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Abstract

This paper investigates nonlinear vibration problems using VIBRANT (Vlbration
BehaviouR ANalysis Tool), a tool based on Python and Abaqus for the detailed anal-
ysis of complex mechanical systems. VIBRANT employs time-marching algorithms to
perform time domain finite element simulations under harmonic excitation, predicting
frequency domain behaviour. It addresses a significantly large range of nonlinearities,
including contacts and large displacements, as it uses a commercial finite element
software package Abaqus, while reducing computational time through parallelisa-
tion. The tool’s capabilities are examined through three academic benchmark exam-
ples. The first example examines a geometrically nonlinear Timoshenko beam sub-
jected to large displacements, which highlights the nonlinear behaviour due to signif-
icant deformation associated with stiffness nonlinearities. The second example is a
bar forced to move in axial direction by its frictional clamps that are modelled using
Jenkins contact elements. This example is also a demonstration of a stiffness non-
linearity. The third example involves an Euler-Bernoulli beam with a frictional contact
element, which demonstrates the effects of damping nonlinearities by the application
of a localised Coulomb friction element. All examples serve to validate VIBRANT’s
accuracy and efficiency in capturing the characteristics of nonlinear systems, empha-
sising its potential for industrial applications, particularly in aerospace engineering.
VIBRANT’s capacity to model a wide range of nonlinearities and to automate fre-
quency sweep analysis with minimal manual intervention represents a significant
advantage, providing a reliable and efficient approach to modelling and analysing
dynamic responses in engineering structures.

1 Introduction

The analysis of nonlinear mechanical systems poses significant challenges in engi-
neering, particularly for systems undergoing large deflections, experiencing contact
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interactions, and influenced by nonlinear material properties [1-5]. Complex systems,
such as those found in various engineering fields, require sophisticated analysis tools
to capture their dynamic behaviour accurately. Among these systems, the dynam-

ics of aeroengine components and assemblies stand out due to their complexity and
critical performance requirements [6—8]. These components, particularly bladed disc
systems, must operate under extreme conditions, making their accurate modelling
essential to ensure reliability and performance [9].

Nonlinear effects play a decisive role in the dynamic behaviour of aeroengine
assemblies. Friction at contact interfaces, partial slip at under-platform dampers,
and large-amplitude motions of rotating blades introduce amplitude-dependent stiff-
ness and energy dissipation that cannot be captured by linear models. These nonlin-
earities are responsible for the shift of natural frequencies, generation of superhar-
monics, and complex hysteretic damping observed in experimental tests. Compara-
ble nonlinear phenomena are also reported in geared or locally resonant structures,
where bifurcations and amplitude-dependent bandgap shifts emerge under harmonic
excitation [10-12]. Therefore, accurate prediction of nonlinear dynamic responses is
crucial for ensuring the structural integrity and lifing assessment of engine compo-
nents.

Under such extreme thermal and centrifugal environments, components expe-
rience significant interface friction, contact separation, and joint preload variation.
Even apparently simple sub-assemblies such as bolted or frictional joints display
path-dependent stiffness and damping that remain open challenges in high-fidelity
modal analysis. Recent developments in nonlinear continuation and model-reduction
frameworks show that addressing these challenges requires coupling frequency- and
time domain formulations capable of capturing localised nonlinearities and stochastic
effects [13,14].

Nonlinear mechanical vibration modelling techniques employ a variety of meth-
ods to analyse and predict the behaviour of systems under different conditions. Two
prominent methods are the Harmonic Balance Method (HBM) and time-marching
techniques. HBM is a frequency domain technique that approximates the solution of
nonlinear differential equations as a sum of harmonics, transforming time-dependent
problems into algebraic equations for computational efficiency in periodic solutions.
This method is particularly effective for large-scale systems [15], unsteady nonlinear
behaviours [16], and stochastic analysis under uncertain conditions [17]. Addition-
ally, HBM facilitates model order reduction in nonlinear systems, which is crucial for
managing complex geometrical nonlinearities [18].

HBM has been widely applied to study the nonlinear mechanical vibrations of
systems influenced by friction, providing a means to model dampers’ nonlinear
behaviour effectively [16,19—21]. Additionally, time-marching methods have demon-
strated efficacy in capturing nonlinear mechanical vibrations, with good agreement
between solutions and experimental data revealing intricate dynamics within friction
brake systems [22-25].
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Several adaptations and improvements to HBM have been developed. The Receptance Harmonic Balance Method
(RHBM) is effective for aero-engine models with nonlinear bearings, offering significant computational efficiency when
combined with time-marching solvers [26]. The Global Residue Harmonic Balance Method (GRHBM) enhances accu-
racy by incorporating all former global residual errors, making it particularly useful for analysing nonlinear vibrating beams
[27]. The Alternating Frequency/Time (AFT) domain technique addresses nonlinearities in fractional exponential models,
handling complex nonlinear problems efficiently [28—32].

Time-marching methods are time domain techniques that solve problems step-by-step through time, providing ver-
satility but often at a higher computational cost for long-term integrations. These methods are widely applicable to vari-
ous problems, including stiff systems [33,34], and can be improved using pseudotime marching with local time stepping
and multigrid acceleration for enhanced efficiency [16]. Advanced schemes in time marching ensure numerical stability,
especially for systems with stiff equations [33].

Lacayo et al. underline the necessity of both frequency and time domain simulations for correct analysis of large non-
linear systems, emphasising that a mixture of both domains is required for thorough knowledge and dependable mod-
elling [35]. For the purpose of comprehending the nonlinear vibrations of systems such as turbine blade-disc systems
with underplatform dampers, precise modelling and analytical approaches are necessary. Crucial elements in these stud-
ies are the precision of contact pressure distribution and the taking into account of zero-harmonic terms in multiharmonic
expansion [36]. Dynamic responses and variations in natural frequency can be accurately predicted by theoretical models
that incorporate empirically determined contact parameters [37]. The integration of dry friction dampers into turbine blade
studies has been made easier by quasi-linearisation techniques, which convert nonlinear differential equations into more
understandable algebraic forms [38].

Numerous computer techniques and tools have been developed recently to address the difficulties associated with
nonlinear system analysis. NLvib is notably adept in examining nonlinear structures, such contacts, which are especially
pertinent to aeroengine turbines because of their influence on structural integrity and performance [16]. The French-
developed MANLAB is a comprehensive tool for the continuation of periodic solutions in nonlinear systems. It effectively
explores the solution space of nonlinear equations by combining the asymptotic numerical method with the harmonic bal-
ance method [39—41]. Although it does not have continuation capabilities, another important tool is the open-source HB
solver Mousai, which offers a general-purpose solution to nonlinear vibration problems [42].

FORSE, an in-house code developed at Imperial College London, is recognised for its powerful capabilities in mod-
elling the frequency domain forced response of nonlinear systems [43—48]. Additionally, PERMAS, a software package
developed by Intes, performs harmonic balance on nonlinear systems to predict their dynamic behaviour [49,50]. The
combined use of these advanced computational tools underscores the importance of leveraging both frequency and time
domain simulations to achieve accurate and reliable modelling of complex nonlinear systems.

The most recent nonlinear vibration research increasingly focuses on integrating continuation-based bifurcation track-
ing with reduced-order and frequency—time hybrid methods. Approaches such as the nonlinear Wave Finite Element
Method and multi-parametric optimisation frameworks have demonstrated that nonlinearities, when properly resolved,
can drastically alter resonance placement and stability characteristics [11,12]. These studies collectively emphasise that
a practical computational environment must not only capture complex nonlinear effects but also remain compatible with
industrial-scale finite element workflows—precisely the gap that VIBRANT addresses.

The aim of this study is to investigate nonlinear vibration problems by using VIBRANT on representative academic
benchmark examples. Conventional methods of frequency sweep analysis often have a restricted range of nonlineari-
ties that they can analyse. Here, VIBRANT is employed to study the dynamic behaviour of complex mechanical systems
through time-marching simulations. VIBRANT is a time-marching approach for high-fidelity time domain simulations that
predicts frequency domain behaviour under harmonic stimulation. It is developed with Abaqus and Python. It can handle
a wide range of systems modelled in Abaqus and minimise computing time through its ability to parallelise calculations.
Three examples that deal with damping nonlinearities and stiffness are considered to illustrate VIBRANT’s application.
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In the first case, stiffness nonlinearities are highlighted by examining a geometrically nonlinear Timoshenko beam endur-
ing substantial displacements. In the second example, which also demonstrates stiffness nonlinearity, a bar is subjected
to axial motion by its frictional clamps and is modelled using Jenkins contact elements. In the third example, a localised
Coulomb friction element is applied to an Euler-Bernoulli beam with a frictional contact element to illustrate damping non-
linearities. When a steady state is attained, VIBRANT applies harmonic excitation and tracks reactions methodically, mon-
itoring vital characteristics such as vibration damping, amplitude, and kinetic and potential energies throughout an appro-
priate frequency range. These examples demonstrate how VIBRANT can be used in academic studies of nonlinear vibra-
tion, while also highlighting its potential to support future design and analysis of engineering systems, where parametric
studies can investigate the impact of design parameters on dynamic behaviour [34,51,52].

2 Overview of VIBRANT

VIBRANT (Vlbration BehaviouR ANalysis Tool) is a computer program that is designed to automate and perform fre-
quency sweep analysis of generic mechanical systems by integrating the robust capabilities of Abaqus with Python’s
flexibility when it comes to scripting. VIBRANT performs accurate time domain simulations, producing frequency domain
results and handling a wide range of nonlinearities and multiphysical phenomena. It is particularly effective in scenarios
involving nonlinearities like contact, local plastic deformations, and damping characteristics. Despite its computational
intensity, VIBRANT mitigates load through parallelisation, making it efficient and user-friendly for modern mechanical and
aerospace engineers.

2.1 Software dependencies

VIBRANT leverages several key components: Abaqus and Python are used for model setup, simulation, and data extrac-
tion. NumPy is employed for numerical operations, while Matplotlib is utilised for data visualisation. Additionally, standard
Python libraries such as os, math, and time are incorporated for system operations.

To use VIBRANT, place the Python script in the same directory as the Abaqus files or specify its path. Ensure both
Abaqus and Python are correctly installed and configured to avoid compatibility issues.

2.2 Architecture and workflow

VIBRANT is focused on dynamic analysis within Abaqus through its several key modules, each performing specific tasks
as shown in Fig 1.

3 Numerical examples

This section illustrates three numerical examples that validate and show the capabilities of VIBRANT. For compara-

tive purposes, two examples are also solved using NLvib, a well-established numerical tool written in MATLAB that
utilises HBM and continuation, a fundamentally different approach from VIBRANT [53-57]. The other example compares
VIBRANT’s performance with an example available in the literature, featuring both an analytical solution and a numerical
solution performed with HBM [52].

3.1 Numerical implementation details

In all examples, the structures are subjected to harmonic forcing of the form F,,(f) = F, sin(Qt), and frequency response
curves (FRFs) are obtained by sweeping the excitation frequency across a range that captures the first resonance. The
FREF is constructed using the steady-state root-mean-square (RMS) displacement response, extracted after the decay
of transients. For consistency of comparison, the excitation frequency is normalised by the first natural frequency of the
corresponding linear system, and the response amplitudes are normalised by the linear steady-state displacement at
resonance.
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1. Initialise:

— Define the frequency range.

|

Define node labels for data extraction and excitation.
— Define amplitude(s) and excitations.
— Create empty lists for storing extracted data (preallocation for efficiency).
2. Model Configuration:
— For each frequency in the range:
* Open the existing Abaqus model (.cae file).
# Update the excitation frequency.
* Save changes to a new model file.
3. Job Management:

— For each modified Abaqus model:
* Submit the analysis job to Abaqus.
* Wait for job completion.
4. Post-Processing:
— For each completed job:
* Open the output database (.odb file).
x Extract relevant data (e.g., displacement, stress).
* Compute response parameters and energy dissipation.
* Store extracted data in lists.
5. Data Analysis:
— Write the extracted data to text files or spreadsheets.
— Optionally, plot graphs for visualisation.

6. End

Fig 1. Outline of the framework that the software follows.

https://doi.org/10.1371/journal.pone.0338419.9g001

Time domain simulations in VIBRANT are performed through Abaqus with geometric nonlinearity enabled (NLGEOM=0N).
The nonlinear restoring force is evaluated at each time step, and the resulting displacement histories are used to compute
the FRFs. In contrast, NLvib employs the Harmonic Balance Method (HBM) and continuation to directly compute periodic
steady-state solutions in the frequency domain. These two fundamentally different approaches allow cross-validation of
the nonlinear response predictions and provide confidence in the robustness of the numerical results.

3.2 Example 1: Timoshenko beam undergoing large displacements

The first example involves a Timoshenko beam subjected to large displacements, illustrating VIBRANT’s capability to
handle geometric nonlinearities, which is a form of distributed nonlinearity. Both VIBRANT and NLvib are utilised to per-
form the simulation, and their results are compared to ensure consistency and accuracy in capturing the beam’s dynamic
behaviour under forcing that leads to large displacement.

The geometrically nonlinear Timoshenko beam employed in this study is discretised into 21 elements. The properties of
the model are taken from the publicly available example in NLvib’s repository [57,58]. Ten harmonics are used when the
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beam is modelled using NLvib. The beam dimensions are set to a height (h) of 40 mm, a width (b) of 40 mm, and a length
(L) of 1200 mm. The Young’s modulus (E) is 90 GPa, the shear modulus (G) is calculated as:

E
=3+ “
where v is Poisson’s ratio. The density (o) is 7850 x 10~° kg/mm?. The damping ratio is denoted by &, with the viscoelastic
constants for axial (1) and shear deformation (y) determined by:

u=Ex2xyExpxhxb (2)
y=Ex2xyGxpxhxb (3)

The system, as shown in Fig 2, is excited at its tip with harmonic forces of varying magnitudes to explore its nonlin-
ear response. This example allows the study of the beam’s frequency response and validates the performance of the
VIBRANT software against the established NLvib using HBM. By comparing these two methods and software packages,
the computational accuracy and robustness of VIBRANT are demonstrated, showing its ability to handle such nonlinear
systems accurately which are common in many mechanical and aerospace engineering applications. Some examples
could be aircraft engine fan blades, helicopter blades, and aircraft wings [6,7,59].

To emphasise, the only source of nonlinearity in this example is geometric, arising from large displacements and asso-
ciated nonlinear strain—displacement coupling in the Timoshenko beam formulation. No local nonlinearities are intro-
duced. In VIBRANT, this behaviour is captured via Abaqus by activating the NLGEOM=0N option, which renders the stiff-
ness displacement-dependent, K(u), resulting in a distributed geometric nonlinearity. This allows the method to capture
stiffening effects that occur under large deformation.

3.3 Example 2: Axial vibration of a bar with frictional clamps

As the second example, forced axial vibrations of a bar with frictional clamps are investigated. For the axial vibration
study, the bar dimensions are as follows: a length of 70 mm, a width of 14 mm, and a thickness of 4 mm. The rod is made
of a material with a density of 1400 kg/m?®, a Young’s modulus of 3.5 GPa, and a Poisson’s ratio of 0.38. The model uses
a one-dimensional finite element bar element with 71 nodes, each having a single degree of freedom to capture the bar’s
axial motion. To represent the clamps, a Jenkins contact element is attached to the nodes that are at the tip. This exam-
ple is taken from the literature where an analytical and a numerical solution employing AFT HBM are presented providing
a different validation for VIBRANT against an analytical solution and a different computer program that uses HBM other
than NLvib [52]. This example addresses a different type of nonlinearity that is localised and related to the stiffness. The
investigated system is shown in Fig 3.

Height h

Thickness b .
}11<f)
Ei ................... T Readings
2 3 45 6 7 8 91011121314151617 1819 25)
Node 1 E,v,p Node 21
Length L

Fig 2. Schematic visualisation of the 21-node Euler-Bernoulli beam with excitation at the free tip. Readings are taken from Node 21.

https://doi.org/10.1371/journal.pone.0338419.9g002
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Height h

Thickness b
wA(t) wp(t)

Clamp A-Upper Clamp B-Upper

Clamp A-Lower Clamp B-Lower
E,v,p

Node 1 Node 71
Readings Length L

Fig 3. Schematic visualisation of the bar system with clamps and excitation forces. Readings are taken from Node 71.

https://doi.org/10.1371/journal.pone.0338419.9g003

The frictional clamps introduce a localised nonlinearity, modelled using a Jenkins element with an elastic stick regime
and a slip force limited by the classical Coulomb threshold, uFy. The elastic stage is governed by a spring of stiffness kg,
after which sliding occurs once the restoring force reaches uFy. The values of 4 and Fy are taken directly from the refer-
ence [52]. The nonlinear elements are attached at the axial DOFs of Nodes 1 and 71, allowing the stick—slip transitions to
govern the axial vibration response of the rod.

3.4 Example 3: Cantilever beam with contact at the tip

This third example examines a cantilever Euler-Bernoulli beam excited by a concentrated force applied at its midpoint
(Node 11). The beam is modelled using a one-dimensional finite element approach and a nonlinear dry (Coulomb) friction
element attached to its free end (Node 20). The friction force is dependent on the velocity of the contact point, X, utilising
the tanh(X) function as an approximation of the nonlinearity, simulating a localised interaction between the beam and an
external component. Such scenarios are common in practical engineering systems where contact dynamics play a criti-
cal role [60]. The system’s dynamic response is analysed and compared using both VIBRANT and NLvib to validate the
accuracy and effectiveness of VIBRANT.

The Euler-Bernoulli beam is characterised by a length (L) of 2 m, a height (h) of 0.1 m, a thickness (b) of 0.15m, a
Young’s modulus (E) of 185 GPa, and a density (p) of 7830 kg/m3. The beam is discretised into 19 finite elements, creat-
ing a model with 20 nodes. The first node is clamped, representing a fixed boundary condition, while the twentieth node
is free and subjected to an excitation force F,,. A nonlinear dry friction element is introduced at the fourth node, which
utilises the tanh(z f) function to simulate frictional behaviour, where z is the spatial coordinate aligned with the transverse
deflection of the beam, z denotes the first time derivative of z, and t represents time.

The system configuration is illustrated in Fig 4. The dynamic response of the beam, particularly focusing on the first
bending mode, is analysed over a frequency range that encompasses the first peak in the frequency response curves.
The presence of the frictional contact element is expected to alter the system’s response, maintaining the first peak within

Height h

Thickness b Feg(t) Readings
Node 19

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node 1 E.v,p

Length L

Fig 4. Schematic visualisation of the 20-node Euler-Bernoulli beam with excitation from the middle and friction contact element at the free tip.
Readings are taken from Node 19.

https://doi.org/10.1371/journal.pone.0338419.9g004
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the bounds established by linear cases without the contact element, and with the tip node fixed, where the contact ele-
ment is initially attached.

The system is analysed using two different computational tools: the MATLAB toolbox NLvib and VIBRANT. NLvib spe-
cialises in the analysis of nonlinear vibrations using the HB method, enabling efficient computation of periodic solutions.
VIBRANT, on the other hand, is designed for the analysis of vibrations in complex mechanical systems through Abaqus,
using time domain simulations and time-marching techniques.

The comparison involves evaluating the system’s response under different maximum friction forces, ufFy, where u is
the friction coefficient and F is the normal contact force. This analysis highlights VIBRANT’s robustness and precision in
addressing damping nonlinearities within complex mechanical systems.

4 Results and discussions of the examples
4.1 Example 1: Timoshenko beam undergoing large displacements

Fig 5 shows the frequency response of a geometrically nonlinear Timoshenko beam subjected to large displacements.
The responses were obtained using both VIBRANT and NLvib for three different excitation force levels: F,, = 240.0N,
1,200.0N, and 2,400.0 N. The displacement amplitude is plotted against the excitation frequency on a logarithmic scale.

The figure illustrates that both VIBRANT and NLvib show consistent results across the range of excitation forces,
demonstrating good agreement between the two methods. As the excitation force increases, the displacement ampli-
tude also increases, and the peak amplitude shifts to higher frequencies, indicating a stiffening nonlinearity due to large
displacements. This shift is more pronounced at higher excitation levels.

For F., =240.0N (blue lines), the frequency response shows a clear resonance peak around 3.1 Hz. The resonance
peak remains well-defined and consistent between both VIBRANT and NLvib, with only minor differences in the displace-
ment amplitude.

At F,, =1,200.0 N (red lines), the resonance peak shifts slightly to the right, occurring at around 3.2 Hz. The displace-
ment amplitudes for this excitation level are higher, as expected, and again, VIBRANT and NLvib results are in good
agreement, with VIBRANT showing a slightly lower peak amplitude.

—-NLvib HB, F,, = 240.0 N
-» VIBRANT, F., = 240.0 N

—-NLvib HB, F,, = 1200.0 N
° _« VIBRANT, F,, = 1200.0 N
--NLvib HB, F,, = 2400.0 N
- VIBRANT, F., = 2400.0 N

Displacement Amplitude

2.5 3 3.5 4
Excitation Frequency

Fig 5. Frequency response of the cantilever Timoshenko beam subjected to large displacements, showing displacement amplitudes for
different excitation force levels (Readings are taken from the free tip and units in rad/s for frequency and m for displacement).

https://doi.org/10.1371/journal.pone.0338419.9g005
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For the highest excitation force, F,, = 2,400.0 N (black lines), the resonance peak further shifts to approximately
3.3 Hz. The results from both methods show increased displacement amplitudes, with VIBRANT again slightly under-
estimating the peak amplitude compared to NLvib. This trend suggests that VIBRANT may have a slightly conservative
approach in predicting peak displacements for very high excitation forces.

4.2 Example 2: Axial vibration of a bar with frictional clamps

Fig 6 shows the frequency response of the forced axial vibrations of a bar with frictional clamps for different levels of
imposed displacement/strain (strain is defined as imposed displacement divided by the length of the bar w,/L) levels
of 0.00014286, 0.00042857, 0.00071429, and 0.001 on the clamps. The results obtained from numerical solutions per-
formed by the mentioned HB code, VIBRANT, and analytical solutions, are presented in nondimensional form, with the
frequency axis divided by the reference value of the first axial mode of a clamped-clamped beam and the displacement
amplitude values divided by the displacement amplitude imposed on the clamps.

A key observation from the results is the presence of flat tops in the amplitude responses, indicative of full stick
behaviour where there is no slip. This occurs when the entire frictional contact is engaged, and the bar moves without
relative displacement at the frictional interface. At lower strain levels, the responses exhibit this flat-top characteristic,
implying full stick behaviour predominates.

As the strain level increases, the amplitude starts to deviate from the flat-top, indicating the onset of slip behaviour. The
analytical solutions, Numerical HB, and Numerical VIBRANT results align closely, validating the performance of VIBRANT
in capturing the dynamics of the bar with frictional clamps. The minor deviations seen in the results can be attributed to
the intrinsic damping present in the Abaqus model used by VIBRANT. This intrinsic damping prevents the amplitude from
reaching the theoretical maximum value of 1, even under full stick conditions.

1.27

-+Strain:0.00014286 Numerical HB

-+ Strain:0.00014286 Numerical VIBRANT
Strain:0.00014286 Analytical

-+Strain:0.00042857 Numerical HB

-+ Strain:0.00042857 Numerical VIBRANT
Strain:0.00042857 Analytical

-+Strain:0.00071429 Numerical HB

-+ Strain:0.00071429 Numerical VIBRANT

—Strain:0.00071429 Analytical
Strain:0.001 Numerical HB

- Strain:0.001 Numerical VIBRANT

—Strain:0.001 Analytical

0.8

Amplitude
o
(o]

0.4

0.2

Frequency

Fig 6. Frequency response of the bar with frictional clamps for different levels of imposed strain (Readings are taken at the contact point of
the beam and the clamps and units are nondimensionalised for frequency by dividing the frequency axis by the reference value of the first
axial mode of a clamped-clamped beam and displacement by dividing the displacement amplitude values by the displacement amplitude
imposed on the clamps).

https://doi.org/10.1371/journal.pone.0338419.g006
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The consistent flat tops across various strain levels in the Numerical VIBRANT results confirm that VIBRANT accu-
rately models the stick-slip transition. The slight reduction in amplitude due to intrinsic damping does not significantly
impact the overall trend, which still reflects the expected dynamic behaviour of the system.

With reference to Fig 6, it can be observed that when the normal load is constant, the full-stick regime dominance
within the selected frequency interval shrinks when the clamp motion amplitude, or W,/L ratio, increases. This means
that the slip region eventually expands and increases friction damping. The highest amplitude is found beyond the clamp
motion amplitude near the conclusion of the post-resonance full-stick regime. The existence of contact stiffness, which
also regulates the stick regime’s slope, provides an explanation for this. The system is not immediately activated by a sim-
ple harmonic force, and the stiffness of the bar is not the sole factor contributing to the system’s overall stiffness. In this
instance, a Jenkins element describes the interaction between the moving clamp and the bar over the contact. As a result,
the bar’s amplitude can somewhat exceed the clamp motion’s amplitude. For the same reason, there is a little rise near
the end of the stick region.

4.3 Example 3: Cantilever beam with contact at the tip

A thorough visual comparison between the linear (with fixed contact and without any contact) and nonlinear dynamic
responses of an Euler-Bernoulli beam subject to harmonic stimulation is provided by the frequency response curves
displayed in Figs 7—11. All of these examples’ computations are carried out using VIBRANT and NLvib. The frequency
response, F,,, as determined by NLvib and VIBRANT for various excitation amplitudes, is shown by the curves in each
panel. Plots show how the system behaves as it transitions from a dynamic regime that is linear to one that is heavily
influenced by frictional contact that is not linear.

The contact forces and the characteristics of the Euler-Bernoulli beam, which has a localised frictional contact at the
tip, have a major impact on its dynamic behaviour. The coefficient of friction, i, and the amplitude of excitation, F,,, are
the main factors that govern this interaction. They determine the stick, slip, and stick-slip behaviours, respectively, where
the surfaces slide against one another, move together without relative motion, and both are observed during the motion.

The system first shows a stiffening effect as u grows because stick behaviour predominates, which resists motion and
enhances the structure’s apparent stiffness. This behaviour is intricate and heavily reliant on the frictional contact proper-
ties and vibration amplitude.

The beam mainly stays in the stick phase at smaller excitation amplitudes, indicating that the nonlinearity-induced stiff-
ness change is negligible. However, the system enters the slip phase more frequently as the excitation force increases,

—_
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Fig 7. Frequency response curves of the cantilever beam with a localised frictional contact at its free tip for uFy = 3.00. The nonlinear contact
element is applied at Node 20, producing stick—slip behaviour that alters the dynamic response relative to the linear reference case.

https://doi.org/10.1371/journal.pone.0338419.9g007
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Fig 8. Frequency response curves of the cantilever beam with a localised frictional contact at its free tip for yFy = 10.00. The nonlinear contact
element is applied at Node 20, producing stick—slip behaviour that alters the dynamic response relative to the linear reference case.

https://doi.org/10.1371/journal.pone.0338419.g008
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Fig 9. Frequency response curves of the cantilever beam with a localised frictional contact at its free tip for ©tFy = 30.00. The nonlinear contact
element is applied at Node 20, producing stick—slip behaviour that alters the dynamic response relative to the linear reference case.

https://doi.org/10.1371/journal.pone.0338419.g009
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Fig 10. Frequency response curves of the cantilever beam with a localised frictional contact at its free tip for iy = 150.00. The nonlinear
contact element is applied at Node 20, producing stick—slip behaviour that alters the dynamic response relative to the linear reference case.

https://doi.org/10.1371/journal.pone.0338419.g010

PLOS One | https://doi.org/10.1371/journal.pone.0338419 January 21, 2026 11/ 16



https://doi.org/10.1371/journal.pone.0338419.g008
https://doi.org/10.1371/journal.pone.0338419.g009
https://doi.org/10.1371/journal.pone.0338419.g010
https://doi.org/10.1371/journal.pone.0338419

PLO.“... One

——NLvib HB, F., = 0.5N, Nonlinear

-=-VIBRANT, F., = 0.5N, Nonlinear

~o-No Connection/Contact with NLvib HB, F., = 0.5N
-x-No Connection/Contact with VIBRANT, F,, = 0.5N
-o-Rigid Connection with NLvib HB, F,, = 0.5]N
-x-Rigid Connection with VIBRANT, F,, = 0.5N
——NLvib HB, F., = 1N, Nonlinear

-=~-VIBRANT, F., = 1N, Nonlinear

~2-No Connection/Contact with NLvib HB, F., = 1N
- No Connection/Contact with VIBRANT, F,, = 1N
-o-Rigid Connection with NLvib HB, F,, = 1N
|-=-Rigid Connection with VIBRANT, F,, = 1N
——NLvib HB, F,, = 2N, Nonlinear

---VIBRANT, F,, = 2N, Nonlinear

~a-No Connection/Contact with NLvib HB, F,., = 2N
/|-»-No Connection/Contact with VIBRANT, F., = 2N
-9-Rigid Connection with NLvib HB, F,, = 2N
-x-Rigid Connection with VIBRANT, F,, = 2N

Fig 11. Legend for the frequency response curve figures showing the different response types and analysis methods used in the cantilever
beam with frictional contact study.

https://doi.org/10.1371/journal.pone.0338419.g011

especially at peak vibration velocities. Through frictional damping, energy is dissipated during this transition, resulting in
a softening effect that is typified by smaller peak amplitudes in the frequency response. It is not enough to say that the
nonlinear response shows an increase in stiffness. Rather, it depicts the energy loss at the frictional contact.

As a result, the nonlinear frictional damping is essential to how the system reacts to stronger excitation forces. It stops
the peak amplitudes from increasing linearly, which is what one would anticipate in a frictionless system. As a result, there
is no proportional connection between F,, and peak amplitudes in the frequency response curves that arise. Rather, they
disclose a complicated reliance on both u and F,,, which controls the dynamic shift between stick and slip regimes and
forms the nonlinear behaviour that is seen.

The dynamic equilibrium between inertia, stiffness, and damping inside the beam structure governs the physics under-
lying these results. Additional forces that depend on displacement and velocity are introduced by the insertion of a fric-
tional contact element at the tip; these forces do not exist in a linear setting. The system’s equilibrium is changed by these
forces, which become more noticeable as the excitation frequency gets closer to the natural frequency. This leads to the
observed departure from linear behaviour.

It is evident that the outcomes generated by NLvib and VIBRANT exhibit a high degree of agreement. The two sets
of curves show good agreement, however the amplitude computed using VIBRANT appears to be consistently less than
the amplitude computed using NLvib. This difference may be explained by the artificial/extra damping that NLvib does
not include, but Abaqus provides by default in its element definition in order to aid numerical convergence and stability in
time domain simulations. As a result, it is discovered that the amplitudes computed using VIBRANT are about up to 11%
(maximum observed error) lower than those obtained using NLvib.

5 Conclusion

The purpose of VIBRANT: Vlbration BehaviouR ANalysis Tool, which is presented in this paper, is to improve computa-
tional modelling of complicated mechanical systems, especially in the field of aeronautical engineering. VIBRANT com-
bines the scripting flexibility of Python with the robustness of Abaqus to enable accurate, high-fidelity time domain simula-
tions that transfer into frequency domain analysis. Because of VIBRANT's ability to compute in parallel, considerably less
computational time is required to handle a variety of systems and nonlinearities that are simulated using Abaqus.
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The tool mainly serves the domains of mechanical and aeronautical engineering by offering important insights into intri-
cate nonlinear systems, which may have an impact on the advancement of aircraft engines in the future. When it comes
to investigating dynamic systems and laying the groundwork for further studies and practical applications, VIBRANT is a
strong and trustworthy instrument. The creation and use of the tool in this work emphasises the advantages of integrating
robust time domain solvers for complicated systems and advances computational modelling.

Three numerical examples demonstrate VIBRANT’s capabilities and validate its performance. The first example, involv-
ing a geometrically nonlinear Timoshenko beam subjected to large displacements, highlighted VIBRANT’s proficiency
in capturing geometric nonlinearities and provided a comparative analysis against NLvib. The second example explored
forced axial vibrations of a bar with frictional clamps, revealing detailed dynamics and validating results against analyti-
cal solutions and NLvib. The third example, focusing on an Euler-Bernoulli beam with a frictional contact element at its tip,
showcased VIBRANT’s effectiveness in handling damping nonlinearities and provided a comprehensive comparison with
NLvib’s harmonic balance method.

Results consistently showed excellent agreement between VIBRANT and NLvib, demonstrating VIBRANT’s robustness
and accuracy in modelling complex nonlinear systems. Minor deviations in amplitude responses, attributed to intrinsic
damping in Abaqus, were within acceptable limits, underscoring VIBRANT’s reliability.

VIBRANT’s capability to model a wide range of nonlinearities and automate frequency sweep analysis with minimal
manual intervention represents a significant advancement in the field of nonlinear vibration analysis. The tool’s proficiency
in handling complex interactions within mechanical systems makes it particularly suitable for industrial applications, espe-
cially in aerospace engineering.

For future work, the addition of continuation methods could enable the capture of unstable branches in the frequency
response, providing a more comprehensive understanding of the system’s dynamic behaviour. Implementing model order
reduction techniques could further reduce computational load, making VIBRANT even more efficient and applicable to
larger, more complex systems.

By addressing these areas, VIBRANT can further enhance its performance, offering more detailed insights into the
dynamic behaviour of nonlinear systems and demonstrating its applicability across various engineering fields.
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