
PLOS One | https://doi.org/10.1371/journal.pone.0338198  December 3, 2025 1 / 17

 

 OPEN ACCESS

Citation: Eaton-Fitch N, Sasso EM,  
Marshall-Gradisnik S (2025) Immune 
transcriptomic changes in Australian Gulf War 
veterans. PLoS One 20(12): e0338198. https://
doi.org/10.1371/journal.pone.0338198

Editor: Seth Agyei Domfeh, Kwame Nkrumah 
University of Science and Technology, GHANA

Received: June 3, 2025

Accepted: November 19, 2025

Published: December 3, 2025

Peer Review History: PLOS recognizes the 
benefits of transparency in the peer review 
process; therefore, we enable the publication 
of all of the content of peer review and 
author responses alongside final, published 
articles. The editorial history of this article is 
available here: https://doi.org/10.1371/journal.
pone.0338198

Copyright: © 2025 Eaton-Fitch et al. This is an 
open access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided the 
original author and source are credited.

RESEARCH ARTICLE

Immune transcriptomic changes in Australian 
Gulf War veterans

Natalie Eaton-Fitch 1,2*, Etianne Martini Sasso1,2, Sonya Marshall-Gradisnik1,2

1  National Centre for Neuroimmunology and Emerging Diseases, Health Group, Griffith University, Gold 
Coast, Australia, 2  Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold 
Coast, Australia 

* ncned@griffith.edu.au

Abstract 

Background

Gulf War Illness (GWI) is a chronic multisystemic illness found in one-third of Gulf 

War Veterans. The aetiology of GWI is elusive; however, is strongly associated with 

exposure to multiple toxic agents, environmental exposures, and prophylactic med-

ications or vaccinations. In the literature, disruption of the immune system and the 

presence of inflammation have been reported in GWI. In this novel study, we report 

gene expression-based analysis of a panel of 785 immune function related gene 

markers in GWI.

Method

Ribonucleic acid (RNA) was extracted from peripheral blood mononuclear cells 

(PBMCs) isolated from n = 20 Australian GWI (CDC Case Definition and Kansas 

Criteria, 54.4 ± 0.74 years), and n = 15 healthy control (HC, 47.47 ± 2.91 years) par-

ticipants. All participants were sex-matched (100% male). RNA gene expression was 

quantified using the NanoString® nCounter Immune Exhaustion panel and analysed 

using Rosalind Bio and IPA.

Results

Thirty-three differentially expressed genes were identified, of which 21 were upreg-

ulated and 12 were downregulated in the GWI cohort. Upregulated genes included 

SIGLEC1, BPI, MMP9, RSAD2, IFIT1/2, CEACAM1/3 and were associated with 

metabolic and cellular stress responses, while downregulated genes were associated 

with T cell receptor regions and humoral immune responses. Downregulated genes 

included TRDV3, IGHG1, TRGV4, TRDV1/4, and IL7. Gene set analysis revealed 

associations between gene expression and type I interferon signalling, natural killer 

receptors, T cell receptors, and tumour necrosis factor signalling. Pathway analysis 
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revealed the role of differentially expressed genes in neutrophil signalling and 

degranulation, toll-like receptor cascades, and the role of lipids/lipid rafts in infection.

Conclusion

This investigation elucidates the potential role of immune dysregulation underly-

ing GWI, emphasising the importance of immune exhaustion pathways in disease 

progression. Further investigations in a larger cohort may further elucidate or confirm 

these identified markers for potential screening or therapeutic applications in GWI.

Introduction

Between August 1990 and February 1991, a coalition of 41 countries and approx-
imately a million veterans participated in the Gulf War (GW), including 1,800 Aus-
tralians. Following the first deployment, several epidemiological studies reported 
complex multi-systemic symptoms in veterans of the GW. The presence of chronic 
symptoms including fatigue, sleep disturbances, respiratory and epithelial complaints, 
neurocognitive disturbances, and body pain is referred to as GW Syndrome/Illness 
(GWI), a phenomenon categorised under the umbrella term chronic multisymptom 
illness [1]. GWI affects an estimated 25–32% of GW veterans (GWV) deployed to the 
GW in 1990–1991 [2]. Epidemiological reports in Australian GWV are consistent with 
research conducted in the United States (U.S.), United Kingdom (U.K.), Canadian, 
and French veterans reporting [3].

The pathomechanism of GWI remains elusive, as a consequence, there is no 
diagnostic test nor evidenced-based treatment available. Furthermore, the aetiology 
of GWI is not completely understood. Current evidence supports the hypothesis that 
a combination of toxic chemical and environmental agents, including insecticides, 
smoke from oil-well fires, pyridostigmine bromide (PB) result in a veteran developing 
GWI [4]. These toxic environmental and chemical agents are found to be statistically 
associated with immune system dysfunction [5,6]. While intracellular mechanisms 
remain diverse, agents including organophosphates and carbamate insecticides and 
PB, used prophylactically by veterans, as well as products from oil well fires, includ-
ing particulate matter, heavy metals and polycyclic aromatic hydrocarbons are linked 
with chronic inflammation, oxidative stress and neuronal damage [7–10]. Therefore, 
demonstrating that no single exposure results in the occurrence of GWI.

One mechanism may include the inhibition of acetylcholinesterase by insecticides 
and PB resulting in an accumulation of acetylcholine which consequentially influ-
ences cellular metabolism and immunological functions, including reactive oxygen 
species (ROS), chronic inflammation, impaired cytotoxic pathways, cytokine produc-
tion and immune cell activation [7–10]. As an example, an investigation into the effect 
of the pesticide permethrin with PB on a GWI mice model reported increased activa-
tion of both peripheral and brain adaptive immune responses [11]. Further, the accu-
mulation of acetylcholine is further linked with oxidative stress. In an experimental 
GWI mice model, impaired cellular metabolism promoting ROS have been reported in 
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association with immune dysregulation [12]. This is further evidenced in diverse immunological studies reporting lympho-
cyte disturbances, altered lymphocyte subsets, interleukin (IL) and cytokine production, and production of antibodies are 
modified in veterans with GWI [13–16].

As many veterans continue to be affected in the decades following their return from the GW, research into the 
multisymptomatic pathomechanism of GWI is critical to avoid declining health in an aging population. Given the 
impact of immune responses linked to GWI symptomology, genetic variability that predisposes persistent inflam-
matory/immune alterations have been investigated [17]. Investigations into immune abnormalities provide valuable 
insights that may inform future biomedical research resulting in potential diagnostic tools and therapeutic interven-
tions. This investigation aimed to elucidate transcriptome changes associated with immune exhaustion in Australian 
veterans with GWI.

Method

Participants

Australian GWV with multisystem symptoms and diagnosed with GWI were recruited with the assistance of the Gulf 
War Illness Association of Australia. Veterans with GWI fulfilled the CDC Case Definition [18] and Kansas Criteria 
[19] for GWI. Healthy controls (HC) reported an absence of disease and/or chronic diagnoses. Participants were 
screened according to their medical history and symptom presentation and were asked to report on quality of life 
measurements, including the 36-item short form health survey (SF-36) and World Health Organization Disability 
Assessment Schedule (WHODAS). All participants were males, aged between 18 and 65 years and non-smokers. 
Participants were not included in this current study if they reported a history of alcohol abuse, cardiovascular dis-
ease, thyroid disease, malignancies, insomnia, and another condition that may account for their symptoms. This 
investigation was approved by the Griffith University Human Research Ethics Committee (GU/2022/666). Research 
involving human research participants was performed per the Declaration of Helsinki and written consent was pro-
vided by all individuals prior to participation.

Sample collection and preparation

Between 20–40 ml of whole blood was collected from each participant into ethylenediaminetetraacetic acid (EDTA) tubes 
via venepuncture at collection locations across Southeast Queensland and Northeast New South Wales from April 2022 to 
April 2024. All samples were collected between the hours of 7:00AM and 11:00AM from non-fasted participants. Four ml of 
EDTA whole blood was used for full blood count analysis.

Anonymised samples were delivered to the National Centre for Neuroimmunology and Emerging Diseases laboratory 
within four hours of collection. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by density 
gradient centrifugation using Ficoll (GE Healthcare, Uppsala, Sweden) as previously described [20]. PBMCs were stained 
with trypan blue (Invitrogen, Carlsbad, CA, USA) to determine cell count and viability. PBMCs were resuspended in fetal 
bovine serum (FBS) (Invitrogen Life Technologies, Carlsbad, CA, USA) containing 10% dimethyl sulfoxide (DMSO) and 
stored at -80oC until ribonucleic acid (RNA) extraction as previously described [21].

Frozen PBMCs were thawed and immediately pelleted by centrifugation in September 2024. Total RNA was isolated 
from PBMC pellets (5–10 x 106 cells) using either the Trizol method (n = 2 samples) or a RNeasy Mini kit (Qiagen, Hilden, 
Germany) according to manufacturer instructions. The concentration and quality of the RNA were measured using Nan-
oDrop ND-1000 spectrophotometer (Thermo Scientific, Massachusetts, US). RNA purity values were recorded with the 
mean and standard deviation being 1.99 ± 0.10 for 260/280 and 1.33 ± 0.43 for 260/230. While contaminants appeared 
present according to 260/230 values, all samples passed RNA binding density. The quality of the samples was confirmed 
using LabChip RNA Standard Sense Assay. All RNA samples returned a quality score above 8.9.
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RNA expression and NanoString®

RNA expression analysis was determined using the NanoString® nCounter Immune Exhaustion gene expression panel 
according to manufacturer’s instructions (NanoString Technologies, Seattle, WA, USA). A full list of investigated genes and 
their functional themes can be found in S1 Table. Batches of 12 separate samples were prepared according to the manu-
facturer’s instructions.

Raw gene expression data was normalised against positive and negative controls. Normalisation and analyses were 
performed using Rosalind Bio (San Diego, CA, USA) and the following housekeeping genes ABCF1, ALAS1, EEF1G, 
G6PD, GAPDH, GUSB, HPRT1, OAZ1, POLR1B, POLR2A, PPIA, RPL19, SDHA, TBP, and TUBB (S1 Table). All raw 
gene expression data, normalised counts and quality check outputs cancan be found in S1 Table. Differential expression 
(fold change (FC) >1.5 or <−1.5 and a P-value <0.05) is reported between GWI with HC. Ingenuity Pathway Analysis (IPA) 
(Qiagen Digital Insights, California, USA) was used to interpret differential RNA expression in biological pathways and 
networks using algorithms developed for use by [22].

Analysis

The normality of participant data was determined using the Shapiro-Wilk test. Normally distributed continuous data was 
compared using the independent student’s T test and non-normally distributed continuous data was compared using the 
Mann-Whitney U test. Age, body mass index (BMI), full blood count analysis, and quality of life measures are presented 
as mean ± standard error of mean (SEM) unless otherwise stated. Remaining participant demographics, including high-
est level of education and employment status were compared using the Chi-Square test and the Fisher’s exact test. The 
effect of age and BMI on gene expression between cohorts was investigated using a general linear multivariate regression 
model. Participant data was analysed using SPSS (version 27) and GraphPad Prism (version 10). Significance is set at 
p < 0.05. Adjusted (Adj.) p-values are provided unless otherwise stated.

Results

Participants

This current study included n = 15 HC and n = 20 GWI. Participants with GWI were significantly older and reported higher 
BMI compared with HC (p = 0.013). There were no significant differences between participant cohorts in terms of the highest 
level of education achieved. There was a significant difference in the status of employment between cohorts (p = 0.027). Full 
blood count was determined for all participants and no significant differences were found between cohorts. All participants 
with GWI reported significantly lower SF-36 scores across all domains and higher scores of disability in all domains com-
pared with HC. All clinical characteristics and demographics of participants are summarised in Tables 1 and 2.

The prevalence of symptoms reported by GWI participants is reported in Table 3. The most commonly reported symp-
toms included cognitive disturbances, pain, sleep, and neurosensory disturbances (94.7% of cohort).

Differential gene expression

Of the 785 genes that are included in the NanoString Immune Exhaustion Panel, 601 genes passed background thresh-
olding and normalisation. Differential expression of genes was filtered according to log fold change parameters −1.5 to 1.5 
and a p-value of 0.05, resulting in the selection of 33 genes in GWI (Table 4 & Fig 1). Of the 33 selected genes, 21 were 
upregulated, and 12 were downregulated. Downregulated genes included TRDV3 (T cell receptor delta variable 3), IGHG1 
(immunoglobulin (IG) heavy constant gamma 1) and TRDV4 (log

2
FC = −1.664, p = 0.004; log

2
FC = −1.438, p = 0.035; and 

log
2
FC = −1.20, p = 0.04, respectively). Of the upregulated genes SIGLEC1 (sialic acid binding Id-like lectin) and BPI (bac-

tericidal/permeability increasing protein) had the highest degree of change with log
2
FC = 1.96 (p = 0.002), and log

2
FC = 1.65 

(p = 0.004), respectively. The full dataset outputs can be found in S2 Table.
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Gene set analysis

The change in regulation within each gene set relative to the baseline was described using gene set analysis (GSA), 
both undirected enrichment score (UES) and directed enrichment score (DES) for the top 10 gene sets are presented in 
Table 5. GSA was obtained from Rosalind Bio. Differentially expressed genes in GWI were associated with Type I Inter-
feron (UES = 1.7835, DES = 1.7386), NK receptors (UES = 1.6857, DES = −0.1878), fatty acid metabolism (UES = 1.4838, 
DES = −1.0185), tumour necrosis factor (TNF) signalling (UES = 1.3493, DES = 0.9285), and T cell receptor (UES = 1.319, 
DES = −0.7643). The full dataset outputs can be found in S2 Table.

Cell type abundance

The abundance of cell populations was calculated according to the expression of cell marker genes using Rosalind Bio. 
Hierarchical cluster analysis observations demonstrate similar distributions within cohorts for major immune cell popu-
lations (Fig 2). While not significant, veterans with GWI had a slightly higher mean abundance of T cells marker genes 
compared with HC and was accompanied by lower Treg cells. Neutrophils marker genes were also found to be lower in 
GWI relative to HC; however, this was not significant. Abundance scores for cell types are shown in S3 Table.

Pathways and disease functions

A summary of IPA analysis, including the top five biological functions and canonical pathways are presented in Table 6. 
The top five biological functions in GWI include childhood-onset systemic lupus erythematosus (SLE), ATAD3A-related 
type I interferonpathy, SLE, activation of leukocytes, and antineutrophil cytoplasmic antibody associated vasculitis (all 
p < 0.0001). RSAD2 and SIGLEC1 were consistently reported across all biological functions. The top five canonical path-
ways in GWI include neutrophil extracellular trap signalling pathway (p = 0.0023), neutrophil degranulation (p = 0.0031), 
role of lipids/lipid rafts in influenza (p = 0.0045), chaperone mediated autophagy signalling pathway (p = 0.0055) and toll-
like receptor cascades (p = 0.006). The complete pathways and disease functions output can be found in S4 Table.

Table 1.  Participant demographics.

HC GWI P-value

N(%) N(%)

Education n (%) 0.110

Primary School 0 (0.0) 0 (0.0)

High School 3 (20.0) 7 (35.0)

Undergraduate 2 (13.3) 8 (40.0)

Postgraduate 7 (46.7) 3 (15.0)

Other 3 (20.0) 2 (10.0)

Employment n (%) 0.027

Full Time 11 (73.3) 9 (45.0)

Part Time 2 (13.3) 0 (0.0)

Casual 1 (6.7) 1 (5.0)

Unemployed (other) 1 (6.7) 9 (45.0)

Unemployed illness 0 (0.0) 1 (5.0)

Sex n (%)

Male 15 (100%) 20 (100.0%)

Categorical variables compared using chi-square test. Data presented as n (%). Abbrevia-
tions: HC, healthy control; GWI, Gulf War Illness.

https://doi.org/10.1371/journal.pone.0338198.t001

https://doi.org/10.1371/journal.pone.0338198.t001
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Network analysis

Interaction network analysis was performed using IPA. This analysis demonstrates the interactions between molecules 
and the dataset imported. One network was exported, with a score of 16 (Fig 3). Analysis of this network, consisting 
of five focus molecules, was associated with cell-to-cell signalling and interactions, haematological system develop-
ment and function, and immune cell trafficking. Focus molecules identified were BPI (p = 0.004), MMP9 (p = 0.0004), 
RSAD2 (p = 0.004), SIGLEC1 (p = 0.002), and TRDV3 (p = 0.005). Top upstream regulators were identified to be ATAD3A 
(p < 0.0001), TNF (family, p < 0.0001), RNY3 (p < 0.0001), SOD1 (p < 0.0001) and CSF1 (p < 0.0001). Molecules in causal 

Table 2.  Participant demographics, full blood analysis and quality of life.

HC GWI P-value

Mean SEM SD Mean SEM SD

Age 47.47 2.91 11.27 54.4 0.74 3.29 0.013

BMI 25.96 1.09 4.23 31.44 1.62 7.23 0.013

Full blood count analysis

  WCC (x109/L) 6.11 0.31 1.19 6.78 0.33 1.47 0.158

  Lymphocyte (x109/L) a 1.88 0.19 0.77 2.03 0.14 0.63 0.214

  Neutrophils (x109/L) 3.49 0.20 0.79 3.98 0.26 1.15 0.163

  Monocytes (x109/L) 0.51 0.05 0.18 0.56 0.03 0.15 0.287

  Eosinophils (x109/L) a 0.19 0.04 0.14 0.16 0.02 0.09 0.856

  Basophils (x109/L) 0.05 0.01 0.02 0.05 0.004 0.02 0.924

  Platelets (x109/L) 260.13 10.97 42.49 263.55 14.91 66.66 0.863

  RCC (x1012/L) 5.08 0.08 0.32 5.07 0.09 0.39 0.932

  Haematocrit 0.44 0.01 0.02 0.45 0.01 0.03 0.082

  Haemoglobin (g/L) 149.07 2.24 8.68 151.10 2.30 10.31 0.542

SF-36

  General Health 71.38 4.60 17.81 37.25 4.12 18.44 <0.001

  Physical Functioninga 96.0 2.02 7.83 57.50 5.99 26.83 <0.001

  Role Physical 82.92 9.46 36.63 45.31 6.44 28.81 0.002

  Role Emotional 95.56 2.68 10.38 49.99 7.13 31.88 <0.001

  Paina 90.67 3.40 13.17 38.0 4.54 20.32 <0.001

  Mental Health 83.67 3.57 13.82 47.50 5.37 24.03 <0.001

  Vitality 75.83 3.39 13.12 40.63 3.06 13.68 <0.001

  Social Functioning 97.50 1.81 7.01 43.75 6.87 30.75 <0.001

WHO DAS

  Understanding & communication 8.06 3.56 13.78 39.79 5.17 23.12 <0.001

  Mobility 2.33 1.61 6.23 33.0 5.39 24.08 <0.001

  Self-carea 0.83 0.83 3.23 15.0 3.37 15.09 <0.001

  Relationships 5.42 2.58 9.98 45.0 5.82 26.02 <0.001

  Life activities 2.08 1.45 5.62 36.56 5.29 23.67 <0.001

  Participation in society 5.21 2.77 10.74 44.37 6.26 28.01 <0.001

Continuous variables compared using Mann Whitney U test or T test. a Denotes continuous variables compared using Mann Whitney U test. The 
WHO DAS domain for participation in work/school was omitted given the high number of participants reporting unemployment. Data presented as 
mean, SEM and SD. Abbreviations: HC, healthy control; GWI, Gulf War Illness; BMI, body mass index; SD, standard deviation; SEM, standard error 
of mean; WCC, white cell count; RCC, red cell count; SF-36, 36 item short-form health survey; WHO, World Health Organization; DAS, disability 
assessment schedule.

https://doi.org/10.1371/journal.pone.0338198.t002

https://doi.org/10.1371/journal.pone.0338198.t002
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network identified ATAD3A (p < 0.0001), RNY3 (p < 0.0001), Jak (family) (p < 0.0001), and type I IFN genes (p < 0.0001). 
Network analysis outputs can be found in S4 Table.

Discussion

This novel study investigates altered gene expression related to immune function in Australian veterans with GWI com-
pared with HC. Briefly, 33 differentially expressed genes were identified, 21 of which were upregulated and 12 were down-
regulated. Of the differentially expressed genes, TRDV3, IGHG1, TRGV4, TRDV1, and TRDV2 returned as the top five 
downregulated, while SIGLEC1, BPI, MMP9, RSAD2, and CEACAM1 were the top five upregulated genes. To the authors 
knowledge this present research is the first to conduct an analysis on immune exhaustion and inflammation markers 
simultaneously using NanoString Technology in this cohort.

Previous studies have investigated genetic markers in GWI with the identification of nerve agent susceptible genes 
including PON1 (paraoxonase-1) and BChE (butyrylcholinesterase) [23,24] as well as the neurodegeneration gene APOE 
(apolipoprotein) [25]. Meanwhile, immune profiling has identified altered expression of inflammatory markers including 
IL-1β, TNFα, MMP-2, CCL12, and EGF, some of which aligning with the present investigation [26]. A previous study 
employing logistic regression modelling created a prediction model of GWI risk associated with genetic variability in TGF 
(rs1800469, p = 0.009), IL6R (rs8192284, p = 0.004) and TLR4 (rs4986791, p = 0.013) [17]. While variability within these 
mentioned genes was not identified in the present study, toll-like receptor cascades and IL signalling were significantly 
associated with the top differential genes identified in the present manuscript. Further research has also reported an asso-
ciated with human leukocyte antigen (HLA) allele DRB1*13:02 [27]. Previous research and the present study identified 
potential markers worthy of further investigation to elucidate the role of immune disturbances in the pathomechanism of 
GWI.

TCR genes (TRDV3, TRDV1, TRDV2, TRGV4 and TRGC1) were downregulated in Australian veterans with GWI 
compared with HC, suggesting potential consequences that result in altered downstream T cell activity and cytotoxic 
function. This is supported by the abovementioned GSA data whereby TCR signalling returned a negative DES, indicating 
a functional reduction. A downregulation of TCRs will impair T cell responsiveness to antigen stimulation through impaired 
T cell to target cell interactions and a decrease in downstream intracellular signalling cascades [28]. TCR downregulation 
accompanied by reduced IL-2 signalling, demonstrated through a negative DES above, further supports the suggestion of 
impaired T cell survival and proliferation in GWI [29].

Table 3.  Symptom prevalence in Australian GWI participants.

Symptom n (%)

Post-exertional malaise 17 (89.5)

Cognitive disturbances 18 (94.7)

Pain 18 (94.7)

Sleep 18 (94.7)

Neurosensory, perceptual, and motor disturbances 18 (94.7)

Immune 9 (47.4)

Respiratory 9 (47.4)

Gastrointestinal 15 (78.9)

Urinary disturbances 11 (57.9)

Cardiovascular manifestations 11 (57.9)

Thermoregulatory disturbances 11 (57.9)

Data presented as n (%) for those reporting experiencing the symptom. Missing data 
n = 1. Abbreviations: GWI, Gulf War Illness; n, sample number.

https://doi.org/10.1371/journal.pone.0338198.t003

https://doi.org/10.1371/journal.pone.0338198.t003
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Table 4.  Differential gene expression.

Gene Description log2FC P-value

Downregulated

TRDV3 T cell receptor delta variable 3 −1.6643 0.0049

IGHG1 Immunoglobulin heavy constant gamma 1 −1.4380 0.0345

TRGV4 T cell receptor gamma variable 4 −1.2019 0.0496

TRDV1 T cell receptor delta variable 1 −1.1313 0.0018

TRDV2 T cell receptor delta variable 2 −1.1312 0.0269

IL7 Interleukin 7 −0.8934 0.0170

IGHV4–59 Immunoglobulin heavy variable 4–59 −0.7757 0.0351

EHHADH 3-hydroxyacyl CoA dehydrogenase −0.7612 0.0107

IDO1 Indoleamine 2,3-dioxygenase 1 −0.7149 0.0473

CXCR6 chemokine (C-X-C motif) receptor 6 −0.7101 0.0160

TRGC1 T cell receptor gamma constant 1 −0.7017 0.0098

SESN2 Sestrin 2 −0.6490 0.0221

Upregulated

SIGLEC1 Sialic acid binding Ig-like lectin 1, sialoadhesion 1.9591 0.0022

BPI Bactericidal/permeability-increasing protein 1.6511 0.0045

MMP9 Matrix metallopeptidase 9 1.5475 0.0004

RSAD2 Radical S-adenosyl methionine domain containing 2 1.5471 0.0037

CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein) 1.4122 0.0022

IFIT1 Interferon-induced protein with tetratricopeptide repeats 1 1.3933 0.0111

IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 1.3519 0.0075

CXCL1/2/3 Chemokine (C-C motif) ligand 1/2/3 1.3366 0.0292

PTGS2 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) 1.3063 0.0287

CEACAM3 Carcinoembryonic antigen-related cell adhesion molecule 3 1.2773 0.0045

ITGB3 Integrin beta 3 (platelet glycoprotein IIIa antigen CD61) 1.2059 0.0019

EGF Epidermal growth factor 1.0986 0.0251

LTBP1 Latent transforming growth factor beta binding protein 1 1.0477 0.0074

GREM2 Gremlin 2 DAN family BMP antagonist 0.9805 0.0438

OAS3 2’-5’-oligoadenylate synthetase 3 (100kDa) 0.9389 0.0129

IL1B Interleukin 1 beta 0.9364 0.0483

ELOVL7 ELOVL fatty acid elongase 7 0.8905 0.0079

MX1 MX dynamin-like GTPase 1 0.8547 0.0191

TNFAIP3 Tumor necrosis factor alpha-induced protein 3 0.7483 0.0209

FCAR Fc fragment of IgA receptor 0.6453 0.0153

MX2 MX dynamin-like GTPase 2 0.5934 0.0115

Data extracted from Rosalind Bio. Descriptions extracted from the National Institutes of Health (NIH) National Library of Medicine gene database. 
Abbreviations: FC, fold change; TRDV3, T cell receptor delta variable 3; IGHG1, Immunoglobulin heavy constant gamma 1; TRDV2, T cell receptor delta 
variable 2; TPSAB1/B2, tryptase alpha/beta 1; TRGV4, T cell receptor gamma variable 4; TRDV1, T cell receptor delta variable 1; IL7, Interleukin 7; 
IGHV4−59, immunoglobulin heavy variable 4−59; IDO1, indoleamine 2 3-dioxygenase 1; EHHDAH, enoyl-CoA hydratase/3-hydroxyacyl CoA dehydroge-
nase; CXCR6 chemokine (C-X-C motif) receptor 6; TRGC1, T cell receptor gamma constant 1; SESN2, sestrin 2; SIGLEC, sialic acid binding Ig-like 1; 
BPI, bactericidal/permeability-increasing protein; RSAD2, radical S-adenosyl methionine domain containing 2; MMP9, Matrix metallopeptidase 9; IFIT1, 
interferon-induced protein with tetratricopeptide repeats 1; CEACAM1, Carcinoembryonic antigen-related cell adhesion molecule 1; IFIT3, interferon-
induced protein with tetratricopeptide repeats 3; CXCL1/2/3, CXCL1, CXCL2 (MIP-2 alpha), Chemokine (C-C motif) ligand 1/2/3;CEACAM3, Carcinoem-
bryonic antigen-related cell adhesion molecule 3; PTGS2, prostaglandin-endoperoxide synthase 2; ITGB3, integrin beta 3; LTBP1, latent transforming 
growth factor beta binding protein 1; EGF, epidermal growth factor; OAS3, 2-;5- oligoadenylate synthetase 3; ELOVL7, ELOVL fatty acid elongase 7; 
MX1, MC dynamin-like GTPase 1; TNFAIP3, Tumour necrosis factor, alpha-induced protein 3; GREM2, gremlin 2; IL1B, interleukin 1 beta; FCAR, Fc 
fragment of IgA receptor; MX2, MX dynamin-like GTPase 2.

https://doi.org/10.1371/journal.pone.0338198.t004

https://doi.org/10.1371/journal.pone.0338198.t004
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Downregulation of TCRs and impaired T cell function are reported in various pathologies, including cancer, autoimmune 
diseases and infectious diseases [30]. Similarly, TCR dysregulation may contributed to the changes in T cell subsets and 
pro-inflammatory responses observed in GWI. Immune profiling and function have been investigated and have reported 
altered T- and NK lymphocyte profiles and impaired cytotoxic function, with emphasis on elevated T lymphocyte popu-
lations of veterans with GWI compared with controls [13,14,31]. Whether the downregulation of TCRs is correlated to a 

Fig 1.  Differentially expressed genes in Australian GWI. (A) volcano plot displaying statistical significance (log10(p-value) on the y-axis, and log2 fold 
change on the x-axis. Selected genes meeting filter criteria are presented as those down-regulated (≤−1.5) and those upregulated (≥1.5). (B) heatmap 
of selected genes representing log2 normalised expression values from −4 to 6. Red indicates high levels of expression, while blue indicates low levels 
of expression. Clusters are organised according to upregulated or downregulated genes by participant cohort. Green indicates upregulated genes, while 
purple indicates downregulated genes. Figure exported from Rosalind Bio. Abbreviations: HC, healthy control; GWI, Gulf War Illness; TRDV3, T cell 
receptor delta variable 3; IGHG1, Immunoglobulin heavy constant gamma 1; TRDV2, T cell receptor delta variable 2; TPSAB1/B2, tryptase alpha/beta 1; 
TRGV4, T cell receptor gamma variable 4; TRDV1, T cell receptor delta variable 1; IL7, Interleukin 7; IGHV4−59, immunoglobulin heavy variable 4−59; 
IDO1, indoleamine 2 3-dioxygenase 1; EHHDAH, enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase; CXCR6 chemokine (C-X-C motif) receptor 
6; TRGC1, T cell receptor gamma constant 1; SESN2, sestrin 2; SIGLEC, sialic acid binding Ig-like 1; BPI, bactericidal/permeability-increasing protein; 
RSAD2, radical S-adenosyl methionine domain containing 2; MMP9, Matrix metallopeptidase 9; IFIT1, interferon-induced protein with tetratricopeptide 
repeats 1; CEACAM1, Carcinoembryonic antigen-related cell adhesion molecule 1; IFIT3, interferon-induced protein with tetratricopeptide repeats 3; 
CXCL1/2/3, CXCL1, CXCL2 (MIP-2 alpha), Chemokine (C-C motif) ligand 1/2/3;CEACAM3, Carcinoembryonic antigen-related cell adhesion molecule 3; 
PTGS2, prostaglandin-endoperoxide synthase 2; ITGB3, integrin beta 3; LTBP1, latent transforming growth factor beta binding protein 1; EGF, epidermal 
growth factor; OAS3, 2-;5- oligoadenylate synthetase 3; ELOVL7, ELOVL fatty acid elongase 7; MX1, MC dynamin-like GTPase 1; TNFAIP3, Tumour 
necrosis factor, alpha-induced protein 3; GREM2, gremlin 2; IL1B, interleukin 1 beta; FCAR, Fc fragment of IgA receptor; MX2, MX dynamin-like  
GTPase 2.

https://doi.org/10.1371/journal.pone.0338198.g001

https://doi.org/10.1371/journal.pone.0338198.g001
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potential elevation in T cell populations are unknown. This current investigation did not directly quantify lymphocyte cell 
numbers and cell profiling according to differentially expressed genes did not significantly differ between GWI and HC 
cohorts. Instead, future investigations may aim to concurrently analyse gene expression with phenotyping. Notably, treat-
ment with PB, a medication routinely administered as a prophylactic during the Gulf War, can impede T cells through the 
cholinergic anti-inflammatory pathway (CAP) resulting in the suppression of T cell activity [32]. However, the implications 
of long-term or excessive PB, as reported by GWV, on T cell activity is unknown. Nevertheless, reduced TCR functioning 
in GWI is a novel finding and supports the need for further investigations into immune disturbances in Australian GWV.

Upregulated interferon-related genes including RSAD2, IFIT1, IFIT3, MX1, MX2 and OAS3 suggests chronic activation 
of antiviral and inflammatory pathways. This is further supported by GSA data whereby type I interferon associated genes 
returned a positive DES, as seen above. Type I interferon activation suggests persistent immune activation. While ele-
vated interferon signalling may also suggest automimicry in this cohort of GWI, the downregulation of IGHG1 and IGHV4–
59 suggests reduced humoral immune responses and impaired antibody production, not reminiscent of the presence of 
autoimmunity which is inconsistent in GWI research [33,34]. Upregulation of other inflammatory and immune activation 
markers reported in the present manuscript, such as IL1B, PTGS2, TNFAIP3, CXCL1/2/3 and FCAR aligns further with 
chronic inflammation or innate immune activation [35–38]. In further support of our research, a previous investigation 
reported elevated levels of IFN-y- in addition to IL-2-producing CD4 + cells and elevated in vitro levels of IL-10-producing 
CD4 cells compared with non-symptomatic GWV [39]. While plasma levels of IL-6 and C-reactive protein (CRP) are also 
found to be increased in veterans with GWI [40]. Therefore, the present research, in conjunction with the existing litera-
ture, supports the role of chronic inflammation in the pathomechanism of GWI.

The downstream implications of the preceding exposures and resulting chronic inflammation are potentially associ-
ated with metabolic disturbances reported in GWI. Results of the present investigation suggest metabolic dysfunction 
evidenced through differential expression of genes including EGF, ITGB3, LTBP1, GREM2, SESN2, and ELOVL7. For 
example, the downregulation of SESN2, encoding for sestrin 2, suggests mitochondrial deoxyribonucleic acid damage, 
oxidative stress, and hypoxia reported in human disease, including those that are neurodegenerative [41]. Previous inves-
tigations have reported that impaired mitochondrial function is associated with symptom severity in veterans with GWI 
[42]. A review of research on inflammation and ROS suggests that inflammatory mediators, such as those reported in GWI 
cohorts, may potentially exacerbate metabolic dysfunction and fatty acid oxidation [43]. Suggesting that inflammation and 
mitochondrial dynamics are interconnected in disease. Additionally, Bryant et al. reported that altered cellular metabolism 

Table 5.  Gene set analysis for genes differentially expression in Australian GWI.

GSA UES DES

Type I Interferon 1.7835 1.7386

NK Receptors 1.6857 −0.1878

Fatty Acid Metabolism 1.4838 −1.0185

TNF Signalling 1.3493 0.9285

TCR Signalling 1.319 −0.7643

Hypoxia Response 1.2441 0.9354

IL-7 Signalling 1.2037 −0.5323

PPAR Signalling 1.1884 −1.1031

Chemokine Signalling 1.1768 −0.8164

Other IL Signalling 1.1676 0.7214

Data extracted from Rosalind Bio. Abbreviations: GSA, gene set analysis; UES, undirected enrichment 
score; DES, directed enrichment score; NK, natural killer; TNF, tumour necrosis factor, TCR, T cell recep-
tor; IL, interleukin; PPAR, peroxisome proliferator-activated receptors.

https://doi.org/10.1371/journal.pone.0338198.t005

https://doi.org/10.1371/journal.pone.0338198.t005
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in a GWI mouse model may promote inflammatory processes in veterans; however, further protein- and functional-level 
research is required to determine whether this is supported by the present study. The downstream effects of genes includ-
ing SESN2 and others listed above on cellular metabolism may indeed exacerbate inflammation aligning with Bryant et al 
[26]. Other research has reported on genetic variants linked with mitochondrial disturbances, such as BChE [24]. While 
transcriptomics research in GWI mice have also reported differential expression of genes important for mitochondrial 
respiration, oxidative phosphorylation and electron transport chain [44], the top differentially expressed genes are not rep-
licated by the present investigation. Differences in the literature may be linked to the use of a GWI mouse model [26,44] 
or samples provide by veterans with GWI [42,45], therefore, posing a barrier when interpreting data between models. 

Fig 2.  Cell profiles and gene expression. (A) Heatmap extracted from Rosalind Bio. Cell type z-score for cell populations were populated for samples 
collected from GWI and HC. Abbreviations: NK, natural killer; Treg, T regulatory; Th, T helper.

https://doi.org/10.1371/journal.pone.0338198.g002

https://doi.org/10.1371/journal.pone.0338198.g002
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Overall, this present research is supported by the literature reporting a decline in metabolic function in veterans with GWI 
and therefore provides avenues for future research [45–47].

Further, GSA suggested the potential occurrence of impaired fatty acid metabolism in the present GWI cohort. While 
the BMI of veterans with GWI was significantly higher compared with HC, previous research using a GWI mouse model 
demonstrated mitochondrial lipid changes in the brains and plasma [48]. This mouse model was exposed to GW agents 
PB and permethrin, therefore, it can be hypothesised that mitochondrial disturbances reported in this present manuscript 
are potentially linked to exposures of GWV and the role of fatty acid metabolism disturbances cannot be limited to BMI in 
this cohort. This is further supported by multivariate analysis undertaken to determine association between BMI and gene 
expression which found potential associated with the expression of IGHV4/59 and CEACAM3 and not genes related to 
fatty acid metabolism (S2 Table). Nevertheless, further research is warranted to determine the impact of high BMI on the 
regulation of metabolic genes, as the sample size of this research did not allow data stratification on BMI.

Currently, there is no validated biomarker for GWI for diagnosis or to determine risk susceptibility. The identification 
of biological markers could help to refine illness definition, better detect, predict or distinguish subgroups of GWI, and 
ultimately lead to the development of hypothesis-driven and evidence-based treatments to improve health outcomes of 
veterans. While the occurrence of immune exhaustion was investigated using a targeted genomic panel, typical immune 
exhaustion markers such as Programmed Death-1 (PD-1), lymphocyte activating gene (LAG), T cell immunoreceptor ITIM 
domain 3 (TIM-3) and cytotoxic T lymphocyte associated proteins (CTLAs) [49], were not identified as differentially expres-
sion. Rather, the results of the current investigation suggest the role of chronic immune activation and inflammation in 
Australians with GWI. Given the impact of immune responses linked to GWI symptomology, genetic variability that causes 
persistent inflammatory or immune alterations may be essential for further research into diagnostic tools or targeted 
pharmacotherapeutic intervention. This present research provides the foundations to facilitate further analysis for potential 
biomarker identification specific to GWI. This current manuscript further elucidates the role of immunological disturbances 
in the pathomechanism of GWI. Importantly, the mechanisms involved in the immune disturbances reported in GWI are 
potentially linked with immunotoxicity caused by exposures during the Gulf War resulting in lymphocyte dysfunction, 
increased oxidative stress, and dysregulation of immune signalling pathways [5,6,50].

Table 6.  Top biological functions and pathways in Australian GWI.

Functions P-value Molecules

Childhood-onset SLE <0.0001 RSAD2,SIGLEC1

ATAD3A-related type I interferonopathy <0.0001 RSAD2,SIGLEC1

SLE <0.0001 RSAD2,BPI,MMP9,SIGLEC1

Activation of leukocytes <0.0001 RSAD2,BPI,MMP9,SIGLEC1

Antineutrophil cytoplasmic antibody-associated vasculitis <0.0001 RSAD2,MMP9,SIGLEC1

Pathways P-value Ratio

Neutrophil Extracellular Trap Signalling Pathway 0.0023 0.00489

Neutrophil degranulation 0.0031 0.00419

Role of Lipids/Lipid Rafts in the pathogenesis of influenza 0.0045 0.0417

Chaperone Mediate Autophagy Signalling Pathway 0.0055 0.00314

Toll-like Receptor Cascades 0.006 0.0312

Data extracted from IPA. Ratio is calculated as the number of molecules in a given pathway that meets 
cutoff criteria, divided by the total number of molecules that make up that pathway and that are in the ref-
erence set. Abbreviations: SLE, systemic lupus erythematosus; SIGLEC, sialic acid binding Ig-like 1; BPI, 
bactericidal/permeability-increasing protein; RSAD2, radical S-adenosyl methionine domain containing 2; 
MMP9, Matrix metallopeptidase 9.

https://doi.org/10.1371/journal.pone.0338198.t006

https://doi.org/10.1371/journal.pone.0338198.t006
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Fig 3.  Network analysis in Australian GWI. Gene interaction network map consisting of top filtered differentially expressed genes. Genes are organ-
ised according to subcellular space. Network analysis score = 16. Abbreviations: TRDV3, T Cell Receptor Delta Variable 3; RNY3, RNA, Ro-Associated 
Y3; SIGLEC1, Sialic Acid Binding Ig Like Lectin 1; NABP1, Nucleic Acid Binding Protein 1; RSAD2, Radical S-Adenosyl Methionine Domain Containing 
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This current investigation is not without limitations. The small cohort sizes limit stratification of cohorts according to 
clinical presentation, age, BMI, and other potential confounding factors. This emphasises the need for further investiga-
tions with larger cohorts to differentiate potential immune subtypes and identify biomarkers for stratification. Neverthe-
less, effect sizes calculated for each differentially expressed gene were found to be moderate to large demonstrating a 
sufficient sample size to support these findings (S2 Table). With further investigations incorporating larger sample sizes 
and protein-level validation may also be considered for future research. Given the significant differences in age between 
the cohorts, a multivariate analysis was performed to determine any potential effect on gene expression. We report that 
the effect of age on gene expression was non-significant, excluding one gene being IGHV4/59 (S2 Table). It is important 
to highlight that while this current investigation raised disease pathways associated with SLE, no participants reported a 
diagnosis of an autoimmune condition. This current investigation serves as the basis to justify further larger investigations 
to identify immunological biomarkers in GWI. Further, the Immune Exhaustion panel developed by NanoString biases 
expression analysis to a small selection of genes. While this technology provides sensitive data, future analysis may con-
sider the validation of gene expression analysis using untargeted RNA expression analysis with quantitative polymerase 
chain reaction experiments to confirm findings.

Conclusion

This investigation reports immune transcriptome changes in Australian veterans with GWI using NanoString Immune 
Exhaustion panel. Altered gene expression identified in this study indicates changes to both innate and adaptive immune 
responses with evidence of metabolic stress, and IL signalling disturbances. The findings of this present research suggest 
chronic inflammation is a potential mechanism underpinning symptom presentation of GWI. Markers of immune exhaus-
tion were not statistically different in Australian GWI participants. Moreover, these findings contribute to the growing body 
of literature on the pathomechanism of immunological disturbances in GWI and may facilitate further research in the iden-
tification of diagnostic or therapeutic targets.

Supporting information

S1 Table.  This file contains pre-processed gene expression data collected prior to statistical or pathway analy-
ses. Information and data was generated using NanoString nCounter Immune Exhaustion Panel and Rosalind Bio. Inside 
the file contains a full list of genes and probes included in the NanoString nCounter Immune Exhaustion Panel including 
probe IDs, gene symbols and probe sequences (T1); lists corresponding functional themes of genes incorporated within 
the panel supporting predetermined information used for gene set and pathway analysis (T2); a summary of panel cover-
age according to genes within the panel contributing to immune-related pathways or cell types (T3); raw gene expression 
for housekeeping genes (T4); normalised RNA expression counts subsequent to positive control normalisation and back-
ground removal for all genes fulfilling thresholding requirements (T5); raw RNA gene expression counts prior to normalisa-
tion or quality control (T6) and; a summary of quality check data including binding density, image quality, limit of detection, 
and more, for each sample calculated using NanoString nSolver and nCounter Analysis (T7).
(XLSX)

2; CCR8, C-C Motif Chemokine Receptor 8; TCR, T Cell Receptor; BPI, Bactericidal/Permeability-Increasing Protein; ADAMTS9, ADAM Metallopepti-
dase With Thrombospondin Type 1 Motif 9; PARP10, Poly(ADP-Ribose) Polymerase Family Member 10; TNFRSF18, Tumor Necrosis Factor Receptor 
Superfamily Member 18; TNF, Tumor Necrosis Factor; SLPI, Secretory Leukocyte Peptidase Inhibitor; NFkB, Nuclear Factor Kappa-Light-Chain-
Enhancer of Activated B Cells; IL19, Interleukin 19; ADGRF5, Adhesion G Protein-Coupled Receptor F5; HCG18, HLA Complex Group 18; TIR13, Likely 
refers to TIR domain-containing protein 13, though this is not a well-characterized molecule; MMP9, Matrix Metallopeptidase 9; SPINK1, Serine Pepti-
dase Inhibitor, Kazal Type 1; LILRB1,Leukocyte Immunoglobulin-Like Receptor Subfamily B Member 1; HIVEP3, Human Immunodeficiency Virus Type I 
Enhancer Binding Protein 3. Figure constructed using IPA, Qiagen.

https://doi.org/10.1371/journal.pone.0338198.g003

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0338198.s001
https://doi.org/10.1371/journal.pone.0338198.g003
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S2 Table.  This file contains results from statistical analyses performed and summaries within the results of this 
manuscript. Inside the file contains lists all normalised gene counts that passed quality checks and thresholding with 
corresponding samples including base mean, log

2
 fold change, unadjusted p-values, adjusted p-values, false discovery 

rate and significance rank (T1); filtered list of only significant differentially expressed genes (T2); full results pertaining to 
the gene set analysis performed using Rosalind Bio (T3); standardised effect sizes (Cohen’s D) for all statistically signifi-
cant differentially expressed genes calculated using R package “RNASeqPower” and “effsize”; lists the effect of metadata 
variables Age and BMI on gene expression profiles across cohorts (GWI or HC) using multivariate analysis performed with 
SPSS (T5).
(XLSX)

S3 Table.  File provides immune cell type abundance scores using gene expression information. The log
2
 cell type 

abundance scores are derived from cell-specific genes using Rosalind Bio. This data was used to generate Figure 2 of the 
results.
(XLSX)

S4 Table.  This file documents functional and pathway interpretation for differentially expressed genes using 
QIAGEN IPA according to [22]. File contains Diseases and Functions according to differential gene expression including 
p-values and molecules (T1); lists canonical pathways along with corresponding molecules, direction of expression and 
pathway activity predictions including p-values, z-score, ratio and molecules (T2); causal network analyses predicting 
upstream and downstream regulators and networks involving specific gene families including direction of activation or inhi-
bition, p-value, and molecules (T3); lists predicted upstream regulators according to observed gene expression changes 
with corresponding p-values and molecules (T4); underlying network molecules and key diseases or functions used for 
Figure 3 included in the present manuscript detailing key molecules (T5).
(XLSX)
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