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Abstract 

Prostate cancer (PCa) remains a leading cause of cancer-related mortality in men, 

with challenges in diagnosis and treatment due to tumor heterogeneity. This study 

identifies palmitoylation-related signature genes as potential diagnostic and thera-

peutic targets. Integrating GEO datasets, six differentially expressed genes (DEGs) 

linked to palmitoylation were identified. Machine learning algorithms (LASSO, RF, 

SVM) selected three core genes: TRPM4, LAMB3, and APOE. A diagnostic model 

based on these genes achieved an AUC of 0.929, demonstrating robust accuracy in 

distinguishing PCa from normal tissues. Functional analysis revealed roles in lipid 

metabolism and immune modulation, with ssGSEA highlighting correlations between 

key genes and immune cell infiltration. Experimental validation showed that LAMB3 

overexpression suppressed PCa cell proliferation, migration, and invasion, while 

knockdown enhanced these processes. Molecular docking identified diethylstilbestrol 

as a potential therapeutic agent targeting LAMB3 and APOE. These findings empha-

size the clinical relevance of palmitoylation-related genes in PCa diagnosis and ther-

apy, offering novel biomarkers and insights for personalized treatment strategies.

1.  Introduction

Prostate cancer (PCa) ranks among the most prevalent malignant tumors in males 
worldwide [1,2]. According to global cancer statistics, PCa represents the second 
leading cause of cancer-related mortality in the male population worldwide. The diag-
nosis of prostate cancer currently relies on a combination of serum prostate- 
specific antigen (PSA) testing, digital rectal examination (DRE), imaging modalities 
(e.g., multiparametric MRI), and histopathological confirmation via prostate biopsy 
[3]. Despite their critical role in early detection, these approaches are limited by the 
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marked heterogeneity of prostate cancer, which contributes to persistent challenges 
in overdiagnosis and overtreatment [4]. Therapeutic strategies encompass con-
ventional modalities such as surgical resection, radiotherapy, androgen deprivation 
therapy (ADT), and chemotherapy, as well as emerging strategies including molec-
ularly targeted therapies and immunotherapies [5]. However, the development of 
castration-resistant prostate cancer (CRPC), characterized by resistance to androgen 
deprivation, remains a major therapeutic hurdle. This resistance underscores the 
urgent need for innovative approaches to overcome treatment-refractory disease and 
improve clinical outcomes [6,7].

Protein acylation (including S-prenylation, N-myristoylation, and S-palmitoylation), as 
a class of dynamic and reversible post-translational modifications (PTMs), plays a cen-
tral role in cell signal transduction and sub – organelle function regulation by modulating 
protein membrane localization, stability, and interaction networks [8,9]. Among them, 
S – palmitoylation modifies proteins by covalently attaching to the sulfhydryl group of 
cysteine residues through a thioester bond and is directly involved in protein membrane 
anchoring, conformational maturation, and vesicle transport. This modification widely 
influences physiological processes such as neurotransmission and immune response by 
dynamically regulating the activities of membrane receptors (e.g., GPCRs), ion channels 
(e.g., the TRP family), and cell adhesion molecules (e.g., integrins) [9–12].

In recent years, studies have found that palmitoylation enhances the nuclear 
translocation ability and transcriptional activity of the androgen receptor, promoting 
the proliferation of prostate cancer cells [13–15]. It also remodels the lipid metabo-
lism pathway in the prostate cancer micro – environment by modifying key metabolic 
proteins such as UQCRC2 and N0DUFS1 [16,17]. Therefore, a comprehensive anal-
ysis of the key regulatory genes of palmitoylation is necessary and has become an 
important breakthrough point for the precision treatment of prostate cancer.

This study aims to identify and validate palmitoylation-related gene signatures 
associated with prostate cancer using the Gene Expression Omnibus (GEO) data-
base and machine learning approaches. The LASSO regression, random forest (RF), 
and support vector machine (SVM) algorithms were employed to construct a diag-
nostic model for selecting key genes with diagnostic value. The immune infiltration 
characteristics of these key genes were analyzed through single-sample gene set 
enrichment analysis (ssGSEA), and a molecular interaction regulatory network was 
established using Cytoscape software. Subsequently, molecular docking techniques 
were applied to predict potential therapeutic agents targeting core genes. Finally, the 
expression of critical genes was validated via quantitative real-time PCR (qRT-PCR) 
and Western blot (WB) experiments to elucidate their complex mechanisms in tumor 
regulation and diagnostic significance in prostate cancer (PCa).

2.  Methods and materials

2.1.  Data acquisition

We utilized the Gene Expression Omnibus (GEO) database to collect information 
on PCa. In our research, the datasets GSE46602, GSE70768, and GSE71016 were 
extracted as the training sets, while GSE69223 was used as the test set. Initially, the 
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datasets GSE46602, GSE70768, and GSE71016 were subjected to batch effect correction using the “sva” R package. 
To ensure consistency and remove any potential biases, the datasets were combined, and principal component analysis 
(PCA) was used to simplify the data and eliminate batch effects (Fig 1A-D). The datasets included in this study were 197 
prostate adenocarcinoma samples and 134 adjacent normal prostate tissues. All cancer samples were treatment-naïve, 
localized PCa cases (no metastatic or CRPC samples were included). Normal samples were derived from histologically 
confirmed non-cancerous regions of prostates from age-matched donors (median age: 62 years). Gleason scores for 
cancer samples were distributed as follows: Gleason = 4–6 (n = 47), Gleason = 7 (n = 132), Gleason = 8–10 (n = 18). Subse-
quently, differential expression analysis was performed on the integrated dataset using the “limma” R package to identify 
differentially expressed genes (DEGs) meeting the criteria of |logFC| > 1 and p.adjust < 0.05. Palmitoylation-related genes 
were obtained from the GeneCards database (https://www.genecards.org/) using “palmitoylation” as the search keyword, 
a total of 1,611 genes were obtained. The filtering criteria of “Protein Coding” and a relevance score > 2 resulted in the 
identification of 1306 related genes (S1 Table). Venn diagrams were used to identify DEGs associated with palmitoylation. 
Heatmaps were also generated to illustrate the expression patterns of palmitoylation-related DEGs.

2.2.  Enrichment analysis

Gene Ontology (GO) analysis was conducted to perform large-scale functional enrichment, considering biological pro-
cesses (BP), molecular functions (MF), and cellular components (CC). The “limma,” “clusterProfiler,” “enrichplot,” and  

Fig 1.  Dataset merge and calibration. (A) Box plot of the integrated dataset before calibration (B) and after calibration. (C) PCA map of the integrated 
dataset before calibration and (D) after calibration. PCA: principal component analysis.

https://doi.org/10.1371/journal.pone.0338407.g001
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“org.Hs.e.g.,db” R packages were used for enrichment analysis and visualization of palmitoylation-related DEGs. In Gene 
Set Enrichment Analysis (GSEA), genes were compared between two biological states to determine statistical differences. 
Based on logFC permutations of GEO data, GSEA was used to investigate differences in biological processes between 
groups. The GSVA package was used to calculate enrichment scores for important pathways in the MSigDB database by 
analyzing the gene expression data from each sample.

2.3.  Screening characteristic-related biomarkers via machine learning

Next, logistic regression analysis was performed on the DEGs and their expression matrices in the integrated dataset. 
Three machine learning methods were employed to evaluate key feature genes in PCa. The Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm and the “glmnet” package were used for dimensionality reduction and feature selec-
tion between PCa patients and normal samples. Determine the λ value with the smallest error through 10-fold cross- 
validation. The Random Forest (RF) algorithm was applied to select feature genes by modeling multiple decision trees 
through ensemble learning, counting the prediction results of each tree, and selecting the optimized outcome. By drawing 
the OOB error curve, the minimum number of trees when the error is stable is selected to ensure the stability of the model, 
and then the genes with higher importance rankings are screened. Additionally, Support Vector Machine Recursive Feature 
Elimination (SVM-RFE) was used to assess the average error rate via 10-fold cross-validation to identify the point with the 
least error. LASSO regression was chosen for high-dimensional data shrinkage and collinearity reduction, RF for non-linear 
feature importance ranking via ensemble decision trees, and SVM-RFE for recursive elimination of low-weight features. 
Integrating these methods balances LASSO’s sparsity, RF’s robustness to noise, and SVM’s margin maximization, reducing 
overfitting risk. Venn diagrams were then used to identify overlapping genes from the three algorithms.

2.4.  Diagnostic value of the biomarkers in PCa

The “ggpubr” R package was used to examine the differences in these hub genes and evaluate the predictive value of 
the established biomarkers. A significance level of P < 0.05 was considered statistically significant. Subsequently, the 
“pROC” R package was used to generate ROC curves in a training group consisting of 197 PCa cases and 134 normal 
controls. The area under the curve (AUC) values were calculated to assess the diagnostic impact of palmitoylation- 
related signature genes in PCa compared to normal samples. The “rms” R package was employed to construct nomo-
grams, and Decision Curve Analysis (DCA) was introduced using the “ggDCA” package to determine model accuracy. 
DCA evaluated whether the clinical prediction model had an optimal curve direction. Additional calibration analysis was 
performed to plot curves reflecting the diagnostic model’s capability based on palmitoylation-related signature genes.

Considering the inherent “black box” nature of machine learning models, we implemented the SHapley Additive exPla-
nations (SHAP) algorithm to quantify the contribution of each feature to the prediction result. This method assigns a SHAP 
value to each feature, thereby enabling an interpretable assessment of the impact of that feature on the model’s prediction.

2.5.  Analysis of correlations between identified genes and immune cell infiltration

Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to classify 28 different types of immune cell matrices. A 
reference set of 28 immune cell subtypes was used to estimate the presumed abundance of immune cells. Immune cell matrix 
infiltration was generated based on a significance level of P < 0.05. The “corrplot” program was used to illustrate the associa-
tions between core genes and the infiltration of 28 different immune cells, establishing correlations in heatmaps and boxplots.

2.6.  mRNA-RBP, mRNA-TF, and mRNA-drug interaction networks

The StarBase v3.0 database was used to predict target RNA-binding proteins (RBPs) for 46 key genes, resulting in an 
mRNA-RBP regulatory network. Interaction networks of genes with similar functions were predicted using key genes 
retrieved from the STRING database (http://string-db.org/). Additionally, the Drug Signatures Database (DSigDB) (https://

http://string-db.org/
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dsigdb.tanlab.org/) was used to predict potential drugs interacting with key genes. Cytoscape software was employed to 
generate drug regulatory and interaction networks.

2.7.  Molecular docking

Based on the results of the drug enrichment analysis, laminin subunit beta 3 (LAMB3) and apolipoprotein E (APOE) 
were selected as targets, with diethylstilbestrol identified as a potential drug. The drug structure was obtained from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). We used the CBDOCK online site (https://cadd.labshare.cn/) to 
predict and visualise the protein structures of core genes.

2.8.  Cell culture, transfection and cohorts establish

The human PCa cell lines, LNCaP and PC3, were routinely maintained in RPMI-1640 medium (Gibco, USA) supple-
mented with 10% fetal bovine serum (FBS, HyClone, USA) and 1% penicillin/streptomycin (Thermo Fisher Scientific) 
under standard culture conditions (37°C, 5% CO2). LNCaP and PC3 cells were evenly plated in 6-well plates. Once the 
two cell lines reached approximately 80–90% confluence, they were transfected following the provided instructions. Due 
to the presence of the puromycin resistance gene in the lentiviral plasmid, lentivirus-infected cells can be selected by 
puromycin. Eventually, two comparison cohorts were formed (OE-Ctrl, OE-LAMB3; Sh-Ctrl, Sh-LAMB3).

2.9.  RT-qPCR analysis

RNA was extracted from PCa cells using TriZol (R0016, Beyotime, China). The extracted RNA was reverse-transcribed 
into complementary DNA (cDNA) using the PrimeScript™ cDNA Synthesis Kit (6210A, Takara, Japan). Quantified expres-
sions were detected using SYBR Green qPCR Master Mix and the 2-ΔΔCq method.

The RT‑PCR primer sequences (Invitrogen, CA, USA) were LAMB3 (forward) 5′‑CCAAAGGTGCGACTGCAATG‑3′ and 
(reverse) 5′‑AGTTCTTGCCTTCGGTGTGG‑3′. GAPDH (forward) 5′‑ACAACTTTGGTATCGTGGAAGG‑3′ and (reverse) 
5′‑GCCATCACGCCACAGTTTC‑3′.

2.10.  Western blot analysis

Proteins were separated by electrophoresis on a 4%−12% SDS-PAGE gel and transferred to a PVDF membranes, which 
were blocked with a 5% skim milk solution at room temperature for 1 hour. Subsequently, the membranes were incubated 
overnight at 4°C with primary antibodies against LAMB3 Rabbit Polyclonal Antibody (HA500480; 1:1000; HUABIO; China) 
and β-actin (R1207-1; 1:10,000; HUABIO; China). Following that the membranes were incubated with secondary antibod-
ies (5151P; 1:3,000; CST; China) was performed at room temperature for 1 hour. The membranes were visualized using 
the Odyssey DLx Imaging System (LICORbio™, USA).

2.11.  Cell proliferation assay

2.11.1.  Cell counting Kit-8.  Sh-Ctrl, Sh-LAMB3, OE-Ctrl, and OE-LAMB3 cell lines of LNCaP and PC3 were plated 
in 96-well plates with 4 replicate wells of 5000 cells/well per cell line. The plates were incubated at 37°C in a 5% CO

2
 

atmosphere for continuous monitoring over 5 days. The CCK-8 Reagent Assay Kit (C0037, Beyotime, China) was added 
at 10 µl per well. PCa cells were further incubated at 37°C in a 5% CO

2
 for 1 hour, andthe optical density (OD) was 

measured using a microplate reader at a wavelength of 450 nm.
2.11.2.  EdU.  Cell proliferation experiments were conducted using the BeyoClick™ EdU Cell Proliferation Kit 

(C0078S, Beyotime, China). First, Click reaction (50 μl) containing EdU (20 μM) was prepared and added to a 96-
well plates (5000 cells/well), followed by incubation for 2 hours. Cells were fixed with 4% paraformaldehyde for 30 
minutes. Subsequently, 0.5% Triton X-100 was added for cell permeabilization. After discarding the waste liquid, Azide 
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Alexa Fluor 594 (a fluorescent-labeled small molecule azide probe) and Hoechst 33342 staining solution were added 
successively and incubated in the dark for 30 minutes. Finally, the staining solution was discarded and proliferating 
cells were observed under a fluorescence microscope (EVOS™ M7000 imaging system, thermoFisher, USA) and an 
observation objective (Olympus™ 20X); Finally, ImageJ software was used to calculate the EdU-positive cells in the 
field of view.

2.12.  Colony formation assay

Cultured cells in the logarithmic growth phase were diluted to 5000 cells per well and seeded into 6-well plates which 
containing culture medium. The cells were cultured at 37°C in a 5% CO

2
 for 2 weeks. Afterward, the cells were washed 

twice with PBS and fixed with 4% paraformaldehyde for 30 minutes. Colonies were stained with 0.1% crystal violet for 15 
minutes and washed with water. Finally, clones consisting of more than 10 cells were counted.

2.13.  Transwell migration/invasion assay

2.13.1.  Transwell migration assay.  An 8 µm Transwell chamber (3395, Corning, USA) was placed into a 24-well 
plate. RPMI-1640 medium containing 20% FBS was added to the lower chamber, and a cell suspension in basal medium 
was added to the upper chamber, with a cell density of 5000 cells/well for each stable cell line. After incubation at 37°C 
for 18 hours, the Transwell chamber was removed and washed with PBS. Cells that had not migrated were wiped from 
the upper surface of the chamber using a cotton swab. Methanol was added to fix the cells for 20 minutes. Finally, 0.01% 
crystal violet solution was added for 15 minutes. Three random fields were observed under an inverted microscope for 
imaging and recording.

2.13.2.  Transwell invasion assay.  Compared to the Transwell migration assay, Matrigel (354230, Corning, USA) was 
applied to the bottom of the chamber before seeding tumor cells. Tumor cells degraded from the Matrigel by secreting 
hydrolytic enzymes and then passed through the pores to the lower surface of the chamber. This experiment simulates the 
process of tumor cells hydrolyzing the extracellular matrix in vitro to accelerate invasion and metastasis. The remaining 
steps were consistent with the migration assay.

2.13.3.  Wound healing assay.  PC3 and LNCaP cells were seeded into 6-well plates and cultured until they 
reached 95% confluence. At this stage, uniform scratches were generated in the cell monolayers using a sterile 200 µl 
pipette tip. To ensure that wound closure reflected cell migration rather than proliferation, the cells were incubated with 
serum-free media containing 1 µg/mL mitomycin C. Wound healing progression was monitored by capturing images at 
0, 12, 24, and 36 hours post-scratching under a microscope at 10 × magnification. The wound width at each time point 
was quantified using ImageJ software, and the wound closure rate was calculated based on the reduction in wound 
area over time.

2.14.  Flow cytometry for apoptosis detection

Stable cell lines were plated in 6-well plates at 500,000 cells per well. Following the instructions of the Annexin V-FITC 
Apoptosis Detection Kit (C1062S, Beyotime, China), 300 µl of 1 × binding buffer and 5 µl of Annexin V-FITC were added, 
mixed thoroughly, and incubated in the dark for 10 minutes. Finally, 5 µl of PI and 200 µl of 1 × binding buffer were added 5 
minutes before detection.

2.15.  Statistical analysis

All statistical analyses were performed using Perl version 5.32.1 and R software version 4.4.1. Additionally, GraphPad 
Prism 10.0 (GraphPad Software Inc., USA) was used for statistical evaluation and visualization of data. A P-value<0.05 
was considered statistically significant.
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3.  Results

3.1.  Identification of DEGs in PCa

Using the “limma” R package, DEGs were identified from the GEO database (GSE46602, GSE70768, and GSE71016) 
in 197 PCa cases and 134 normal controls. Among them, the up-regulated genes with the most significant differential 
expression were HPN, TRPM4 and RAB17, and the down-regulated genes were GSTP1, TRIM29 and LAMB3 (S1 Fig). 
To find genes related to palmitoylation, we integrated genes obtained from the GeneCards database and relevant litera-
ture with the identified DEGs. The intersection of the two resulted in six overlapping DEGs, including three up-regulated 
and three down-regulated genes. These findings are visually represented in the heat map (Fig 2A-C).

3.2.  Functional enrichment analysis

To elucidate the potential roles of the six palmitoylation-related genes in PCa, GO, KEGG, and GSEA analyses were 
performed using the “clusterProfiler” R package. The GO analysis showed that these genes were significantly enriched in 
biological processes related to lipid metabolism and protein modification (Fig 2D-E). Specifically, the biological processes 
included the organization of protein-lipid complexes, plasma lipoprotein particle organization, and regulation of protein 
secretion. Additionally, molecular functions such as cholesterol transfer activity, enzyme inhibitor activity, and heparan 
sulfate proteoglycan binding were closely associated with these genes. These results suggest that palmitoylation may 

Fig 2.  Differential analysis of integrated datasets, and GO/KEGG enrichment analysis. (A) Heatmap of the integrated dataset. (B) Venn diagrams 
of DEG and palmitoylation in the dataset. (C) Heatmap of palmitoylation-related genes. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (D-E) The GO enrichment 
analysis. (F) Network Diagram of KEGG enrichment analysis. BP: biological process; CC: cellular component; MF: molecule function.

https://doi.org/10.1371/journal.pone.0338407.g002

https://doi.org/10.1371/journal.pone.0338407.g002
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play a significant role in lipid metabolism and signaling in prostate cancer. KEGG enrichment analysis indicated that the 
DEGs were primarily associated with cholesterol metabolism, amoebiasis, and toxoplasmosis (Fig 2F). The GSEA results 
showed that pathways enriched in the PCa group included ribosome, DNA adduct formation in chemical carcinogenesis, 
cytoskeleton in muscle cells, hypertrophic cardiomyopathy, and amoebiasis (S2 Fig).

3.3.  Identification of optimal diagnostic gene biomarkers for PCa

Given the differences between PCa patients and healthy individuals, our study aimed to identify the diagnostic potential 
of palmitoylation-related genes. Three machine learning methods such as LASSO, RF, and SVM-RFE were employed 
to effectively distinguish PCa from control samples (Fig 3A-D). LASSO logistic regression along with penalty parameter 
tuning and ten-fold cross-validation, identified four significant PCa-related features. Subsequently, SVM-RFE normalized 
an ideal set of three genes, while RF selected six core genes. The intersection of results from LASSO, RF, and SVM-RFE 
yielded three key genes: Transient Receptor Potential Melastatin 4 (TRPM4), LAMB3, and APOE, which were used for 
further evaluation. The expression of each core gene is shown in Fig 4A. A diagnostic model based on these three core 
genes in the integrated dataset achieved an AUC of 0.929 (Fig 4F). ROC curve validation for each key gene demonstrated 
diagnostic accuracy (Fig 4B). A nomogram was constructed based on the three core genes, showing that LAMB3 was 
much better at diagnosing the PCa model than the other variables. Decision Curve Analysis (DCA) was used to evaluate 
the clinical application of the model, which demonstrated favorable performance. Calibration curves further confirmed the 
model’s high diagnostic accuracy for PCa (Fig 4C-E). The diagnostic ability of our diagnostic model was also confirmed in 

Fig 3.  Screening of palmitoylation genes based on machine learning algorithms. (A) Results of Lasso regression analyses. (B) Results of SVM-
RFE. (C) Results of RF modelling. (D) Venn diagrams showing crossover genes of LASSO, SVM-RFE and RF algorithms.

https://doi.org/10.1371/journal.pone.0338407.g003

https://doi.org/10.1371/journal.pone.0338407.g003
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the GSE69223 dataset (Fig 4G). Overall, these data highlight the precision and specificity of the logistic regression model 
in distinguishing PCa samples using independent marker genes.

SHAP interpretability analysis revealed different functional contributions: LAMB3 (SHAP value = 0.238), TRMP4(SHAP 
value = 0.106), and APOE (SHAP value = 0.086), among which LAMB3 emerged as the most influential predictor (Fig 5A). 
At low expression levels, LAMB3 makes a significant contribution to peak prediction (Fig 5B), and has a strong interaction 
with TRMP4 (Fig 5C). Force-oriented analysis (Fig 5D) further demonstrated that LAMB3 (8.76, Δ = −0.41) and TRMP4 
(9.63, Δ = −0.231) acted as the main negative modulators, driving the predicted value (f (x) = 0.00011) lower than the 
benchmark expectation (E[f (x)] = 0.631). Therefore, based on the results of the SHAP analysis, we chose LAMB3, which 
has the highest contribution to the model and the largest AUC among the model genes, as the object for further analysis.

3.4.  Immune infiltration analysis

Using ssGSEA, we assessed the correlation between the expression profiles of 28 immune cell types in PCa and normal 
groups. Based on the immune infiltration analysis and intergroup comparison boxplots, the abundance of 28 immune cell 
types was analyzed and visualized (Fig 6A). Significant differences (p < 0.05) were observed in the expression of 20 immune 
cell types, including plasmacytoid dendritic cells, central memory CD4 T cells, macrophages, immature dendritic cells, type 2 
T helper cells, effector memory CD8 T cells, monocytes, CD56dim natural killer cells, mast cells, natural killer T cells, natural 
killer cells, activated B cells, effector memory CD4 T cells, regulatory T cells, central memory CD8 T cells, activated CD8 
T cells, type 1 T helper cells, gamma delta T cells, CD56bright natural killer cells, and activated CD4 T cells. A correlation 
heatmap illustrated the relationship between the abundance of 28 statistically significant immune cell types (p < 0.05) and 

Fig 4.  Diagnostic and validation analysis of model. (A) Expression analysis of model genes. (B) ROC verification of the model genes. (C) Diagnostic 
model genes in nomograms. (D) Calibration curve of the diagnostic model. (E) DCA plot of the diagnostic model. (F) ROC verification of the diagnostic 
models. (G) Validation of the diagnostic model in the test group GSE69223.

https://doi.org/10.1371/journal.pone.0338407.g004

https://doi.org/10.1371/journal.pone.0338407.g004
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the expression of key genes (Fig 6B). APOE showed positive correlations with most immune cells, while TRPM4 exhibited 
negative correlations. While ssGSEA suggested correlations between APOE/LAMB3 and immune cell infiltration, bulk RNA-
seq cannot distinguish cell-type-specific expression. SCGB1A1 and APOE may originate from stromal or immune cells rather 
than tumor epithelium. These findings require validation using spatial transcriptomics or flow cytometry.

3.5.  mRNA-RBP, mRNA-TF, and mRNA-drug interaction networks

The STRING database analyses predicted protein interaction networks for key genes (Fig 6C). mRNA-RBP data from the 
ENCORI database were used to predict interactions between RBPs and key genes (Fig 6D). Using Cytoscape, an mRNA-
RBP regulatory network was constructed, comprising 46 RBP molecules and 60 mRNA-RBP interactions. Subsequently, 
our enrichment analysis of the RBP results indicated that regulation of mRNA metabolic process, regulation of translation 
and RNA catabolic process are its main functions (S3 Fig). Analysis of DsigDB data identified potential drugs or com-
pounds related to key genes (Fig 6E). An mRNA-drug regulatory network was created with Cytoscape, showing the five 
most important drugs or molecular compounds related to the core genes (Table 1)

3.6.  Molecular docking

Based on drug regulatory network analysis, molecular docking was performed to investigate whether diethylstilbestrol tar-
gets LAMB3 and APOE to regulate palmitoylation modification (S4A–S4B Fig). The docking results showed that the drugs 
binding energies with APOE and LAMB3 protein were lower than −5 kcal·mol⁻1, suggesting the drug binds easily to the 

Fig 5.  SHAP interpretable analyses on prognostic models screening for characterization genes that contribute the most. (A) Feature impor-
tance ranking bar chart. (B) Bee colony diagram. (C) Dependence Plot. (D) Waterfall diagram for localized explanations.

https://doi.org/10.1371/journal.pone.0338407.g005

https://doi.org/10.1371/journal.pone.0338407.g005
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targets. Thus, LAMB3 and APOE may be potential targets for diethylstilbestrol in PCa treatment. Five conformations were 
output for each docking, and the conformation with the best binding energy was selected for visualization.

3.7.  Cell transfection and validation

We selected 5 human prostate cancer cell lines (DU145, LASCPC-01, C4-2B, LNCaP, PC3) and a normal prostate cell 
line (RWPE-1). RT-qPCR analysis and WB analysis showed that LAMB3 expression in LNCaP and PC3 cells were much 

Fig 6.  Immune infiltration analysis, and regulatory network of key genes. (A) Group comparison plot of 28 immune cells in different groups by 
ssGSEA. (B) Heatmap of correlation analysis between key genes and immune cell infiltration abundance by ssGSEA. (C) Protein-protein interaction 
networks (PPIs). (D) The mRNA-drugs interaction network. (E) The mRNA-RBP interaction network. RBP: RNA-binding protein.

https://doi.org/10.1371/journal.pone.0338407.g006

Table 1.  Enrichment analysis of drugs and target genes.

Drug Count pvalue p.adjust geneID

Diethylstilbestrol 2 0.000690127 0.005564857 LAMB3/APOE

Acenocoumarol 1 0.001983824 0.005564857 APOE

Lysophosphatidic acid 1 0.002441256 0.005564857 LAMB3

Tropicamide 1 0.002898549 0.005564857 APOE

Bonuten 1 0.003660393 0.005564857 APOE

https://doi.org/10.1371/journal.pone.0338407.t001

https://doi.org/10.1371/journal.pone.0338407.g006
https://doi.org/10.1371/journal.pone.0338407.t001
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lower than in other cell lines both at the mRNA level and protein level. Therefore, we selected LNCaP and PC3 cell lines 
to validate the phenotypic effects of the tumor suppressor gene LAMB3 in in vitro experiments. (Fig 7A-B)

In this study, PC3 and LNCaP cell lines were used to construct stable cell lines. After lentiviral transfection, stable cell 
lines—positive control (OE-Ctrl), overexpression (OE-LAMB3), negative control (Sh-Ctrl), and knockdown (Sh-LAMB3)—
were obtained through puromycin screening for four weeks. Western blot and RT-qPCR were used to verify LAMB3  
protein and mRNA expression, respectively, in the PC3 and LNCaP cell lines. The results confirmed the successful con-
struction of stable cell lines (Fig 7C-D).

3.8.  Validation of cell proliferation levels

3.8.1.  CCK-8 assay.  In the PC3 cell line, starting on Day 4, the knockdown group (Sh-LAMB3) demonstrated 
significantly higher proliferation levels compared to the control group (Sh-Ctrl), with a statistically significant difference. 
Similarly, in the overexpression group (OE-LAMB3), there was a noticeable reduction in proliferation levels starting from 
Day 3 when compared to its control group (OE-Ctrl). In the LNCaP cell line, the overexpression group (OE-LAMB3) 
showed a statistically significant decrease in proliferation levels starting on Day 3 compared to the OE-Ctrl group. Also, 
the knockdown group (Sh-LAMB3) showed a significant rise in proliferation levels by Day 4 compared to the Sh-Ctrl 
group (Fig 7E).

3.8.2.  EdU assay.  By merging the live cells labeled with the blue Hoechst dye and the proliferating cells labeled 
with the red Apize594 dye, the proliferation status of the cells in the field of view can be understood. Fig 7F shows 
representative images of different stably transfected cell lines of the PC3 and LNCaP cell lines. In the LNCaP cell line, 
we observed that the proliferation ratio of the knockdown group (Sh - LAMB3) cells is significantly lower than that of the 
control group (Sh – Crtl), while the proliferation ratio of the overexpression group (OE - LAMB3) cells is significantly higher 
than that of the control group (OE – Crtl), and these differences are statistically significant. Similarly, we also conducted an 
EdU assay to measure the proliferation of each stably transfected cell line in the PC3 cell line. The results are similar to 
those of the LNCaP cell line (Fig 7F).

3.9.  Validation of cell cloning ability

The colony formation assay reflected the proliferative capacity and tumor cell population dependency. In both LNCaP and 
PC3 cell lines, the knockdown group (Sh-LAMB3) exhibited significantly enhanced colony formation ability compared to 
the control group (Sh-Ctrl), while the overexpression group (OE-LAMB3) showed significantly reduced colony formation 
ability compared to the control group (OE-Ctrl) (Fig 8A). These results were consistent with the CCK-8 and EdU assays.

3.10.  Validation of cell migration and invasion abilities

3.10.1.  Transwell assay.  The “Transwell migration assay” accurately quantifies the ability of prostate cancer cells to 
respond to specific chemokines. The experimental results show that both in the LNCaP cell line and PC3 cell line, the 
migratory ability of cells in the knockdown group (Sh-LAMB3 group) is significantly enhanced compared with the control 
group (Sh-Ctrl). In contrast, the migratory ability of cells in the overexpression group (OE-LAMB3 group) is significantly 
reduced compared with the control group (OE-Ctrl). (Fig 8B).

Similarly, The “Transwell invasion assay” simulates the basement membrane penetration process in vivo and evaluates 
the ability of cells to secrete proteases to degrade the ECM, we further compared the invasive abilities among different 
cell groups by coating the upper chamber with Matrigel. The results demonstrated that both in the LNCaP cell line and 
PC3 cell line, the invasion capacity of the knockdown group (Sh-LAMB3) still showed significant changes compared to 
the control group (Sh-Ctrl), Conversely, the invasion ability of prostate cancer cells decreased significantly after LAMB3 
overexpression. (Fig 8B).
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3.10.2.  Wound healing assay.  Wound Healing Assay observe the dynamics of two-dimensional collective migration 
and repair, create scratches in monolayer cells, simulate wound healing or population migration, and track the collective 
movement pattern of cells. In LNCaP and PC3 cells, the knockdown group (Sh-LAMB3) showed significantly enhanced 
migration ability compared to the control group (Sh-Ctrl), while the overexpression group (OE-LAMB3) exhibited 
significantly reduced migration ability compared to the control group (OE-Ctrl). (Fig 8C).

3.11.  Validation of apoptosis rate

In LNCaP and PC3 cells, the knockdown group (Sh-LAMB3) showed significantly lower early and late apoptosis rates 
compared to the control group (Sh-Ctrl), while the overexpression group (OE-LAMB3) exhibited significantly higher apop-
tosis rates compared to the control group (OE-Ctrl) (Fig 8D).

4.  Discussion

Prostate cancer remains a leading cause of cancer-related mortality in men, posing significant challenges in oncology, 
particularly in addressing drug resistance, metastasis, and recurrence driven by genetic mutations [1–3]. Palmitoylation, a 
post-translational modification, plays a crucial role in processes such as cellular membrane localization, protein trafficking, 
and signal transduction. Increasing evidence suggests that palmitoylation significantly influences the initiation, progres-
sion, drug resistance, metastasis, and recurrence of prostate cancer [18–20]. For instance, Fiorentino et al. found that the 
fatty acid synthase (FASN), a cornerstone of protein palmitoylation, is overexpressed in prostate cancer and is associated 
with the palmitoylation of Wnt1 and the cytoplasmic stabilization of β-catenin, processes that may promote anti-apoptotic 
capabilities and proliferation in cancer cells [21,22]. In another study, De Piano et al. revealed that FASN regulates the 
adhesion and migration of prostate cancer cells by influencing the palmitoylation status of Rho family GTPases, particu-
larly the atypical GTPase RhoU, highlighting FASN’s role in prostate cancer metastasis. These findings suggest that inhib-
iting FASN activity or its downstream palmitoylation events could effectively block prostate cancer progression, reduce 
drug resistance, and lower the risk of metastasis and recurrence [23]. Additionally, emerging evidence in recent years 
indicates that protein palmitoylation, a dynamic post-translational lipid modification, may regulate prostate cancer progres-
sion by modulating membrane localization and functional stability of oncoproteins, including extracellular matrix receptors 
and signaling kinases implicated in prostate cancer metastasis [24]. For instance, studies demonstrate that ZDHHC

5
 

participates in modifying cancer stem-like properties through interaction with EZH2—a pathway previously observed in 
glioma stem cells that may share conserved mechanisms with prostate cancer [25]. Notably, altered palmitoylation of cell 
adhesion molecules and extracellular matrix regulators (e.g., laminin subunits) may facilitate tumor microenvironment 
remodeling, potentially explaining selective metastatic patterns in advanced prostate cancer [25]. However, the molecular 
targets, interactions, and diagnostic value of palmitoylation in prostate cancer remain unclear. Therefore, we employed 
bioinformatics approaches to explore the molecular mechanisms and diagnostic value of palmitoylation-related genes in 
prostate cancer pathogenesis and investigated potential therapeutic agents.

In this study, we merged three datasets from the GEO database and performed differential expression analysis 
between tumor and normal tissues to identify DEGs. By increasing the sample size through dataset integration, we 
enhanced the statistical significance and reliability of our results. Additionally, the diversity of sample data from differ-
ent platforms and sources improved the model’s generalizability, making it applicable to a wide range of scenarios. By 

Fig 7.  Establishment of stable cell lines and determination of proliferation ability. (A) Screening of prostate cancer cell lines. (B,C) Transfection 
efficiency and Gene expression level Verification, both mRNA and protein levels demonstrated statistically significant differences between the trans-
fection cohorts and the control cohorts. (D,E) Both CCK-8 assays and EdU assays revealed that LAMB3 overexpression or knockdown significantly 
inhibited or enhanced the proliferative activity of LNCaP and PC3 cell lines. (F) The clone capacity of LNCaP and PC3 cells were inversely proportional 
to LAMB3 expression levels. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

https://doi.org/10.1371/journal.pone.0338407.g007

https://doi.org/10.1371/journal.pone.0338407.g007
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intersecting DEGs with known palmitoylation-related genes, we identified six overlapping genes, which were then input 
into three machine learning models, yielding three feature genes: TRPM4, LAMB3, and APOE. We constructed a diagnos-
tic model using these feature genes. A diagnostic model and nomogram were established using logistic regression with 
these three biomarkers and their covariates, demonstrating high accuracy. ROC analysis was used to evaluate the individ-
ual diagnostic accuracy of the three biomarkers, revealing AUC values > 0.7 for all genes, indicating high diagnostic value.

TRPM4 is a non-selective cation channel activated by Ca2+. Upon activation, TRPM4 allows Na⁺ influx, leading to 
membrane depolarization and reduced driving force for Ca2+ entry through store-operated Ca²⁺ entry (SOCE) and other 
Ca2+ entry pathways. SOCE is associated with fundamental cellular processes such as gene expression, and its altered 
signaling contributes to cancer hallmarks, including reduced apoptosis, increased proliferation, and migration. TRPM4 
also participates in focal adhesion protein co-localization in mouse embryonic fibroblasts and regulates focal adhesion 
turnover, which is critical for cell migration. In prostate cancer, TRPM4 is described as a cancer driver gene in  
androgen-independent prostate cancer. TRPM4 is responsible for Ca²⁺-activated non-selective (CAN) currents in prostate 
cancer, and TRPM4 knockdown reduces large Na⁺ currents following Ca2+ activation. TRPM4 contributes to the migration 
and invasion of the PC3 prostate cancer cell line and alters epithelial-mesenchymal transition (EMT), a crucial process 
for cancer cell migration and invasion. TRPM4 downregulation induces changes in E-cadherin and N-cadherin expression 
levels and reduces the expression of Snail1, a known EMT marker transcription factor [26].

APOE, a member of the lipid-binding apolipoprotein family, is a major systemic transporter of cholesterol and tri-
glycerides. The role of APOE in prostate cancer is multifaceted, with studies showing its close association with tumor 
progression and prognosis. First, APOE expression in prostate cancer correlates with tumor aggressiveness and hor-
mone independence. Venanzoni et al. found that APOE mRNA is highly expressed in the highly tumorigenic PC-3 cell 
line. Immunohistochemical analysis revealed that APOE protein expression positively correlates with Gleason scores, 
suggesting that elevated APOE expression in prostate cancer cells may be associated with high invasiveness. Further 
studies have explored the impact of APOE gene polymorphisms on prostate cancer [27]. Ifere et al. revealed a link 
between APOE gene variants and aggressive prostate cancer behavior. They found that non-invasive cell lines carry 
ApoE ε3/ε3 or ε3/ε4 alleles, while invasive cell lines carry APOE ε2/ε4 alleles, indicating that APOE variants are associ-
ated with intracellular cholesterol imbalance and tumor aggressiveness [28]. Finally, Bancaro et al. provided new insights 
into APOE’s role in prostate cancer. They discovered that APOE secreted by prostate tumor cells induces the senes-
cence of TREM2 ⁺ immunosuppressive neutrophils, which are associated with poor prognosis in prostate cancer patients. 
Eliminating these senescent neutrophils using histone deacetylase (HDAC) inhibitors can improve cancer treatment 
outcomes [29].

LAMB3 is a key component of the laminin 5 complex, responsible for cell adhesion in the extracellular matrix and regu-
lating cell proliferation, migration, and cycle in various diseases. The development and metastasis of prostate cancer are 
closely linked to the abnormal activation of the PTEN/AKT/mTOR pathway. Studies have shown that SAG, an E3 ligase, 
activates the PI3K/AKT/mTOR signaling axis by promoting the ubiquitination and degradation of PHLPP1 and DEPTOR. 
In PTEN-deficient prostate cancer mouse models, SAG deletion suppresses the abnormal activation of PI3K/AKT/mTOR 
signaling. Additionally, defects in laminin 5 expression are commonly observed in prostate cancer [30]. Calaluce et al. 
demonstrated that H3 B subtype cells expressing LAMB3 cannot translate the protein or assemble laminin 5, promoting 

Fig 8.  Determination of cell migration ability and apoptosis rate. (A) In the LNCaP cell line, the migratory capacity of cells in the overexpression 
cohort was significantly reduced, while no significant differences were observed in the knockdown cohort. In contrast, both overexpression and knock-
down cohorts of PC3 cells exhibited statistically significant differences in migratory capacity compared to the control cohort. (B) In Both PC3 and LNCaP 
cell lines, the expression level of LAMB3 was positively correlated with the level of apoptosis. (C) In the LNCaP cell line, there is no significant differ-
ences were observed in the migratory capacity between knockdown cohort and control cohort. Conversely, the migratory capacity of cells in the overex-
pression cohort was significantly superior to that of the control cohort. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

https://doi.org/10.1371/journal.pone.0338407.g008

https://doi.org/10.1371/journal.pone.0338407.g008
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prostate cancer proliferation and invasion. In contrast, the H3 A subtype increases LAMB3 expression but also fails to 
assemble laminin 5, further driving prostate cancer progression. These findings highlight the critical role of LAMB3 in pros-
tate cancer signaling [31].

Furthermore, our study explored the relationship between palmitoylation-related genes and immune cell infiltration. 
Using ssGSEA analysis, we identified significant differences in the expression profiles of 28 immune cell types between 
prostate cancer and normal tissues, which may be related to the regulation of the tumor microenvironment. Among these, 
myeloid dendritic cells (mDCs) play a key role in initiating and regulating adaptive anti-tumor immune responses. Imma-
ture dendritic cells may share similar functions with mDCs, presenting tumor antigens to T cells. LAMB3, an extracellular 
matrix protein, may be involved in dendritic cell migration and antigen presentation. T cell subsets, including central mem-
ory CD4 T cells and effector memory CD8 T cells, exhibit heterogeneity in prostate cancer. APOE may influence T cell 
function by modulating lipid metabolism and immune regulation, while LAMB3 may participate in tumor immune responses 
by affecting T cell migration and localization. These findings provide new insights into the immune microenvironment of 
prostate cancer and may aid in developing novel immunotherapeutic strategies.

Finally, we overexpressed and knocked down LAMB3 in prostate cancer cells using lentiviral plasmid transfection, fol-
lowed by functional experiments to validate LAMB3 as a tumor suppressor gene that inhibits prostate cancer progression. 
In terms of proliferation, invasion, migration and apoptosis rates, LAMB3 expression levels were inversely correlated with 
prostate cancer progression, showing statistically significant differences.

This study used bulk RNA-seq data from adjacent normal tissues, which may include stromal or inflammatory cells. 
While we excluded samples with diagnosed benign prostatic hyperplasia (BPH), age-related pre-cancerous changes in 
normal tissues could theoretically influence DEG identification. Future single-cell RNA-seq studies are warranted to resolve 
cell-type-specific palmitoylation signatures. Additionally, although we employed multiple algorithms, including RF, LASSO 
regression, SVM-RFE, and logistic regression, to identify and validate candidate biomarkers, differences in results across 
algorithms suggest the need for model validation and optimization on broader datasets to ensure accuracy and consistency. 
Furthermore, while this study primarily used statistical and machine learning techniques to screen potential biomarkers, the 
biological functions and mechanisms of these candidate genes require further experimental validation. Subsequent work 
should involve in vitro and in vivo experiments to elucidate the specific roles of these genes in prostate cancer initiation and 
progression. Meanwhile, the putative immune correlations (e.g., APOE with macrophages) should be interpreted cautiously, 
as bulk RNA-seq lacks resolution to disentangle tumor-intrinsic vs. microenvironmental contributions. Our immune infiltra-
tion analysis did not adjust for multiple comparisons, which increases the risk of Type I errors. Findings related to specific 
immune cell types require independent validation in larger cohorts before definitive conclusions can be drawn. Future work 
will: Map site-specific palmitoylation of LAMB3/APOE using mass spectrometry; Validate the diagnostic model in prospec-
tively collected clinical samples; Test therapeutic modulation of palmitoylation using diethylstilbestrol.

5.  Conclusion

In conclusion, our study has identified novel palmitoylation-related molecular biomarkers and established a promising diag-
nostic model for prostate cancer. These discoveries have not only enhanced the understanding of molecular mechanisms 
underlying palmitoylated genes in prostate cancer pathogenesis, but also provided a scientific foundation for developing 
innovative therapeutic strategies. With the advancement of precision medicine, we substantiate that these palmitoylation- 
regulated genes will emerge as critical therapeutic targets in personalized treatment regimens for prostate cancer

Supporting information

S1 Fig. Integration of Differentially Expressed Genes. Combine the expression levels of genes with significant differen-
tial expression in the dataset. (A) HPN; (B) TRPM4; (C) RAB17; (D) GSTP1; (E) TRIM29; (F) LAMB3.
(TIF)
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S2 Fig. GSEA Identifies Five Significantly Enriched Pathways Including Ribosome and Cardiomyopathy. GSEA 
of the merged dataset. (A) GSEA was used to provide five biological function maps for the genome. (B-F) GSEA results 
showed that the genome was significantly enriched in Ribosome pathway (B), Cytoskeleton in muscle cells pathway 
(C), Amoebiasis pathway (D), Chemical carcinogenesis – DNA adducts pathway (E), Hypertrophic cardiomyopathy 
pathway (F).
(TIF)

S3 Fig. Enrichment analysis of mRNA-RBP. 
(TIF)

S4 Fig. Optimal Drug-Target Docking Visualization. Visual representation of the optimal combination of drug-target 
gene molecule docking. (A)Diethylstilbestrol and APOE; (B) Diethylstilbestrol and LAMB3.
(TIF)

S1 Table. List of palmitoylation-related genes. 
(CSV)
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