compounds, which

were extracted from the Contaminant Control List of Drinking Water developed by the U.S. Environmental Protection
Agency and related literature [5,8,13—16]. These compounds structurally include halogenated hydrocarbons (especially
chlorinated alkanes and aromatic hydrocarbons), benzene rings and their derivatives, and nitrogen or oxygen contain-
ing functional groups. All data were obtained from adsorption experiments using Fitrasorb-400 coal activated carbon.

The concentrations for all organic compounds during the adsorption experiment were in the same measurable range

of the analytical method (normally referred to USA EPA method). Uniform criteria were followed in screening the data:

(1) the experimental temperatures were controlled within the range of room temperatures (25°C); (2) the final state data
that reached adsorption equilibrium were chosen (contact time was greater than 48 h). The above standardized screening
ensured the maximum baseline comparability of the data.

The literature data compiled in this study were obtained from batch equilibrium experiments conducted at concentra-
tions within the measurable range of the analytical methods for most compounds. The pH values of the solutions varied
from 5.3 to 8.0 in the data extracted from literature because the adsorption experiments were performed without pH con-
trol, in which the organic compounds were dissolved into the pure water directly and kept in their natural states. In addi-
tion, the K with excessive variance data was excluded considering the applicability of the data and the stability of the later
model. To ensure the robustness of the developed model, we followed this principle in organizing the extracted data from
literature that the data conforms to a Normal Distribution (i.e., Gaussian Distribution) were retained but the data deviating
from the overall Normal Distribution are excluded.
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Table 1. Fitting parameters of Freundlich adsorption isotherms for 47 organic compounds.

Name K 1/n Name K 1/n Name K 1/n
Benzene 1260 0.533 2,4-Dinitrotoluene 96100 0.157 Diquat 2260 0.242
Toluene 5010 0.429 1,3-Dichloropropane 897 0.497 Dinoseb 30400 0.279
o-Chlorotoluene 23200 0.378 1,1-Dichloropropene 2670 0.374 Picloram 23400 0.18
o-Dichlorobenzene 19300 0.378 1,1,1,2-Tetrachloroethane 1070 0.604 Metribuzin 48700 0.193
Ethyl benzene 9270 0.415 1,2-Dibromoethane 888 0.471 Aldicarb 8270 0.402
Styrene 12200 0.479 1,3,5-Trichlorobenzene 63800 0.324 Oxamyl 1740 0.793
p-Xylene 12600 0.418 Dibromochloromethane 585 0.636 Lindane 15000 0.433
p-Chlorotoluene 35900 0.34 trans-1,2-Dichloroethylene 618 0.452 Alachlor 81700 0.257
Bromobenzene 17200 0.364 cis-1,2-Dichloroethylene 202 0.587 Atrazine 38700 0.291
Chlorobenzene 9170 0.348 Bromoform 929 0.665 Carbofuran 16400 0.408
1,2-Dichloroethane 129 0.533 1,1,1-Trichloroethane 335 0.531 Dicamba 33100 0.147
Isophorone 9750 0.271 Bromodichloromethane 241 0.655 Glyphosate 87600 0.119
1,2-Dichloropropane 313 0.597 1,1-Dichloroethene 470 0.515 Metolachlor 98200 0.125
1,2,3-Trichloropropane 1080 0.613 1,1,2-Trichloroethane 365 0.652 Simazine 31300 0.227
tert-Butyl methyl ether 218 0.479 Trichloroethylene 2000 0.482 Cyanazine 102000 0.126
2,4 ,5-trichlorophenoxy acetic acid 43000 0.21 Dibromochloropropane 6910 0.501 - - -

https://doi.org/10.1371/journal.pone.0338483.t001

Q. = KC,'/" (1)

where Q_ is the adsorbed amount at equilibrium, mg/g; C_ is the concentration at equilibrium, mg/L; Kis Freundlich’s con-
stant; 1/n is the adsorption index. The concentrations for all organic compounds during the adsorption experiment were in
the same measurable range of the analytical method (normally referred to USA EPA method).

2.2 Calculation method of structural parameters

Studies have shown that chemical structural parameters are closely related to the properties of compounds [17], and
thus focuses on common parameters that represent the structural properties of organic compounds, which are shown
in S1 Table. These parameters were drawn and calculated using ChemDraw, Gaussian, Material Studio, and Multiwfn
[18] software. All calculations were performed using the Density Functional Theory Method (DFT) [4,19]. The DFT
calculations of compounds are performed in a consistent identical and theoretical state. The core principle of Density
Functional Theory (DFT) calculations lies in the assumption that, under a unified idealized state, the electronic structure
of a system (such as electron density, energy levels, and orbital energies) is determined by solving the Schrodinger
equation, thereby reflecting the intrinsic properties of the material. This methodology is applicable to diverse systems,
including vacuum, solution, and surface environments. The B3LYP method and 6 - 311G (d,p) basis set were chosen to
obtain the structural parameters of the substance by Gaussian 09 [20]. The DMol3 module and the GGA-BLYP method
were used to calculate the energies of the optimized structures by Material Studio 7.0 [21]. The details of the molecular
parameters of each organic compound are shown in S2 Table. It should be noted that all quantum chemical calcula-
tions were performed under vacuum conditions. While this approach is standard in QSAR studies for computational
efficiency and has been shown to yield robust correlation trends for adsorption affinity, it does not explicitly account for
aqueous solvation effects. Future investigations will employ implicit solvation models (e.g., SMD, PCM) and descriptors
like solvent-accessible surface area (SASA) to better simulate the aqueous-phase adsorption environment and refine
the predictions.
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2.3 Model validation methods

In this study, QSARINS software was used to build the model using the multiple linear regression method [21,22], and the
model was validated by Ordinary Least Squares (OLS) method [23] with Y-randomization and Leave-Many-Out cross-
validation method. The quality of the constructed QSAR was evaluated by different evaluation metrics to test its robust-
ness and predictive ability [24]. The information of evaluation indexes is shown in S2 Table.

Y-randomization validation [25,26] is mainly to determine the stability of the model by testing the chance relationship
between the dependent and independent variables. This method disrupts the dependent variables firstly and then builds a
new model for the randomly disrupted dependent variable and initial independent variable. The process is repeated sev-
eral times. For a stable QSAR model, R2yrancl and szrand should be lower compared to the original model's R and Q2.

Leave-Many-Out cross-validation [27,28] was used to study the behavior of the model when many compounds were
excluded. Multiple samples are drawn from the data set at a time, and the remaining samples are used to build a model.
The drawn samples are predicted by the constructed model. This above process is repeated several times.

2.4 Application domains

In this study, a Williams plot [25,29] was applied to visualize the applicable domain. The accuracy of the optimal QSAR
model prediction was judged based on the standardized residuals (o) and leverage (h;). The standardized residuals are
defined in the following equation (2):

i~y

2
i
TG 2)

g =

where y; is the experimental value of the compound, y;~ is the predicted value the compound, n is the number of com-
pounds in the training set. The ideal range of ¢ is (-3, 3). The leverage is defined in the following equation (3):

hi=x(XX) " xT(i=1,2......n) 3)

where x; is a vector of descriptor for the compound, X is the descriptor matrix in the training set. The alert leverage value
(h*) is defined in the following equation (4):

x _ 3(m+1)
=5 (4)

where m is the number of predictor variables and n is the number of compounds in the training set. It was only h; < h* that
it was considered compliant.

3 Results and analysis
3.1 Experimental results of organic compound

In the Freundlich isotherm, the larger the value of K, the higher the adsorption capacity of the adsorbent at a given
pressure; and the larger the value of n, the stronger the nonlinearity of the adsorption process. Both determine the shape
of the Freundlich isotherm curve and therefore together determine the characteristics of the adsorption process and the
performance of the adsorbent. The K and 1/n values of the 47 compounds summarized are shown in Table 1. The K and
1/n values varied from compound to compound. Among the 47 compounds selected, glyphosate had the smallest Freun-
dlich adsorption index 1/n (0.119), corresponding to K of 87,600, and oxamyl had the largest adsorption index 1/n (0.793),
corresponding to K of 1740. The difference in the Freundlich adsorption index 1/n of the above two compounds is about
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0.674, and the difference in the K value is about 85860. It can be seen that the structural differences of these organic
compounds are significant, resulting in a wide range of adsorption properties among them. Therefore, the model con-
structed on the basis of the above compounds may have wider applicability.

3.2 Calculation results of the structure of compounds

The structural parameters of the 47 organic compounds studied are shown in S2 Table. The differences in dipole moments
among these 47 organic compounds indicate that the polarities of the organic compounds vary considerably. The total
molecular energy (E) represents the interaction of kinetic and potential energy between electrons. lts maximum value is
-232.333 (benzene), and the minimum value is —=7761.158 (bromoform). There is a 33-fold difference between these two
values, which indicates the diversity between the structures of the studied organic compounds.

q(CH+)__ has a maximum of 0.198 e (dicamba) and a minimum value of 0.039 e (tert-butyl methyl ether); q(CH+)
has a maximum of 0.129 e (picloram) and a minimum of 0.020 e (metolachlor); g(C-) _ has a maximum of 0.219 e
(glyphosate) and a minimum of —0.045 e (benzene); q(C-) . has a maximum of 0.034 e (bromoform) and a minimum of
-0.137 e (1,2-dichloropropane).5q(O +N) has a maximum of 0.154 e (diquat) and a minimum of —1.554 e (glyphosate),
and 29 compounds did not contain oxygen and nitrogen. } q(-)/N, has a maximum of 0.060 e (diquat) and a minimum
of —0.061 e (1,2-dichloroethane). These results demonstrate the charge distribution of the organic compounds studied,
which is important for analyzing the adsorption of organic compounds by activated carbon.

The Wiberg index [30] is used to quantify the degree of bonding between atoms. This parameter can be used to
analyze the bonding properties of molecules and to predict the breaking and formation of chemical bonds [31,32].
Wiberg(C-C), .., and Wiberg(C-C) . represent the bonding strengths of the carbon-carbon bond in a molecule. In this
study, Wiberg(C-C),__ has a maximum of 4.083 (1,1,1,2-tetrachloroethane) and a minimum of 3.893 (1,2-dichloroethane).
The maximum of Wiberg(C-C) . is 3.963 (benzene) and the minimum is 1.072 (1,3-dichloropropane).

E.omo @nd E_,,, represent the charge transfer that occurs within the molecules of organic compounds [33]. E
indicates the ability of organic compounds to accept electrons, while the opposite is true for E .. The compound with
the maximum E_ value is tert-butyl methyl (0.040eV), and the compound with the minimum value is diquat (- 0.145eV),
which indicates that diquat is more likely to be able to obtain electrons compared to other organic compounds. The Fukui
indices (Fukui) are key to describing the order of decomposition of the molecular structure of organic compounds [19,34].
It includes the electrophilic Fukui indices, the nucleophilic Fukui indices, and the pro-radical Fukui indices [35]. Among
them, Fukui(-) . has a maximum of 0.471 e (bromodichloromethane) and a minimum of 0.087 e (diquat). The descriptor
bond level reflects the stability of the chemical bonds within a compound molecule. The maximum value of Bond orders(C-
C),.., is —0.658 (1,3-dichloropropane) and the minimum value is =1.61 (dinoseb). Combined with the correlation plot Fig 1,
it can be seen that Bond orders(C-C), ., Fukui(-) ... E, o have a significant correlation with the adsorption effect, which
indicates that bond energy, active site, charge distribution, and orbital energy have a strong influence on the adsorption
effect of activated carbon.

min

LUMO

min’

3.3 Correlation analysis of experimental results with structural parameters

Fig 1 shows the correlation between K, 1/n and 31 parameters. It can be seen that there is consistency in the correlation
between these two response values (K, 1/n) and the structural parameters, which also indirectly indicates that there is a
certain correlation relationship between K and 1/n in the Freundlich adsorption isotherm. According to the absolute value
of the correlation coefficient, it can be seen that Bond orders(C-C)min (0.694), Fukui(-)max (0.611), >q(O+N) (0.532), and
Fukui(-)min (0.515) showed a significant positive correlation with the response values 1/n, while > q(H) (-0.598), EHUMO
(-0.463), q(C-)max (-0.444), q(CH+)max (-0.414), >q(-)/NC (-0.401) showed significant negative correlation with the
response values 1/n. A similar correspondence exists for the response value K. The most significant correlation was
found between the response values (K, 1/n) and Bond order(C-C) . with a correlation coefficient of 0.694. This structural
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Fig 1. Correlation coefficients of Freundlich parameters (K, 1/n) with 31 molecular parameters.

https://doi.org/10.1371/journal.pone.0338483.9001

parameter of Bond order(C-C) . represents the minimum value of the bond orders among the carbon-carbon bonds of a
substance, and the magnitude of the value represents the stability of the compound molecule. Another structural param-
eter is the nucleophilic index (Fukui(-), .. ), which reveals the possible active sites of the reaction. This result indicates
that the response values (K, 1/n) are closely related to the active sites. In conclusion, based on the results of the current
correlation analysis, it is clear that Bond orders(C-C) . and Fukui(-) _ are the main factors affecting the adsorption of

activated carbon.

min max

3.4 QSAR model construction

The 47 organic compounds studied in this paper were randomly divided into a training set of 38 and a test set of 9 in

a ratio of 4:1. Among them, 1,2,3-trichloropropane, isophorone, styrene, cis-1,2-dichloroethene, 1,2-dibromoethane,
simazine, atrazine, Alachlor, Metolachlor were selected as test sets for the QSAR model with K as the response value,
while tert-butyl methyl ether, benzene, bromobenzene, 1,2-dibromoethane, dibromochloroethane, cis-1,2-dichloroethene,
and lindane, picloram, Alachlor were selected as test sets for the model with K as the response value. In this study, the
optimal model with low multicollinearity and a good correlation with the response values was identified based on the
results obtained from the Qsarins software.

Table 2 presents the results of the QSAR models with K as response values using the stepwise method of Qsarins.
From Table 2, the gradual introduction of the number of independent variables, the R, R?, and R2Eidj of models 1-5 gradu-
ally increase, the SD values gradually become smaller, the F values gradually become larger, and the sig. (significance,
see “S3 Table. Meaning of evaluation indexes”, which means the significance values of these five models) are all 0.00.
Generally, the determine coefficient R? of the model with a good fit is at least greater than 0.6 [36]. Based on this, models
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Table 2. Results of the K-model organized by the Qsarins.

model | Variables of models R? R,2 |R*>R?|Sig. |LOF RMSE, | MAE_ |RSS_ SD F Q.7 R, | Q. 2

1 >q(0O+N) 0.467 | 0.451|0.016 | 4*10°|400.528 | 20.013 | 13.329 | 14419.003 | 20.59 | 29.77 | 0.395 | 0.345 | 0.399 | 0.345

2 29(0O+N), q(CH+) 0.532|0.503 | 0.028 |4*10°°|351.846 | 18.757 | 13.454 | 12666.441 | 19.59 | 18.73 | 0.426 1 0.598 | 0.428 | 0.598

3 2q(0+N), q(CH+) .., E ;o | 0.6840.654 0.030 |0 237.384 | 15.407 | 10.925 | 8545.805 | 16.34 | 20.70 | 0.553 | 0.625 | 0.557 | 0.625

4 29(0+N), q(CH+) __, E 0| 0.7280.693 1 0.035 |0 266.749 | 14.305 | 10.532 | 7366.427 | 15.41 | 23.09 | 0.601 | 0.645 | 0.682 | 0.645
Fukui(-), ..

5 29(0+N), q(CH+) . E 0| 0.801/0.770  0.033 |0 148.123 | 12.171 |8.693 | 5332.415 | 13.33|24.43 0.699 0.698 0.722|0.699
Fukui(-), .. Wiberg(C-C) .

https://doi.org/10.1371/journal.pone.0338483.t002

1 and 2 can be excluded. It is also required that the internal and external validation coefficients g* and Q_,? of the opti-
mal model are both greater than 0.5 [37]. It is clear that models 3, 4, and 5 meet the above requirements, but compared
to the rest of the models, R2 (0.801) and R2adj (0.770) of model 5 are higher, g2 (0.722) and Qext2 (0.699) of model 5
are higher, the standardized estimation error (SD=13.332) and the root mean square error (RMSEtr=12.171) of model
5 are minimized. The model 5 has a lower LOF, which indicates that the model has a good fit with these descriptors. The
sig. results indicate that the model is statistically significant. The cross-validation coefficients of the internal verification
(Q_,,?=0.699) for internal validation [38], and the external validation coefficient (R_ ?=0.698) for assessing the external
prediction ability meet the criterion of greater than 0.5, which indicates that the predictions from the test set are reliable. In
addition, the models built from the training set all have small errors for RMSEtr (12.171), MAEtr (8.693), RSStr (5532.415),
which effectively evaluates the external predictive power of the model. Therefore, model 5 was determined to be the opti-
Wiberg(C-C) . .
Table 3 presents the results of the QSAR models with 1/n as response values. From Table 5, with the gradual introduc-
tion of the number of independent variables, the R, R? and R?_, of models 1-7 gradually increase, the SD value gradually
becomes smaller, the F value gradually becomes larger, and the sig. The value of these five models is 0.00. According to

mal model for the K model, which contains five variables, namely >q(O +N), g(CH+)

Table 3. Results of the 1/n-model organized by the Qsarins.

max’

Fukui(-)

max’ ELUMO’

model

Variables of models

R? R 2

adj

Rz-Radiz

Sig. |LOF

RMSE, | MAE

tr

RSS

SD F

2
LOO

R 2

ext

q?

Q 2

ext

1

Bond orders(C-C)

min

0.719 | 0.711

0.008

4#107° | 0.008

0.087

0.072

0.285

0.089 | 91.951

0.688

0.001

0.689

0.001

2

Bond orders(C-C)
Bond orders(C-C)

min’

max’

0.765 | 0.751

0.014

1*106 | -

0.731

0.180

Bond orders(C-C)
Bond orders(C-C)
29(-)/N,

min’

max’

0.810 | 0.794

0.016

1*106 | -

0.767

0.450

Bond orders(C-C)
Bond orders(C-C)__,
2q(-)/N;, Wiberg(C-C)

min’

min’

0.846 | 0.827

0.019

0.802

0.485

Bond orders(C-C)_,,
Bond orders(C-C)__, Ya(-)/N,,
Wiberg(C-C)_., a(C-),,

0.885 | 0.867

0.018

0 0.006

0.055

0.047

0.116

0.060 | 49.406

0.839

0.738

0.840

0.738

Bond orders(C-C) .,
Bond orders(C-C), ... >q(-)/N,
Wiberg(C-C)_,.» a(C-)
Fukui(+) .,

max’

0.904 | 0.885

0.019

0. 0.006

0.051

0.043

0.098

0.056 | 48.567

0.860

0.734

0.861

0.740

Bond orders(C-C) .,

Bond orders(C-C), .. >q(-)/N,,
Wiberg(C-C),.,... a(C-)
Fukui(+)

max’

Fukui(+)

max’

0.917 | 0.897

0.019

1*107¢ | 0.006

0.048

0.039

0.085

0.053 | 47.166

0.873

0.704

0.873

0.704

https://doi.org/10.1371/journal.pone.0338483.t003
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the standard requirements of the optimal model, models 1—4 can be excluded. The comparison of the internal and exter-
nal validation coefficients found that models 5-7 conformed to the criterion of being greater than 0.5. Q_ 2 of model 5 is
larger (0.738), and g2 of model 7 is larger (0.873). But the LOF of model 5 and model 7 are consistent, and other indica-
tors (K, MSE,, MAE,, and RSS, ) are not showing much difference between the two models. Model 5 has the largest R_ 2
Loo” (0.839) in contrast to model 7, which meets the criterion and indicates that the predictions
of the test set under model 5 are reliable. Overall, there is not much difference between model 5 and model 7. To avoid
overfitting and ensure the prediction performance, model 5 with fewer parameters and simple structure is determined to
be the 1/n optimal model following the principle of consistency with the variables of the K model. The model contains Bond

(0.738) and the smallest Q

orders(C-C)

min’

Bond orders(C-C) .. 4(C-),.,. 2A(-)/N., Wiberg(C-C)

min”®

In addition, we can identify potential outliers by the plot of predicted versus experimental response values (Figs 2
and 3). Fig 2 shows the scatter distributions of predicted and experimental values of the K models on the training and
test sets. It can be observed that model 5 has a better fit and a denser distribution compared to the other models. Most
of the predicted data are distributed around the 1:1 (y =x) regression line, only three compounds such as simazine,

2,4 ,5-trichlorophenoxy acetic acid, and isophorone are outside the range of variation of the residuals. In the scatter plot of
the 1/n model, only two compounds (picloram and nematicarb) are slightly further apart from the regression line.

Further analysis showed that the predictive ability of the model built for these structures was limited due to tri-
azines (atrazine and simazine), and carbamate pesticides containing a nitrogen heterocyclic ring (oxamyl), which were
underrepresented in the training set, thus leading to a limited predictive ability of the model built for these structures.
Therefore, we have already excluded these categories when establishing the K model. The adsorption mechanisms of
2,4,5-trichlorophenoxy acetic acid, isophorone, simazine and picloram may involve hydrophobic interactions, and the
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Fig 2. Scatter plot of predicted versus experimental values for models about K; a) model-1; b) model-2; c) model-3; d) model-4; e) model-5.

https://doi.org/10.1371/journal.pone.0338483.9002
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Fig 3. Scatter plot of predicted versus experimental values for models about 1/n: a) model-1; b) model-2; c) model-3; d) model-4; e) model-5;
f) model-6; g) model-7.

https://doi.org/10.1371/journal.pone.0338483.9003

present study focused on analyzing parameters such as active site reactivity and electronic effects, thus leading to a large
bias in model predictions.

The adsorption models studied by previous authors are listed in Table 4. Most of them focused on the exploration of the
hydrophobic properties for a single type of substance, and the parameters chosen were different from those of the present
study, which made the compounds with large deviations in the present study.

4 Discussion
4.1 Mechanism explanation

Each quantum chemical parameter in the model plays an important role in the interpretation of the optimal model, and the
combined analysis of all descriptors helps to reveal the rules of absorption. The above two models involve different inde-
pendent variables. For K and 1/n in the Freundlich adsorption equation, they cannot completely express the adsorption
properties of the adsorbent for the organic compounds independently [41,42]. Hence, two adsorption models based on the
Freundlich equation are considered, which is essential to understanding the adsorption mechanism [19,43].

Table 4. Modeling studies in the literature similar to this study.

Research literature (year) Methods Type of datasets Key impact factors

Blum et al. (1994) [8] MLR aromatic and aliphatic molecular connectivity indices

De Ridder et al. (2010) [5] MLR organic micropollutants hydrophobicity (log D), polarizability

Gong et al. (2015) [39] PLS mono-nitro aromatic compounds molecular orbital (E, ,,,), the atomic net charges (Q.)

Zhao et al.(2018) [40] MLR cationic pharmaceuticals octanol-water partition coefficient (log P), polar surface
area, molecular weight (MW)

Multiple linear regression (MLR), partial-least-squares regression (PLS)

https://doi.org/10.1371/journal.pone.0338483.t004
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Both the K optimal model and the 1/n optimal model contain Wiberg(C-C),_. , and this parameter is used to measure the
strength of covalent bonds between carbon and carbon atoms in a molecule. A lower value means that the carbon-carbon
bonds in the molecule are weaker, and its structure may be less stable. As can be seen from the regression coefficients
in the model, this descriptor is negatively correlated with K and positively correlated with 1/n. From this we can infer that
the lower Wiberg(C-C) . of the compound, the more unstable the structure of the molecule is, which may have an effect
on the adsorption between the compound molecules and activated carbon. Combined with S2 Table, it can be verified
from metolachlor (1.103), cyanazine (1.233), and alachlor (1.104) with the smaller Wiberg (C-C) .. Their corresponding
K values (98200, 102000, and 81,700) are higher than the average value (21201). Correspondingly, the corresponding n
values (0.125, 0.126, 0.257) are also smaller than the mean value (0.407).

It is noteworthy that in the correlation analysis, K and 1/n both showed a low correlation coefficient with Wiberg(C-C)min
(-0.033 and —-0.059). Similarly ELUMO (-0.104 and 0.149) and Bond orders(C-C)max (0.306 and —0.291) are also low. In
the K-optimal model, the value of the corresponding coefficient for ELUMO is large (—391.288), but the correlation with K
in the correlation analysis is small (—0.104). The reason for this aspect may be the complementary effect between the two
parameters, where the molecules with lower E - may react with the activated carbon surface through electron transfer,
while the weaker Wiberg(C-C) . indicates a decrease in the stability of the bonds in the molecule, which releases the
active fragments to enhance adsorption. Thus the synergy between the two explains the co-regulation of the adsorption
capacity by electronic effects and structural stability. The synergistic effect between ELUMO and Wiberg(C—C)min refers
to their complementary roles in enhancing physisorption. A lower ELUMO value indicates a greater electron-accepting
ability, facilitating m—t interactions or weak charge-transfer with the electron-rich graphene layers of activated carbon.
Concurrently, a smaller Wiberg(C—C)min reflects weaker intrinsic carbon-carbon bonds within the adsorbate molecule,
which may allow for better geometric adaptation and dispersion interactions with the heterogeneous carbon surface. This
combined electronic and structural effect optimizes the adsorption affinity, a phenomenon consistent with studies on the
adsorption of aromatic and polar compounds onto carbonaceous materials In the 1/n-optimal model, the corresponding
coefficients for Bond orders(C-C)__ are negative (-2.775), while those for Wiberg(C-C) . are positive (0.037). Higher
Bond orders(C-C) . may inhibit molecular conformational change and limit its ability to fit into the activated carbon pores,
and lower Wiberg(C-C) . may promote localized bond breaking or distortion and enhance molecular interactions with
adsorption sites. Thus these two parameters regulate the structural dynamics of the molecules during adsorption, thereby
affecting the degree of nonlinearity of the isotherms. We may also illustrate this using example compounds. Aldicarb
(ELUMO=-0.032eV, K=8,270): Its relatively low ELUMO favors electron acceptance from carbon’s m-system, enhanc-
ing adsorption via charge transfer; Oxamyl (ELUMO =-0.048¢eV, K=1,740): Its higher (less negative) ELUMO indicates
poorer electron affinity, reducing charge-transfer potential and adsorption—consistent with its lower K value. In conclu-
sion, analysis of individual variables cannot capture this synergistic effect. Moreover, in subsequent K-model analyses,
the Wiberg(C-C)min enhanced robustness (g2 0.682—0.722; SD: 14.305— 12.171). Within the 1/n model, it refined the
nonlinear prediction (R 0.885—0.917). Its VIF values (K-type: 1.173; 1/n-type: 1.369; Tables 5-6) confirmed the absence
of multicollinearity, justifying its retention.

The electrophilic indices (Fukui(-) _ ) mainly refers to the active site where the compound is most susceptible to elec-
trophilic reaction, and the active site is the main factor affecting the adsorption effect [44,45]. In the present study, this
parameter is inversely proportional to the K value in this model, which means that with higher Fukui(-) _ organic com-
pounds have a poor adsorption effect. We can infer that the higher the Fukui(-) _ value of the compound, it means
that the compound is easy to lose electrons. This may lead to the formation of transient adsorption complexes or
quasi-stable adsorption states (e.g., through electrostatic or - interactions) during the physisorption process, which
could be less favorable for stable adsorption, thereby reducing the overall adsorption performance. For example, the
Fukui(-) . of 1,2-dichloroethane (0.3565) was higher than that of 1,2,3-trichloropropane (0.2651), and the K showed that
1,2,3-trichloropropane had a better adsorption capacity.
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Table 5. Statistical values of variables for the optimal K-model.

Variable Regression coefficients VIF t Sig.
>q(O+N) -125.215 3.675 -10.982 0.000
q(CH+) -695.036 4138 -7.413 0.000
E uvo -391.288 1.531 -5.093 0.000
Fukui(-), .. -98.670 1.248 -3.867 0.000
Wiberg(C-C) -6.771 1.173 -3.455 0.001
Criteria - 1-5 >2.179 <0.05
https://doi.org/10.1371/journal.pone.0338483.t005

Table 6. Statistical values of variables for the optimal 1/n-model.

Variable Regression coefficients | VIF t Sig.
Bond orders(C-C) .. | 0.305 2.758 | 5.821 0.000
Bond orders(C-C) | -2.775 2.305 |-6.382 |0.000
2a(-)/N -3.182 3.512 | -5.313 |0.000
Wiberg(C-C) .. 0.037 1.369 |4.072 0.000
9(C-) o 0.717 2734 3.312 0.002
Criteria - 1-5 >2.179 <0.05

https://doi.org/10.1371/journal.pone.0338483.t006

Bond orders(C-C) . and Bond orders(C-C)__ reflect the stability of the molecule. The 1/n-model shows that both are
negatively and positively correlated with 1/n, respectively, which reflects that the stability of the chemical bonds influences
the degree of nonlinearity of the compounds in the adsorption process. In the adsorption process, smaller Bond orders
(C-C) imply weaker carbon-carbon bonds, which makes the compounds easier to be adsorbed by the activated carbon,
the closer the adsorption process is to linearity.

According to the correlation (Fig 1), >q(O+N) is much more correlated with K than >q(O) and Y q(N), which indicates
that the overall charge distribution of the compound molecules has a greater influence on the adsorption effect of acti-
vated carbon. For example, diquat has the largest value of Y q(O+N) (0.1538), while K (2260) is much smaller than the
average level; glyphosate has the smallest (-1.5546), while K (87600) is much larger than the average level. 3 q(-)/N_
reflects the overall reflection of the negative charge of the organic compound, and the larger its value, the stronger the
overall electronegativity of the compound and the more difficult it is to be adsorbed. This point also explains the relation-
ship that } q(-)/N_ is negatively correlated with 1/n. The q(CH+) _ and q(C-)__ reflect the charge distribution of different
atoms in organic compounds and molecular polarity [46], which affect the adsorption performance of the adsorbent on the
compounds, and hence the linearity of the adsorption isotherm.

Although hydrophobicity parameters (e.g., logP) were not directly introduced in this study, the charge distribution
parameters included in the model may also indirectly reflect the association between molecular polarity and hydrophobic-
ity. Combined with S2 Table, it can be found that it may not be possible to accurately assess the adsorption performance
of compounds based on the magnitude of a single parameter, while K and n together describe the overall adsorption
behavior of the adsorbent on compounds in Freundlich, and therefore the explanation of the adsorption mechanism of
activated carbon is valuable only when the K and 1/n are considered together with structure parameters.

In this study, it was found that for compounds containing halogen, nitrogen or oxygen functional groups (e.g., pes-
ticides, pharmaceutical intermediates), the adsorption behavior is more significantly affected by the reactivity of the
active site and the electronic effect, although the hydrophobic interaction is crucial for the adsorption mechanism. In the
developed model, Fukui(-) _ represents the easily attacked active site of the compound, which is capable of directly

interacting chemically with the functional groups on the surface of the activated carbon; E Bond orders(C-C) . and

LUMO?’ min
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Bond orders(C-C)_, represent the ability to accept electrons and break chemical bonds, which may affect the charge
transfer between adsorbent and compound. The two optimal models developed contain the Wiberg(C-C) ., which reflect
the electron density distribution of the bonds and the bond strengths. This finding suggests that the relative importance
of reactivity and hydrophobicity parameters may vary with molecular structure differences in complex pollutant systems.
The modeling by quantum chemical parameters in this study provides a new perspective for understanding the reactivity-
dominated adsorption mechanism.

Take the example of aldicarb and oxamyl. Fukui(-) __corresponds to the sites in its molecule that are easily attacked by
oxygen-containing functional groups on the surface of the activated carbon, and higher values allow it to bind to the sur-
face of the activated carbon through hydrogen bonding or electrostatic interaction, enhancing the adsorption capacity. The
lower E, . indicates that the activated carbon surface may transfer electrons to aldicarb through charge transfer to form
an adsorption complex. The magnitude of the parameters of Bond orders(C-C)_. and Wiberg(C-C)_. is mainly reflected
in the C-N bonding in the methylcarbamate group in aldicarb, which is a weak bonding that makes aldicarb susceptible
to exchange electrons with the activated carbon surface. For oxamyl, its low Fukui(-) makes it difficult to form chemical
or hydrogen bonds with functional groups on the surface of activated carbon. Higher E ,,, implies low charge transfer
efficiency between it and activated carbon, making it difficult to form stable adsorption complexes. Higher Bond orders(C-
C),.., and Wiberg(C-C)_.indicate greater chemical bond strength and more stable electron density distribution in the
oxamyl molecules, resulting in a lower possibility of electron exchange or bonding with the activated carbon surface.

4.2 Model validation

To check the stability of the optimal model, t-test and VIF test were conducted for the model, respectively. The statisti-
cal values of the independent variables regarding the K optimal model and the 1/n optimal model are shown in Tables 5
and 6.

The results show that the values of the sig. of all the respective independent variables in the K optimal model and
the 1/n optimal model are less than 0.05, and the absolute value of t is greater than 2.179. For the K optimal model,
the order of magnitude of the absolute values of tis > q(O+N) > q(CH+)max>ELUMO > Fukui(-)max>Wiberg(C-C)min,
and for the 1/n-optimization model, it is Bond orders(C-C)min>Bond orders(C-C)max >} q(-)/NC >Wiberg(C-C)min >
g(C-)max, which indicates that these variables are acceptable. The VIF is used to test for multicollinearity among the
independent variables of a model [47]. The criteria for this indicator require that if VIF > 10, the model equation is unre-
liable and needs to be retested or re-modeled; if VIF =1-5, the model equation is acceptable; and if VIF =1, there is no
correlation between every variable of the model. Tables 5 and 6 show that all the VIF values in the optimal model meet
the criteria of 1-5. In addition, the external validation coefficients (K-model: Rext2=0.699, Qext2=0.668; 1/n-model:
R.2=0.738, Q_2=0.738) of the model all meet the criterion of being greater than 0.5, which suggests that the model
has a good predictive potential.

4.3 Y-randomization verification and LMO cross-validation

To check the robustness of the model, Y-randomized validation [48] and Leave-Many-Out cross-validation were performed
on the developed model.

For a stable QSAR model, R2yand and szrand of the Y-randomized model should be lower compared to the original
model's R? and Q?, otherwise, it means that the original model is unreliable. The results are shown in Fig 4, which
determined that the two optimal models established in this study have better robustness and stability. The internal pre-
diction ability of the model is also determined based on the comparison of the new cross-validation coefficient (Q,,,,?)
with the Q,,,,? of the original model. The results are shown in Fig 5, the performance of the new LMO model is basically
the same as the original model (the optimal model established), so the above two models meet the requirements and
passed the validation.
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4.4 Areas of applicability

To make the models constructed in this study better applied to the study of the adsorption performance of other organic
compounds, we also used Williams plots to observe the applicability domains (APDs) of the two optimal models con-
structed. The details are shown in Fig 6.

The domain of the application test mainly illustrates the range of applicability predicted by the optimal model [49], and
only the predictions of the compounds belonging to this field of study are considered to be reliable [50]. The constructed
models can predict when the predicted organic compounds satisfy the standard residuals (o) between -3, 3 and the
leverage value (h;) is below the warning bar (h*) [29,51]. As shown in Fig 6, most of the standard residuals of the organic
compounds satisfy the range. However, it was found that the oxamyl in the test set was not in the APD and exceeded the
critical value in the K-williams and 1/n-williams plots. The analysis shows that oxamyl is a carbamate compound with a
nitrogen-containing heterocyclic structure, which is significantly distinct from the others in structure. This difference may
cause its experimental results to be different from the predicted results. In general, the two optimal models still have better
stability and prediction ability.

In addition, in order to quantitatively define the model boundaries, we performed Tanimoto similarity analysis based on
molecular fingerprints.

As shown in the chemical-space distribution derived from molecular-fingerprint Tanimoto similarities (Fig 7), the MDS
plot reveals a relatively well-defined and cohesive chemical space occupied by the majority of the training set compounds,
indicating structural consistency within the model’s training domain. The test set compounds are generally intermingled
with or situated on the periphery of the training set cloud, suggesting that the external validation set shares a reasonable
degree of structural similarity with the training compounds, which is crucial for reliable predictive modeling.

4.5 Comparison with models in the literature

According to Table 4, the existing adsorption QSAR models mainly focus on the hydrophobic properties of organic com-
pounds. Only one type of compound is included in the research object, so the developed model may only be applicable to
this specific type of compound, and it is difficult to be extended to other types of substances. In addition, the lack of suffi-
cient model performance verification methods may cause problems with the reliability and applicability of the model. This
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Fig 6. Williams plot of the optimal model: a) the optimal model for K; b) the optimal model for 1/n.
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study involved a variety of compounds (including halogenated hydrocarbons, Monoaromatic Hydrocarbons and nitrogen-/
oxygen-containing organics), thereby enhancing the applicability of the model.

The second aspect is that time-consuming experiments are normally needed to obtain the exact hydrophobic property
of each organic compound, especially for the emerging organics. Actually, the hydrophobic property of each organic com-
pound should also be decided by the molecular structure feature which could normally be quantified through the quan-
tum parameters of the compound. Therefore, another advantage of the QSAR model is the direct connection of organic
adsorption characteristics with the molecular structures through the quantum parameters which can be calculated though
computer without tedious physical chemistry experiments, especially for the emerging organic compounds.

Furthermore, this model was developed using adsorption data exclusively from Fitrasorb-400 activated carbon, which
serves as a well-characterized reference material. The identified QSARs capture the fundamental influence of adsorbate
properties (electronic and structural) on adsorption affinity. While the absolute adsorption capacity (K value) can be influ-
enced by the surface heterogeneity of different activated carbons (e.g., oxygen-containing functional groups, ash content),
the underlying trends described by the quantum chemical descriptors are expected to be qualitatively transferable to
carbons with similar non-specific surface domains. To quantitatively predict adsorption onto carbons with vastly different
surface chemistries, future extensions of this framework will incorporate material-specific descriptors (e.g., surface O/C
ratio, point of zero charge) into a comprehensive model.

4.6 Limitations and future perspectives

It is important to note the limitations of the current model. The experimental data were obtained under natural aqueous
conditions (pH 5.3-8.0) without adjustment, and the descriptors were calculated for neutral molecular species. Conse-
quently, the model’s predictive ability for strongly ionizable emerging contaminants (e.g., metalaxyl and simazine) under
different pH conditions may be limited. Future work will focus on integrating pH-corrected molecular descriptors to signifi-
cantly expand the applicability domain of the QSAR model.
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5 Conclusion

The modeling results showed that the two key parameters (K and 1/n) of the Freundlich Isotherm are correlated well with
certain quantum chemical parameters which indicates that the applicability of the empirical Isotherm is actually related to
the molecular structure characteristics of the organic compounds. The specific quantum parameters determining the value
of K were discovered as yq(O+N), q(CH+)__, E, 0. Fukui(-) ., Wiberg(C-C) . , which indicates that the charge distri-
bution, carbon bond energy and active site energy in the molecular structure are the main factors affecting the organic
adsorption efficiency by activated carbon. The QSAR model of 1/n exhibited the similar finding that 1/n value is also cor-
related with the molecular structure characteristics.

The two optimal models were further confirmed to be stable, robust, and accurate by the standard evaluation. The two
QSAR models can be used to predict the adsorption efficiency of other similar compounds (subject to model applicability
domain testing) based on the related quantum parameters. Therefore, this study provides an important and convenient
reference method for evaluating the applicability of activated carbon adsorption unit to control various emerging organic
pollutants in drinking water plants and also provides them a basis for constructing an intelligence management system.

Future work will extend the QSAR framework to multi-solute systems by incorporating competitive adsorption coeffi-
cients and molecular dynamics simulations.
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