

RESEARCH ARTICLE

Identification of stable internal reference genes for expression analysis in the liver and pancreas of diabetic mouse (*Mus musculus* L.) models under physiological, pathological and treatment conditions

Van Diep Nong^{1,2*}, Duc Quan Nguyen^{1,3*}, Thi Trang Do⁴, Thi Huong Giang Tran³, Thanh Hien Nguyen³, Tat Thanh Le³, Huy Thinh Tran¹, Huy Hoang Nguyen^{1,3,5*}

1 Hanoi Medical University, Kim Lien, Hanoi, Vietnam, **2** Bac Kan General Hospital, Thai Nguyen, Vietnam, **3** Institute of Biology, Vietnam Academy of Science and Technology, Nghia Do, Hanoi, Vietnam, **4** Publishing House for Science and Technology, Vietnam Academy of Science and Technology, Nghia Do, Hanoi, Vietnam, **5** Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Nghia Do, Hanoi, Vietnam

* These authors contributed equally to this work.

* nhhoang@igr.ac.vn

OPEN ACCESS

Citation: Nong VD, Nguyen DQ, Do TT, Giang Tran TH, Nguyen TH, Le TT, et al. (2026) Identification of stable internal reference genes for expression analysis in the liver and pancreas of diabetic mouse (*Mus musculus* L.) models under physiological, pathological and treatment conditions. PLoS One 21(1): e0338403. <https://doi.org/10.1371/journal.pone.0338403>

Editor: Preenan Pillay, University of South Africa - Florida Campus: University of South Africa - Science Campus, SOUTH AFRICA

Received: July 7, 2025

Accepted: November 23, 2025

Published: January 7, 2026

Copyright: © 2026 Nong et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the paper and its [Supporting Information](#) files.

Abstract

Accurate gene expression analysis via reverse transcription quantitative real-time PCR is vital for studying diabetes mellitus. Accurate and reliable normalization of RT-qPCR data, in accordance with the MIQE guidelines, demands a group of at least two stably expressed reference genes, especially in diabetic models where metabolic dysregulation often alters the profile of gene expression. To identify the best reference genes, this study systematically evaluates the stability of eleven candidate reference genes, including *ACT*, *B2M*, *GAPDH*, *HPRT1*, *PPIA*, *RPL13A*, *RPLP0*, *TBP*, *UBC*, *YWHAZ*, and *18S RNA*, in liver, pancreas, and both types of tissues across four mouse groups of control, obesity, STZ-induced diabetic and treated STZ-diabetic groups. The identification of a robust group of reference genes was conducted by four widely used statistical algorithms of geNorm, NormFinder, BestKeeper, and comparative ΔCt methods. Each applies different statistical algorithms: geNorm uses pairwise variation, NormFinder considers inter- and intra-group variance, BestKeeper uses Ct variability through standard deviation and correlation analysis, and the ΔCt method evaluates expression consistency by evaluating the geometric mean of the stability rankings of each gene across all methods. Our analysis identified *ACT* and *RPL13A* as the most appropriate reference genes for liver, while *UBC* and *RPL13A* were most stable in pancreas. Overall, *RPL13A* and *UBC* demonstrated the highest expression stability across both liver and pancreatic tissues. Furthermore, our findings laid foundations for future studies in the analysis of gene expression in obese,

Funding: The authors gratefully acknowledge the financing of this research from the Vietnam Academy of Science and Technology (Project number: TDHGBH.01/23-25). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

diabetic, and diet-changed mice, as well as other liver- and pancreas-related diseases in mouse models.

Introduction

Diabetes mellitus, a chronic metabolic disorder characterized by hyperglycemia, insulin resistance, and impaired β -cell function, is becoming increasingly prevalent as a result of various factors, including obesity, genetic disorder, and unhealthy lifestyles. Diabetic conditions profoundly impact metabolically active organs, especially the liver and pancreas, leading to disturbances in glucose metabolism, inflammation, and oxidative stress [1]. The condition of diabetes is associated with a range of complications stemming from elevated blood sugar levels, such as cardiovascular diseases, eye injury, kidney disease, and nerve damage, etc. [2,3].

For studying diseases in humans, several animal models have been employed. Among them, the mouse model is extensively used in research due to its remarkable genetic (99%) and physiological similarities to humans [4]. Research indicates that diets containing a high content of saturated fats (lard, butter, ghee, coconut oil, palm oil, etc.) are associated with increased body weight and pre-diabetic conditions in various animal models, including several strains of mice (the NOD strain for T1DM and the BKS, db/db, KK-Ay, and FVB/NJ strains for T2DM) [5]. A diabetic mouse model, developed by a high-fat diet (HFD) to induce obesity and insulin resistance, then followed by a low dose of streptozotocin (STZ) injection, is one of the most popularly used models for investigating the molecular mechanisms underlying T2DM diabetes [2,6]. STZ is a glucosamine–nitrosourea antibiotic, which is primarily used in experimental research to induce diabetes mellitus in animal models, including mice [7,8]. Its diabetogenic effect is coming from the structural similarity to glucose and the selective toxicity to pancreatic β -cells. After entering β -cells through the glucose transporter 2 (GLUT2) route, STZ acts as an alkylating agent that triggers β -cell necrosis and disrupts the production of insulin, therefore leading to the development of diabetic symptoms (insulin insufficiency and insulin resistance) [7,8]. In certain experimental settings, bioactive compounds are utilized as biological modulators to investigate molecular responses under specific treatment conditions [9–11]. Among these, curcumin, a natural polyphenolic compound sourced from *Curcuma longa* L., has been widely recognized as a bioactive compound for its ability to modulate glucose metabolism, hepatic gluconeogenesis, β -cell activity, insulin signaling, insulin sensitivity, oxidative stress and inflammation in liver and pancreatic tissues [12–16]. Therefore, curcumin was included in this study as a biological modulator in diabetes-related research.

Quantification of gene expression in target tissues is crucial for understanding the complex signaling networks and pathological responses as well as treatment effects in various studies, all of which primarily employ reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) [17,18]. In diabetic mouse models, the expression of diabetes related genes and the stability of housekeeping gene expression can be considerably affected by metabolic dysregulation, β -cell

malfunction, and dietary changes. It is technically not feasible to conduct quantitative analysis utilizing a single reference gene, as recommended by the Minimum Information for publication of Quantitative real-time PCR Experiments guidelines. To accurately evaluate gene expression profiles in diabetic mouse models, a set of suitable reference genes must express minimal variability in expression across different organs and tissues of interest, experimental samples, and conditions [19–21]. Several housekeeping genes have been widely used in mice investigations on obesity and diabetes studies [19,20,22,23]. However, there has been a lack of research that has examined the identification of a suitable set of reference genes for assessing the expression of diabetes related genes across several tissues, including the liver and pancreatic tissues.

In this study, we aim to systematically analyze the stability of 11 candidate reference genes, including *β-actin* (ACT), *β-2 microglobulin* (B2M), *Glyceraldehyde-3-phosphate dehydrogenase* (GAPDH), *Hypoxanthine phosphoribosyl transferase 1* (HPRT1), *Peptidylprolyl isomerase A* (PPIA), *Ribosomal protein L13A* (RPL13A), *Ribosomal protein subunit P0* (RPLP0), *TATA box binding protein* (TBP), *Ubiquitin* (UBC), *Tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein – zeta polypeptide* (YWHAZ), and *18S ribosomal RNA* (18SRNA). The selection of the 11 candidate reference genes was based on their widespread use and reported stability in quantitative gene expression studies in obese and diabetic mice and rats across different tissues and cell types, including liver and pancreas [24–26]. Next, we aim to establish a reliable set of internal reference genes for accurate and reliable normalization of the gene expression in liver and pancreatic tissues across mice representing physiological (control), pathological (obese and diabetic), and treatment (treated STZ-diabetic) conditions. Evaluating potential candidate reference genes under the incorporation of curcumin exposure facilitates the evaluation of candidate reference genes under a relevant therapeutic scenario, thereby validating that the selected genes maintain stability across various physiological, pathological, and treatment conditions in diabetic mouse models. To ensure robust and reliable identification of the stable reference genes, four widely accepted statistical tools, including geNorm, NormFinder, BestKeeper, and the comparative delta Ct, were employed [27–30]. The data from these tools provide a rigorous framework to rank candidate genes and identify the most suitable reference genes for accurate normalization in RT-qPCR derived data.

Materials and methods

Animals and tissue samples

All animal experiments were reviewed and approved by the Institute of Genome Research – Institutional Review Board in Bio-Medical Research (Decision No.: 06/NCHG-HDDD; dated 20 September 2023). All procedures were performed in strict accordance with the guideline and all efforts were made to minimize animal suffering. The requirement for informed consent was waived, as the study involved only animal experiments.

Male Swiss albino mice (*Mus musculus* L. var. albino) weighing 20 ± 2 g were acquired from the National Institute of Hygiene and Epidemiology (NIHE). They were housed in plastic cages and maintained in a 12-hour-light/dark cycle with a humidity level of 60–70%. All types of diets and bedding material in this study were prepared and provided by the NIHE. A total of 48 mice were categorized into four distinct groups ($n=12$ each): the control group (Group 1), the obesity group (Group 2), the diabetic group (Group 3), and the obesity, diabetic, and treated STZ-diabetic group (Group 4). Mice in Group 1 were fed with a normal-fat diet (NFD, Group 1, control group). Mice in Groups 2–4 were fed a high-fat diet (HFD), following the description by Nguyen *et al.* [31] prior to diabetic induction by streptozotocin (STZ, Sigma-Aldrich, USA). Mouse body weight was measured at 2-week intervals.

To establish a diabetic mouse model, mice in Groups 3–4 were injected intraperitoneally with 35 mg/kg body weight of STZ. Mice in Groups 1–2 were injected with 0.1 M citrate buffer. All mice were given access to their respective diets for 10–12 days and checked for blood glucose concentration by intraperitoneal glucose tolerance test (IPGTT) using a glucometer (Accu-Chek Instant, Roche, Switzerland) [32]. A blood glucose level over 11.1 mmol/L indicated effective establishment of a diabetic mouse model [6].

Diabetic mice from Group 4 were fed with a HFD diet supplemented with turmeric extract that is rich in the curcumin compound at an amount of 100 mg/kg body weight/day [33]. In contrast, Groups 1–3 were fed their respective diets. The experiment was conducted for 5 weeks. At the end of the experiment, the weight and blood glucose concentration of mice from all four groups were measured. Tissue samples (liver and pancreas) were collected and stored in RNA-later solution at -80°C after the mice were euthanized by cervical dislocation in accordance with the AVMA Guidelines for the Euthanasia of Animals 2020 [34]. In brief, a tweezer is placed behind the ears at the base of the skull of the mouse to stabilize the head, while firm pulling force is applied at the base of the tail to disarticulate the cervical vertebrae. This euthanasia method ensures rapid loss of consciousness, minimizes pain, and complies with ethical standards in research. All experiments were performed in triplicate.

Total RNA extraction and complementary DNA synthesis

Total RNA extraction was performed on homogenized liver and pancreatic tissues using the RNeasy kit (Qiagen, Germany) following the manufacturer's protocol. The assessment of RNA sample concentration and quality was conducted using a Nanodrop™ spectrophotometer (Thermo Fisher, USA). High-quality RNA, indicated by an A_{260}/A_{280} ratio ranging from 1.8 to 2.0, was utilized for the synthesis of cDNA. CDNA synthesis was performed on the Mastercycler Vapor Protect thermocycler (Eppendorf, Germany) using 1.0 µg of total RNA and the ProtoScript® II First Strand cDNA Synthesis Kit (NEB, Vietnam), following the manufacturer's protocol.

Quantitative real-time PCR analysis

The quantitative RT-qPCR analysis was conducted on a Rotor-Gene Q instrument (Qiagen, Germany) utilizing the Luna® Universal One-Step RT-qPCR Kit (NEB, Vietnam). Each RT-qPCR reaction (20 µL), consisting of 1X Master mix, 1.0 mM of each primer, and 50 ng of cDNA sample, was amplified in one cycle at 95°C for 10 minutes and 40 cycles of 95°C for 15 seconds, then 60°C for 40 seconds. The candidate reference genes for normalization of RT-qPCR data derived from liver and pancreatic tissues of 4 experimental groups were *ACT*, *B2M*, *GAPDH*, *HPRT1*, *PPIA*, *RPL13A*, *RPLP0*, *TBP*, *UBC*, *YWHAZ*, and *18SRNA*. Our choice was guided by previous reference gene validation studies in obese and diabetic mouse/rats reported by Ai *et al.*, Febriza *et al.*, and Secio-Silva *et al.* [24–26]. Their primers were designed using the NCBI Primer-BLAST (RRID: SCR_003095) tool (Table 1). The specificity of each pair of primers was analyzed by melting curves. The RT-qPCR data were evaluated with Livak's $\Delta\Delta Ct$ method [17]. All RT-qPCR analyses were performed in triplicate.

Evaluation of the efficiency and stability of candidate reference genes

The efficiency of candidate reference genes was calculated by the qPCR Efficiency Calculator web-based tool (Thermo Fisher, USA) using the equation:

$$\text{PCR efficiency} = (10^{(-1/\text{slope})} - 1) \times 100$$

The slope for each candidate reference gene was generated by the RT-qPCR standard curve, which involved a serial dilution of 1:5, 1:25, 1: 50; 1:250 and 1:1250.

The stability of candidate reference genes was evaluated using three different algorithms, including geNorm (RRID: nlx_156922), NormFinder (RRID: SCR_003387) and BestKeeper (RRID: SCR_003380) and comparative ΔCt methods [27,35,30]. The four popular methods, geNorm, NormFinder, BestKeeper, and comparative ΔCt , utilize different statistical methodologies for evaluating the stability of reference genes in RT-qPCR. GeNorm evaluates the stability of genes by analyzing pairwise variation, based on the assumption that the most stable genes display minimal expression levels. NormFinder utilizes a model-based approach that considers both intra- and inter-group variations to determine the most

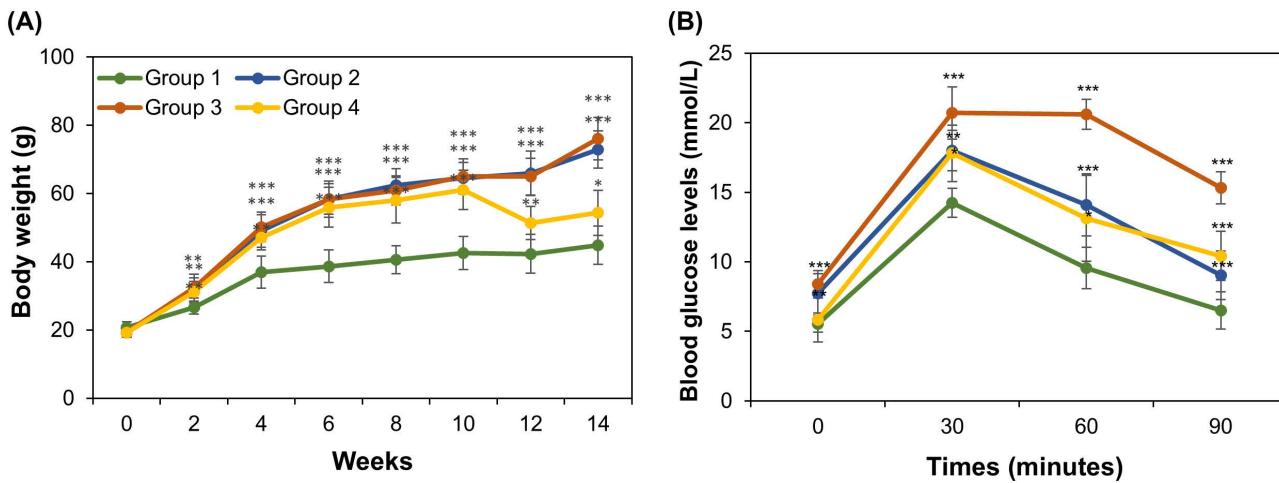
Table 1. List of candidate reference genes and target genes.

Primers	Accession number	Sequence (5'-3')	Amplicon (bp)	Efficiency (%)
ACT	NM_007393.5	F: GTGTGACGTTGACATCCGTAAG R: GCCGGACTCATCGTACTCC	247	103
B2M	NM_009735.3	F: GACCGGCCTGTATGCTATCC R: TTTCAATGTGAGGCGGGTGG	125	100
GAPDH	NM_001289726.2	F: CCCAGCAAGGACACTGAGCAAG R: CCCTCACACAATTCCATCCAGACC	86	99
HPRT1	NM_013556.2	F: GGTTAACGAGTACAGCCCCA R: TCCAACACTTCGAGAGGTCC	73	100
PPIA	NM_008907.2	F: GTGTTCTTCGACATCACGGC R: TAAAGTCACCACCCCTGGCAC	187	100
RPL13A	NM_009438.5	F: CTGCCCCACAAGACCAAGAG R: GGACCACCATCCGCTTTTC	100	97
RPLP0	NM_007475.5	F: CTGCACTCTCGCTTCTGGA R: ACGCGCTTGTACCCATTGAT	113	102
TBP	NM_013684.3	F: GTGCCAGATACTTCGCCCT R: GCTGCGTTTTGTGCAGAGT	121	97
UBC	NM_019639.4	F: AGCCCAGTGTACCACCAAGA R: TAAGACACCTCCCCATCACA	117	99
YWHAZ	NM_001253807	F: GAAAAGTTCTGATCCCCAATGC R: TGTGACTGGTCCACAATTCTT	134	104
18SRNA	NR_003278.3	F: TTGACTCAACACGGGAAACC R: AGACAAATCGCTCCACCAAC	127	98
SLC2A2	NM_031197.2	F: TCCCTGGGCCTTACGTGTT R: CTGGTCGGTTCCCTCGGTTT	230	99
GCK	NM_010292.5	F: CAACTGGACCAAGGGCTCAA R: TGTGGCCACCGTGTCAATT	133	98

<https://doi.org/10.1371/journal.pone.0338403.t001>

stable gene. BestKeeper employs raw Ct values to evaluate stability through standard deviation and correlation analysis, while the comparative ΔCt method assesses expression consistency by analyzing the geometric mean of the gene stability rankings derived from all methods.

The stability performance of the candidate reference genes was ranked according to their stability values (M), with the lowest M value considered the most stably expressed reference gene and *vice versa*. The optimal number of candidate reference genes for RT-qPCR analysis was determined by the pairwise variation (V_n/V_{n+1}) function of the geNorm tool. The proposed cut-off threshold value for pairwise variation analysis was 0.15, according to the recommendation of Vandesompele [27].


Statistical analysis

Statistical analysis was conducted using Student's t-test and one-way ANOVA (RRID: SCR_002427) with Tukey's post hoc analysis [36]. The statistical significance (p -value ≤ 0.05) was denoted by distinct letters or numbers of asterisk symbols on each histogram.

Results and discussion

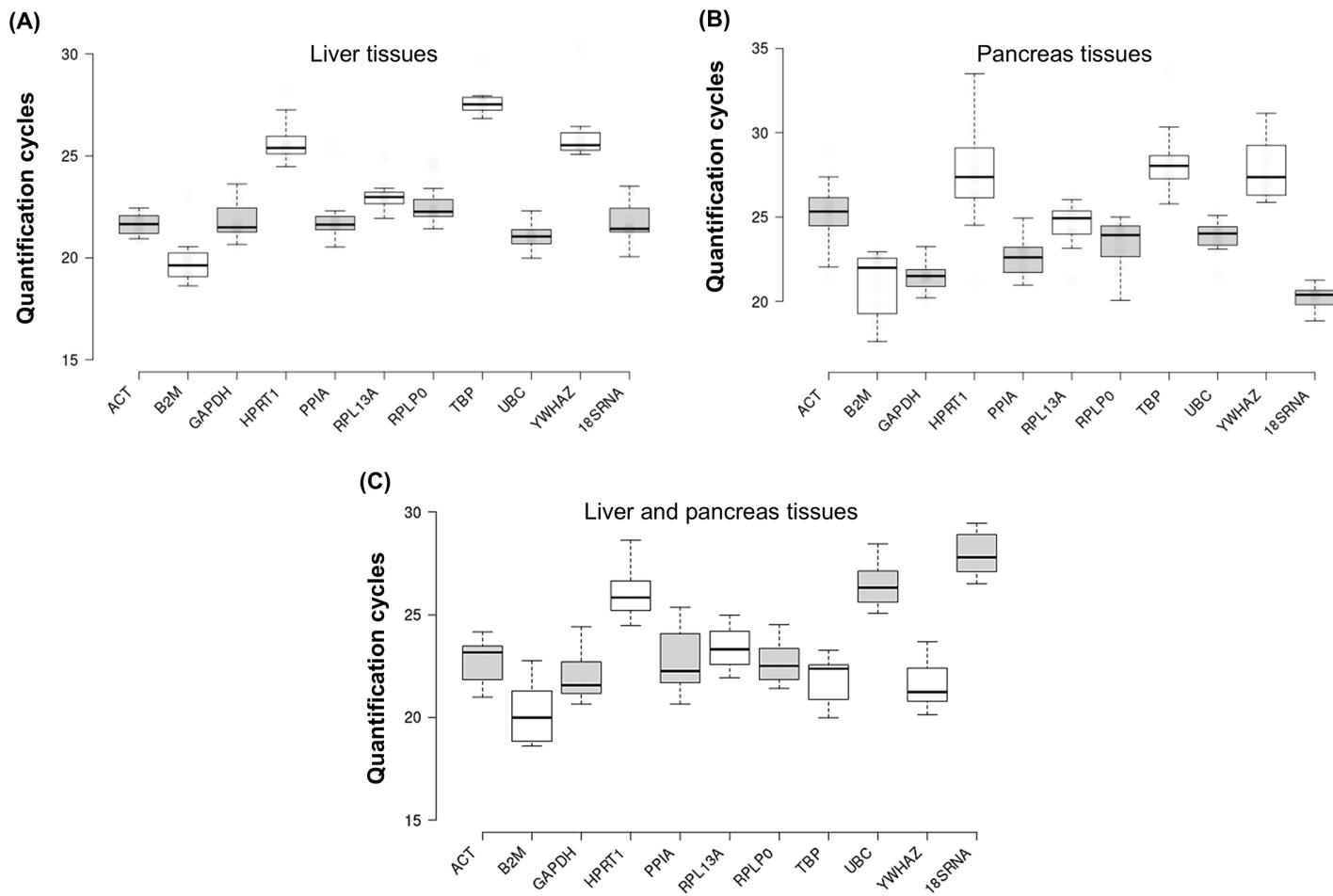
Body weight and blood glucose levels

The body weight of mice in three experimental groups was increased (p -value < 0.001) in comparison to their counterparts in control Group 1 (Fig 1). In the first 10 weeks, the weight of mice in experimental Groups 2, 3, and 4, which were fed

Fig 1. Changes in body weight (A) and blood glucose level (B) across four experimental groups of mice. (A) Body weight was measured at 2-week intervals. The period from week 0 to 8 is the development stage of obese mice (Groups 2-4). Post-diabetic induction by STZ, the diet of Group 4 was changed to HFD supplemented with curcumin powder; the diets of Groups 1-3 remained unchanged. (B) Blood glucose levels were measured at the end of the experiment (week 14). Statistical analysis was conducted by Student's t-test to compare the weight and blood glucose level of Groups 2-4 with the control Group 1 with * $p \leq 0.05$, ** $p \leq 0.01$, and *** $p \leq 0.001$.

<https://doi.org/10.1371/journal.pone.0338403.g001>

with the HFD diet, increased by 3.36 (from 19.2 to 64.5 g), 3.37 times (from 19.3 to 65.0g), and 3.18 (from 19.2 to 61.0g), respectively. It has been well established that diabetic mouse models can be developed by injecting induced obesity mice with a low dose of STZ [2,6]. Mice in Groups 3 and 4 were found to develop a diabetic condition 12 days post STZ injection, which was evidenced by the increased level of blood glucose 90 minutes after intraperitoneal injection of glucose solution, reaching 12.2 and 11.8 mmol/L, respectively. Post STZ injection at the end of week 10, there was a clear change in body weight of mice in Groups 2 and 3, which continued to feed with HFD, and those in Group 4, which fed with the HFD diet supplemented with curcumin powder. Turmeric extract powder has been found to significantly reduce body fat and restore insulin sensitivity and homeostasis in diabetic mice [12,25,37]. At the end of the experiment, as expected, the body weight of mice in Groups 2 and 3 continued to rise, reaching 72.9 and 76.0 g, respectively (Fig 1A). While the introduction of a new diet led to a reduction in the body weight of mice in Group 4; it decreased from 61.0g to 54.3g in just 4 weeks. On the other hand, the weight of mice in Group 1 has been found to rapidly increase in the first 10 weeks, reaching 42.6g, before this trend was slowed down and reached approximately 44.8g in week 14. [5].


The blood glucose levels of mice from all four groups were also measured at week 14. Fig 1B reveals that the glucose level was increased to the highest level of 14.2, 18.0, 20.7 and 17.8 mmol/L in all 4 groups, respectively, after 30 minutes of glucose injection. This trend was gradually dropped after 90 minutes (Fig 1B). Specifically, blood glucose levels of Groups 1, 2, and 4 were below the diabetic threshold of 11.1 mmol/L, such as 6.5, 9.0, and 10.9 mmol/L, respectively. In contrast, the blood glucose level of mice in Group 3 remained at a high level of more than 15.4 mmol/L after 90 minutes of glucose injection [6].

Expression profiles of candidate reference genes in liver and pancreatic tissues

Prior to the expression profile of eleven candidate genes in liver, pancreatic, and across both types of tissues, the efficiency of their primers was assessed by RT-qPCR standard curves and the qPCR efficiency calculator web-based tool (Table 1). The obtained results reveal that the efficiency of eleven sets of primers varied from 97 to 104% (Table 1, S1 Fig. and S1 File). Among them, five set primers, such as *B2M*, *GAPDH*, *HPRT1*, *PPIA*, and *UBC*, obtained an

efficiency of 99–100%, indicating that the primers and polymerase enzyme are working at their maximum capacity, amplifying the target sequence efficiently. However, it is also widely acceptable to obtain the RT-qPCR primer efficiency in a range of 90–110% [38,39]. Therefore, the primer sets of the remaining six genes are considered ideal for the RT-qPCR assessment.

Expression profiles of eleven candidate reference genes were evaluated in four experimental groups of mice across liver, pancreas, and combined liver-pancreas tissues. Fig 2 reveals that the average Cq values for eleven candidate reference genes varied from 19.6 to 27.5 and 20.4 to 28.1 in liver and pancreatic tissues, respectively, with the lower Cq value indicating a more abundant target transcript. Fig 2A and 2B reveal that the majority of candidate genes have the average Cq value in a range of 21.5 to 23.0 and 20.4 to 24.9 in the liver and pancreatic tissues, respectively. Among them, *RPL13A*, *PPIA*, *UBC*, and *ACT* have the least variance in the distribution of the Cq values in liver tissues (Fig 2A). In contrast, *GAPDH* and *18SRNA* had the widest range of Cq values. In pancreatic tissues, the most compact Cq value distribution was found in *18SRNA*, *UBC*, and *GAPDH*, and the least compact Cq distribution was observed in *B2M*, *HPRT1*, and *YWHAZ* (Fig 2B). When liver and pancreas tissues were evaluated together, the candidate reference genes mainly

Fig 2. Distribution of quantification cycles (Cq) for reference genes in liver (A), pancreas (B), and combined liver-pancreas tissues (C). The assessed reference genes yielded an average Cq value that varied from 19.6 to 27.5, 20.4 to 28.1, and 20.0 to 27.8 in the liver, pancreas, and both types of tissues, respectively. The whisker caps illustrate the upper and lower distributions of the Cq values, whereas the boxes signify the first and third quartiles. The line within the box represents the median value.

<https://doi.org/10.1371/journal.pone.0338403.g002>

returned the average Cq values within the range of 20.0 to 23.3. The least variance in the distribution of the Cq values was found in *RPL13A*, *RPLP0*, and *UBC* (Fig 2C). These results indicated that genes, which have the least variance in the distribution of the Cq values, are considered the most stably expressed candidate reference genes for accurate normalization of RT-qPCR derived data from liver, pancreatic, and combined liver-pancreas tissues across four experimental groups.

Expression stability of candidate reference genes

The stability of eleven candidate reference genes was evaluated by four popularly used tools, geNorm, NormFinder, BestKeeper, and comparative ΔCt , aimed at evaluating and selecting reference genes from experimental datasets (Table 2). The candidate reference genes were evaluated based on their stability (M) values derived from stepwise exclusion, alongside the variability observed in intra- and inter-group analyses using geNorm and NormFinder algorithms. Additionally, the coefficient of variation for reference genes was determined through the BestKeeper algorithm, and the standard deviation of the Cq values was calculated using the comparative ΔCt method across all tissue samples assessed, including liver, pancreas, and both types of tissues. Considering that these tools evaluate the stability of potential reference genes using various methodologies [27–30], it is anticipated that there will be variation in the stability ranking of eleven candidate reference genes generated by distinct statistical algorithms across all examined tissues.

For liver tissues, the geNorm algorithm has determined that *ACT*>*RPL13A*>*TBP* are the most stable reference genes, exhibiting the smallest M values in that order. While *RPLP0* exhibited the highest level of instability among the reference genes analyzed. NormFinder identified *ACT*>*TBP*>*RPL13A* as the most stable gene pair, while *18SRNA* was found to be the least stable pair for normalization of RT-qPCR derived data. The BestKeeper tool ranked *PPIA*>*B2M*>*ACT*, identifying them as the most appropriate for RT-qPCR normalization due to their high coefficient of variation, while *RPLP0* was ranked the lowest. Through the analysis of the standard deviation of Cq values, the comparative ΔCt method selected *RPL13A*>*RPLP0*>*TBP* as the optimal combination for accurate and reliable normalization of RT-qPCR data, while *YWHAZ* was identified as the worst one.

In pancreatic tissues, the analysis conducted using the geNorm and NormFinder algorithms revealed that *UBC*>*18SRNA*>*TBP* represents the most stable reference genes for normalization of RT-qPCR data. In contrast, *HPRT1* was identified as the least stable reference gene with the lowest stability by both tools employed in the analysis. The study conducted using the BestKeeper and comparative ΔCt method indicated that the genes exhibiting the highest rankings were *UBC*>*RPL13A*>*RPLP0*. Whereas those with the lowest rankings were *GAPDH* and *YWHAZ*, respectively. It is important to emphasize that the variation noted among the four statistical approaches employed to evaluate the stability of eleven reference genes was negligible. Within this particular tissue, *UBC* consistently attained the highest ranking across all analytical tools. Furthermore, *18SRNA*, *RPLP0*, and *RPL13A* exhibited high rankings, indicating a robust group of candidates for accurate RT-qPCR normalization.

In the analysis of liver and pancreatic tissues, based on geNorm M values, the candidate reference genes exhibiting the greatest stability were *PPIA*>*TBP*>*RPL13A*. Analysis using NormFinder identified that the best reference genes were *TBP*>*UBC*>*RPLP0*. BestKeeper ranked *RPL13A*>*ACT*>*UBC* as the most appropriate candidates for normalization of RT-qPCR data. The comparative ΔCt method revealed that the reference genes with the highest stability of expression were *RPL13A*>*RPLP0*>*UBC*. On the other hand, the candidate reference genes identified as the least stable were *ACT*, *HPRT1*, *GAPDH*, and *YWHAZ*, as determined through the analyses conducted using geNorm, NormFinder, BestKeeper, and comparative ΔCt methods, respectively.

To minimize the discrepancies among the four statistical tools in the liver and across both liver and pancreatic tissues, it is recommended to evaluate the comprehensive ranking of reference genes by calculating the geometric mean of ranking from all the assessed statistical algorithms [27,40]. The geometric mean (GM) of each candidate gene was computed to determine its integrated ranking, with a lower value signifying greater expression stability [41]. The reference genes

identified with the lowest GM ranking demonstrate the highest suitability for ensuring reliable and accurate normalization of RT-qPCR data. The geometric mean analysis reveals that *RPL13A* stands out as the most stable reference gene among all examined tissues and under different experimental conditions, including control, obese, diabetic, and treated STZ-diabetic mice. This is supported by the GM values recorded at 2.21, 2.83, and 2.21 for the liver, pancreas, and both types of tissues, respectively (Table 2). *RPL13A* functions as a housekeeping gene that encodes the ribosomal protein

Table 2. Assessment of the stability of eleven candidate reference genes across liver tissues of 4 experimental groups of mice by the geNorm, NormFinder, BestKeeper, and comparative ΔCt methods.

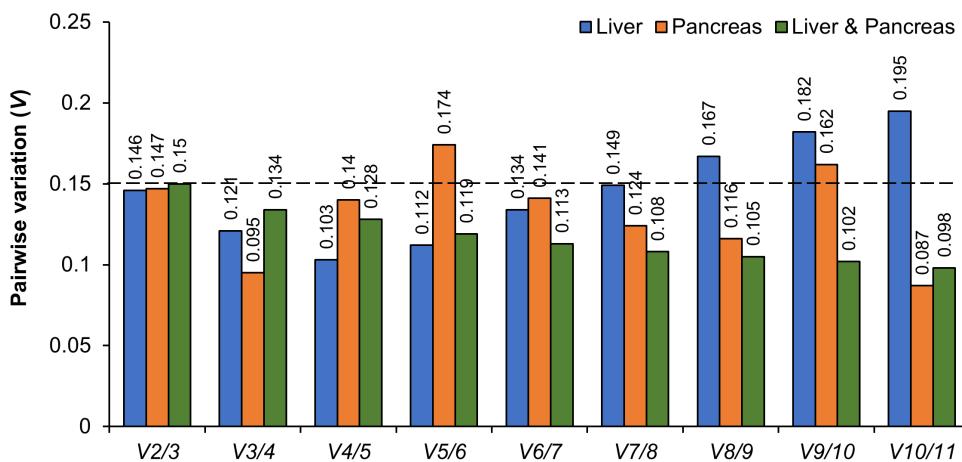
Tissues	GeNorm		NormFinder		BestKeeper		Comparative ΔCt		Consensus	
	Gene	M value*	Gene	M value*	Gene	r value**	Gene	Mean SD***	Gene	Geometric mean of ranking
Liver	ACT	0.48	ACT	0.17	PPIA	0.99	RPL13A	0.46	ACT	1.86
	<i>RPL13A</i>	0.49	<i>TBP</i>	0.19	<i>B2M</i>	0.97	<i>RPLP0</i>	0.46	<i>RPL13A</i>	2.21
	<i>TBP</i>	0.50	<i>RPL13A</i>	0.20	ACT	0.97	<i>TBP</i>	0.48	<i>TBP</i>	3.35
	<i>GAPDH</i>	0.52	<i>HPRT1</i>	0.21	<i>RPL13A</i>	0.95	ACT	0.48	PPIA	3.81
	PPIA	0.54	<i>UBC</i>	0.22	<i>UBC</i>	0.95	<i>UBC</i>	0.50	<i>UBC</i>	5.18
	<i>HPRT1</i>	0.56	PPIA	0.24	<i>HPRT1</i>	0.94	<i>GAPDH</i>	0.51	<i>HPRT1</i>	5.79
	<i>UBC</i>	0.57	<i>GAPDH</i>	0.24	<i>YWHAZ</i>	0.93	<i>HPRT1</i>	0.53	<i>B2M</i>	5.98
	<i>B2M</i>	0.58	<i>B2M</i>	0.27	<i>TBP</i>	0.92	PPIA	0.57	<i>GAPDH</i>	7.01
	<i>YWHAZ</i>	0.63	<i>YWHAZ</i>	0.30	<i>GADPH</i>	0.84	<i>18SRNA</i>	0.59	<i>RPLP0</i>	7.49
	<i>18SRNA</i>	0.63	<i>RPLP0</i>	0.32	<i>18SRNA</i>	0.81	<i>B2M</i>	0.59	<i>YWHAZ</i>	8.55
Pancreas	<i>RPLP0</i>	0.71	<i>18SRNA</i>	0.32	<i>RPLP0</i>	0.80	<i>YWHAZ</i>	0.76	<i>18SRNA</i>	9.43
	<i>UBC</i>	1.02	<i>UBC</i>	0.16	<i>UBC</i>	0.96	<i>UBC</i>	1.22	<i>UBC</i>	1.00
	<i>18SRNA</i>	1.03	<i>18SRNA</i>	0.18	<i>RPL13A</i>	0.84	<i>RPL13A</i>	1.27	<i>RPL13A</i>	2.83
	<i>TBP</i>	1.14	<i>RPL13A</i>	0.22	<i>RPLP0</i>	0.81	<i>RPLP0</i>	1.28	<i>18SRNA</i>	3.31
	<i>RPL13A</i>	1.18	PPIA	0.25	<i>18SRNA</i>	0.74	<i>18SRNA</i>	1.29	<i>RPLP0</i>	3.81
	<i>RPLP0</i>	1.22	<i>TBP</i>	0.27	ACT	0.71	PPIA	1.36	<i>TBP</i>	4.90
	PPIA	1.30	<i>GADPH</i>	0.30	<i>YWHAZ</i>	0.67	<i>GAPDH</i>	1.42	PPIA	5.73
	<i>GAPDH</i>	1.31	<i>RPLP0</i>	0.32	<i>HPRT1</i>	0.66	ACT	1.56	<i>GAPDH</i>	7.26
	<i>YWHAZ</i>	1.41	<i>B2M</i>	0.34	<i>TBP</i>	0.65	<i>TBP</i>	1.69	ACT	7.69
	<i>B2M</i>	1.48	<i>YWHAZ</i>	0.40	PPIA	0.54	<i>B2M</i>	1.82	<i>YWHAZ</i>	8.30
Liver & pancreas	ACT	1.49	ACT	0.51	<i>B2M</i>	0.45	<i>HPRT1</i>	2.13	<i>B2M</i>	8.97
	<i>HPRT1</i>	1.50	<i>HPRT1</i>	0.73	<i>GADPH</i>	0.40	<i>YWHAZ</i>	2.14	<i>HPRT1</i>	9.59
	PPIA	0.96	<i>TBP</i>	0.09	<i>RPL13A</i>	0.89	<i>RPL13A</i>	0.86	<i>RPL13A</i>	2.21
	<i>TBP</i>	0.98	<i>UBC</i>	0.17	ACT	0.86	<i>RPLP0</i>	0.87	<i>UBC</i>	3.22
	<i>RPL13A</i>	1.03	<i>RPLP0</i>	0.18	<i>UBC</i>	0.84	<i>UBC</i>	0.90	<i>TBP</i>	3.46
	<i>YWHAZ</i>	1.07	<i>GADPH</i>	0.21	<i>YWHAZ</i>	0.81	<i>18SRNA</i>	0.93	<i>RPLP0</i>	3.81
	<i>RPLP0</i>	1.09	<i>YWHAZ</i>	0.22	<i>HPRT1</i>	0.79	PPIA	0.95	PPIA	4.05
	<i>UBC</i>	1.11	<i>B2M</i>	0.23	PPIA	0.77	<i>GADPH</i>	0.96	<i>YWHAZ</i>	5.45
	<i>GADPH</i>	1.12	<i>18SRNA</i>	0.23	<i>RPLP0</i>	0.75	ACT	1.02	ACT	6.26
	<i>B2M</i>	1.15	<i>RPL13A</i>	0.23	<i>B2M</i>	0.67	<i>TBP</i>	1.09	<i>GADPH</i>	6.56

* M values: stability values evaluated by the geNorm and NormFinder algorithms with the smaller M value indicating the more stable the gene expressed in tissues assessed; ** r values: Pearson correlation coefficient values evaluated by the BestKeeper algorithm with the higher r value indicating the better reference gene; *** mean SD: mean standard deviation value calculated by the comparative ΔCt method with the smaller SD value indicating the better choice for selection of stably expressed reference genes across evaluated tissue samples.

<https://doi.org/10.1371/journal.pone.0338403.t002>

L13A subunit. RPL13A is a member of the L13P family of ribosomal proteins, which are crucial components for cell development and tissue homeostasis [24]. *RPL13A* has been frequently used as a reference gene for many studies due to consistent expression across various tissue samples (liver, pancreas, adipose, cortical bone) and experimental conditions, including those associated with obesity and diabetes [19,24,42–44].

According to the values of GM of ranking, the other top-ranked reference genes for liver were *ACT* with a GM value of 1.86 (Table 2). In previous studies, *ACT* has served as a reference gene for normalization of RT-qPCR data derived from liver tissues of mouse models suffering from conditions of obesity, diabetes, and liver diseases. In 2016, Gong and his colleagues determined that *ACT* ranks as one of the most stably expressed genes (ranked 2 out of 12 genes), making it an optimal choice for a reference gene to assess the abundance of mRNA transcripts in the liver tissues of male C57BL/6 mice [40]. Similarly, *ACT* has been utilized to normalize the expression levels of various genes in mice subjected to HFD-fed and those that are genetically mutated (*ob/ob*) mice [45].

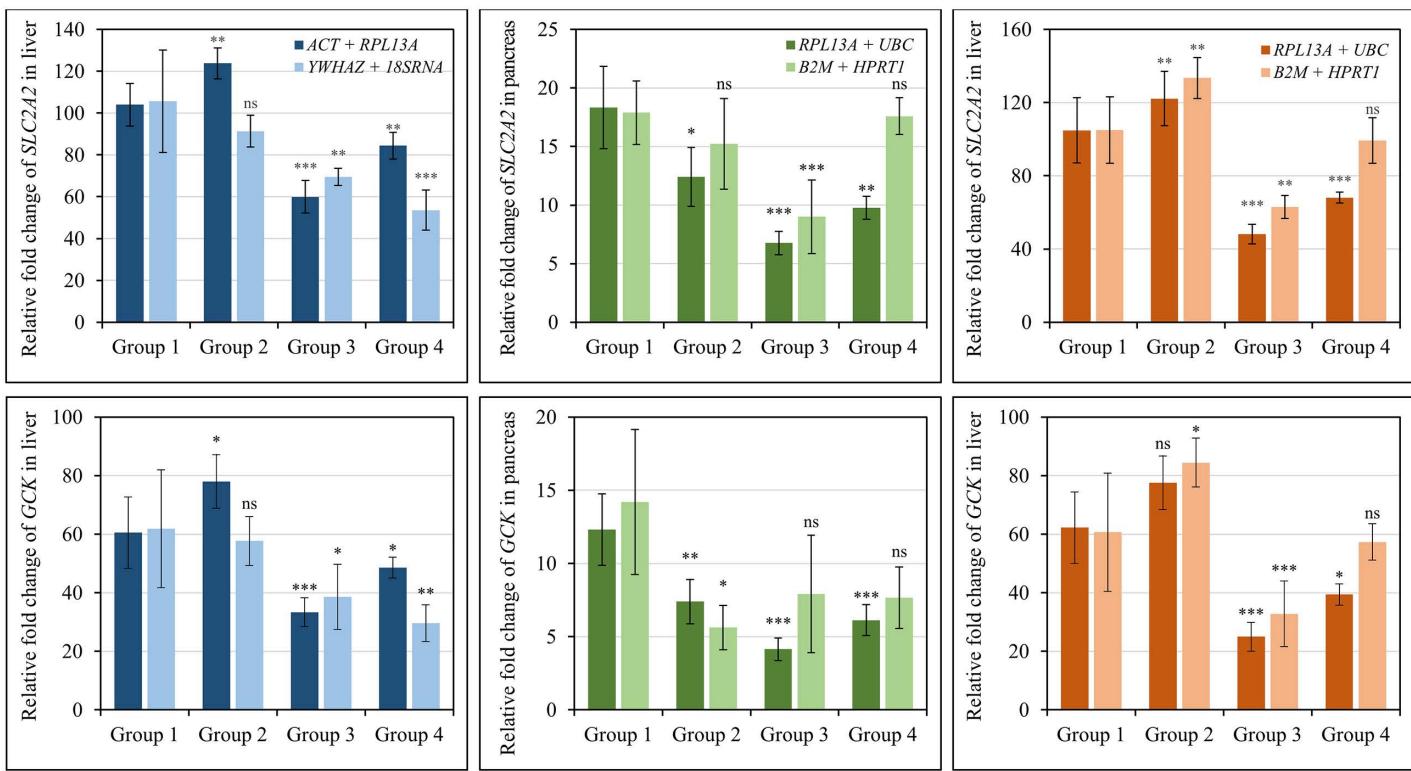

The consensus results of the four statistical tools assessed also identified that *UBC*, together with *RPL13A*, are the most stably expressed candidate reference genes for normalization of RT-qPCR data derived from pancreas and from both pancreas and liver tissues. The GM values of *UBC* were recorded as 1.0 and 3.22 in pancreatic tissues as well as in both types of tissues, respectively (Table 2). This pair of genes has served as reference genes for the normalization of RT-qPCR data obtained from pancreatic β -cells of the diabetic C3HeB/FeJ inbred mouse strain [46]. The *UBC* has also been evaluated as a stable expressed reference gene across liver cell types in mouse and rat models [47,48].

The genes *GAPDH*, *18SRNA*, *YWHAZ*, and *HPRT1* have been utilized either as a singular reference gene or as components of an optimal set for the normalization of qPCR data [49,50]. Our findings indicated that these genes were among the inappropriate candidate reference genes in the liver and pancreatic tissues. In alignment with our findings, previous studies identified *YWHAZ* [40] as the least suitable reference gene for gene expression profiling of liver, muscle, and adipose tissues of HFD-fed obese mouse models, whereas *B2M* was noted as the most unstable reference gene for liver, pancreas, and kidney [26]. In a similar manner, *HPRT1*, *GAPDH*, and *18SRNA* have been identified as having the lowest geNorm M values in liver tissues of C57BL/6 mice [20].

In the process of normalizing RT-qPCR data, it is possible to utilize a single reference gene in certain cases; however, this approach may lead to significant inaccuracies and biased outcomes. Consequently, it is advisable to utilize at least two reference genes to improve the precision and dependability of the normalization procedure [51,52]. The analysis of pairwise variation ($V_n/V_n + 1$) through geNorm has demonstrated its efficacy in identifying the optimal number of reference genes. Fig 3 reveals that the pairwise variation analysis yielded the $V_{2/3}$ values of 0.146, 0.147, and 0.15 for liver, pancreas, and both types of tissues, respectively. The results obtained are below the recommended threshold of 0.15 [27]. Moreover, the inclusion of reference genes has shown a significant reduction in V values, particularly $V_{3/4}$ (liver: 0.121, pancreas: 0.095 and both types of tissues: 0.134) and $V_{4/5}$ (liver: 0.103, pancreas: 0.14 and both types of tissues: 0.128). Nevertheless, the optimal number of reference genes identified was two, as this was regarded as the most practical option. The present finding aligns with the research conducted by Vandesompele [27], suggesting that adding more reference genes does not substantially improve the robustness of gene expression evaluation.

Validation of selected candidate reference genes

To assess the suitability of candidate reference genes for RT-qPCR normalization, both the most and least stable pairs were used to normalize the expression levels of *SLC2A2* (*Solute carrier family 2 member 2*) and *GCK* (*Glucokinase*) in liver and pancreatic tissues across the four experimental groups. *SLC2A2* is responsible for encoding glucose transporter 2 (GLUT2), which is predominantly expressed in the liver, pancreatic β -cells, intestine, and kidney [53]. *GCK* encodes a key enzyme involved in glucose metabolism, catalyzing the phosphorylation of glucose to form glucose-6-phosphate [54]. *SLC2A2* and *GCK* collaborate to regulate glucose sensing, uptake, and overall glucose homeostasis within the body, making them suitable targets for validating the stability of reference genes in liver and pancreas tissues [53,54].


Fig 3. Pairwise variation (V_n/V_{n+1}) analysis of eleven candidate genes by geNorm for determining the optimal number of reference genes required for the accurate normalization of RT-qPCR derived data from liver, pancreas, and both types of tissues. The cut-off threshold was set at 0.15.

<https://doi.org/10.1371/journal.pone.0338403.g003>

In the liver, the use of the most stable pair (*ACT+RPL13A*) resulted in consistent expression patterns of *SLC2A2* and *GCK*. Particularly, the expression levels of *SLC2A2* and *GCK* exhibited an increase in Group 2, showing a 1.2-fold (*p*-value: 0.004) and 1.3-fold (*p*-value: 0.018) rise, respectively. In contrast, these levels were relatively reduced in Group 4 with reductions of 1.2-fold (*p*-value = 0.003 and 0.044, respectively) and greatly dropped in Group 3 by 1.7-fold and 1.8-fold (*p*-value < 0.001), respectively (Fig 4). The rise observed in the expression of two genes in the obese mice of Group 2 suggests an adaptive upregulation in response to hyperglycemia and metabolic changes commonly associated with obesity [55,56]. Whereas, in treated STZ-diabetic Group 4, the expression levels of *SLC2A2* and *GCK*, normalized against the most stable reference gene combination (*RPL13A+ACT*), showed a substantial reduction compared to the control (*p*-value < 0.01); however, this decrease was not as substantial as that in diabetic Group 3. In contrast, when normalized using the least stable reference genes (*YWHAZ+18S RNA*), the expression of *SLC2A2* and *GCK* in the liver showed no significant difference between Groups 1 and 2. However, the Group 4 exhibited relatively lower expression levels (*p*-values = 0.007 and 0.07) compared to the diabetic Group 3 (Fig 4).

In pancreas tissue, the expression of *SLC2A2* and *GCK* followed a similar pattern to that in liver tissue (Fig 4). Groups 2, 3, and 4 all showed a consistent decrease in *SLC2A2* and *GCK* expression levels when normalized using *RPL13A+UBC*, the most stable reference gene combination, in comparison to the control Group 1 [54]. In Group 3, the diabetic mice showed the most noticeable decrease, with reductions of 2.7- and 3.0-fold (*p*-values < 0.001), respectively. In contrast, the expression levels of diabetic mice in Group 4 were greater than those in Group 3 (*p*-value = 0.001 and 0.007, respectively), although their levels still comparatively lower (*p*-value > 0.05) than the levels observed in Group 2 (Fig 4). Different patterns of *SLC2A2* and *GCK* expression were seen when normalized to the least stable reference gene combination (*B2M+HPRT1*). In the mice from Groups 2 and 4, the expression level of *SLC2A2* did not differ from that of Group 1 (*p*-values > 0.05). Conversely, in Group 3, a 2.0-fold decrease (*p*-value = 0.001) was recorded. The expression of *GCK* was decreased to a greater level of 2.5-fold in Group 2 (*p*-value = 0.03) when compared to its normalization using the stable reference gene pair (1.7-fold, *p*-value = 0.002). Nonetheless, the expression of *GCK* showed no significant changes in Groups 3 and 4 (*p*-values > 0.05).

Furthermore, the *RPL13A+UBC* combination has also been identified as an appropriate set of reference genes for accurate and reliable normalization of both liver and pancreas tissues, as confirmed by all four statistical algorithms

Fig 4. Relative fold changes of *SLC2A2* and *GCK* expression in liver and pancreas tissues across four experimental groups (1-4), normalized using the most stable (*ACT+RPL13A*; *RPL13A+UBC*) and least stable (*YWHAZ+18SRNA*; *B2M+HPRT1*) reference gene combinations. Asterisks above the bars denote significant differences between experiment groups (2-4) and control group 1 (*p*-values: * ≤ 0.05 ; ** ≤ 0.005 ; * ≤ 0.001). ns: not significant (*p*-value > 0.05).**

<https://doi.org/10.1371/journal.pone.0338403.g004>

employed (Table 2). As expected, the expression profiles of *SLC2A2* and *GCK*, when normalized with this reference gene combination, exhibited a pattern similar to that observed using the stable reference genes (*RPL13A+ACT*) identified specifically for liver (Fig 4). The process of normalization using the least stable reference genes (*B2M+HPRT1*) resulted in comparable overall patterns; however, the data indicated slightly elevated expression levels compared to the stable pairs, highlighting the influence of reference gene selection on quantitative results.

This study has several limitations that should be acknowledged. Firstly, we did not conduct a correlation analysis between the reference genes and the characteristics of organs and pathological features, thereby preventing the evaluation of any potential associations. Furthermore, the investigation focused only on 11 reference genes based on previous literature. In future research, RNA-seq data will be essential for the identification of additional novel markers.

Conclusion

In conclusion, this study provides a list of novel reference genes for the accurate and reliable normalization of RT-qPCR generated data derived from liver, pancreas, and both types of tissues across physiological, pathological, and treatment conditions. To the best of our knowledge, this work represents one of the first evaluations of reference gene stability for both liver and pancreatic tissues across four distinct experimental mouse groups. The reference genes identified as most stable for liver and pancreatic tissues were *RPL13A* and *UBC*. Our statistical analysis also identified two top-ranked gene pairs for RT-qPCR normalization, such as *ACT* and *RPL13A* for liver tissues and *RPL13A* and *UBC* for pancreatic tissues. The

findings in this study offer valuable insights that assists the future profiling of genes of interest in mouse models affected by obesity, diabetes and treatment conditions. These results provide a reliable and robust framework for accurate normalization of RT-qPCR data in mouse liver and pancreas as well as highlight the necessity of validating reference gene stability under physiological, pathological, and treatment conditions.

Supporting information

S1 Fig. Amplification efficiencies of 11 candidate reference genes and two target genes (SLC2A2, GCK) generated by Illumina Q-Rex software for RT-qPCR normalization analysis.

(DOCX)

S1 File. Raw data.

(XLSX)

Author contributions

Conceptualization: Duc Quan Nguyen, Huy Hoang Nguyen.

Data curation: Van Diep Nong, Duc Quan Nguyen, Thi Trang Do, Thanh Hien Nguyen.

Formal analysis: Van Diep Nong, Duc Quan Nguyen, Thi Trang Do, Thi Huong Giang Tran.

Funding acquisition: Huy Hoang Nguyen.

Investigation: Van Diep Nong, Duc Quan Nguyen, Tat Thanh Le.

Methodology: Van Diep Nong, Duc Quan Nguyen, Thi Trang Do, Thi Huong Giang Tran.

Project administration: Duc Quan Nguyen, Huy Hoang Nguyen.

Resources: Duc Quan Nguyen.

Software: Duc Quan Nguyen.

Supervision: Duc Quan Nguyen, Tat Thanh Le, Huy Thinh Tran, Huy Hoang Nguyen.

Validation: Van Diep Nong, Duc Quan Nguyen.

Visualization: Duc Quan Nguyen.

Writing – original draft: Van Diep Nong, Duc Quan Nguyen.

Writing – review & editing: Duc Quan Nguyen, Thi Trang Do, Thanh Hien Nguyen, Tat Thanh Le, Huy Thinh Tran, Huy Hoang Nguyen.

References

1. Briscoe VJ, Davis SN. Hypoglycemia in type 1 and type 2 diabetes: physiology, pathophysiology, and management. *Clinical Diabetes*. 2006;24(3):115–21. <https://doi.org/10.2337/diaclin.24.3.115>
2. Kottaisamy CPD, Raj DS, Prasanth Kumar V, Sankaran U. Experimental animal models for diabetes and its related complications—a review. *Lab Anim Res*. 2021;37(1):23. <https://doi.org/10.1186/s42826-021-00101-4> PMID: 34429169
3. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. *Phys Ther*. 2008;88(11):1254–64. <https://doi.org/10.2522/ptj.20080020> PMID: 18801858
4. Kennard MR, Daniels Gatward LF, Roberts AG, White ERP, Nandi M, King AJF. The use of mice in diabetes research: the impact of experimental protocols. *Diabet Med*. 2021;38(12):e14705. <https://doi.org/10.1111/dme.14705> PMID: 34596274
5. Wang C-Y, Liao JK. A mouse model of diet-induced obesity and insulin resistance. *Methods Mol Biol*. 2012;821:421–33. https://doi.org/10.1007/978-1-61779-430-8_27 PMID: 22125082
6. Akinlade OM, Owoyele BV, Soladoye AO. Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. *Afr Health Sci*. 2021;21(2):719–27. <https://doi.org/10.4314/ahs.v21i2.30> PMID: 34795728

7. Marino F, Salerno N, Scalise M, Salerno L, Torella A, Molinaro C, et al. Streptozotocin-induced type 1 and 2 diabetes mellitus mouse models show different functional, cellular and molecular patterns of diabetic cardiomyopathy. *Int J Mol Sci.* 2023;24(2):1132. <https://doi.org/10.3390/ijms24021132> PMID: 36674648
8. Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. *Biomed Pharmacother.* 2017;95:605–13. <https://doi.org/10.1016/j.biopha.2017.08.098> PMID: 28881291
9. Marton LT, Pescinini-E-Salzedas LM, Camargo MEC, Barbalho SM, Haber JFDS, Sinatorta RV, et al. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. *Front Endocrinol (Lausanne).* 2021;12:669448. <https://doi.org/10.3389/fendo.2021.669448> PMID: 34012421
10. Cheng Y, Zhang J, Luo K, Zhang G. Oat bran β -glucan improves glucose homeostasis in mice fed on a high-fat diet. *RSC Adv.* 2017;7(86):54717–25. <https://doi.org/10.1039/c7ra10437e>
11. Masuzaki H, Kozuka C, Okamoto S, Yonamine M, Tanaka H, Shimabukuro M. Brown rice-specific γ -oryzanol as a promising prophylactic avenue to protect against diabetes mellitus and obesity in humans. *J Diabetes Investig.* 2019;10(1):18–25. <https://doi.org/10.1111/jdi.12892> PMID: 29978570
12. Badr AM, Sharkawy H, Farid AA, El-Deeb S. Curcumin induces regeneration of β cells and suppression of phosphorylated-NF- κ B in streptozotocin-induced diabetic mice. *JoBAZ.* 2020;81(1). <https://doi.org/10.1186/s41936-020-00156-0>
13. Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH, Ramírez-Emiliano J, Pérez-Vázquez V. A PPAR γ , NF- κ B and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. *Molecules.* 2014;19(6):8289–302. <https://doi.org/10.3390/molecules19068289> PMID: 24945581
14. Uğran R, Koral TS. Investigation of the effects of curcumin on GLP1-R in liver tissue of diabetic rats. *Arch Razi Inst.* 2024;79(4):815–26. <https://doi.org/10.32592/ARI.2024.79.4.815> PMID: 40256576
15. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabetes. *Endocrinology.* 2008;149(7):3549–58. <https://doi.org/10.1210/en.2008-0262> PMID: 18403477
16. Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, et al. NF- κ B pathway as a molecular target for curcumin in diabetes mellitus treatment: focusing on oxidative stress and inflammation. *Cell Biochem Funct.* 2024;42(4):e4030. <https://doi.org/10.1002/cbf.4030> PMID: 38720663
17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. *Methods.* 2001;25(4):402–8. <https://doi.org/10.1006/meth.2001.1262> PMID: 11846609
18. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. *J Exp Bot.* 2009;60(2):487–93. <https://doi.org/10.1093/jxb/ern305> PMID: 19264760
19. Yan Z, Gao J, Lv X, Yang W, Wen S, Tong H, et al. Quantitative evaluation and selection of reference genes for quantitative RT-PCR in mouse acute pancreatitis. *Biomed Res Int.* 2016;2016:8367063. <https://doi.org/10.1155/2016/8367063> PMID: 27069927
20. Wang S, Wang J, Lv X. Selection of reference genes for expression analysis in mouse models of acute alcoholic liver injury. *Int J Mol Med.* 2018;41(6):3527–36. <https://doi.org/10.3892/ijmm.2018.3527> PMID: 29512759
21. Chen C, Yang K, Zhang Y, Lu M, Zhao X, Wan Z. Pathogenic gene connections in type 2 diabetes and non-alcoholic fatty liver disease: a bioinformatics analysis and mouse model investigations experiments. *Nutr Diabetes.* 2024;14(1):60. <https://doi.org/10.1038/s41387-024-00323-0> PMID: 39107295
22. Fan X, Yao H, Liu X, Shi Q, Lv L, Li P, et al. High-fat diet alters the expression of reference genes in male mice. *Front Nutr.* 2020;7:589771. <https://doi.org/10.3389/fnut.2020.589771> PMID: 33330591
23. Dai Y, Kou H, Guo X, Gong Z, Liu H, Liu Y, et al. Identification and validation of reference genes for RT-qPCR analysis in fetal rat pancreas. *Reprod Toxicol.* 2021;105:211–20. <https://doi.org/10.1016/j.reprotox.2021.09.009> PMID: 34537367
24. Ai Y, Peng K, Li C, Zhang J, Wang G, Wang B, et al. Assessment of reference genes stability in cortical bone of obese and diabetic mice. *Diabetes Metab Syndr Obes.* 2024;17:1081–91. <https://doi.org/10.2147/DMSO.S453458> PMID: 38455760
25. Febriza A, Zahrah AA, Andini NS, Usman F, Idrus HH. Potential effect of curcumin in lowering blood glucose level in streptozotocin-induced diabetic rats. *Diabetes Metab Syndr Obes.* 2024;17:3305–13. <https://doi.org/10.2147/DMSO.S468059> PMID: 39247432
26. Secio-Silva A, Emrich F, Evangelista-Silva PH, Prates RP, Hijo AHT, Figueira-Costa TN, et al. Which housekeeping gene is the best choice for RT-qPCR analysis in mice fed with a high-fat diet? Studies in the liver, kidney, pancreas, and intestines. *Gene Reports.* 2023;31:101756. <https://doi.org/10.1016/j.genrep.2023.101756>
27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* 2002;3(7):RESEARCH0034. <https://doi.org/10.1186/gb-2002-3-7-research0034> PMID: 12184808
28. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* 2004;64(15):5245–50. <https://doi.org/10.1158/0008-5472.CAN-04-0496> PMID: 15289330
29. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper--Excel-based tool using pair-wise correlations. *Biotechnol Lett.* 2004;26(6):509–15. <https://doi.org/10.1023/b:bile.0000019559.84305.47> PMID: 15127793
30. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *BMC Mol Biol.* 2006;7:33. <https://doi.org/10.1186/1471-2199-7-33> PMID: 17026756

31. Nguyen DQ, Nguyen DL, Tran THG, Nguyen KT, Le TN, Do TTT, et al. Investigation of the effects of Huyet Rong germinated red rice on gene expression in diabetic mouse. *Vietnam J Biotechnol.* 2024;22(4):530–42. <https://doi.org/10.15625/vjbt-21736>
32. Dinger K, Mohr J, Vohlen C, Hirani D, Hucklenbruch-Rother E, Ensenauer R. Intraperitoneal glucose tolerance test, measurement of lung function, and fixation of the lung to study the impact of obesity and impaired metabolism on pulmonary outcomes. *J Vis Exp.* 2018;2018(133):56685.
33. Pawar HD, Mahajan UB, Nakhate KT, Agrawal YO, Patil CR, Meeran MFN, et al. Curcumin Protects Diabetic Mice against Isoproterenol-Induced Myocardial Infarction by Modulating CB2 Cannabinoid Receptors. *Life (Basel).* 2022;12(5):624. <https://doi.org/10.3390/life12050624> PMID: 35629293
34. AVMA. American veterinary medical association guidelines for the euthanasia of animals. Schaumburg, Illinois: AMVA; 2020.
35. Nguyen DQ, Nguyen NL, Nguyen VT, Nguyen THG, Nguyen TH, Nguyen TKL, et al. Reliable reference genes for accurate gene expression profiling across different tissues and genotypes of rice seedlings (*Oryza sativa* L.) under salt stress. *Russ J Plant Physiol.* 2023;70(5). <https://doi.org/10.1134/s102144372360068x>
36. Kaufmann J, Schering A. Analysis of variance ANOVA. 2014.
37. Lee S-J, Chandrasekran P, Mazucanti CH, O'Connell JF, Egan JM, Kim Y. Dietary curcumin restores insulin homeostasis in diet-induced obese aged mice. *Aging (Albany NY).* 2022;14(1):225–39. <https://doi.org/10.18632/aging.203821> PMID: 35017319
38. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin Chem.* 2009;55(4):611–22. <https://doi.org/10.1373/clinchem.2008.112797> PMID: 19246619
39. Bivins A, Kaya D, Bibby K, Simpson SL, Bustin SA, Shanks OC, et al. Variability in RT-qPCR assay parameters indicates unreliable SARS-CoV-2 RNA quantification for wastewater surveillance. *Water Res.* 2021;203:117516. <https://doi.org/10.1016/j.watres.2021.117516> PMID: 34412018
40. Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, et al. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. *Sci Rep.* 2016;6:38513. <https://doi.org/10.1038/srep38513> PMID: 27922100
41. Liang L, He Z, Yu H, Wang E, Zhang X, Zhang B, et al. Selection and validation of reference genes for gene expression studies in codonopsis pilosula based on transcriptome sequence data. *Sci Rep.* 2020;10(1):1362. <https://doi.org/10.1038/s41598-020-58328-5> PMID: 31992780
42. Orekhova A, Geisz A, Sahin-Tóth M. Ethanol feeding accelerates pancreatitis progression in CPA1 N256K mutant mice. *Am J Physiol Gastrointest Liver Physiol.* 2020;318(4):G694–704. <https://doi.org/10.1152/ajpgi.00007.2020> PMID: 32116022
43. Hernández AH, Curi R, Salazar LA. Selection of reference genes for expression analyses in liver of rats with impaired glucose metabolism. *Int J Clin Exp Pathol.* 2015;8(4):3946–54. PMID: 26097580
44. Liu H, Liu L, Han H, Liu K, Wang H. Panel of suitable reference genes and its gender differences of fetal rat liver under physiological conditions and exposure to dexamethasone during pregnancy. *Reprod Toxicol.* 2021;100:74–82. <https://doi.org/10.1016/j.reprotox.2021.01.005> PMID: 33453333
45. Araujo LCC, Bordin S, Carvalho CRO. Reference gene and protein expression levels in two different NAFLD mouse models. *Gastroenterol Res Pract.* 2020;2020:1093235. <https://doi.org/10.1155/2020/1093235> PMID: 32089674
46. Chhabra NF, Amend A-L, Bastidas-Ponce A, Sabrautzki S, Tarquis-Medina M, Sachs S, et al. A point mutation in the Pdia6 gene results in loss of pancreatic β-cell identity causing overt diabetes. *Mol Metab.* 2021;54:101334. <https://doi.org/10.1016/j.molmet.2021.101334> PMID: 34487921
47. Wang G-P, Xu C-S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. *Mol Biotechnol.* 2010;46(1):49–57. <https://doi.org/10.1007/s12033-010-9274-5> PMID: 20339955
48. Li Y, Zhang Q, Cui G, Zhao F, Tian X, Sun B-F, et al. m6A regulates liver metabolic disorders and hepatogenous diabetes. *Genomics Proteomics Bioinform.* 2020;18(4):371–83. <https://doi.org/10.1016/j.gpb.2020.06.003> PMID: 33160098
49. Heishi M, Ichihara J, Teramoto R, Itakura Y, Hayashi K, Ishikawa H, et al. Global gene expression analysis in liver of obese diabetic db/db mice treated with metformin. *Diabetologia.* 2006;49(7):1647–55. <https://doi.org/10.1007/s00125-006-0271-y> PMID: 16752183
50. Matoušková P, Bártiková H, Boušová I, Hanušová V, Szotáková B, Skálová L. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. *PLoS One.* 2014;9(1):e86033. <https://doi.org/10.1371/journal.pone.0086033> PMID: 24465854
51. Kozera B, Rapacz M. Reference genes in real-time PCR. *J Appl Genet.* 2013;54(4):391–406. <https://doi.org/10.1007/s13353-013-0173-x> PMID: 24078518
52. Nguyen DQ, Eamens AL, Grof CPL. Reference gene identification for reliable normalisation of quantitative RT-PCR data in *Setaria viridis*. *Plant Methods.* 2018;14:24. <https://doi.org/10.1186/s13007-018-0293-8> PMID: 29581727
53. Sun B, Chen H, Xue J, Li P, Fu X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. *Mol Biol Rep.* 2023;50(8):6963–74. <https://doi.org/10.1007/s11033-023-08535-w> PMID: 37358764
54. Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, et al. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. *Cell Mol Biol Lett.* 2024;29(1):120. <https://doi.org/10.1186/s11658-024-00640-3> PMID: 39245718
55. Yonamine CY, Pinheiro-Machado E, Michalani ML, Alves-Wagner AB, Esteves JV, Freitas HS, et al. Resveratrol improves glycemic control in type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. *Molecules.* 2017;22(7):1180. <https://doi.org/10.3390/molecules22071180> PMID: 28708105
56. Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, et al. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. *Helijon.* 2024;10(3):e25459. <https://doi.org/10.1016/j.heliyon.2024.e25459> PMID: 38333863