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Abstract 

Natural rubber, derived mainly from the Hevea brasiliensis tree, is a highly valuable 

biopolymer. This study examined the effects of drought stress on rubber seedlings, 

focusing on their physiological responses and gene expression under three irriga-

tion conditions: well-watered (control), mild drought, and severe drought. Results 

indicated that as drought severity increased, the relative water content in the leaves 

decreased. The level of proline was significantly higher under severe drought but 

decreased during mild drought stress. Malondialdehyde levels increased in leaves 

under drought stress, while antioxidant enzymes varied: ascorbate peroxidase and 

catalase activity increased under mild drought stress. The guaiacol peroxidase (GPX) 

activity rose under drought condition, indicating adaptive oxidative and osmotic 

responses. Gene expression analysis demonstrated significant down-regulation of 

the rubber biosynthesis gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) 

under drought conditions, indicating a reduction in rubber production. In contrast, the 

expression of cis-prenyltransferase was up-regulated, suggesting a compensatory 

mechanism to maintain rubber synthesis despite a shortage of precursors. HMG-CoA 

synthase significantly decreased under severe drought stress, whereas transferase 

activator exhibited non-significant changes during drought conditions. Additionally, an 

inverse relationship was identified between HMGR expression and GPX activity, sug-

gesting that increased levels of reactive oxygen species during drought stress may 

inhibit antioxidant responses, ultimately leading to the down-regulation of HMGR. 

Drought stress suppresses HMGR expression, reducing rubber yield. Preventing the 

downregulation of this gene under drought conditions could be a key focus for future 

research. These findings enhance our understanding of the molecular mechanisms 

of drought adaptation in rubber seedlings and provide insights for breeding resilient 

genotypes.
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Introduction

Natural rubber (NR), mainly composed of cis-1,4-polyisoprene, is a crucial biopoly-
mer used in industries like automotive, medical, and manufacturing [1]. Although 
over 2,500 plant species produce rubber [2], only Hevea brasiliensis is commercially 
viable, supplying about 89% of global natural rubber [1,3,4]. In rubber seedlings, 
rubber biosynthesis occurs in specialized cells called articulated laticifers, primarily 
located in the phloem of stems, with some in leaves and branches [5–7]. These cells 
generate latex, a cytoplasmic suspension rich in rubber particles and enzymes for the 
isoprenoid biosynthesis pathway [8,9].

The rubber synthesis pathway is energy intensive and particularly sensitive to 
ecological stress conditions [10]. Due to increasing climatic instability, understanding 
responses of rubber seedlings to environmental stress is essential for establishing 
long-term productivity. Drought stress is a major global constraint that increases 
reactive oxygen species (ROS) and inhibits respiration, partially due to reduced 
antioxidants [11]. Enzymes such as ascorbate peroxidase (APX), catalase (CAT), and 
guaiacol peroxidase (GPX) play key roles in detoxifying ROS and protecting plants 
from oxidative damage [12]. However, excessive ROS can hinder crop productivity 
by inducing physiological disruptions such as membrane lipid peroxidation, protein 
misfolding, and metabolite degradation [13,14]. This study aims to investigate the 
effects of drought on growth traits, antioxidant enzyme activities, osmolyte accumu-
lation, and expression of four key genes (HMGR, HMGS, RTA, and CPT) involved in 
rubber biosynthesis [10,15]. Elucidating these factors will enhance our understanding 
of the mechanisms behind drought tolerance in rubber seedlings. This knowledge will 
support future breeding and cultivation efforts under drought-prone conditions.

Materials and methods

Plant material, experimental design, and growth conditions

Seeds of the rubber tree (clone RRIB-600) were soaked in water for 24 hours at room 
temperature and then sown in black polyethylene nursery bags filled with washed 
river sand. The seeds were lightly covered with sand and kept in a greenhouse at 
28–30 °C with humidity above 60%, with daily watering to maintain soil moisture. 
Seed germination was observed between 13 and 17 days after sowing. Eight-
week-old seedlings, approximately 25 cm long, were transplanted into plastic pots 
containing a loamy-sandy textured substrate. The plants were grown in a controlled 
greenhouse environment with temperatures between 28 and 30 °C, relative humidity 
levels of 60–70%, and a 12-hour light/dark photoperiod. Six-month-old seedlings (15 
seedlings) were selected for morphological assessment, with five biological replicates 
(n = 5) per treatment group (each pot representing a separate biological replicate). A 
summary of the experimental design is illustrated in Fig 1.

Drought stress treatments and morphological assessment

Six-month-old rubber seedlings were subjected to drought treatments for 42 days 
using fixed daily irrigation volumes methods as previously described [16,17]. In brief, 
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they received 50 mL/day for the well-watered control, 20 mL/day for mild drought stress, and 2 mL/day for severe stress. 
Irrigation was performed manually every 2–3 days to ensure consistent water delivery.

Morphological evaluations were conducted at the beginning and end of the treatment period, measuring plant height 
and stem diameter. At the end of treatments, fully expanded leaves were harvested, flash-frozen in liquid nitrogen, and 
stored at –80 °C for biochemical and molecular analyses.

Physiological assays

Relative water content (RWC).  RWC was estimated as described previously [18,19]. Briefly, the fresh weight (FW) 
was measured immediately after sampling from each plant. The leaves were then floated in distilled water for 6 hours, 
and the turgid weight (TW) was recorded. Afterward, the leaves were oven-dried at 70°C for 48 hours, and the dry weight 
(DW) was determined. The RWC was calculated using the following formula [19]:

	 Rwc(%) = [(FW – DW)/(TW – DW)]× 100	

Fig 1.  The experimental design used for drought stress treatments of Hevea brasiliensis seedlings. Seed germination and Hevea brasiliensis 
seedling production (A), drought stress treatments were conducted using three irrigation regimes (well-watered, mild drought, and severe drought) (B). 
Five biological replicates (n = 5) were used for each treatment group (each pot serving as a separate replicate).

https://doi.org/10.1371/journal.pone.0338177.g001

https://doi.org/10.1371/journal.pone.0338177.g001
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Proline quantification.  Free proline was extracted and quantified using the acid ninhydrin method [20,21]. Briefly, 0.5 
g of frozen leaf tissue was homogenized in 10 mL of 3% sulfosalicylic acid and vortexed for 30 seconds. The mixture was 
then centrifuged (Sigma Qiagen Model 4–16KS, Germany) at 22,500 xg for 15 minutes at 4°C. The supernatant was filtered 
through filter paper. 2 mL of the filtrate were mixed with 2 mL of acid ninhydrin and 2 mL of glacial acetic acid, then incubated 
at 65°C for 1 hour and cooled on ice. The chromophore was extracted with 4 mL of toluene, and the absorbance of the upper 
phase (colored solution) was read at 520 nm using a plate reader (EON Biotek, Highland Park, Winooski, Vermont, USA). 
Concentrations were determined from a standard curve of pure proline, expressed as micrograms per gram of dry weight.

Malondialdehyde (MDA) content.  MDA, a marker of lipid peroxidation, was measured using the thiobarbituric acid 
(TBA) assay [22]. 1 g of fresh leaf tissue was homogenized in 5 mL of 0.1% trichloroacetic acid (TCA), followed by 
centrifugation at 10,000 xg for 5 minutes at room temperature. 1 mL of the supernatant was mixed with 4 mL of 20% TCA 
containing 0.5% TBA and incubated at 95°C for 30 minutes. After cooling on ice and re-centrifugation, absorbance was 
measured at 532 nm and 600 nm. The MDA content was calculated using an extinction coefficient of 155 mM ⁻ ¹cm ⁻ ¹.

Antioxidant enzyme assays

For enzyme assays, 0.2 g of leaf tissue was homogenized in 1 mL of extraction buffer containing 1 M Tris-HCl (pH 6.8) 
and 2% polyvinylpyrrolidone (PVP). Samples were vortexed for 30 seconds and centrifuged at 22,500 xg for 30 minutes at 
4°C [23]. Supernatants were collected and stored at –20°C until analysis.

Catalase (CAT) activity was assayed by measuring the decomposition of 50 mM H₂O₂ in 50 mM phosphate buffer (pH 
7.0). An aliquot (10 μL) of enzyme extract was mixed with reaction buffer at a dilution ratio of 1:200, and the decrease in 
absorbance was recorded at 240 nm [24,25].

To assess ascorbate peroxidase (APX) activity a reaction mixture containing 50 mM phosphate buffer (pH 7.0), 0.5 mM 
ascorbate, and 1 mM H₂O₂ was prepared [26]. The APX activity was measured by monitoring the decrease in absorbance 
at 290 nm for 2 minutes. The activity was expressed as ΔA 290 mg −1 protein min −1.

Guaiacol Peroxidase (GPX) activity was determined by measuring the formation of tetra guaiacol, which absorbs at 
470 nm [27]. Equal volumes of 10 mM phosphate buffer, guaiacol (10 mM), and H₂O₂ were mixed. The enzyme extract was 
added to the mixture at a dilution ratio of 1:200. The increase in absorbance was recorded over 2 minutes at 470 nm.

Quantitative real-time PCR analysis

Total RNA was extracted from approximately 100 mg of frozen leaf tissue using the DenaZist Total RNA kit (DenaZist, Iran), 
following the manufacturer’s instructions for non-column-based RNA isolation. The RNA was quantified with a Nanodrop spec-
trophotometer and assessed using 1% agarose gel electrophoresis. DNase treatment was then performed using the DNase I 
enzyme kit (Thermo Fisher Scientific, USA) to eliminate any residual genomic DNA contamination. Reverse transcription was 
conducted using a Supra cDNA Synthesis Kit (Pars Tous, Iran) to convert RNA into complementary DNA (cDNA). The following 
combinations of forward and reverse primers were used: for the quantitative real-time PCR for CPT 5′-TGTCATAGCTTCTCG 
CCCAA-3′/5′-ATGGTGACGTACTTAACTCCGAT-3′; for HMGR 5′-CCGTTTTCAACAAATCAAGCCGAT-3′/5′-ACCATG 
TTCATCCCCATTGCATC-3′; for HMGS 5′-CCATAGGACTCGCACAAGATTGC-3′/5′-GATTACCGTTTCACTCCCGACTTC-3′; 
and for RTA 5′-CGGACCCCAGAAGATTTATCGC-3′/5′-CTCTCCACCACAATTCCAAGATA-3′ [23]. The quantitative real-time 
PCR was performed using SYBR Green master mix (Pars Tous, Iran) in a Rotor-Gene 6000 series system (QIAGEN’s real-
time PCR system), following the manufacturer’s instructions. The PCR conditions included: 95°C for 15 minutes, followed by 40 
cycles of 95°C for 15 seconds; 60–62°C (depending on the annealing temperature) for 20 seconds; and 72°C for 20 seconds.

Statistical analysis

A factorial experiment based on a completely randomized design was conducted with 5 replicates. Data analysis was 
performed using one-way ANOVA with SAS software (version 9.4), and a p-value of 0.05 was used to determine statistical 
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significance. The 2-ΔΔCT method [28] was applied to analyze the relative expression levels of each selected gene with three 
technical replicates. Graphs were plotted using GraphPad Prism (version 9.0).

Results

Morphological and physiological responses to drought stress

Drought stress significantly impacted all measured morphological traits of rubber seedlings. The results showed that 
plant height decreased under drought conditions. Well-watered (control) plants had an average growth of 2.7 ± 1.12 cm, 
while mild and severe drought conditions resulted in only 0.6 ± 0.73 cm and 0.2 ± 0.4 cm growth, respectively. Stem diam-
eter increased under severe drought (0.154 ± 0.029 mm) compared to mild drought stress (0.088 ± 0.081 mm) and control 
(0.24 ± 0.076 mm) (Fig 2).

Physiological markers indicated water deficit stress and activation of defense mechanisms: Relative water content 
(RWC) was significantly reduced with increasing stress severity. Well-watered (Control) plants maintained high RWC 
(92.17 ± 2.10%), while mild and severe drought treatments resulted in 68.86 ± 1.16% and 53.62 ± 2.24%, respectively. Pro-
line content, an osmo protectant [29], increased significantly under severe drought (0.057 ± 0.006 μg/g DW) compared to 
mild drought stress (0.0096 ± 0.0012) and control (0.026 ± 0.0034). Malondialdehyde (MDA) levels increased significantly 
(p value = 0.00026) under drought, from 40.02 ± 7.63 nmol/g FW in the control to 111.05 ± 22.73 and 217.87 ± 22.63 under 
mild and severe drought stress, respectively, indicating increased oxidative damage.

Catalase (CAT) activity displayed a biphasic response: It increased under mild drought stress (0.41 ± 0.021 U/mg pro-
tein) compared to control (0.14 ± 0.022), but decreased under severe stress (0.19 ± 0.037). Ascorbate peroxidase (APX) 
activity was lowest in control conditions (0.18 ± 0.018), peaked during mild drought (0.43 ± 0.024), and then declined with 
severe drought (0.24 ± 0.037), indicating a temporary upregulation in response to mild drought stress followed by suppres-
sion under more intense conditions. Guaiacol peroxidase (GPX) steadily increased with drought severity, from 0.16 ± 0.039 
in control to 0.22 ± 0.036 and 0.35 ± 0.026 under mild and severe drought stress, respectively, highlighting its essential role 
in long-term ROS detoxification (Fig 3).

Fig 2.  The effect of drought stress on the morphological traits of Hevea brasiliensis seedlings. The impact of drought stress on height growth (A), 
and stem diameter growth (B). The values are presented as mean ± standard error (SE) of 5 replications (n = 5). The values followed by different letters 
are significantly different (p < 0.05).

https://doi.org/10.1371/journal.pone.0338177.g002

https://doi.org/10.1371/journal.pone.0338177.g002
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Fig 3.  Effect of drought stress on physiological traits of Hevea brasiliensis seedlings. Relative water content (A), catalase (B), glutathione perox-
idase (C), ascorbate peroxidase (D), malondialdehyde (E), and proline (F). Treatments are: well-watered (control), mild drought and severe drought. The 
values are presented as mean ± standard error (SE) of 5 replications (n = 5). The values followed by different letters are significantly different (p < 0.05).

https://doi.org/10.1371/journal.pone.0338177.g003

https://doi.org/10.1371/journal.pone.0338177.g003
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Expression of genes relevant to rubber biosynthesis

The results showed that the expression patterns of genes involved in rubber biosynthesis were significantly altered 
by drought stress: 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) expression declined under stress compared to 
well-watered (control) plants. While it decreased to 0.19 ± 0.068 in mild drought stress and further to 0.055 ± 0.012 in 
severe stress, indicating repression of upstream isoprenoid biosynthesis. HMG-CoA synthase (HMGS) expression signifi-
cantly decreased under severe drought stress (0.79 ± 0.051), while it showed a slight increase in response to mild drought 
stress (1.05 ± 0.064); however, this increase was not statistically significant. The expression of the rubber transferase 
activator (RTA), which activates cis-prenyltransferase [30], was downregulated from 1 in the control to 0.65 ± 0.26 and 
0.67 ± 0.28 under mild and severe stress, respectively; however, these changes were not statistically significant. Cis- 
prenyltransferase (CPT), a crucial enzyme involved in polymer elongation [31], demonstrated a significant upregulation 
under severe stress condition (3.17 ± 0.62) (Fig 4).

Discussion

This study demonstrates a closely coordinated and complex response of rubber seedlings to increasing drought stress, 
involving changes in morphology, function, and gene expression. The drought simulation method, which employed a 
controlled and gradual reduction in watering, successfully created distinct stress levels, as confirmed by significant differ-
ences in relative water content (RWC) among treatments (p < 0.05). Table 1 summarizes the ANOVA results, showing that 
drought treatments significantly influenced most measured traits and supporting further analysis.

Principal Component Analysis (PCA) effectively separates the three treatment groups along PC1 and PC2, which 
collectively accounted for 84.66% of the total variance. Notably, traits like RWC, HMGR, and HMGS were grouped with 
well-watered samples. In contrast, antioxidant enzymes such as CAT and APX were associated with mild drought stress, 
while proline, MDA, and CPT were linked to severe drought conditions. Previous studies shown that drought has a signif-
icant impact on the biochemical characteristics of fruits. The study by Ünal and Okatan, [32] highlights drought-induced 
shifts in phytochemical profiles, in which the contents of total phenolics and total anthocyanins in strawberry varieties 
were found to increase under drought stress conditions [32]. Cluster analysis of physiological traits further supports this 
transition, grouping traits into stress-dependent modules (Fig 5). The mild drought stress cluster is characterized by high 

Fig 4.  Quantitative real-time PCR analysis of rubber biosynthesis genes. Rubber biosynthesis genes are 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGR), HMG-CoA synthase (HMGS), rubber transferase activator (RTA), and Cis-prenyltransferase (CPT). The values are presented as mean ± stan-
dard error (SE) of the average of biological replicates (n = 3). The values followed by different letters are significantly different (p < 0.05).

https://doi.org/10.1371/journal.pone.0338177.g004

https://doi.org/10.1371/journal.pone.0338177.g004
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antioxidant activity. Conversely, the severe stress cluster exhibits increased oxidative damage and osmolyte accumula-
tion, along with suppression of energy-demanding biosynthetic genes like HMGR. These patterns suggest an adaptive 
tradeoff between ROS mitigation and biosynthetic energy use, possibly mediated by nicotinamide adenine dinucleotide 
phosphate (NADPH) availability.

A heatmap of the data presented in Fig 6 visually illustrates the distribution and intensity of the measured data across 
various treatments. The high-density areas represented in red and low-density areas in blue. This visual tool enhances 
comprehension and facilitates more effective analysis of the core information.

Morphological adaptations: resource allocation under stress

The significant reduction in plant height under drought conditions indicates a strategic adjustment in resource alloca-
tion by rubber seedlings, prioritizing survival over vertical growth. By restricting shoot elongation, these plants likely 
reduce their transpirational surface area and metabolic demands, thereby conserving scarce water resources [33]. 
Although some studies suggested that increased drought intensity led to reduced stem diameter growth [34–36], this 
study revealed a different trend, showing that stem diameter growth slightly increased during severe drought com-
pared to mild drought stress. This suggests an adaptive structural change, likely aimed at enhancing mechanical 
stability and increasing the plant’s capacity for water storage and axial transport through the reinforcement of vas-
cular tissues [37]. The observed variation in biomass allocation under drought stress underscores a strategic shift in 
growth priorities, favoring structural reinforcement, such as an increase in stem diameter, over vertical elongation. 
This adjustment aligns with established patterns of resource allocation focused on survival in woody perennials facing 
water deficit conditions [38,39].

Physiological responses: oxidative stress and osmotic adjustment

The progressive and statistically significant decline in relative water content (RWC) across different treatments confirmed 
the successful application of drought stress. It indicated increasing levels of physiological dehydration in rubber seedlings. 
This is consistent with the findings of Wang’s study, which demonstrated that RWC in leaves continuously decreased with 
increasing drought severity, leading to the observation of wilting leaves [40].

Table 1.  Analysis of variance (ANOVA) for morphological, physiological and gene expressions under different treatments.

Trait Treatment Error

Df Ms (Between groups) Df Ms (within groups)

Height growth 2 9.02* 12 0.82

Stem diameter growth 2 0.03* 12 0.01

  RWC 2 1131.09* 6 5.41

  MDA 2 24042.25* 6 543.83

  Proline 2 0.0017* 6 0.00002

  CAT 2 0.06* 6 0.0017

  APX 2 0.05* 6 0.0017

  GPX 2 0.03* 6 0.0017

  HMGR 2 0.78* 6 0.1

  HMGS 2 0.05* 6 0.0033

  RTA 2 0.08ns 6 0.08

  CPT 2 4.05* 6 0.38

Df: degree of freedom, *p < 0.05, ns = not significant, Ms = mean square.

https://doi.org/10.1371/journal.pone.0338177.t001

https://doi.org/10.1371/journal.pone.0338177.t001
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In current study, the mild drought treatment resulted in significantly lower proline accumulation compared to both 
the well-watered control and the severe drought group. Additionally, in the mild drought treatment, there was a nota-
ble increase in the activities of antioxidant enzymes, particularly CAT and APX. In contrast, severe drought caused a 

Fig 6.  Heatmap analysis of physiological and molecular traits across different data sets. The distribution and intensity of measured data, 
including relative water content (RWC), proline, ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT), malondialdehyde (MDA), 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), HMG-CoA synthase (HMGS), rubber transferase activator (RTA) and Cis-prenyltransferase (CPT) 
across different treatments are shown.

https://doi.org/10.1371/journal.pone.0338177.g006

Fig 5.  Principal component analysis and cluster analysis of physiological and molecular traits in response to drought stress. Principal Compo-
nent Analysis (PCA) effectively differentiated the three treatment groups along PC1 and PC2. The traits are: relative water content (RWC), proline, ascor-
bate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT), malondialdehyde (MDA), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), 
HMG-CoA synthase (HMGS), rubber transferase activator (RTA), and Cis-prenyltransferase (CPT).

https://doi.org/10.1371/journal.pone.0338177.g005

https://doi.org/10.1371/journal.pone.0338177.g006
https://doi.org/10.1371/journal.pone.0338177.g005
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significant decline in CAT and APX activities, accompanied by a substantial increase in proline accumulation. This inverse 
pattern indicates that the defense strategy in H. brasiliensis differs based on stress severity and H. brasiliensis favors 
rapid enzymatic antioxidant responses over the biosynthesis of non-enzymatic osmolytes [29,41,42]. Under prolonged 
and intense oxidative stress, rubber trees may shift their defense strategies and adopt a protective strategy focused on 
osmolytes instead of relying on enzymatic detoxification [43,44]. Previous studies on H. brasiliensis have demonstrated 
that drought treatments significantly increase proline accumulation [45,46]. In Stevia, Khan et al., [47] reported that 
drought stress resulted in elevated levels of MDA, proline, APX, and CAT, accompanied by a reduction in plant height [47]. 
Similarly, Li and Tu, [48] observed that drought stress in Oxalis led to increased levels of H₂O₂, MDA, and CAT, along with 
decreases in both plant height and stem diameter [48]. These findings are consistent with the morphological and physio-
logical changes observed in our study on rubber seedlings.

GPX activity showed a steady increase, indicating a more stable and long-term role in oxidative protection. The 
increase in GPX activity was associated with a rise in proline content. Additionally, lipid peroxidation, indicated by elevated 
MDA levels, significantly increased with drought severity, highlighting the accumulation of oxidative damage in plant tis-
sues. Both mild and severe drought treatments caused statistically significant increases in MDA content compared to the 
control group, confirming that water deficit stress accelerates membrane lipid degradation [49,50]. This comprehensive 
understanding of stress responses in H. brasiliensis is valuable for future strategies for enhancing drought resilience in 
rubber cultivation.

Molecular regulation of rubber biosynthesis under drought

The HMGR gene, which plays a crucial regulatory role in the mevalonate (MVA) pathway [51,52], was significantly down-
regulated under stress. During drought-induced oxidative stress, excessive accumulation of ROS leads to increased con-
sumption of NADPH by antioxidant systems [​​​​​​​53–55]. Given that the HMGR activity is significantly influenced by NADPH 
levels [​​​​​​​56–58], its downregulating could be an adaptive mechanism in response to low NADPH availability, emphasizing 
the prioritization of ROS detoxification over the synthesis of isoprenoids.

Multiple linear regression analysis was conducted to understand the relationship between ROS enzyme activity and 
HMGR expression. This analysis revealed that HMGR expression had a negative association with GPX activity (β = –2.88, 
p = 0.0042). The regression model accounted for 69.4% of the variance in HMGR expression (adjusted R2 = 0.694), indi-
cating that increased oxidative stress, particularly elevated GPX activity, is statistically associated with decreased HMGR 
transcription. Additionally, correlation analysis confirmed a negative correlation between HMGR gene expression and ROS 
enzyme activity. A schematic diagram of the impact of drought stress on ROS, NADPH consumption, and HMGR gene 
expression is presented in Fig 7.

The coordinated expression patterns of HMGR, HMGS, and CPT suggest a drought-induced shift in regulatory priori-
ties within the rubber biosynthesis pathway of the rubber tree. Suppression of upstream genes (HMGR and HMGS) likely 
reflects limited precursor availability due to oxidative stress. At the same time, the strong upregulation of CPT indicates a 
compensatory mechanism to maintain rubber chain elongation, possibly decoupled from precursor synthesis. This inverse 
expression pattern highlights a potential cross-regulatory adaptation aimed at preserving rubber quality under drought 
stress. Although RTA transcript levels exhibited a downward trend under both mild and severe drought conditions, sta-
tistical analysis revealed no significant difference among treatments, suggesting that RTA may not be transcriptionally 
responsive to drought stress in rubber seedlings.

Conclusion

This study provides valuable insights into the physiological and molecular responses of rubber seedlings (H. brasiliensis) 
to drought conditions. Our findings demonstrate that drought stress significantly impacts the relative water content, proline 
accumulation, and oxidative stress levels in rubber seedlings, highlighting the challenges of water scarcity. Changes in 
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antioxidant enzyme activities, particularly ascorbate peroxidase, catalase, and guaiacol peroxidase, reveal the complexity 
of the seedlings’ adaptive mechanisms to oxidative stress. Gene expression analysis indicates critical regulatory shifts 
in key biosynthetic pathways under drought. The down-regulation of the HMGR gene suggests a direct impact on rubber 
production, while the up-regulation of the CPT gene indicates a compensatory mechanism to sustain rubber synthe-
sis despite precursor limitations. The inverse relationship between HMGR expression and guaiacol peroxidase activity 
demonstrates the balance between reactive oxygen species and antioxidant responses during drought stress. These 
findings enhance our understanding of drought adaptation in rubber seedlings and provide valuable information for future 
studies on resilient genotypes, promoting sustainable rubber production and laying a foundation for further research on 
drought resilience in rubber trees and related species.
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