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Abstract

Breast muscle is a crucial trait in poultry meat production. Previous studies have
identified embryonic day 15 (E15), E21, and E31 as key time points in the breast
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1. Introduction

Skeletal muscle accounts for approximately 35-60% of body weight in animals [1],
which represents a vital trait for the production of poultry meat. Breast muscles are
involved in functions such as muscle movement, energy expenditure, and endocrine
regulation [2]. Thus, it is a crucial tissue for human and animals. The formation of skel-
etal muscle involves multiple biological processes such as the proliferation, migration
and differentiation of skeletal muscle stem cells, the proliferation and differentiation of
myoblasts [3,4]. AImost all muscle fibers have already differentiated and formed during
the embryonic stage, and only hypertrophy of muscle fibers and transformation of
muscle fiber types occur after birth [5]. Understanding the developmental mechanisms
of embryonic breast muscle is therefore crucial for enhancing goose meat yield.

RNA-sequencing (RNA-seq) is widely used to identify regulatory genes in various
tissues or organs [6-9], and has significantly promoted the exploration of mecha-
nisms underlying animal economic traits over the past decade. In avian embryonic
muscle research, RNA-seq has been applied to screen key regulators in chickens
and ducks. For example, studies on broiler chickens identified MYOD1, MYOG and
PAXT7 as core genes controlling embryonic breast muscle differentiation [10]; in Pekin
ducks, RNA-seq analyses linked the Wnt/B-catenin signaling pathway to the prolif-
eration and differentiation of embryonic muscle cells [11]. However, bulk RNA-seq
averages transcriptomic signals across cell populations, failing to clearly distinguish
changes specific to cell types or subtypes [12], these limitation hinder the study of
cell-specific regulatory mechanisms in breast muscle development.

Single-nucleus RNA-sequencing (snRNA-seq) overcomes this drawback by char-
acterizing transcriptomes in the nuclei of individual cells at different developmental
stages [13]. This technology enables the analysis of gene expression heterogeneity
between cells, the tracking of cell lineage trajectories during development, and the
identification of cell-type-specific gene expression [14], making it increasingly widely
used in embryonic development research of species such as mice and chickens
[15,16]. For instance, snRNA-seq in chicken embryos revealed the heterogeneity of
MuSCs and identified subtype-specific regulatory genes during myogenesis [17].

In goose research, however, studies on embryonic breast muscle development
remain relatively scarce. Existing studies primarily focus on post-hatch growth. For
example, a study on Landes geese found that the mTOR signaling pathway regulates
breast muscle hypertrophy by promoting protein synthesis in post-hatch stages [18];
another study on Zhedong white geese explored the relationship between genes
related to lipid metabolism and intramuscular fat deposition in post-hatch breast mus-
cle [19]. For embryonic stages, only a few bulk RNA-seq studies have been reported.
Our previous study [20] has shown that myogenic differentiation is the major event for
the earlier stages and peaks at the 15th day (E15) during the embryonic development
of Ding’an goose. After that, the myogenic differentiation slows down, muscle fiber
fusion appears and and peaks at the 21st day (E21) during the embryonic develop-
ment of Ding’an goose, With the muscle fiber development of Dingan goose, it arrives
its mature muscle fiber point at the 31st day (E31) during the embryonic develop-
ment. Thus, E15, E21 and E31 represent three key time points for breast muscle
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development, which will provide many key events in the regulation of breast muscle development for Ding’an goose. To
date, no studies have applied snRNA-seq to analyze goose embryonic breast muscle, resulting in a lack of understanding
of cellular heterogeneity and cell-type-specific regulatory mechanisms during its development.

Ding’an goose is the only local meat goose variety in Hainan Province, and was listed in the National Livestock and
Poultry Genetic Resources List in 2010. It has the characteristics of good adaptability, strong stress resistance, high lean
meat percentage, and good meat quality, making it an important component of animal husbandry in Hainan Province [20].
To fill the aforementioned research gap, we used snRNA-seq technology to analyze breast muscle cells of Ding’an geese
at E15, E21, and E31. The aim of this study is to clarify the dynamic changes and heterogeneity of breast muscle cell
populations, and to identify cell-type-specific regulatory genes and pathways, thereby enhancing the understanding of the
molecular mechanisms underlying embryonic breast muscle development in Ding’an goose.

2. Methods
2.1. Sample collection

The fertilized eggs of Ding’an goose are provided by Mingiong Poultry Industry Co., Ltd (Hainan, China). All animal
experiments were approved by the Animal Ethics Committee of IASVM-HAAS (Approval No.:IASVMHAAS-AE-202489).
Fertilized eggs of Ding’an goose were incubated in an incubator at 38°C and 70% relative humidity. At embryonic days 15
(E15), 21 (E21), and 31 (E31), embryos were sacrificed humanely following the AVMA Guidelines for the Euthanasia of
Animals (2020).

Embryos were anesthetized via inhalation of 5% isoflurane in oxygen (flow rate: 1L/min) until the absence of toe-pinch
reflex was confirmed. Euthanasia was then performed by cervical dislocation to ensure rapid and painless death. To min-
imize suffering, all operations were conducted by trained personnel, and embryos were handled gently to avoid unneces-
sary stress. Incubation and sacrifice procedures were designed to reduce exposure time to non-physiological conditions,
and sterile techniques were used during tissue collection to prevent post-mortem contamination.

At the time points of E15, E21, and E31, the breast muscles were aseptically harvested. The left breast muscles were
sent to LC Bio Technology Co. Ltd. (Hangzhou, China) for snRNA-seq. Half of the right breast muscles were fixed in 4%
paraformaldehyde for immunofluorescence experiments, while the other half were used for fluorescence quantitative PCR
experiments. Three individual replicates were set up for each time point.

2.2. Single-nuclei isolation

Nuclei were isolated with Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) supplemented with protease inhibi-
tor(5892791001; Roche) and RNase inhibitor(N2615; Promega and AM2696; Life Technologies). Samples were cut

into 1 mm pieces and homogenized using a Dounce homogenizer (885302-0002; Kimble Chase) in 2ml of ice-cold
Nuclei EZ Lysis buffer. They were incubated on ice for 5 minutes with an additional 2ml of lysis buffer. Grounded with a
dounce(Sigma), resuspended by pipette, gentlely. Incubated on ice for 6 min, then add 2ml of ice-cold 4% BSA, resus-
pended by Pasteur pipette, then stop the reaction. Centrifuged at 300g for 5 minutes at 4°C. Add 2 mlof lysis buffer and
4% BSA, resuspended, Incubated on ice for 3 min. De-fragment with Miltenyi (Debris Removal Solution). The pellet was
resuspended and washed with 4 ml of the buffer, and then, it was incubated on ice for 5 minutes. After another centrifuga-
tion. The pellet was resuspended in Nuclei Suspension Buffer (1x PBS,0.07% BSA, and 0.1% RNase inhibitor). Filtered
through a 20-mm cell strainer(43-50020-50; pluriSelect), and counted using a haemocytometer/ Countess Il Automated
Cell Counter and concentration adjusted to 700—1200 cells/l.

2.3. Library preparation and sequencing

Single-nuclei suspensions were loaded to 10x Chromium to capture 8000 single cell according to the manufacturer’s
instructions of 10X Genomics Chromium Single-Cell 3’ kit (V3). The following cDNA amplification and library construction
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steps were performed according to the standard protocol [21]. Libraries were sequenced on an lllumina NovaSeq 6000
sequencing system (paired-end multiplexing run,150bp) by LC-Bio Technology co.ltd., (HangZhou,China) at a minimum
depth of 20,000 reads per cell.

2.4 Bioinformatics analysis

First, we used lllumina bcl2fastq software (version 5.01) to multiplex the sequencing results and convert them to FASTQ
format. The Cell Ranger pipeline was used for sample demultiplexing, barcode processing, and single-cell 3’-gene count-
ing. Next, snRNA-seq data were aligned with the Ensembl genome goose reference genome, and the Cell Ranger output
was loaded into Seurat (version 3.1.1) for dimensionality reduction, clustering, and the analysis of snRNA-seq data [22].
Overall, 25000 cells passed the quality control threshold in that any genes expressed in < 3 cells (default parameter: 1
cell) were removed, the number of genes expressed in each cell>500 was low, <5000 was high, the UMI count was <500,
and the percentage of mitochondrial DNA derived gene expression was <25% [23]. To visualize the data, we used Seurat
software to further reduce the dimensionality of all 18339 cells, and t-SNE was used to project the cells into a two-
dimensional (2D) space [24]. Then, we used the LogNormalize method in the normalization function of Seurat to calculate
gene expression values, and perform principal component analysis on normalized gene expression values. Then, we used
cluster and t-SNE analysis to analyze the top 10 principal components [25]. To identify clusters, we selected a clustering
method based on a weighted shared nearest neighbor graph. Marker genes for each cluster were identified using the the
FindAllMarkers function in Seurat and Wilcoxon’s rank sum test (default parameter: “bimodal”:likelihood ratio test) with
default parameters. This process selected marker genes that were expressed in > 10% of cells in the cluster and had a
mean log (fold change) > 0.25 (default parameter: 0.26) [26].

2.5. Immunofluorescence staining

The tissues used for immunofluorescence was fixed with an environmentally friendly memory muscle fixative (Servicebio,
Hubei, China) for 24 hours. The tissues were dehydrated, embedded, and sectioned for analysis, as described previously
[27]. Then, we performed immunohistochemistry with a specific polyclonal antibody (1:200) to detect the spatial distribu-
tion of PAX7 (GB113190-50, Servicebio, Hubei, China) protein in skeletal muscle cells, which has been validated in previ-
ous studies [28]. Next, we incubated sections with a HRP-labeled secondary antibody (Servicebio, Hubei, China) (1:1000)
and counterstained with DAPI (Beyotime, Shanghai, China) (1:1000).

2.6. Fibroblast extraction

For tissues used for fluorescence quantitative PCR, cut them into small pieces with scissors, and digested them with
4% trypsin at 37 °C for one hour. The final cell suspension was then filtered through a 200um cell filter, centrifuged at
1800 rpm for 10 minutes, washed with PBS, and re-centrifuged for 5 minutes. Adherent cells were collected one hour later.

2.7. Fluorescence quantitative polymerase chain reaction (PCR)

We extracted total RNA from fibroblasts using the Trizol method (Invitrogen, Carlsbad, CA, USA), and measured the
concentration of the total RNA with a UV spectrophotometer (A260/280: 1.8-2.0). Then, we used a Tiangen Reverse
Transcription Kit (Beijing, China) to synthesize c-DNA for PCR [19]. Primers (Table 1) were designed and synthesized

by Shenggong Bioengineering Co., Ltd. (Shanghai, China). GAPDH is widely validated and used as a reference gene

in avian muscle development studies [29]. For PCR, we used c-DNA as a template and GAPDH as an internal ref-
erence, and fluorescence quantitative PCR system. This allowed us to determine the gene expression by the 2-24¢t
method [30]. Three biological replicates and three technical replicates were performed. Experimental data are expressed
as mean xstandard error of the mean. Data were compared with the Student’s t-test, and a P<0.05 was considered
significant.
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Table 1. Primer sequences for real time qPCR.

NCBI number Gene name Sequence 5’-3’ Product length (bp)

XM_048079166.2 FOXO3-F TGCCTTGTCCAATTCCATCAGTAAC 117
FOXO3-R GAGAGCGGGTCAGAAAGTGTTTG

XM_066995163.1 DCN-F CTATATCCGTATCGCAGACACCAAC 82
DCN-R ACCATCAAGATGAAGTTCCGTAAGG

XM_013172072.3 PLXDC2-F CCACAGAAGATGACACCAAGATAGC 111
PLXDC2-R CAACAATTAAGCCAGCGTGAAGTG

XM_013178763.3 COL3A1-F TGGAGAGTCTATGAATGGAGGCTTC 109
COL3A1-R GGCACGGCTGGAGAGGATG

XM_067000417.1 ABLIM1-F AACCTCTTCTCTTCCTGGCTATGG 105
ABLIM1-R TCTCTAACACCACCACTCACATCC

XM_048066782.2 EGFL6-F TTACCGACTTGCTGGCGAGAG 106
EGFL6-R TCCACCTTTCATCTTTCCCTTTGTTC

XM_067004670.1 GAPDH-F GTAGTGAAGGCTGCTGCTGATG 106
GAPDH-R CAAAGGTGGAGGAATGGCTGTC

https://doi.org/10.1371/journal.pone.0338390.t001

3. Results
3.1. Identification of different cell types

In order to generate a cell population map for developing breast muscle in goose, we performed snRNA-seq on breast mus-
cle tissues from goose embryos on E15, E21, and E31 (Fig 1a). After Seurat filtering, we collected 18972, 19460, 19843 sin-
gle cells from E15, E21, and E31 respectively, and resulting in the generation of 26 clusters (Fig 1b). A heatmap showing the
top 10 upregulated genes in each of these 26 clusters is presented in Fig 1c, which reveals cluster-specific gene expression
patterns that facilitate subsequent cell type annotation. Based on the enriched the differentially expressed genes (DEGs)
(Additional file S1 Table) and cell-type specific gene markers in each cluster, nine cell populations were identified (Fig 1d),
including fibroblast adipogenic progenitor cells/fibroblasts (FAPs, clusters 2, 7, 12, 13, 18, and 25; Marker genes: PDGFRa,
CD34), Schwann cells (SCs, cluster 23; Marker gene: MPZ), pericytes (Peri, clusters 9 and 21; Marker gene: PDGFRp),
muscle cells (Myocyte, clusters 1, 4, 5, 6, 19, and 22 Marker genes: MYOD1, MYH1), immune cells (ICs, cluster 16; Marker
gene: CD45), red blood cells (RBCs, cluster 17; Marker gene: HBB), endothelial cells (ECs, clusters 14 and 24; Marker
gene: CD31), muscle stem cells (MuSCs, clusters 0, 3, 8, 10, 11, and 15; Marker gene: PAX7), and mesenchymal stem cells
(cluster 20; Marker gene: CD73). The distributions of cells expressing characteristic gene markers were shown in Fig 1e.

In addition, we identified key differences in the abundance of cell clusters for E15, E21, and E31 (Fig 1f). FAPS/fibroblasts,
MuSCs, and myocytes were the main constituent cells of breast muscle (over 85%) at three time points. As time progressed,
the proportion of FAPS/fibroblasts and MuSCs were decreased (from 35% to 8% and 55% to 20%, respectively), while the
proportion of myocytes is increased (from 5% to 70%). For E31, myocytes accounted for the largest cell proportion among
the nine cell types (70%). To verify the sequencing results, we conducted immunofluorescence experiments and found that
the proportion of MuSCs was consistent with the snRNA-seq results (Fig 1g and Fig 1h). We used gPCR to investigate the
expression levels of certain DEGs in fibroblasts and found that the gPCR results were consistent with that of sShnRNA-seq
data (Fig 1i), thus demonstrating the reliability of our sequencing results. Considering the proportion of composition and
developmental trends in breast muscles, we further analyzed FAPS/fibroblasts, MuSCs, and myocytes.

3.2. Transcriptional heterogeneity of MuSCs

To investigate the heterogeneity of MUSC, we divided MUSC into 12 clusters and further analysis revealed these cell
clusters exhibited characteristics of four main cell sub-types (Fig 2a), including MUSC-0, MUSC-1, MUSC-2, and MUSC-3
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Fig 1. Analysis of different cell types in the breast muscle of goose. (a) Single-cell nuclear sequencing process. (b) 64852 single-cell reduced
dimensional maps based on T-distribution random neighborhood embedding (t-SNE), with different colors representing different cell clusters (the same
color system applies for all other Figs). (c) Heat map showing the top ten upregulated genes in each cell cluster. (d) t-SNE map of cells identified in the
breast muscle. (e) t-SNE plot showing the expression of marker genes in fibroblast adipogenic progenitor cells, Schwann cells, pericytes, myocytes,
immune cells, red blood cells, endothelial cells, MuSCs, and mesenchymal stem cells. (f) Proportional diagram showing cells at different developmental
stages. (g) Immunofluorescence staining of MuSCs, blue staining (DIPI) represents all cell nuclei, and red staining (PAX7) represents myoblasts. (h)
Staining analysis of MUSC immunofluorescence. (i) gPCR analysis of the expression levels of certain DEGs in fibroblasts. Error bars represent the stan-
dard error of the mean (SEM); n=3 biological replicates, with 3 technical replicates per biological replicate, the same below.

https://doi.org/10.137 1/journal.pone.0338390.g001

(Fig 2b). Next, we identified four MUSC sub-groups by characteristic genes (Fig 2c). MUSC-0 expressed higher levels

of TOP2A, MKI67, and CENPE, indicating that the cell population was probably in a proliferative state. Genes related to
cell migration, such as MMP16, LAMA4, and SRGAP1, were highly expressed in the MUSC-1. However, the MUSC-2
expressed higher levels of SOX13, PCDH15, TEAD4, and FILIP1. The MuSCs-3 cell cluster specifically expressed
ZBTB16, FOX03, and COL4Ab. To further reveal the functionality of each MUSC sub-group, we performed functional
enrichment for each MUSC sub-group (Fig 2d). Gene ontology (GO) analysis revealed enrichment in cell division, chromo-
some separation, and DNA binding in the MUSC-O0 cell cluster. The MUSC-1 cluster was enriched in protein binding, sig-
nal transduction, and cell migration. The MUSC-2 cluster was associated with the transcriptional regulation of polymerase
Il and zinc ion binding while the MUSC-3 cluster was associated with protein binding and DNA binding transcription factor
activity. Collectively, these results indicated that the transcriptional profiles of different subgroups of MuSCs undergo key
changes during the development of embryonic breast muscle in goose, suggesting that they may serve different functions.

3.3. The transition trajectory of MuSCs

In order to determine the developmental trajectory of MuSCs, we next performed pseudo-time analysis on all MUSC data
using clusters based on the Monocle2 algorithm. The differentiation trajectory of MuSCs is shown in Fig 3a. As differ-
entiation progressed, the MuSCs were classified into five states (Fig 3b), with distinct differentiation trajectories among
subgroups and different developmental trajectories (Fig 3c and S1 Table). The cell sub-types in the early developmental
stage were mainly composed of MUSC-0, while in the middle and late stages were predominantly MUSC-1, MUSC-2, and
MUSC-3. In addition, we found that the cell sub-types at E15 were predominantly MUSC-0 and MUSC-1, MUSC-1 and
MUSC-2 predominated at E21, and E31 was predominantly MUSC-3 (Fig 3d).

To further investigate the molecular mechanisms underlying the functional evolution of MuSCs, we used BEAM anal-
ysis to differentiate the identified branch specific DEGs and observed significant changes in the pseudo time function.
According to pseudo-temporal expression patterns, genes were divided into five states (Fig 3e and 3f). Biological process
analysis (Fig 3g) revealed that genes with high expression of States 1 and 2 were enriched in processes in the cytoplasm
and nucleus, while State 3 was associated with cytoplasm and membrane components.

3.4. Typing of FAPs during embryonic development

FAPs were divided into 13 clusters, and further analysis revealed that these cell clusters exhibited the characteristics of
six main cell sub-types (Fig 4a), including FAPs-1, FAPs-2, FAPs-3, FAPs-4, FAPs-5, and muscle cell-like FAPs. FAPs-1
upregulated genes (Fig 4b) were mainly associated with the functionality of extracellular vesicles, cell membranes, and
nuclei (Fig 4c), and also related to ribosomes and metabolic pathways (Fig 4d), in which they are known to participate in
the cell cycle regulation of EGFL6 overexpression [21]. FAPs-1 was closely related to cell proliferation and development.
FAPs-2 upregulated genes were associated with several components, including the cytoplasm, membranes, and protein
binding, and were enriched in endocytosis, metabolism, and MAPK signaling pathways. Of these, C-type lectin chondroi-
tin lectin (CHODL) was clearly upregulated [22]. The main enrichment of muscle cell-like FAPs was in the nucleus and
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Fig 2. SnRNA-seq analysis showing the expression levels of different genes in MuSCs extracted from the embryonic breast muscle of goose.
(a) t-SNE map showing MUSC subgroups. (b) The proportion of MUSC subgroups at E15, E21, and E31 developmental stages. (c) Heat map showing
the top 10 upregulated genes in each subgroup of MuSCs. (d) GO functional diagram showing MuSCs subgroups.

https://doi.org/10.1371/journal.pone.0338390.9002
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Fig 3. Pseudo-time analysis of the differentiation trajectory of MUSC subgroups. (a) Pseudo-time analysis of individual MuSCs subgroups. (b)
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groups based on three developmental stages. (e) The distribution of five states in three developmental stages. (f) Gene expression heatmap showing
pseudo- temporal tree branches. (g) GO enrichment map corresponding to the fate of each cell.

https://doi.org/10.1371/journal.pone.0338390.9003

cytoplasm, and was associated with adhesion, metabolism, and MAPK signaling pathways. Of these, FOX03, PLXDC?2,
and ABLIM1 were specifically expressed, and muscle cell-like FAPs exhibited the characteristics of muscle cells. Next,

we compared the proportion of cells at different developmental stages in each cluster (Fig 4e). FAPs-1 accounted for the
highest proportion at stage E15, FAPs-2 accounted for the highest proportion at E21, and muscle cell-like FAPs accounted
for the highest proportion at E31.
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https://doi.org/10.1371/journal.pone.0338390.9004

3.5. Typing of myocytes during embryonic development

Myocytes were divided into 12 clusters, and further analysis revealed that these cell clusters exhibited the characteristics
of five main cell types (Fig 5a), including neuromuscular junctions (NJs), tendon junctions (MJs), type | fibers, type lla
fibers, and type lIb fibers. As shown in Fig 5b, NJs expressed ACHE and ETV5; type | fibers expressed TNNC1, ATP2A2,
TNNI1, MYL10, and MYH7B; type lI-1 fibers expressed LRCH1, CNKSR2, B3GALT1, JAKMIP1, TPM1, and TNNC2; and
type II-2 fibers expressed FOX03, FKBP5, RAPGEF5, TSPAN18, and TNNT3. Next, we conducted functional enrichment
analysis on type | fibers, type II-1 fibers, and type II-2 fibers (Fig 5c). The genes upregulated in type | fibers and II-1 fibers
were mainly associated with metabolism, and the MAPK and Wnt signaling pathways. The genes enriched in type 11-2
fibers were mainly associated with signaling pathways such as metabolism and purine metabolism. Of these three devel-
opmental stages (5d), type lla fibers accoutned for the highest proportion at E15 and E21 (75% and 85%, respectively),
while type llb fibers accounted for the highest proportion at E31 (90%).
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Fig 5. SnRNA-seq analysis showing the expression patterns of different genes in myocytes. (a) t-SNE map showing sub-populations of muscle
cells. (b) Heatmap showing the top ten upregulated genes in the sub-populations of muscle cells. (c) KEGG analysis of differentially expressed genes in
different subgroups of muscle cells. (d) Proportions of muscle cell sub-populations in three key developmental stages.

https://doi.org/10.137 1/journal.pone.0338390.9005

3.6. Breast muscle gene regulatory network dynamics

To investigate the differences in transcriptional regulation during breast muscle development, we next analyzed changes
in the transcriptional profile of MuSCs, FAPs, and myocytes. Analysis revealed that there were differences in the number
of DEGs among the three cell types on E15, E21, and E31 (Fig 6a). E15 vs E31 had the largest DEGs number. More-
over, when analyzed across three time points, we found that the expression levels of Pax7, SIX4, Mdm4, Id, and SIX4
decreased in MUSC, whereas the expression of Myf5 was upregulated. Notably, the expression of MEF2 reached its
peak at E21 (Fig 6b). In FAPs, a reduction in Pax7 expression was observed, accompanied by an upregulation of PDG-
FRa, CD34, and IGF1 (Fig 6¢). In myocytes, the expression levels of MyoD, Mybpc, and Actn were elevated, while MSTN
expression was reduced (Fig 6d). Finally, we noticed that ACTN2, MYBPC1, TNNT3, and LDB3 were significantly down-
regulated in MuSCs and FAPs (P<0.01), and significantly upregulated (P <0.01) in myocytes during the three develop-
mental stages (Fig 6e).

4. Discussion

This study reports three key novel findings on embryonic breast muscle development in Ding’an goose. Muscle stem
cells (MuSCs) can be subdivided into four functionally distinct subpopulations, MUSC-0 (proliferative, expressing
TOP2A/MKI67), MUSC-1 (migratory, expressing MMP16/LAMA4), MUSC-2 (transcriptionally regulatory, expressing
SOX13/TEAD4), and MUSC-3 (transcription factor-active, expressing ZBTB16/FOX0O3)—which sequentially dominate
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Fig 6. Expression levels of muscle cell genes in breast muscle during the embryonic development of goose. (a) The number of DEGs in
myocytes at E15, E21, and E31 stages. (b) DEGs correlated with changes in the proportion of MUSC. (c) DEGs correlated with changes in the propor-
tion of fibro-adipogenic progenitors (FAPs). (d) DEGs correlated with changes in the proportion of myocytes. (e) DEGs associated with brest muscle
development.

https://doi.org/10.1371/journal.pone.0338390.9006

PLOS One | https://doi.org/10.1371/journal.pone.0338390 December 11, 2025 12718



https://doi.org/10.1371/journal.pone.0338390.g006
https://doi.org/10.1371/journal.pone.0338390.g005

PLO\Sﬁ\\.- One

early, middle, and late developmental stages. (Fibroblast adipogenic progenitor cells (FAPs) differentiate into a unique
‘muscle cell-like FAP’ subpopulation (expressing FOXO3/PLXDC2/ABLIM1) that becomes the dominant FAP subtype
at E31, potentially participating in muscle fiber maturation. Myocytes undergo a subtype transition from Type lla fiber
dominance (E15-E21) to Type llb fiber dominance (E31), which may underlie the breed’s high lean meat rate. These
findings collectively delineate the cellular and molecular dynamics specific to Ding’an goose embryonic breast muscle
development.

In the present study, we systematically explored the cellular heterogeneity and transcriptional characteristics of skeletal
muscle at the single cell level from different aspects in Ding’an goose at E15, E21, and E31 for the first time. Nine cell
types were identified in the breast muscle of goose, including myocytes, MuSCs, FAPs/fibroblasts, ECs, SCs, pericytes,
IC, RBC, and MSCs. These findings are similar to the SnRNA-seq analysis of mouse breast muscle, as described pre-
viously [31]. Early developmental MuSCs accounted for the largest proportion of cell types, while the proportion of myo-
cytes gradually increased during the course of development, accounting for the largest proportion (70%) at E31. Similar
to previous study [32] in mice, MuSCs were activated and proliferated during breast muscle development in goose. Some
cells retained their MUSC identity, while others differentiated into further dividing myoblasts, which further differentiated
into myocytes. More importantly, we observed significant differences in the proportions of identified cell types, including
MuSCs, FAPs/fibroblasts, and myocytes at different time points. These results suggest that cell types are relatively stable
during this period, and that breast muscle function remains in a dynamic state of change.

Previous study has indicated that MuSCs exhibit high level of heterogeneity during the development of breast
muscle [32]. In this study, we identified four MuSCs cell sub-types (MUSC-0, MUSC-1, MUSC-2, MUSC-3) and investi-
gated their unique transcriptome profiles and corresponding functional characteristics. In the MUSC-0, we found that
TOP2A, MKI67, and CEMNP were expressed at high levels. Research shows that these genes are known to be sig-
nificantly associated with cell cycle processes and DNA replication [33—35]. Therefore, we infer that this cell sub-types
represents a group of proliferating MuSCs. In the MUSC-1, we found that the MMP16, LAMA4, and SRGAP1 were
highly expressed, these genes are associated with cell migration [36—39]. Thus, it is possible that MUSC-1 may be
related to cell migration and signal transduction. The MUSC-3 specifically expressed ZBTB16, FOX03 and COL4A5,
these genes may affect the development of embryonic breast muscle in goose by regulating the synthesis of tran-
scription enzymes [40,41]. In summary, different cell sub-types of MuSCs develop distinct function in breast muscle
development.

Pseudo-time analysis is a research method that allows for the recognition and prediction of cell development trajec-
tories [42]. In the present study, we used pseudo-time analysis to investigate the developmental trajectory of embry-
onic MuSCs in goose. We found that DEGs in different states exhibit dynamic expression patterns and were during the
pseudotemporal differentiation process, suggesting their potential involvement in this process. The MUSC-0 plays a role
in the early stages of embryonic development, while the MUSC-1, MUSC-2, and MUSC-3 play roles in the middle and late
stages of development. The genes were highly expressed in States 1 and 2, and enriched in the cytoplasm and nucleus,
while those in State 3 were associated with the overall composition of the cytoplasm and membrane. These results indi-
cated that the metabolism of the MuSCs was enhanced, thereby supporting the growth and development of embryonic
breast muscle in goose.

It is well-established that Fibroblast/adipocyte progenitor cells (FAPs) play an important role in muscle regeneration,
the maintenance of homeostasis, injury response, and their relationship with adipose tissue [43]. Our analysis confirmed
that the main cell sub-types of FAPs were FAPs-1, FAPs-2, FAPs-3, FAPs-4, FAPs-5, and muscle cell-like FAPs. Muscle
cell-like FAPs specifically express FOX03, PLXDC2, and ABLIM1, which are known to be associated with cell migration
and cytoskeleton dynamics [44,45]. This may explain the proportion of muscle cell-like FAPs in the majority of cells during
late embryonic development. Muscle fiber subtype is a core determinant of poultry meat quality. Type | and Type lla fibers
(slow-twitch fibers) rely on aerobic metabolism, which is associated with bright meat color, small fiber diameter, and high
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tenderness. Type llb fibers (fast-twitch fibers) mainly use glycolytic metabolism, contributing to high lean meat content
[46,47]. Ding’an goose is a local breed in Hainan Province known for its high lean meat rate (~75% in breast muscle) and
good tenderness [20] Our results show that Type IIb fibers become the dominant subtype at E31 (90%), which is likely

a key cellular basis for its high lean meat trait. Additionally, the maintenance of low but stable Type I fibers (<5%) and

the gradual transition from Type lla to Type lIb fibers may explain the good tenderness of Ding’an goose meat. Previous
studies on goose have confirmed that moderate Type Ilb fiber proportions avoid tough meat texture, which is consistent
with consumer preferences for Ding’an goose [48]. This link between embryonic muscle fiber development and adult meat
quality provides a targeted direction for optimizing Ding’an goose genetic breeding.

The development of breast muscle is the result of the synergistic effect of multiple cells [49]. Research has found
that Pax3 is associated with the transformation of muscle cells into limb muscles, and the inactivation of Pax3 leads
to the loss of the limb muscle system [50]. Myf5 is the first activated muscle regulatory factor, and the inactivation of
the Myf5 gene leads to delayed formation of myotubes [51]. In this study, we found that the expression levels of Myf5
and Pax3 increased in MuSCs. Therefore, we speculate that Myf5 and Pax3 promote the transition of MuSCs to Myo-
cytes during development. Pax7 is involved in muscle regeneration and repair [52], Mdm4 expression helps maintain
the proliferation ability of MuSCs to support muscle regeneration [53], and SIX4 inhibits the activation of slow mus-
cle genes [54]. We found that the expression of Pax7, Mdm4, and SIX4 were decreased during development, which
inhibiting the formation of MuSCs. This is consistent with the previous findings that the proportion of MuSCs decreases
during embryonic development. Pax7 and PDGFRa are involved in regulating the proliferation and differentiation of
FAPs [55]. Our findings revealed a downregulation of Pax7 expression, accompanied by an upregulation of PDGFRa
expression. PDGFRa may decrease the proportion of FAPs by inhibiting their proliferation. Research has found that
MyoD1 can induce multiple cell types to differentiate into Myocytes [56], Mybpc is involved in regulating muscle con-
traction efficiency [57], and Actn is involved in maintaining the skeletal structure and stability of Myocytes [58]. We
found an increase in the expression of MyoD, Mybpc, and Actn in Myocytes. These genes promoted the transition of
other cells to Myocytes, maintained the stability of Myocytes structure and function, and gradually made Myocytes
occupy the largest proportion (70%) during development. It is noteworthy that biallelic pathogenic variants in TNNT3
are associated with congenital myopathies [59], different splice isoforms of the LDB3 have significant effects on chicken
muscle atrophy and sarcomere formation [60], MYBPC1 knockout mice exhibit impaired skeletal muscle formation and
structure after birth [61], and ACTN2 plays a pivotal role in muscle tissue and myopathies [62]. We found that ACTN2,
MYBPC1, TNNT3, and LDB3 were significantly downregulated in MUSC and FAP, while they were significantly upreg-
ulated in myocytes. These analyses revealed that DEGs that involved in regulating the growth and development of
skeletal muscles in goose can serve as candidate genes related to the regulation of muscle growth and development in
Ding’an goose.

This study has several limitations that should be noted. First, the snRNA-seq technology used in this study only
captures nuclear transcriptomes, which may miss mRNAs highly enriched in the cytoplasm. This may lead to incom-
plete characterization of gene expression profiles in breast muscle cells. Future studies could combine single-cell
RNA-seq (scRNA-seq, which captures whole-cell transcriptomes) with snRNA-seq to obtain more comprehensive gene
expression information. Second, our analysis focused on three discrete time points (E15, E21, E31); more frequent
sampling intervals would help refine the differentiation trajectory of MuSCs and FAPs, potentially identifying transient
cell subtypes that play key roles in intermediate developmental stages. Third, we only verified the expression of key
DEGs via qPCR and immunofluorescence, but did not validate their functional roles in breast muscle development.
Such functional validation would further confirm the causal relationship between DEGs and cell fate decisions. Despite
these limitations, the single-cell nucleus transcriptomic atlas of Ding’an goose embryonic breast muscle constructed in
this study still provides a foundational resource for understanding the molecular mechanisms of goose breast muscle
development.
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Conclusions

In summary, this study is the first to construct a single-cell nucleus transcriptomic atlas of breast muscle development in
Ding’an goose embryos, revealing the heterogeneity of myoblasts, myocytes, and FAPs. This provides a comprehensive
resource for understanding the characteristics, functions, and intercellular interactions of breast muscle cells in Ding’an
goose. Additionally, we investigated differences in cell proportions and gene expression levels at the cellular level during
key development stages (E15, E21, and E31) to reveal dynamic changes in cell composition and functionality during
embryonic development, thus helping us to further understand the molecular mechanisms underlying breast muscle devel-
opment in Ding’an goose.
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