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Abstract

Background

Gulf War lliness (GWI) is a chronic multisystemic illness found in one-third of Gulf
War Veterans. The aetiology of GWI is elusive; however, is strongly associated with
exposure to multiple toxic agents, environmental exposures, and prophylactic med-
ications or vaccinations. In the literature, disruption of the immune system and the
presence of inflammation have been reported in GWI. In this novel study, we report
gene expression-based analysis of a panel of 785 immune function related gene
markers in GWI.

Method

Ribonucleic acid (RNA) was extracted from peripheral blood mononuclear cells
(PBMCs) isolated from n=20 Australian GWI (CDC Case Definition and Kansas
Criteria, 54.4+£0.74 years), and n=15 healthy control (HC, 47.47 £2.91 years) par-
ticipants. All participants were sex-matched (100% male). RNA gene expression was
quantified using the NanoString" nCounter Immune Exhaustion panel and analysed
using Rosalind Bio and IPA.

Results

Thirty-three differentially expressed genes were identified, of which 21 were upreg-
ulated and 12 were downregulated in the GWI cohort. Upregulated genes included
SIGLEC1, BPI, MMP9, RSAD2, IFIT1/2, CEACAM1/3 and were associated with
metabolic and cellular stress responses, while downregulated genes were associated
with T cell receptor regions and humoral immune responses. Downregulated genes
included TRDV3, IGHG1, TRGV4, TRDV1/4, and IL7. Gene set analysis revealed
associations between gene expression and type | interferon signalling, natural killer
receptors, T cell receptors, and tumour necrosis factor signalling. Pathway analysis
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revealed the role of differentially expressed genes in neutrophil signalling and
degranulation, toll-like receptor cascades, and the role of lipids/lipid rafts in infection.

Conclusion

This investigation elucidates the potential role of immune dysregulation underly-

ing GWI, emphasising the importance of immune exhaustion pathways in disease
progression. Further investigations in a larger cohort may further elucidate or confirm
these identified markers for potential screening or therapeutic applications in GWI.

Introduction

Between August 1990 and February 1991, a coalition of 41 countries and approx-
imately a million veterans participated in the Gulf War (GW), including 1,800 Aus-
tralians. Following the first deployment, several epidemiological studies reported
complex multi-systemic symptoms in veterans of the GW. The presence of chronic
symptoms including fatigue, sleep disturbances, respiratory and epithelial complaints,
neurocognitive disturbances, and body pain is referred to as GW Syndrome/Illiness
(GWI), a phenomenon categorised under the umbrella term chronic multisymptom
illness [1]. GWI affects an estimated 25-32% of GW veterans (GWV) deployed to the
GW in 1990-1991 [2]. Epidemiological reports in Australian GWV are consistent with
research conducted in the United States (U.S.), United Kingdom (U.K.), Canadian,
and French veterans reporting [3].

The pathomechanism of GWI remains elusive, as a consequence, there is no
diagnostic test nor evidenced-based treatment available. Furthermore, the aetiology
of GWI is not completely understood. Current evidence supports the hypothesis that
a combination of toxic chemical and environmental agents, including insecticides,
smoke from oil-well fires, pyridostigmine bromide (PB) result in a veteran developing
GWI [4]. These toxic environmental and chemical agents are found to be statistically
associated with immune system dysfunction [5,6]. While intracellular mechanisms
remain diverse, agents including organophosphates and carbamate insecticides and
PB, used prophylactically by veterans, as well as products from oil well fires, includ-
ing particulate matter, heavy metals and polycyclic aromatic hydrocarbons are linked
with chronic inflammation, oxidative stress and neuronal damage [7—10]. Therefore,
demonstrating that no single exposure results in the occurrence of GWI.

One mechanism may include the inhibition of acetylcholinesterase by insecticides
and PB resulting in an accumulation of acetylcholine which consequentially influ-
ences cellular metabolism and immunological functions, including reactive oxygen
species (ROS), chronic inflammation, impaired cytotoxic pathways, cytokine produc-
tion and immune cell activation [7—10]. As an example, an investigation into the effect
of the pesticide permethrin with PB on a GWI mice model reported increased activa-
tion of both peripheral and brain adaptive immune responses [11]. Further, the accu-
mulation of acetylcholine is further linked with oxidative stress. In an experimental
GWI mice model, impaired cellular metabolism promoting ROS have been reported in
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association with immune dysregulation [12]. This is further evidenced in diverse immunological studies reporting lympho-
cyte disturbances, altered lymphocyte subsets, interleukin (IL) and cytokine production, and production of antibodies are
modified in veterans with GWI [13-16].

As many veterans continue to be affected in the decades following their return from the GW, research into the
multisymptomatic pathomechanism of GWI is critical to avoid declining health in an aging population. Given the
impact of immune responses linked to GWI symptomology, genetic variability that predisposes persistent inflam-
matory/immune alterations have been investigated [17]. Investigations into immune abnormalities provide valuable
insights that may inform future biomedical research resulting in potential diagnostic tools and therapeutic interven-
tions. This investigation aimed to elucidate transcriptome changes associated with immune exhaustion in Australian
veterans with GWI.

Method
Participants

Australian GWV with multisystem symptoms and diagnosed with GWI were recruited with the assistance of the Gulf
War lliness Association of Australia. Veterans with GWI fulfilled the CDC Case Definition [18] and Kansas Criteria
[19] for GWI. Healthy controls (HC) reported an absence of disease and/or chronic diagnoses. Participants were
screened according to their medical history and symptom presentation and were asked to report on quality of life
measurements, including the 36-item short form health survey (SF-36) and World Health Organization Disability
Assessment Schedule (WHODAS). All participants were males, aged between 18 and 65 years and non-smokers.
Participants were not included in this current study if they reported a history of alcohol abuse, cardiovascular dis-
ease, thyroid disease, malignancies, insomnia, and another condition that may account for their symptoms. This
investigation was approved by the Griffith University Human Research Ethics Committee (GU/2022/666). Research
involving human research participants was performed per the Declaration of Helsinki and written consent was pro-
vided by all individuals prior to participation.

Sample collection and preparation

Between 20—40 ml of whole blood was collected from each participant into ethylenediaminetetraacetic acid (EDTA) tubes
via venepuncture at collection locations across Southeast Queensland and Northeast New South Wales from April 2022 to
April 2024. All samples were collected between the hours of 7:00AM and 11:00AM from non-fasted participants. Four ml of
EDTA whole blood was used for full blood count analysis.

Anonymised samples were delivered to the National Centre for Neuroimmunology and Emerging Diseases laboratory
within four hours of collection. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by density
gradient centrifugation using Ficoll (GE Healthcare, Uppsala, Sweden) as previously described [20]. PBMCs were stained
with trypan blue (Invitrogen, Carlsbad, CA, USA) to determine cell count and viability. PBMCs were resuspended in fetal
bovine serum (FBS) (Invitrogen Life Technologies, Carlsbad, CA, USA) containing 10% dimethyl sulfoxide (DMSO) and
stored at -80°C until ribonucleic acid (RNA) extraction as previously described [21].

Frozen PBMCs were thawed and immediately pelleted by centrifugation in September 2024. Total RNA was isolated
from PBMC pellets (5-10 x 108 cells) using either the Trizol method (n=2 samples) or a RNeasy Mini kit (Qiagen, Hilden,
Germany) according to manufacturer instructions. The concentration and quality of the RNA were measured using Nan-
oDrop ND-1000 spectrophotometer (Thermo Scientific, Massachusetts, US). RNA purity values were recorded with the
mean and standard deviation being 1.99+0.10 for 260/280 and 1.33+0.43 for 260/230. While contaminants appeared
present according to 260/230 values, all samples passed RNA binding density. The quality of the samples was confirmed
using LabChip RNA Standard Sense Assay. All RNA samples returned a quality score above 8.9.
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RNA expression and NanoString®

RNA expression analysis was determined using the NanoString" nCounter Immune Exhaustion gene expression panel
according to manufacturer’s instructions (NanoString Technologies, Seattle, WA, USA). A full list of investigated genes and
their functional themes can be found in S1 Table. Batches of 12 separate samples were prepared according to the manu-
facturer’s instructions.

Raw gene expression data was normalised against positive and negative controls. Normalisation and analyses were
performed using Rosalind Bio (San Diego, CA, USA) and the following housekeeping genes ABCF1, ALAS1, EEF1G,
G6PD, GAPDH, GUSB, HPRT1, OAZ1, POLR1B, POLR2A, PPIA, RPL19, SDHA, TBP, and TUBB (S1 Table). All raw
gene expression data, normalised counts and quality check outputs cancan be found in S1 Table. Differential expression
(fold change (FC) >1.5 or <—1.5 and a P-value <0.05) is reported between GWI with HC. Ingenuity Pathway Analysis (IPA)
(Qiagen Digital Insights, California, USA) was used to interpret differential RNA expression in biological pathways and
networks using algorithms developed for use by [22].

Analysis

The normality of participant data was determined using the Shapiro-Wilk test. Normally distributed continuous data was
compared using the independent student’s T test and non-normally distributed continuous data was compared using the
Mann-Whitney U test. Age, body mass index (BMI), full blood count analysis, and quality of life measures are presented
as mean xstandard error of mean (SEM) unless otherwise stated. Remaining participant demographics, including high-
est level of education and employment status were compared using the Chi-Square test and the Fisher’s exact test. The
effect of age and BMI on gene expression between cohorts was investigated using a general linear multivariate regression
model. Participant data was analysed using SPSS (version 27) and GraphPad Prism (version 10). Significance is set at
p<0.05. Adjusted (Adj.) p-values are provided unless otherwise stated.

Results
Participants

This current study included n=15 HC and n=20 GWI. Participants with GWI were significantly older and reported higher
BMI compared with HC (p=0.013). There were no significant differences between participant cohorts in terms of the highest
level of education achieved. There was a significant difference in the status of employment between cohorts (p=0.027). Full
blood count was determined for all participants and no significant differences were found between cohorts. All participants
with GWI reported significantly lower SF-36 scores across all domains and higher scores of disability in all domains com-
pared with HC. All clinical characteristics and demographics of participants are summarised in Tables 1 and 2.

The prevalence of symptoms reported by GWI participants is reported in Table 3. The most commonly reported symp-
toms included cognitive disturbances, pain, sleep, and neurosensory disturbances (94.7% of cohort).

Differential gene expression

Of the 785 genes that are included in the NanoString Immune Exhaustion Panel, 601 genes passed background thresh-
olding and normalisation. Differential expression of genes was filtered according to log fold change parameters —=1.5to 1.5
and a p-value of 0.05, resulting in the selection of 33 genes in GWI (Table 4 & Fig 1). Of the 33 selected genes, 21 were
upregulated, and 12 were downregulated. Downregulated genes included TRDV3 (T cell receptor delta variable 3), IGHG1
(immunoglobulin (IG) heavy constant gamma 1) and TRDV4 (log,FC=-1.664, p=0.004; log,FC=-1.438, p=0.035; and
log,FC=-1.20, p=0.04, respectively). Of the upregulated genes SIGLEC1 (sialic acid binding Id-like lectin) and BPI (bac-
tericidallpermeability increasing protein) had the highest degree of change with log,FC=1.96 (p=0.002), and log,FC=1.65
(p=0.004), respectively. The full dataset outputs can be found in S2 Table.
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Table 1. Participant demographics.

HC GWI P-value
N(%) N(%)

Education n (%) 0.110

Primary School 0(0.0) 0 (0.0)

High School 3(20.0) 7 (35.0)

Undergraduate 2(13.3) 8 (40.0)

Postgraduate 7 (46.7) 3(15.0)

Other 3(20.0) 2(10.0)

Employment n (%) 0.027

Full Time 11 (73.3) 9 (45.0)

Part Time 2(13.3) 0(0.0)

Casual 1(6.7) 1(5.0)

Unemployed (other) 1(6.7) 9 (45.0)

Unemployed iliness 0 (0.0) 1(5.0)

Sex n (%)

Male 15 (100%) 20 (100.0%)

Categorical variables compared using chi-square test. Data presented as n (%). Abbrevia-
tions: HC, healthy control; GWI, Gulf War lliness.

https://doi.org/10.1371/journal.pone.0338198.t001

Gene set analysis

The change in regulation within each gene set relative to the baseline was described using gene set analysis (GSA),
both undirected enrichment score (UES) and directed enrichment score (DES) for the top 10 gene sets are presented in
Table 5. GSA was obtained from Rosalind Bio. Differentially expressed genes in GWI were associated with Type | Inter-
feron (UES=1.7835, DES=1.7386), NK receptors (UES=1.6857, DES =-0.1878), fatty acid metabolism (UES=1.4838,
DES=-1.0185), tumour necrosis factor (TNF) signalling (UES=1.3493, DES=0.9285), and T cell receptor (UES=1.319,
DES=-0.7643). The full dataset outputs can be found in S2 Table.

Cell type abundance

The abundance of cell populations was calculated according to the expression of cell marker genes using Rosalind Bio.
Hierarchical cluster analysis observations demonstrate similar distributions within cohorts for major immune cell popu-
lations (Fig 2). While not significant, veterans with GWI had a slightly higher mean abundance of T cells marker genes
compared with HC and was accompanied by lower Treg cells. Neutrophils marker genes were also found to be lower in
GWI relative to HC; however, this was not significant. Abundance scores for cell types are shown in S3 Table.

Pathways and disease functions

A summary of IPA analysis, including the top five biological functions and canonical pathways are presented in Table 6.
The top five biological functions in GWI include childhood-onset systemic lupus erythematosus (SLE), ATAD3A-related
type | interferonpathy, SLE, activation of leukocytes, and antineutrophil cytoplasmic antibody associated vasculitis (all
p<0.0001). RSAD2 and SIGLEC1 were consistently reported across all biological functions. The top five canonical path-
ways in GWI include neutrophil extracellular trap signalling pathway (p=0.0023), neutrophil degranulation (p=0.0031),
role of lipids/lipid rafts in influenza (p=0.0045), chaperone mediated autophagy signalling pathway (p=0.0055) and toll-
like receptor cascades (p=0.006). The complete pathways and disease functions output can be found in S4 Table.
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Table 2. Participant demographics, full blood analysis and quality of life.

HC GWI P-value
Mean SEM SD Mean SEM SD
Age 47 .47 2.91 11.27 54.4 0.74 3.29 0.013
BMI 25.96 1.09 4.23 31.44 1.62 7.23 0.013
Full blood count analysis
WCC (x10°/L) 6.11 0.31 1.19 6.78 0.33 1.47 0.158
Lymphocyte (x10°L) ° 1.88 0.19 0.77 2.03 0.14 0.63 0.214
Neutrophils (x10%/L) 3.49 0.20 0.79 3.98 0.26 1.15 0.163
Monocytes (x10°%L) 0.51 0.05 0.18 0.56 0.03 0.15 0.287
Eosinophils (x10°L) @ 0.19 0.04 0.14 0.16 0.02 0.09 0.856
Basophils (x109/L) 0.05 0.01 0.02 0.05 0.004 0.02 0.924
Platelets (x10%L) 260.13 10.97 42.49 263.55 14.91 66.66 0.863
RCC (x10'/L) 5.08 0.08 0.32 5.07 0.09 0.39 0.932
Haematocrit 0.44 0.01 0.02 0.45 0.01 0.03 0.082
Haemoglobin (g/L) 149.07 2.24 8.68 151.10 2.30 10.31 0.542
SF-36
General Health 71.38 4.60 17.81 37.25 4.12 18.44 <0.001
Physical Functioning? 96.0 2.02 7.83 57.50 5.99 26.83 <0.001
Role Physical 82.92 9.46 36.63 45.31 6.44 28.81 0.002
Role Emotional 95.56 2.68 10.38 49.99 7.13 31.88 <0.001
Pain? 90.67 3.40 13.17 38.0 4.54 20.32 <0.001
Mental Health 83.67 3.57 13.82 47.50 5.37 24.03 <0.001
Vitality 75.83 3.39 13.12 40.63 3.06 13.68 <0.001
Social Functioning 97.50 1.81 7.01 43.75 6.87 30.75 <0.001
WHO DAS
Understanding & communication 8.06 3.56 13.78 39.79 5.17 23.12 <0.001
Mobility 2.33 1.61 6.23 33.0 5.39 24.08 <0.001
Self-care? 0.83 0.83 3.23 15.0 3.37 15.09 <0.001
Relationships 5.42 2.58 9.98 45.0 5.82 26.02 <0.001
Life activities 2.08 1.45 5.62 36.56 5.29 23.67 <0.001
Participation in society 5.21 2.77 10.74 44.37 6.26 28.01 <0.001
Continuous variables compared using Mann Whitney U test or T test. # Denotes continuous variables compared using Mann Whitney U test. The

WHO DAS domain for participation in work/school was omitted given the high number of participants reporting unemployment. Data presented as
mean, SEM and SD. Abbreviations: HC, healthy control; GWI, Gulf War lliness; BMI, body mass index; SD, standard deviation; SEM, standard error
of mean; WCC, white cell count; RCC, red cell count; SF-36, 36 item short-form health survey; WHO, World Health Organization; DAS, disability

assessment schedule.

https://doi.org/10.1371/journal.pone.0338198.t002

Network analysis

Interaction network analysis was performed using IPA. This analysis demonstrates the interactions between molecules

and the dataset imported. One network was exported, with a score of 16 (Fig 3). Analysis of this network, consisting
of five focus molecules, was associated with cell-to-cell signalling and interactions, haematological system develop-
ment and function, and immune cell trafficking. Focus molecules identified were BPI (p=0.004), MMP9 (p=0.0004),

RSAD2 (p=0.004), SIGLEC1 (p=0.002), and TRDV3 (p=0.005). Top upstream regulators were identified to be ATAD3A
(p<0.0001), TNF (family, p<0.0001), RNY3 (p<0.0001), SOD1 (p<0.0001) and CSF1 (p<0.0001). Molecules in causal
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Table 3. Symptom prevalence in Australian GWI participants.

Symptom n (%)
Post-exertional malaise 17 (89.5)
Cognitive disturbances 18 (94.7)
Pain 18 (94.7)
Sleep 18 (94.7)
Neurosensory, perceptual, and motor disturbances | 18 (94.7)
Immune 9 (47.4)
Respiratory 9 (47.4)
Gastrointestinal 15 (78.9)
Urinary disturbances 11 (57.9)
Cardiovascular manifestations 11 (57.9)
Thermoregulatory disturbances 11 (57.9)

Data presented as n (%) for those reporting experiencing the symptom. Missing data
n=1. Abbreviations: GWI, Gulf War lliness; n, sample number.

https://doi.org/10.1371/journal.pone.0338198.t003

network identified ATAD3A (p<0.0001), RNY3 (p<0.0001), Jak (family) (p<0.0001), and type I IFN genes (p<0.0001).
Network analysis outputs can be found in S4 Table.

Discussion

This novel study investigates altered gene expression related to immune function in Australian veterans with GWI com-
pared with HC. Briefly, 33 differentially expressed genes were identified, 21 of which were upregulated and 12 were down-
regulated. Of the differentially expressed genes, TRDV3, IGHG1, TRGV4, TRDV1, and TRDV?2 returned as the top five
downregulated, while SIGLEC1, BPI, MMP9, RSAD2, and CEACAM1 were the top five upregulated genes. To the authors
knowledge this present research is the first to conduct an analysis on immune exhaustion and inflammation markers
simultaneously using NanoString Technology in this cohort.

Previous studies have investigated genetic markers in GWI with the identification of nerve agent susceptible genes
including PON1 (paraoxonase-1) and BChE (butyrylcholinesterase) [23,24] as well as the neurodegeneration gene APOE
(apolipoprotein) [25]. Meanwhile, immune profiling has identified altered expression of inflammatory markers including
IL-18, TNFa, MMP-2, CCL12, and EGF, some of which aligning with the present investigation [26]. A previous study
employing logistic regression modelling created a prediction model of GWI risk associated with genetic variability in TGF
(rs1800469, p=0.009), IL6R (rs8192284, p=0.004) and TLR4 (rs4986791, p=0.013) [17]. While variability within these
mentioned genes was not identified in the present study, toll-like receptor cascades and IL signalling were significantly
associated with the top differential genes identified in the present manuscript. Further research has also reported an asso-
ciated with human leukocyte antigen (HLA) allele DRB1%13:02 [27]. Previous research and the present study identified
potential markers worthy of further investigation to elucidate the role of immune disturbances in the pathomechanism of
GWI.

TCR genes (TRDV3, TRDV1, TRDV2, TRGV4 and TRGC1) were downregulated in Australian veterans with GWI
compared with HC, suggesting potential consequences that result in altered downstream T cell activity and cytotoxic
function. This is supported by the abovementioned GSA data whereby TCR signalling returned a negative DES, indicating
a functional reduction. A downregulation of TCRs will impair T cell responsiveness to antigen stimulation through impaired
T cell to target cell interactions and a decrease in downstream intracellular signalling cascades [28]. TCR downregulation
accompanied by reduced IL-2 signalling, demonstrated through a negative DES above, further supports the suggestion of
impaired T cell survival and proliferation in GWI [29].
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Table 4. Differential gene expression.

Gene Description log2FC P-value
Downregulated

TRDV3 T cell receptor delta variable 3 -1.6643 0.0049
IGHG1 Immunoglobulin heavy constant gamma 1 -1.4380 0.0345
TRGV4 T cell receptor gamma variable 4 -1.2019 0.0496
TRDV1 T cell receptor delta variable 1 -1.1313 0.0018
TRDV2 T cell receptor delta variable 2 -1.1312 0.0269
IL7 Interleukin 7 -0.8934 0.0170
IGHV4-59 Immunoglobulin heavy variable 4-59 -0.7757 0.0351
EHHADH 3-hydroxyacyl CoA dehydrogenase -0.7612 0.0107
IDO1 Indoleamine 2,3-dioxygenase 1 -0.7149 0.0473
CXCR6 chemokine (C-X-C motif) receptor 6 -0.7101 0.0160
TRGC1 T cell receptor gamma constant 1 -0.7017 0.0098
SESN2 Sestrin 2 -0.6490 0.0221
Upregulated

SIGLEC1 Sialic acid binding Ig-like lectin 1, sialoadhesion 1.9591 0.0022
BPI Bactericidal/permeability-increasing protein 1.6511 0.0045
MMP9 Matrix metallopeptidase 9 1.5475 0.0004
RSAD2 Radical S-adenosyl methionine domain containing 2 1.5471 0.0037
CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein) 1.4122 0.0022
IFIT1 Interferon-induced protein with tetratricopeptide repeats 1 1.3933 0.0111
IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 1.3519 0.0075
CXCL1/2/3 Chemokine (C-C motif) ligand 1/2/3 1.3366 0.0292
PTGS2 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) 1.3063 0.0287
CEACAMS3 Carcinoembryonic antigen-related cell adhesion molecule 3 1.2773 0.0045
ITGB3 Integrin beta 3 (platelet glycoprotein llla antigen CD61) 1.2059 0.0019
EGF Epidermal growth factor 1.0986 0.0251
LTBP1 Latent transforming growth factor beta binding protein 1 1.0477 0.0074
GREM2 Gremlin 2 DAN family BMP antagonist 0.9805 0.0438
OAS3 2’-5-oligoadenylate synthetase 3 (100kDa) 0.9389 0.0129
IL1B Interleukin 1 beta 0.9364 0.0483
ELOVL7 ELOVL fatty acid elongase 7 0.8905 0.0079
MX1 MX dynamin-like GTPase 1 0.8547 0.0191
TNFAIP3 Tumor necrosis factor alpha-induced protein 3 0.7483 0.0209
FCAR Fc fragment of IgA receptor 0.6453 0.0153
MX2 MX dynamin-like GTPase 2 0.5934 0.0115

Data extracted from Rosalind Bio. Descriptions extracted from the National Institutes of Health (NIH) National Library of Medicine gene database.
Abbreviations: FC, fold change; TRDV3, T cell receptor delta variable 3; IGHG1, Immunoglobulin heavy constant gamma 1; TRDV2, T cell receptor delta
variable 2; TPSAB1/B2, tryptase alpha/beta 1; TRGV4, T cell receptor gamma variable 4; TRDV1, T cell receptor delta variable 1; IL7, Interleukin 7;
IGHV4-59, immunoglobulin heavy variable 4-59; IDO1, indoleamine 2 3-dioxygenase 1; EHHDAH, enoyl-CoA hydratase/3-hydroxyacyl CoA dehydroge-
nase; CXCR6 chemokine (C-X-C motif) receptor 6; TRGC1, T cell receptor gamma constant 1; SESN2, sestrin 2; SIGLEC, sialic acid binding Ig-like 1;
BPI, bactericidal/permeability-increasing protein; RSAD2, radical S-adenosyl methionine domain containing 2; MMP9, Matrix metallopeptidase 9; IFIT1,
interferon-induced protein with tetratricopeptide repeats 1; CEACAM1, Carcinoembryonic antigen-related cell adhesion molecule 1; IFIT3, interferon-
induced protein with tetratricopeptide repeats 3; CXCL1/2/3, CXCL1, CXCL2 (MIP-2 alpha), Chemokine (C-C motif) ligand 1/2/3;CEACAMS3, Carcinoem-
bryonic antigen-related cell adhesion molecule 3; PTGS2, prostaglandin-endoperoxide synthase 2; ITGB3, integrin beta 3; LTBP1, latent transforming
growth factor beta binding protein 1; EGF, epidermal growth factor; OAS3, 2-;5- oligoadenylate synthetase 3; ELOVL7, ELOVL fatty acid elongase 7;
MX1, MC dynamin-like GTPase 1; TNFAIP3, Tumour necrosis factor, alpha-induced protein 3; GREM2, gremlin 2; IL1B, interleukin 1 beta; FCAR, Fc
fragment of IgA receptor; MX2, MX dynamin-like GTPase 2.

https://doi.org/10.1371/journal.pone.0338198.t004
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Fig 1. Differentially expressed genes in Australian GWI. (A) volcano plot displaying statistical significance (log10(p-value) on the y-axis, and log2 fold
change on the x-axis. Selected genes meeting filter criteria are presented as those down-regulated (<—1.5) and those upregulated (21.5). (B) heatmap
of selected genes representing log2 normalised expression values from -4 to 6. Red indicates high levels of expression, while blue indicates low levels
of expression. Clusters are organised according to upregulated or downregulated genes by participant cohort. Green indicates upregulated genes, while
purple indicates downregulated genes. Figure exported from Rosalind Bio. Abbreviations: HC, healthy control; GWI, Gulf War lliness; TRDV3, T cell
receptor delta variable 3; IGHG1, Immunoglobulin heavy constant gamma 1; TRDV2, T cell receptor delta variable 2, TPSAB1/B2, tryptase alphalbeta 1;
TRGVA4, T cell receptor gamma variable 4; TRDV1, T cell receptor delta variable 1; IL7, Interleukin 7; IGHV4-59, immunoglobulin heavy variable 4-59;
IDO1, indoleamine 2 3-dioxygenase 1; EHHDAH, enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase; CXCR6 chemokine (C-X-C motif) receptor
6; TRGC1, T cell receptor gamma constant 1, SESN2, sestrin 2; SIGLEC, sialic acid binding Ig-like 1; BPI, bactericidallpermeability-increasing protein;
RSAD2, radical S-adenosyl methionine domain containing 2; MMP9, Matrix metallopeptidase 9; IFIT1, interferon-induced protein with tetratricopeptide
repeats 1, CEACAM1, Carcinoembryonic antigen-related cell adhesion molecule 1; IFIT3, interferon-induced protein with tetratricopeptide repeats 3;
CXCL1/2/3, CXCL1, CXCL2 (MIP-2 alpha), Chemokine (C-C motif) ligand 1/2/3;CEACAMS3, Carcinoembryonic antigen-related cell adhesion molecule 3;
PTGS2, prostaglandin-endoperoxide synthase 2; ITGB3, integrin beta 3; LTBP1, latent transforming growth factor beta binding protein 1; EGF, epidermal
growth factor; OAS3, 2-,5- oligoadenylate synthetase 3; ELOVL7, ELOVL fatty acid elongase 7; MX1, MC dynamin-like GTPase 1; TNFAIP3, Tumour
necrosis factor, alpha-induced protein 3; GREM2, gremlin 2; IL1B, interleukin 1 beta; FCAR, Fc fragment of IgA receptor; MX2, MX dynamin-like
GTPase 2.

https://doi.org/10.1371/journal.pone.0338198.9001

Downregulation of TCRs and impaired T cell function are reported in various pathologies, including cancer, autoimmune
diseases and infectious diseases [30]. Similarly, TCR dysregulation may contributed to the changes in T cell subsets and
pro-inflammatory responses observed in GWI. Immune profiling and function have been investigated and have reported
altered T- and NK lymphocyte profiles and impaired cytotoxic function, with emphasis on elevated T lymphocyte popu-
lations of veterans with GWI compared with controls [13,14,31]. Whether the downregulation of TCRs is correlated to a
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Table 5. Gene set analysis for genes differentially expression in Australian GWI.

GSA UES DES
Type | Interferon 1.7835 1.7386
NK Receptors 1.6857 -0.1878
Fatty Acid Metabolism 1.4838 -1.0185
TNF Signalling 1.3493 0.9285
TCR Signalling 1.319 -0.7643
Hypoxia Response 1.2441 0.9354
IL-7 Signalling 1.2037 -0.5323
PPAR Signalling 1.1884 -1.1031
Chemokine Signalling 1.1768 -0.8164
Other IL Signalling 1.1676 0.7214

Data extracted from Rosalind Bio. Abbreviations: GSA, gene set analysis; UES, undirected enrichment
score; DES, directed enrichment score; NK, natural killer; TNF, tumour necrosis factor, TCR, T cell recep-
tor; IL, interleukin; PPAR, peroxisome proliferator-activated receptors.

https://doi.org/10.1371/journal.pone.0338198.t005

potential elevation in T cell populations are unknown. This current investigation did not directly quantify lymphocyte cell
numbers and cell profiling according to differentially expressed genes did not significantly differ between GWI and HC
cohorts. Instead, future investigations may aim to concurrently analyse gene expression with phenotyping. Notably, treat-
ment with PB, a medication routinely administered as a prophylactic during the Gulf War, can impede T cells through the
cholinergic anti-inflammatory pathway (CAP) resulting in the suppression of T cell activity [32]. However, the implications
of long-term or excessive PB, as reported by GWV, on T cell activity is unknown. Nevertheless, reduced TCR functioning
in GWI is a novel finding and supports the need for further investigations into immune disturbances in Australian GWV.

Upregulated interferon-related genes including RSAD2, IFIT1, IFIT3, MX1, MX2 and OAS3 suggests chronic activation
of antiviral and inflammatory pathways. This is further supported by GSA data whereby type | interferon associated genes
returned a positive DES, as seen above. Type | interferon activation suggests persistent immune activation. While ele-
vated interferon signalling may also suggest automimicry in this cohort of GWI, the downregulation of IGHG1 and IGHV4—
59 suggests reduced humoral immune responses and impaired antibody production, not reminiscent of the presence of
autoimmunity which is inconsistent in GWI research [33,34]. Upregulation of other inflammatory and immune activation
markers reported in the present manuscript, such as IL1B, PTGS2, TNFAIP3, CXCL1/2/3 and FCAR aligns further with
chronic inflammation or innate immune activation [35—38]. In further support of our research, a previous investigation
reported elevated levels of IFN-y- in addition to IL-2-producing CD4 +cells and elevated in vitro levels of IL-10-producing
CD4 cells compared with non-symptomatic GWV [39]. While plasma levels of IL-6 and C-reactive protein (CRP) are also
found to be increased in veterans with GWI [40]. Therefore, the present research, in conjunction with the existing litera-
ture, supports the role of chronic inflammation in the pathomechanism of GWI.

The downstream implications of the preceding exposures and resulting chronic inflammation are potentially associ-
ated with metabolic disturbances reported in GWI. Results of the present investigation suggest metabolic dysfunction
evidenced through differential expression of genes including EGF, ITGB3, LTBP1, GREM2, SESN2, and ELOVLY. For
example, the downregulation of SESN2, encoding for sestrin 2, suggests mitochondrial deoxyribonucleic acid damage,
oxidative stress, and hypoxia reported in human disease, including those that are neurodegenerative [41]. Previous inves-
tigations have reported that impaired mitochondrial function is associated with symptom severity in veterans with GWI
[42]. A review of research on inflammation and ROS suggests that inflammatory mediators, such as those reported in GWI
cohorts, may potentially exacerbate metabolic dysfunction and fatty acid oxidation [43]. Suggesting that inflammation and
mitochondrial dynamics are interconnected in disease. Additionally, Bryant et al. reported that altered cellular metabolism
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https://doi.org/10.1371/journal.pone.0338198.9002

in a GWI mouse model may promote inflammatory processes in veterans; however, further protein- and functional-level
research is required to determine whether this is supported by the present study. The downstream effects of genes includ-
ing SESN2 and others listed above on cellular metabolism may indeed exacerbate inflammation aligning with Bryant et al
[26]. Other research has reported on genetic variants linked with mitochondrial disturbances, such as BChE [24]. While
transcriptomics research in GWI mice have also reported differential expression of genes important for mitochondrial
respiration, oxidative phosphorylation and electron transport chain [44], the top differentially expressed genes are not rep-
licated by the present investigation. Differences in the literature may be linked to the use of a GWI mouse model [26,44]
or samples provide by veterans with GWI [42,45], therefore, posing a barrier when interpreting data between models.
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Table 6. Top biological functions and pathways in Australian GWI.

Functions P-value Molecules

Childhood-onset SLE <0.0001 RSAD2,SIGLEC1
ATAD3A-related type | interferonopathy <0.0001 RSAD2,SIGLEC1

SLE <0.0001 RSAD2,BPI,MMP9,SIGLEC1
Activation of leukocytes <0.0001 RSAD2,BPI,MMP9,SIGLEC1
Antineutrophil cytoplasmic antibody-associated vasculitis <0.0001 RSAD2,MMP9,SIGLEC1
Pathways P-value Ratio

Neutrophil Extracellular Trap Signalling Pathway 0.0023 0.00489

Neutrophil degranulation 0.0031 0.00419

Role of Lipids/Lipid Rafts in the pathogenesis of influenza 0.0045 0.0417

Chaperone Mediate Autophagy Signalling Pathway 0.0055 0.00314

Toll-like Receptor Cascades 0.006 0.0312

Data extracted from IPA. Ratio is calculated as the number of molecules in a given pathway that meets
cutoff criteria, divided by the total number of molecules that make up that pathway and that are in the ref-
erence set. Abbreviations: SLE, systemic lupus erythematosus; SIGLEC, sialic acid binding Ig-like 1; BPI,
bactericidallpermeability-increasing protein; RSAD2, radical S-adenosyl methionine domain containing 2;
MMP9, Matrix metallopeptidase 9.

https://doi.org/10.1371/journal.pone.0338198.t006

Overall, this present research is supported by the literature reporting a decline in metabolic function in veterans with GWI
and therefore provides avenues for future research [45—-47].

Further, GSA suggested the potential occurrence of impaired fatty acid metabolism in the present GWI cohort. While
the BMI of veterans with GWI was significantly higher compared with HC, previous research using a GWI mouse model
demonstrated mitochondrial lipid changes in the brains and plasma [48]. This mouse model was exposed to GW agents
PB and permethrin, therefore, it can be hypothesised that mitochondrial disturbances reported in this present manuscript
are potentially linked to exposures of GWV and the role of fatty acid metabolism disturbances cannot be limited to BMI in
this cohort. This is further supported by multivariate analysis undertaken to determine association between BMI and gene
expression which found potential associated with the expression of IGHV4/59 and CEACAM3 and not genes related to
fatty acid metabolism (S2 Table). Nevertheless, further research is warranted to determine the impact of high BMI on the
regulation of metabolic genes, as the sample size of this research did not allow data stratification on BMI.

Currently, there is no validated biomarker for GWI for diagnosis or to determine risk susceptibility. The identification
of biological markers could help to refine illness definition, better detect, predict or distinguish subgroups of GWI, and
ultimately lead to the development of hypothesis-driven and evidence-based treatments to improve health outcomes of
veterans. While the occurrence of immune exhaustion was investigated using a targeted genomic panel, typical immune
exhaustion markers such as Programmed Death-1 (PD-1), lymphocyte activating gene (LAG), T cell immunoreceptor ITIM
domain 3 (TIM-3) and cytotoxic T lymphocyte associated proteins (CTLAs) [49], were not identified as differentially expres-
sion. Rather, the results of the current investigation suggest the role of chronic immune activation and inflammation in
Australians with GWI. Given the impact of immune responses linked to GWI symptomology, genetic variability that causes
persistent inflammatory or immune alterations may be essential for further research into diagnostic tools or targeted
pharmacotherapeutic intervention. This present research provides the foundations to facilitate further analysis for potential
biomarker identification specific to GWI. This current manuscript further elucidates the role of immunological disturbances
in the pathomechanism of GWI. Importantly, the mechanisms involved in the immune disturbances reported in GWI are
potentially linked with immunotoxicity caused by exposures during the Gulf War resulting in lymphocyte dysfunction,
increased oxidative stress, and dysregulation of immune signalling pathways [5,6,50].
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2; CCR8, C-C Motif Chemokine Receptor 8; TCR, T Cell Receptor; BPI, Bactericidal/Permeability-Increasing Protein; ADAMTS9, ADAM Metallopepti-
dase With Thrombospondin Type 1 Motif 9; PARP10, Poly(ADP-Ribose) Polymerase Family Member 10, TNFRSF18, Tumor Necrosis Factor Receptor
Superfamily Member 18; TNF, Tumor Necrosis Factor; SLPI, Secretory Leukocyte Peptidase Inhibitor; NFKB, Nuclear Factor Kappa-Light-Chain-
Enhancer of Activated B Cells; IL19, Interleukin 19; ADGRF5, Adhesion G Protein-Coupled Receptor F5; HCG18, HLA Complex Group 18; TIR13, Likely
refers to TIR domain-containing protein 13, though this is not a well-characterized molecule; MMP9, Matrix Metallopeptidase 9; SPINK1, Serine Pepti-
dase Inhibitor, Kazal Type 1; LILRB1,Leukocyte Immunoglobulin-Like Receptor Subfamily B Member 1; HIVEP3, Human Immunodeficiency Virus Type |
Enhancer Binding Protein 3. Figure constructed using IPA, Qiagen.

https://doi.org/10.1371/journal.pone.0338198.9003

This current investigation is not without limitations. The small cohort sizes limit stratification of cohorts according to
clinical presentation, age, BMI, and other potential confounding factors. This emphasises the need for further investiga-
tions with larger cohorts to differentiate potential immune subtypes and identify biomarkers for stratification. Neverthe-
less, effect sizes calculated for each differentially expressed gene were found to be moderate to large demonstrating a
sufficient sample size to support these findings (S2 Table). With further investigations incorporating larger sample sizes
and protein-level validation may also be considered for future research. Given the significant differences in age between
the cohorts, a multivariate analysis was performed to determine any potential effect on gene expression. We report that
the effect of age on gene expression was non-significant, excluding one gene being IGHV4/59 (S2 Table). It is important
to highlight that while this current investigation raised disease pathways associated with SLE, no participants reported a
diagnosis of an autoimmune condition. This current investigation serves as the basis to justify further larger investigations
to identify immunological biomarkers in GWI. Further, the Immune Exhaustion panel developed by NanoString biases
expression analysis to a small selection of genes. While this technology provides sensitive data, future analysis may con-
sider the validation of gene expression analysis using untargeted RNA expression analysis with quantitative polymerase
chain reaction experiments to confirm findings.

Conclusion

This investigation reports immune transcriptome changes in Australian veterans with GWI using NanoString Immune
Exhaustion panel. Altered gene expression identified in this study indicates changes to both innate and adaptive immune
responses with evidence of metabolic stress, and IL signalling disturbances. The findings of this present research suggest
chronic inflammation is a potential mechanism underpinning symptom presentation of GWI. Markers of immune exhaus-
tion were not statistically different in Australian GWI participants. Moreover, these findings contribute to the growing body
of literature on the pathomechanism of immunological disturbances in GWI and may facilitate further research in the iden-
tification of diagnostic or therapeutic targets.

Supporting information

S1 Table. This file contains pre-processed gene expression data collected prior to statistical or pathway analy-
ses. Information and data was generated using NanoString nCounter Immune Exhaustion Panel and Rosalind Bio. Inside
the file contains a full list of genes and probes included in the NanoString nCounter Immune Exhaustion Panel including
probe IDs, gene symbols and probe sequences (T1); lists corresponding functional themes of genes incorporated within
the panel supporting predetermined information used for gene set and pathway analysis (T2); a summary of panel cover-
age according to genes within the panel contributing to immune-related pathways or cell types (T3); raw gene expression
for housekeeping genes (T4); normalised RNA expression counts subsequent to positive control normalisation and back-
ground removal for all genes fulfilling thresholding requirements (T5); raw RNA gene expression counts prior to normalisa-
tion or quality control (T6) and; a summary of quality check data including binding density, image quality, limit of detection,
and more, for each sample calculated using NanoString nSolver and nCounter Analysis (T7).

(XLSX)
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S2 Table. This file contains results from statistical analyses performed and summaries within the results of this
manuscript. Inside the file contains lists all normalised gene counts that passed quality checks and thresholding with
corresponding samples including base mean, log, fold change, unadjusted p-values, adjusted p-values, false discovery
rate and significance rank (T1); filtered list of only significant differentially expressed genes (T2); full results pertaining to
the gene set analysis performed using Rosalind Bio (T3); standardised effect sizes (Cohen’s D) for all statistically signifi-
cant differentially expressed genes calculated using R package “RNASeqPower” and “effsize”; lists the effect of metadata
variables Age and BMI on gene expression profiles across cohorts (GWI or HC) using multivariate analysis performed with
SPSS (T5).

(XLSX)

S3 Table. File provides immune cell type abundance scores using gene expression information. The log, cell type
abundance scores are derived from cell-specific genes using Rosalind Bio. This data was used to generate Figure 2 of the
results.

(XLSX)

S4 Table. This file documents functional and pathway interpretation for differentially expressed genes using
QIAGEN IPA according to [22]. File contains Diseases and Functions according to differential gene expression including
p-values and molecules (T1); lists canonical pathways along with corresponding molecules, direction of expression and
pathway activity predictions including p-values, z-score, ratio and molecules (T2); causal network analyses predicting
upstream and downstream regulators and networks involving specific gene families including direction of activation or inhi-
bition, p-value, and molecules (T3); lists predicted upstream regulators according to observed gene expression changes
with corresponding p-values and molecules (T4); underlying network molecules and key diseases or functions used for
Figure 3 included in the present manuscript detailing key molecules (T5).

(XLSX)
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