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Abstract 

Rural photovoltaic entrepreneurship in China faces critical challenges in aligning 

rapid technological advancements with lagging market responses, where 63% of 

technology adoption failures originate from mismatches between innovation maturity 

and regional policy adaptability. To address this, we propose a policy simulation-

driven digital twins framework integrating three core innovations: (1) denoising diffu-

sion models that reduce technology adoption prediction errors to <5% for mainstream 

photovoltaic technologies; (2) a dynamic policy sandbox identifying intervention 

thresholds through 10⁴ Monte Carlo simulations, revealing the ¥850 million subsidy 

ceiling that triggers 23% ROI decline; and (3) multi-agent coordination mechanisms 

optimizing resource allocation across 1,200 + entrepreneurial nodes. Empirical valida-

tion across 16 Anhui counties demonstrates the system’s effectiveness: 18% reduc-

tion in entrepreneurial failure rates through real-time policy adaptation, 12% annual 

growth in photovoltaic installed capacity, and ¥1.41 billion net policy-driven income. 

Crucially, our analysis establishes a 12% regional GDP threshold for subsidy inten-

sity, beyond which land price inflation offsets entrepreneurial benefits. This framework 

provides actionable insights for synchronizing technological roadmaps with localized 

policy design in rural energy transitions.

1.  Introduction

In recent years, the coordinated advancement of global energy transformation and 
rural revitalization strategies—especially under the strategic promotion of China’s 
dual carbon goals—has provided dual opportunities for the photovoltaic (PV) indus-
try and returning entrepreneurs. As shown in Fig 1, the PV industry, as a core sector 
in clean energy, has achieved large-scale application globally. In 2022, China’s PV 
module production accounted for over 75% of the global total [1]. However, rapid 
technological iteration and market fluctuations still constrain its sustainable devel-
opment [2]. Meanwhile, returning entrepreneurs have become a key driving force 
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for rural revitalization. In 2021, the number of returning entrepreneurs in China 
exceeded 11.2 million, with nearly 30% engaging in the new energy sector [3–5]. 
Despite these promising trends, the PV industry faces challenges in aligning tech-
nological route selection and regional market penetration, especially for returning 
entrepreneurs dealing with high technical thresholds and low policy adaptability 
[6], such as difficulties in accessing county-level green finance or navigating multi-
layered subsidy schemes. Emerging technologies such as digital twinss and diffu-
sion models offer innovative tools to model such complex socio-technical systems, 
but their cross-domain applications remain theoretically underdeveloped, with most 
existing applications limited to fields such as intelligent manufacturing and urban 
simulation [7–8].
Existing research indicates that the technology diffusion in the photovoltaic indus-
try follows the “maturity curve,” but the market response exhibits significant lag 
[9]. For instance, although heter ojunction tandem (HJT) technology possesses 
outstanding efficiency advantages, its market penetration rate is less than 15% 
[10]. Research on returning home entrepreneurship often focuses on social 
network embedding [11–13], yet neglects the driving effect of technological and 
economic attributes on entrepreneurial decision-making [14]. As shown in Fig 2, in 
the early years, traditional decision-making tools relied on static models, making it 
difficult to capture the dynamic policy environment and the long-tail effect of indus-
tries [15]. For example, subsidy reduction policies have led to 30% of small and 
medium-sized photovoltaic enterprises facing survival challenges [16], and existing 
models exhibit prediction errors of up to 20% for such nonlinear risks [17]. These 
fragmented phenomena—caused by the disconnect between rapid technology 
advancement and delayed market reaction—highlight the urgency of integrating 
multidisciplinary theories [18].

This study aims to construct a decision support system driven by both technology 
and market, generate multi-scenario entrepreneurial paths through diffusion models, 
and achieve dynamic simulation relying on digital twinss. On the technology side, 
a denoising diffusion probability model (DDPM) is adopted to simulate the transfor-
mation path of photovoltaic technology from the laboratory to the market [19]. On 
the market side, the SCP paradigm and system dynamics are integrated to quantify 
regional market concentration and price elasticity [20]. The decision system innova-
tive embeds a policy sandbox module, which can simulate the marginal effect of the 
“whole-county photovoltaic” policy on entrepreneurial risks [21–22]. Empirical cases 
show that the system has a prediction error of less than 5% for technology adoption 
rate [23], significantly outperforming traditional regression models [24].

The innovation of this study lies in threefold integration: firstly, integrating social 
network theory [25] with industrial organization theory [26] to construct a multifaceted 
network embedding framework for returning home entrepreneurship; secondly, devel-
oping a dynamic policy interface driven by digital twinss to achieve real-time coordi-
nation between technological route optimization and market strategies [27]; thirdly, 
proposing a “risk-benefit-policy” three-dimensional evaluation matrix to provide quan-
tifiable decision-making tools for local governments [28]. Application data shows that 
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FIg 1.  Photovoltaic industry.

https://doi.org/10.1371/journal.pone.0338133.g001

Fig 2.  Evolution of photovoltaic technology.

https://doi.org/10.1371/journal.pone.0338133.g002
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this system can reduce the entrepreneurial failure rate by 18% [29] and provide a growth plan for regional photovoltaic 
installed capacity with an average annual increase of 12% [30]. This provides theoretical support and practical pathways 
for the strategic synergy between rural revitalization and the energy revolution [31].

This study employs a progressive framework to analyze the core issues of the disconnect between technological 
innovation in the photovoltaic industry and decisions to return to hometowns for entrepreneurship. As illustrated in 
Fig 3, it constructs a dual-driven system that integrates diffusion models with digital twinss, detailing the mechanisms 
of technology-market coupling and the social network embedding model. It also designs dynamic data fusion and multi-
objective optimization algorithms. The study explores the synergistic value of the dual-driven model in rural revitalization 
and achieving the dual carbon goals, and proposes an approach to optimize federated learning.

Fig 3.  Structure of the article model.

https://doi.org/10.1371/journal.pone.0338133.g003
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2.  Theoretical framework

2.1  Collaborative modeling of photovoltaic technology diffusion and digital twinss

This study constructs a multi theory collaborative framework by coupling structural hole quantification of social network 
theory, SCP paradigm of industrial organization theory, stock flow modeling of system dynamics, and stochastic processes 
of diffusion models. The social network embedding model analyzes the strength of the relationship between returning 
entrepreneurs, the industrial organization game equation reveals the threshold of technology diffusion in oligopolistic 
markets, and the system dynamics feedback loop captures the policy lag effect. The policy sandbox module innovatively 
introduces the theory of complex adaptive systems and achieves 10⁴ level policy scenario simulation through Monte Carlo 
reinforcement learning, breaking through the static limitations of traditional policy evaluation – originality is reflected in: 
(1) dynamically mapping real-time data streams of digital twins platforms; (2) Quantify the marginal elasticity of “subsidy 
intensity land price technology penetration rate”; (3) The integrated fuzzy analytic hierarchy process analyzes the moder-
ating effect of county-level power networks on technology diffusion, forming a three-dimensional decision-making space of 
“technology maturity market concentration social embeddedness”.

The traditional latent diffusion Transformer model is used for generation tasks. The model consists of a latent diffu-
sion Transformer and a DiT block (with adaLN-Zero). the input includes noise and latent variables, which are processed 
through linear transformation and layer normalization before entering the DiT block. The DiT block contains multi-head 
self-attention and a point-wise feed forward network. Each module achieves deep feature extraction through scaling, shift-
ing, and layer normalization.

This study is based on the dynamic nature of technology diffusion, requiring the model to simultaneously capture the 
nonlinear coupling between technology maturity and market response. The Bass diffusion model describes the rate of 
innovation adoption through differential equations, with its core formula as follows:

	

dN (t)
dt

= p · (M – N (t)) + q · N (t)
M

· (M – N (t))
	 (1)

Where is the cumulative number of adopters, N (t) is the innovation coefficient, p is the imitation coefficient, q and is the 
upper limit of market potential. However, traditional models ignore the phased transitions of technological iteration, such 
as the market restructuring triggered by the efficiency breakthrough of heterojunction (HJT) cells exceeding 25%. There-
fore, this study introduces the Technology Maturity Curve (TMC) and defines technology maturityT (t) as:

	
T (t) =

1
1 + e–α(t–t0) 	 (2)

Where is the technology learning rate, α and is the inflection point of technology commercialization. Combining digital 
twinss, a dynamic system equation is constructed:

	
∂S
∂t

= D∇2S – λS+ βT (t) ·M (t)
	 (3)

S is the regional market penetration rate, D is the diffusion coefficient, λ is the decay rate, β and is the technology-market 
coupling strength.

The digital twins platform achieves multi-scale simulation through real-time data mapping. Based on the theory of com-
plex adaptive systems, the evolution of system state variablesX (t) follows:

	 X (t+ 1) = F (X (t) ,Θ) + et 	 (4)
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F  For the nonlinear state transition function, Θ is the parameter set, et and represents Gaussian noise. Monte Carlo simu-
lation generates 10^4 policy scenarios to calculate the risk valueR:

	
R =

1
N

N∑
i=1

max (Vi – Vthreshold, 0)
	 (5)

Vi  The entrepreneurial income for the i  th simulation is, Vthreshold and the risk tolerance threshold is.

2.2  The interactive mechanism between social network embedding and market oligopoly structure

The social network of returning home entrepreneurs exhibits a “pattern of differential order”, and its influence can be quan-
tified using the structural hole index:

	
Ij =

∑
i̸=k

(
1 –

√
pijpjk

)
	 (6)

Ij  The structural hole advantage of a node is represented by j , and pij the relationship strength from a node to another is 
represented by i . The industrial network portrays oligopolistic competition through a game theory model. Assuming the 
profit function of an enterprise i  is:

	
πi = (pi – ci) qi – γ

∑
j̸=i

θij(qi – qj)
2

	 (7)

pi  For price, ci marginal cost, γ  intensity of competition, and the weight of inter-firm relationships, θij when the market is in 
equilibrium, the Nash equilibrium solution satisfies:

	

∂πi
∂qi

= 0∀i
	 (8)

The power game in the village network can be modeled using the Fuzzy Analytic Hierarchy Process (FAHP). The power 
index Pk  is defined as:

	
Pk =

M∑
m=1

wm · µkm
	 (9)

wm Let be the weight of the m ith power dimension, µkm and let be the membership degree of the node in that dimension. 
Ultimately, the collaborative optimization goal of technology-market-society is:

	 max
{
ω1 · T (t) + ω2 · S (t) +ω3 · Ij

}
	 (10)

ω1,ω2,ω3 For the weight coefficient, it satisfies
∑

ωi = 1.
Causal graphs constructed via FAHP (Fuzzy AHP) quantify power indices in village networks, achieving 85.4% accu-

racy in identifying subsidy-driven market distortions. The Nash equilibrium solution reduces oligopolistic competition risks 
by 18%.

This study expands the boundaries of rural entrepreneurship theory and integrates two core concepts:(1) Risk 
tolerance: Based on the Sitkin and Pablo (1992) risk decision-making framework, a county-level entrepreneur risk 
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threshold model is constructed. Empirical evidence shows that the risk tolerance of returning entrepreneurs is signifi-
cantly higher than that of urban entrepreneurs; (2) Resource piecing together: Introducing Baker and Nelson’s (2005) 
piecing together theory, revealing the creative restructuring model of “land technology labor” in photovoltaic entrepre-
neurship. Data analysis shows that for every 10% increase in social network density, the efficiency of resource bun-
dling increases by 18.5%. By coupling Sen’s (1999) feasible capability theory, a three-dimensional decision model of 
“risk threshold piecing together capability policy adaptation” is established, breaking through the limitations of tradi-
tional entrepreneurship research’s technological determinism and providing a micro behavioral foundation for dynamic 
policy design.

3.  Methodology and data engineering

3.1  Construction of diffusion model

The diffusion model achieves data generation by gradually adding and removing noise, with its core being the Markov 
chain modeling of the forward process and the backward denoising process.

For the dual-driven scenario of technology and market in the photovoltaic industry, a joint probability density function is 
constructed:

	
q (x0:T) = q (x0)

T∏
t=1

q
(
xt
∣∣xt–1

)
	 (11)

Where represents the hidden variable at step xt i, t and denotes the total diffusion step length. The noise addition in the 
forward process is controlled by the following equation:

	
q
(
xt
∣∣xt–1

)
= N

(
xt;

√
1 – βtxt–1,βtI

)
	 (12)

βt It is a noise scheduling parameter that follows a linear growth strategyβt = 0.0001 + t–1
T–1 × 0.02.

The denoising process in reverse is implemented through a hybrid architecture of U-Net and Transformer, with the 
conditional probability being:

	
pθ

(
xt–1

∣∣xt, c
)
= N

(
xt–1;µθ (xt, t, c) ,

∑
θ
(xt, t)

)
	 (13)

c Let be the condition vector, µθ and 
∑

θ be the learnable parameters. The loss function is designed as:

	
ℓ = Et,x0,ε

[∥∥ε – εθ
(√

αtx0 +
√
1 – αtε,t, c

)∥∥2]
	 (14)

	
αt =

∏t

s=1
(1 – βs), ε ∼ N (0, I)

	 (15)

The dynamic coupling between technology and market is constrained by partial differential equations:

	

∂S
∂t

= D
∂2S
∂x2

+ ηT (t)S (t)
(
1 –

S (t)
K

)

	 (16)
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D is the diffusion coefficient, η is the technology driving factor, K  and is the upper limit of market capacity. The finite differ-
ence method is used for discretization, with a spatial step size of ∆x = 0.1 and a time step size of ∆t = 0.01.

The research quantitatively analyzes the dynamic expansion relationship between noise scheduling parameters and 
the dimension of hidden variables during the training process of the diffusion model. As shown in Table 1, a linear growth 
strategy (from 0.0001 to 0.02) is adopted, aiming to gradually increase the noise intensity to simulate the uncertainty 
accumulation in the diffusion process of photovoltaic technology [32–33]. The dimension of hidden variables expands 
from 64 × 64 × 3–1024 × 1024 × 24, and the spatial resolution is refined from 0.10 km² to 0.005 km². The core purpose is to 
capture the micro-nonlinear dynamics of technology-market coupling through high-dimensional features (such as the lag 
effect of market response induced by policy fluctuations). The increase in computational complexity (1.2 × 10⁹ → 4.3 × 10¹⁰ 
FLOPs) and GPU memory consumption (2.5 → 38.9 GB) reflects the model’s accuracy requirements for multi-scale data 
fusion. By generating 10⁴ policy scenarios using Monte Carlo, the marginal impact of the technology commercialization 
inflection point (equation (2)) on entrepreneurial risk (equation (5)) is quantified, providing a computational foundation for 
dynamic risk prediction.

Under low-data scenarios (500 training samples), rule-guided synthetic data generation improves HJT technology 
penetration prediction accuracy from 72.1% (neural-only) to 85.4%. The structural hole quantification rules generate 1,200 
synthetic samples, reducing MAPE from 15.2% to 7.8% for emerging technologies. This approach maintains F1 > 0.82 with 
<1,000 samples, outperforming pure data-driven methods (F1 = 0.61, Δ + 34.4%).

The differentiation pattern of maturity among six types of photovoltaic technologies in this study is shown in Table 2. The 
technology learning rate (0.12 → 0.42) is positively correlated with the cost reduction rate, but negatively correlated with 
market share and patent quantity [34]. The purpose of designing this parameter system is to construct a techno-economic 
evaluation matrix (Equation (10)) to quantify the transition characteristics of technology iteration – when the technology 
maturity T crosses the commercialization inflection point (Equation (2)), it will trigger market restructuring [35–37].

Simulation data indicates that, as shown in Table 3, from 2023 to 2030, the market penetration rate increased from 
15% to 78%, but the technology adoption rate decreased from 0.60 to 0.12, reflecting the cost reduction effect driven by 

Table 1.  Noise scheduling parameters and latent variable dimensions.

Diffusion step βt Latent variable dimension spatial resolution Computational complexity Periodization GPU memory usage

1 0.0001 64 × 64 × 3 0.10 1.2 × 10⁹ 1 2.5

50 0.005 128 × 128 × 6 0.05 3.8 × 10⁹ 5 6.8

100 0.008 128 × 128 × 12 0.03 5.1 × 10⁹ 10 8.2

200 0.012 256 × 256 × 12 0.02 7.5 × 10⁹ 15 11.4

500 0.018 512 × 512 × 24 0.01 2.1 × 10¹⁰ 20 24.7

1000 0.02 1024 × 1024 × 24 0.005 4.3 × 10¹⁰ 30 38.9

https://doi.org/10.1371/journal.pone.0338133.t001

Table 2.  Hype cycle parameters.

Technical type α t Maximum efficiency Cost reduction rate Number of patents market share R&D investment intensity

PERC 0.12 2015 23.5 8.2 1,200 62.4 3.8

TOPCon 0.18 2020 25.8 12.4 890 28.7 5.2

HJT 0.25 2022 26.3 15.7 540 8.9 6.5

IBC 0.30 2023 27.1 18.9 320 1.2 8.1

Tandem 0.35 2025 29.5 22.3 150 0.5 10.4

perovskite 0.42 2024 31.2 25.6 420 0.3 9.7

https://doi.org/10.1371/journal.pone.0338133.t002

https://doi.org/10.1371/journal.pone.0338133.t001
https://doi.org/10.1371/journal.pone.0338133.t002
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the improvement in technology maturity. The number of start-ups increased from 120 to 510, and the number of people 
employed increased from 2,300 to 15,000, verifying the multiplier effect of social networks (equation (6)). As shown in 
Fig 4, under the high subsidy scenario, enterprises performed best in terms of survival rate and net income, but also had 
relatively higher risk levels. Under the medium subsidy scenario, enterprises performed relatively evenly across all dimen-
sions, with a slightly lower survival rate than in the high subsidy scenario but lower risk levels. Under the technical support 
scenario, enterprises performed well in technology adoption and employment, but had relatively lower survival rates and 
net income.

The specific algorithm steps are shown in Table 4.
The multi-source heterogeneous data system constructed in this study covers three dimensions: technology, market, 

and policy, and ensures empirical reliability through a triple verification mechanism. The data collection covers 16 counties 
in Anhui Province, with a time span of technical parameters from 2015 to 2023, entrepreneurial behavior data from 2021 to 
2023, and policy texts from 2018 to 2023. The sample library contains 12000 production line operation data, 1200 returning 
entrepreneurial enterprises, and 356 local government documents. The technical parameters strictly follow the IEC 61724 
standard, and 18 indicators such as photovoltaic module voltage/current/temperature are collected through the SCADA 

Table 3.  Simulation results of market penetration rate (Region A).

time S(t) λ θij Number of entrepreneurial enterprises Average investment amount Number of people driven by employment

2023 0.15 0.60 0.32 120 850 2,300

2024 0.21 0.55 0.28 180 920 3,500

2025 0.34 0.48 0.24 250 1,050 5,200

2026 0.49 0.42 0.20 310 1,200 7,800

2027 0.63 0.35 0.17 390 1,350 10,500

2030 0.78 0.20 0.12 510 1,600 15,000

https://doi.org/10.1371/journal.pone.0338133.t003

Fig 4.  Display of different subsidies.

https://doi.org/10.1371/journal.pone.0338133.g004

https://doi.org/10.1371/journal.pone.0338133.t003
https://doi.org/10.1371/journal.pone.0338133.g004
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system at a frequency of 1 Hz; The entrepreneurial behavior data was jointly conducted with the Anhui Provincial Depart-
ment of Human Resources and Social Security for a double-blind survey, using SHA-256 encryption and anonymization 
processing; The policy text is constructed using the BERT Transformer architecture to create a semantic parser, which 
extracts a 32 dimensional policy feature vector. The verification system includes: (1) cross comparison of technical param-
eters with the China New Energy Database, with a consistency of 98.7%; (2) Randomly select 15% of enterprise samples 
for audit by Deloitte accounting firm, with a financial data error rate of less than 2.3%; (3) The time series verification adopts 
the leave out method, dividing the training set and the testing set by the year 2021 as the boundary. This study obtained 
the data usage license from the Department of Commerce of Anhui Province, and the individual data was subjected to 
k-anonymization processing, which complies with the data minimization principle of Article 25 of GDPR.

3.2  Development of digital twins platform

Currently, the development of digital twins platforms is rapidly advancing. As illustrated in Fig 5, these platforms show sig-
nificant potential in sectors such as manufacturing, smart cities, and healthcare, enabling more efficient real-time monitor-
ing and management through the integration of technologies like AI and 5G. However, this technology still faces numerous 
challenges: technical bottlenecks, including issues with the accuracy and real-time nature of data collection, have not 
been fully resolved. Additionally, there are uncertainties regarding market acceptance and return on investment during the 
commercialization process. Moreover, compliance and ethical concerns, such as data security and privacy protection, also 
need to be addressed urgently.

1.  Dynamic data fusion model.  The fusion of multi-source heterogeneous data is achieved through Bayesian 
networks, with the joint probability distribution being:

	

P
(
D
∣∣Θ)

=

N∏
i=1

1√
2πσ2

i

exp

(
–
(di – µi (Θ))

2

2σ2
i

)
·

M∏
j=1

Dir (αj)

	 (17)

Where is the data matrix, D is the fusion parameter, Θ is the expected function of the th class data, µi is the noise stan-
dard deviation, Dir and is the Dirichlet prior distribution.

The digital twins engine integrates Bayesian networks (policy text fusion accuracy = 89.6%) and ADMM-based distrib-
uted optimization (convergence speed = 38s/10⁴ iterations), enabling real-time industrial chain mapping.

Table 4.  Algorithm steps.

Step Describe Core code example

1. Data fusion Bayesian network fusion of multi-
source heterogeneous data

fused_data = BayesianFusion(sen-
sor_data, policy_texts)

2. Diffusion modeling Technical route for generating denois-
ing diffusion probability models

tech_paths = DDPM.
generate(num_steps = 1000)

3. Twin mapping Real-time mapping of the state of the 
photovoltaic industry chain

twin_state = DigitalTwin.
update(real_time_data)

4. Coupling 
optimization

Collaborative solution of technology-
market partial differential equations

optimized = PDE_Solver.
solve(tech_field, market_field)

5. Policy sandbox Monte Carlo simulation of the marginal 
effect of subsidy policies

policy_impact = MonteCarlo.
simulate(subsidy_scenarios)

6. Resource bricolage Optimization of labor-land-technology 
combination

best_combo = MIP.optimize(labor, 
land, tech)

7. Game analysis Nash equilibrium strategy calculation nash_eq = GameTheory.
find_equilibrium(payoff_matrix)

https://doi.org/10.1371/journal.pone.0338133.t004

https://doi.org/10.1371/journal.pone.0338133.t004
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2.  Real-time simulation engine.  Market behavior simulation based on stochastic differential equations (SDE):

	
dS (t) =

(
ηT (t)S (t)

(
1 –

S (t)
K

)
+ D∇2S (t)

)
dt+ σS (t) dWt

	 (18)

Wt  For the Wiener process, σ it represents the market volatility, βt which is associated with the covariance matrix Σ in the 
diffusion model:

	
Σ =

[
σ2 ρσβt
ρσβt β2

t

]

	 (19)

3.  Multi-agent interaction model.  The interaction between returning entrepreneurs (Agent) and industrial network 
nodes is modeled through game theory, with the payoff function being:

	
Ui =

∑
j∈Ni

(θij · πj + λ · log (1 + φij)) – γ · Entropy (pi)
	 (20)

Ni is the set of neighbor nodes, Entropy (pi) is the entropy penalty term of the policy distribution, φij and is the relationship 
strength.

4.  Resource optimization module.  Photovoltaic resource allocation model based on mixed integer programming (MIP):

	
min
x,y

K∑
k=1

ckxk +
L∑
l=1

dlyl s.t.Ax+ By ≤ b(xk ∈
{
0, 1

}
, yl ≥ 0

	 (21)

Fig 5.  Digital twins system for logistics monitoring.

https://doi.org/10.1371/journal.pone.0338133.g005

https://doi.org/10.1371/journal.pone.0338133.g005
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Among them, xk is a binary decision variable, yl and is a continuous variable.
5.  Policy gradient reinforcement learning.  Dynamic policy optimization is implemented through the Actor-Critic 

framework, with the objective function being:

	
J (θ) = ET∼πθ

[
T∑
t=0

γtrt

]
+ λ · Es∼ρπ [H (πθ (·

∣s ))]
	 (22)

H For policy gradient,ρπ for state distribution,λ for discount factor
6.  Distributed optimization algorithm.  Large-scale data parallel processing employs the Alternating Direction 

Method of Multipliers (ADMM), with its iterative formula being:

	
xk+1 = argmin

x
f (x) +

ρ

2

∥∥x–zk + uk
∥∥2

	 (23)

	
zk+1 = argmin

z
g (z) +

ρ

2

∥∥xk+1–z+ uk
∥∥2

	 (24)

	 uk+1 = uk + xk+1 – zk+1	 (25)

By defining the fusion mechanism for multi-source heterogeneous data, the core lies in resolving data heterogeneity con-
flicts through Bayesian networks (equation (17)). As shown in Table 5, the standard deviation of noise in policy texts (0.05) 
is significantly lower than that in economic indicator data (0.20), due to its high degree of semantic structuring. The Dirichlet 
prior parameters [0.6, 0.3, 0.1] assign higher weight (0.32) to policy data, aiming to strengthen the decision-making influ-
ence of policy intervention. The sampling frequency (1 Hz) of meteorological station data is strongly correlated with fluc-
tuations in light intensity, and Kal man filtering is used to reduce noise and improve the accuracy of irradiance prediction. 
Design goal: To construct a dynamic expectation function that quantifies the synergistic effects of policy, supply chain, and 
environmental data, thereby reducing the risk of information asymmetry in entrepreneurial decision-making.

The study reveals the differences in game strategies among different entities in the industrial network by constructing 
a model. As shown in Table 6, policy regulatory agencies become the core of network power due to their highest rela-
tionship strength (0.90) and payment function value (4.20); farmer cooperatives have the lowest payment function value 
(1.45), reflecting their weak bargaining power. The difference in convergence steps (45 steps for power station operators 
vs. 55 steps for financial institutions) reflects the differentiation in resource allocation efficiency. The key design lies in the 
entropy penalty term, which constrains the randomness of agent strategies – when the competition intensity is greater 
than 0.63 (component suppliers), the system avoids vicious price wars through Nash equilibrium (equation (8)) to maintain 
the collaborative stability of the industrial chain.

Table 5.  Dynamic Data Fusion Parameter Table.

Data source type sampling frequency Noise standard deviation weight coefficient Marginal probability Dirichlet parameter

policy text 0.1 0.05 0.32 0.78 [0.6,0.3,0.1]

Supply chain log 10 0.12 0.28 0.65 [0.5,0.4,0.1]

Sensor Data 100 0.08 0.20 0.82 [0.7,0.2,0.1]

Weather station data 1 0.15 0.15 0.53 [0.4,0.5,0.1]

User behavior log 5 0.10 0.18 0.71 [0.6,0.3,0.1]

Economic indicator data 0.2 0.20 0.12 0.47 [0.3,0.6,0.1]

https://doi.org/10.1371/journal.pone.0338133.t005

https://doi.org/10.1371/journal.pone.0338133.t005
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3.3  Technology-market coupling algorithm

1.  Technology-market dynamic coupling equation.  Coupled model based on partial differential equation (PDE):

	

∂T (t, x)
∂t

= α∇2T+
ηS (t, x)

1 + exp (–β (T – Tcrit))
– δT

	 (26)

	

∂S (t, x)
∂t

= D∇2S+ γT (t, x)S
(
1 –

S
K

)
– εS2

	 (27)

Where, T (t, x) is the field of technology maturity, S (t, x) is the field of market penetration, α,β, γ, δ, ε is the coupling coeffi-
cient,Tcrit  and is the critical value of technology commercialization.

2.  Multi-objective optimization framework.  Maximize the synergistic effect between technological maturity and 
market penetration:

	
max

{∫
Ω [w1T (t, x) + w2S (t, x)] dx

}

	 (28)

Constraint conditions:

	 s.t∇ · (κ∇T) ≤ Qmax,∫ΩSdx ≤ Ktotal,T ≥ Tmin	 (29)

w1,w2 is the weight coefficient, κ and is the thermal conductivity of the technology diffusion.
Nonlinear least squares parameter calibration.
Parameter estimation is performed using the Levenberg-Marquardt algorithm:

	 Θκ+1 = Θκ – (JTJ+ λI)–1JTr(Θκ)	 (30)

J  is the Jacobian matrix, r  is the residual vector, λ and is the damping factor.
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

For uncertainty quantification:

	 dθ = –∇U(θ)dt+
√
2M–1TdWt 	 (31)

	 dp = –γpdt+
√

2γTdWt 	 (32)

Table 6.  Multi-agent Interactive Game Parameter Table.

Agent type Number of neighbor nodes relationship strength payoff function Convergence steps

Photovoltaic manufacturer 8 0.85 2.34 50

Component supplier 5 0.72 1.89 65

Power station operator 12 0.63 3.15 45

Policy regulatory authority 3 0.90 4.20 80

Farmers’ cooperative 6 0.55 1.45 70

financial institution 4 0.78 2.75 55

https://doi.org/10.1371/journal.pone.0338133.t006

https://doi.org/10.1371/journal.pone.0338133.t006
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θ is the parameter vector, U(θ) is the potential energy function, M  and is the mass matrix.
The technology-market coupling coefficient (κ) shows optimal performance at κ = 0.48 (comprehensive benefit 

index = 0.98). Performance degrades by >12% when κ exceeds 0.65, indicating threshold effects in industrial policy 
coordination.

3.  Technology-market feedback reinforcement learning.  Policy optimization based on Q-learning:

	 Q(s, a) ← Q(s, a) + η [r(s, a) + γmaxa′ Q(s′, a′) –Q(s, a)]	 (33)

The statuss includes technological maturityT  and market penetrationS, while the action refers to the intensity of policy 
intervention.

4.  Sensitivity analysis of coupling coefficient.  Global sensitivity index (Sobol index):

	
Si =

VXi(EX∼i(Y|xi))
V(Y) 	 (34)

Y  To output a response (such as profit or risk), Xi  it is the input parameter for the i  th.
Optimization of scenario weight allocation verification technology – market-coordinated Pareto improvement, as shown 

in Fig 6. Although the high-tech innovation-driven approach (technology weight 0.75) achieves the maximum benefit (320 
units), its low thermal conductivity (1.2) reflects the resistance to technology diffusion. The rapid market penetration model 
(market weight 0.80) increases the risk value to 0.25 due to its excessively high thermal conductivity (2.5). The innovation-
driven solution achieves a comprehensive benefit of 0.98 through technology maturity T > 0.95, but it requires a policy 
adaptability of >95%.

This study used a multi-stage mixed calibration strategy to determine the core parameters: the technology learning rate 
α was obtained by fitting the logistic curve of the global photovoltaic patent data from 2000 to 2020, with PERC technology 
α = 0.12 (R² = 0.85) and perovskite α = 0.42 (p < 0.01); The coupling coefficient kappa was optimized through grid search, 
and the comprehensive benefit index reached its peak value of 0.98 when kappa = 0.48; The policy attenuation rate θ is 

Fig 6.  Multidimensional optimization.

https://doi.org/10.1371/journal.pone.0338133.g006

https://doi.org/10.1371/journal.pone.0338133.g006
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determined by Bayesian optimization to obtain the prior distribution Gamma, and the posterior mean θ is 0.15; The noise 
scheduling β adopts a linear growth strategy β _t = 0.0001 + 0.02 × (t/1000), and adversarial training verifies that its conver-
gence efficiency is 18.7% better than exponential scheduling. Based on Sobol global sensitivity analysis, the β parameter 
dominates the prediction error of the model, the κ threshold effect is significant, and a 10% increase in policy parameter θ 
standard deviation leads to a 22.3% fluctuation in entrepreneurial failure rate.

4.  System implementation and empirical analysis

4.1  Decision support system architecture

Based on diffusion models and digital twins technology, this system is designed for the scenario of Hui zhou merchants 
returning home to start businesses, aiming to build a dual-driven decision support platform for photovoltaic (PV) industry 
technology and market. As shown in Fig 8, the system architecture is divided into four layers: data input layer, computation 
engine layer, dynamic simulation layer, and decision output layer. The data input layer integrates technical parameters of 
the PV industry, market behavior data, rural social network information, and environmental data, covering technical data, 
market data, social data, and environmental data. The computation engine layer includes a diffusion model engine, a dig-
ital twins engine, and a coupling optimizer, which are used to generate dynamic evolution paths for multiple technological 
routes, map the status of the PV industry chain in real time, and solve for optimal technology-market coordination strate-
gies. In terms of optimization, as illustrated in the figure, the dynamic simulation layer utilizes Monte Carlo and stochastic 
differential equations to implement simulation functions such as policy sandbox, competitive game, and resource bricol 
age, simulating the marginal effects of policies on entrepreneurial risks, quantifying Nash equilibrium solutions for enter-
prise strategy interactions, and optimizing the marginal returns of labor, land, and technology combinations. The decision 
output layer generates technical route reports, market strategy reports, and policy adaptation reports, recommending 
priorities for PV technology adoption and investment return rate predictions, outputting regional market penetration paths 
and risk heat maps, and evaluating the impact of different subsidy reduction schemes on entrepreneurial survival rates. As 
shown in Fig 7, it is the functional schematic of the system modules as shown in Table 7.

4.2  Empirical cases

This section verifies the effectiveness of the technology-market dual-driven model in the context of Huizhou merchants 
returning home to start businesses, based on the output results of the decision support system. The empirical analysis 
covers four dimensions: technology route adoption, market penetration prediction, policy intervention effect, and resource 
bricolage optimization. It verifies the prediction accuracy and decision reliability of the system through multi-dimensional 
data. As shown in Table 8, there is a significant negative correlation between technology maturity (TMC) and prediction 
error: the error for mature technologies such as PERC (TMC = 0.78) and TOP Con (TMC = 0.85) is below 5%, while the 
error for perovskite (TMC = 0.99) is as high as 33.3% due to data sparsity. Future work should incorporate federated learn-
ing to aggregate decentralized industry data. The core mechanism lies in the modeling ability of the denoising process in 
DDPM for nonlinear transitions—when technology crosses the commercialization inflection point, the U-Net architecture 
captures the efficiency transition characteristics through the expansion of hidden variable dimensions. The policy influence 
weight further strengthens regional adaptability, verifying the driving effect of technology-policy synergy on entrepreneurial 
decision-making.

The policy sandbox module of this study constructs a triple dynamic testing system: (1) Threshold warning mechanism: 
real-time monitoring of subsidy intensity and light resources thresholds, triggering probability warnings. (2) Combina-
tion strategy optimization: Integrate 5 types of photovoltaic technology routes with 3 land policies, generate 15 solution 
spaces, and implement intelligent convergence algorithm to achieve optimal solution step size ≤ 150 times. (3) Tail risk 
control: Conditional Value at Risk (CVaR) is used to quantify extreme scenarios, with a maximum loss rate of less than 
23.8% at a confidence level of 95%. The innovation of the module is reflected in: 1) Dynamic coupling of digital twins 
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real-time data streams (update frequency 1 Hz). 2) Embedding Fuzzy Analytic Hierarchy Process (FAHP) to quantify the 
moderating effect of county-level power networks. 3) Integrating Monte Carlo reinforcement learning (MCRL) to achieve 
10 ⁴ level policy scenario simulation, breaking through the limitations of traditional static evaluation.

Fig 7.  System architecture diagram.

https://doi.org/10.1371/journal.pone.0338133.g007

Fig 8.  Business Density and Employment Market Penetration.

https://doi.org/10.1371/journal.pone.0338133.g008

https://doi.org/10.1371/journal.pone.0338133.g007
https://doi.org/10.1371/journal.pone.0338133.g008
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The actual adoption rate of HJT technology exceeded predictions by 6.7%, revealing an unmodeled efficiency 
premium effect: high-efficiency technologies (e.g., HJT with >25% efficiency) attract early adopters despite higher 
costs (Kavlak et al., 2020). This discrepancy stems from a lack of techno-economic evaluation: although HJT has 
efficiency advantages, the intensity of R&D investment results in a lower cost reduction rate compared to tandem 
technology.

The core conclusion is that the diffusion model has a prediction error of less than 5% for mainstream technologies, but 
the error is higher for emerging technologies due to market uncertainty. The policy influence weight is positively correlated 
with the regional adaptation index, verifying the synergistic effect of the technology-market coupling model.

The proposed dual-driven model demonstrates a 5.2% improvement in technology adoption prediction accuracy 
(MAPE = 4.2%) compared to traditional Bass diffusion models (MAPE = 20%) on the PERC/TOPCon dataset. This 
enhancement is attributed to the DDPM’s capability to simulate nonlinear transitions in photovoltaic technology maturity. 
Statistical significance (p < 0.01, ANOVA) confirms the model’s superiority in capturing market restructuring triggered by 
HJT efficiency breakthroughs.

Research indicates, as shown in Table 9, that the system’s prediction error in the long-term (2030) is only 2.7%, 
significantly better than that of traditional models (6.3%), attributed to the spatiotemporal constraint mechanism of the 
technology-market coupled PDE (equation (26)). The standard deviation increases from 1.2 (2023) to 3.5 (2030), reflect-
ing the cumulative effect of policy fluctuations; the width of the 95% confidence interval expands (from 3.0 to 8.0 units), 
warning of long-tail risks. The key design is to quantify parameter uncertainty through stochastic gradient Hamiltonian 
Monte Carlo, ensuring the absolute error is controlled within ±5% of the actual permeability value.

According to the market, business activities are active in the initial stage, but as the market matures, business density 
begins to decline. As shown in Fig 8, employment density exhibits an opposite trend. With the development of the market, 

Table 7.  System module function table.

Module Name Core functions input data type Computational 
complexity

real-time

Diffusion model engine Multiple technical route generation Technology maturity curve, policy text 12.5 350

digital twins Engine Dynamic mapping of industrial chain status Sensor data, supply chain logs 8.2 200

Coupling optimizer Multi-objective collaborative optimization Technical parameters, market capacity 
constraints

15.8 500

Policy sandbox simulator Simulation of the effect of policy 
intervention

Subsidy intensity, land policy 6.3 420

Interactive game analyzer Nash equilibrium strategy calculation Enterprise competition coefficient, 
relational network strength

4.7 280

Resource Bricolage 
Optimizer

Optimization of labor-land-technology 
combination

Labor cost, land rental price 10.1 380

https://doi.org/10.1371/journal.pone.0338133.t007

Table 8.  Comparison of technology adoption rates.

Technical 
type

Diffusion model  
predicts adoption rate

Actual adoption 
rate

Prediction 
Error

Policy influence 
weight

Regional  
adaptation index

return on 
investment

technology 
maturity

PERC 62.4 59.8 4.2 0.75 0.82 18.5 0.78

TOPCon 28.7 30.1 4.9 0.60 0.75 22.3 0.85

HJT 8.9 9.5 6.7 0.45 0.68 25.6 0.92

IBC 1.2 0.8 33.3 0.30 0.55 30.1 0.95

Tandem 0.5 0.3 40.0 0.20 0.42 34.8 0.98

perovskite 0.3 0.2 33.3 0.15 0.38 40.2 0.99

https://doi.org/10.1371/journal.pone.0338133.t008

https://doi.org/10.1371/journal.pone.0338133.t007
https://doi.org/10.1371/journal.pone.0338133.t008
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employment density gradually increases, reaches a peak, and then slowly declines, indicating that employment opportuni-
ties increase as the market matures, but the growth rate gradually slows down.

The policy cost-benefit analysis reveals the critical threshold rule, as shown in Fig 9. When the subsidy intensity 
exceeds 850 million yuan (high subsidy scenario), although the entrepreneurial survival rate reaches 92.5%, the policy 
cost elasticity rises to 12.5%, and the marginal returns decrease (net income decreases from 1520 million yuan to 1280 
million yuan). This phenomenon is consistent with the policy intervention threshold theory proposed by Rodrik (2020), and 
the core mechanism lies in the saturation effect of the technology-market coupling coefficient. Initially, subsidies acceler-
ate diffusion by lowering the critical value of technology commercialization, but exceeding the threshold leads to resource 
misallocation (such as a surge in land rental costs). The technology-specific support policy achieves a survival rate of 
88.7% at a lower cost (680 million yuan) because it precisely matches technology maturity with regional adaptation index.

The comprehensive benefits of the optimized land policy plan reveal the importance of resource bricolage: by opti-
mizing the land-technology combination through mixed integer programming (equation (21)), the number of people 
employed in labor-intensive areas can reach 1,560 people per ten thousand yuan, an increase of 345% compared to the 
no-policy scenario. Policy sandbox simulation further quantifies the interactive effects of multiple policies: the combina-
tion of high subsidies and technological support increases the rate of technology adoption to 18.4%, but the competition 
intensity needs to be controlled at <0.25κ to avoid excessive market concentration. A three-dimensional decision matrix 

Table 9.  Analysis of market penetration rate forecasting error.

Time node Predict permeability Actual permeability absolute error relative error standard deviation confidence interval

2023 15.0 14.2 0.8 5.6 1.2 [13.5,16.5]

2024 21.0 22.5 1.5 6.7 1.8 [19.8,22.2]

2025 34.0 32.8 1.2 3.5 2.1 [31.5,36.5]

2026 49.0 47.5 1.5 3.1 2.5 [46.0,52.0]

2027 63.0 60.3 2.7 4.3 3.0 [58.5,67.5]

2030 78.0 75.9 2.1 2.7 3.5 [74.0,82.0]

https://doi.org/10.1371/journal.pone.0338133.t009

Fig 9.  Table of simulation results for the effects of policy intervention.

https://doi.org/10.1371/journal.pone.0338133.g009

https://doi.org/10.1371/journal.pone.0338133.t009
https://doi.org/10.1371/journal.pone.0338133.g009
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of “policy-technology-resource” is constructed, for example, high subsidy policies are prioritized in areas rich in light 
resources, while less developed regions require coordination between technology and land policies.

The perovskite technology solution achieves a comprehensive benefit index of 0.98 with a high technology investment 
of 30 million yuan and a low land occupation of 5 hectares, making it the optimal resource allocation choice. The core 
of its success lies in triple synergy: technical maturity exceeding 99% triggers a cost acceleration reduction mechanism, 
policy adaptability is higher than 95% to ensure low-risk operations, and the labor-technology substitution model signifi-
cantly improves the output efficiency per unit of land. In contrast, the balanced solution, despite achieving a comprehen-
sive benefit index of 0.85, becomes the first choice in areas with scarce land resources by balancing annual income of 28 
million yuan with a risk factor of 28%. As shown in Table 10, the high labor-low technology solution exposes the defects of 
the traditional path: a labor input of 500 people only generates marginal income of 12 million yuan, verifying the irreplace-
ability of technological upgrading to rural revitalization.

The risk coefficient of the low-cost conservative scheme is as high as 42%, revealing the lock-in effect of PERC tech-
nology – a maturity level of 78% results in an investment return rate of only 18.5%, far lower than that of emerging tech-
nologies. The system automatically switches strategies through a multi-objective optimization framework: when the risk 
tolerance threshold is below 18%, it prioritizes the risk aversion mode (with a technology weight of 40%). The innovation 
lies in the introduction of the “resource bricolage entropy” model. For example, the policy-oriented scheme utilizes the 
strength of industrial chain relationships to suppress price fluctuations, resulting in a leap in land utilization rate to 88.7%. 
It strengthens cross-period correlation analysis between fluctuations in light intensity and labor costs to cope with the 
3.5% marginal revenue fluctuation caused by extreme climate.

The core conclusion is that the innovation-driven resource combination has the highest comprehensive benefit index, 
but the initial investment demand is large. The balanced approach achieves the optimal balance between risk and return.

Testing on 50 policy fluctuation scenarios reveals a 92.5% survival rate under high subsidies, outperforming unguided 
entrepreneurial decisions by 34.7%. The digital twins’s policy sandbox module successfully simulates nonlinear risk accu-
mulation in subsidy reduction scenarios.

4.3  System performance evaluation and comparative analysis

This section evaluates the computational efficiency, predictive accuracy, and robustness of the decision support system 
through multi-dimensional performance indicators, and compares it with traditional models to verify the superiority of the 
system in the technology-market dual-driven scenario.
This system has achieved over 50% improvement compared to traditional models in core indicators such as technical 
prediction accuracy (MAPE = 4.2%) and market penetration error (2.7%), laying a new paradigm for decision-making sci-
ence. As shown in Fig 10, the core breakthrough stems from three aspects: the hybrid architecture of U-Net and Trans-
former accurately captures the transition characteristics of the technology maturity curve; the collaboration of Monte Carlo 

Table 10.  Optimized allocation of resource bricolage.

Resource combination plan labor 
input

Land leasing 
area

technological 
investment

Marginal 
revenue

RISK Policy 
adaptability

Comprehensive 
benefit index

High labor force – low technology 500 20 800 1,200 0.35 68.5 0.72

Balanced type 320 35 1,500 2,800 0.28 82.3 0.85

High technology – low land use 150 10 2,200 3,500 0.18 91.6 0.94

policy oriented 420 50 1,800 2,950 0.22 88.7 0.89

Low-cost conservative 250 15 600 900 0.42 58.2 0.65

Innovation-driven (perovskite) 80 5 3,000 4,200 0.15 95.4 0.98

https://doi.org/10.1371/journal.pone.0338133.t010

https://doi.org/10.1371/journal.pone.0338133.t010
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and stochastic differential equations compresses the convergence steps of policy simulation to 150 steps; and the graph 
neural network and semantic analysis technology enable multi-source data fusion efficiency to reach 5.8TB/h, support-
ing 10,000-level scenario simulation. Especially in the field of resource optimization, the solution speed of 38 seconds is 
68.3% faster than traditional methods, providing minute-level response capability for entrepreneurial decision-making.

The digital twins engine achieves real-time processing of 1,850 industrial data points per second (including technical 
parameters, market metrics, and policy texts) on an NVIDIA A100 GPU, representing a 478% improvement over traditional 
system dynamics models (320 points/sec). Decision latency is constrained to 38ms, meeting county-level entrepreneurial 
decision requirements. The ADMM-based distributed optimization reduces Monte Carlo simulation convergence steps 
from 220 to 150 iterations, with computational resource consumption reduced by 31.6%.
Facing the impact of trade barriers, the system generates adversarial samples through adversarial training, boosting the 
function recovery rate to 68.5%. In sensor data attack scenarios, the Bayesian network correction mechanism keeps the 
prediction error within 15%. The optimization of hardware resource consumption demonstrates engineering wisdom: under 
a computing power demand of 15.8TFLOPS, the distributed optimization algorithm achieves dynamic adjustment of GPU 
memory occupation. The system’s fault tolerance rate of 99.98% verifies the robustness of the digital twins engine, provid-
ing technical endorsement for deployment in complex rural environments.

The core conclusion, as shown in Table 11, is that this system significantly outperforms traditional models in terms of 
prediction accuracy, computational efficiency, and data fusion efficiency, validating the progressiveness of the technology-
market dual-driven architecture.

As shown in Fig 11, the area rich in lighting resources achieves a comprehensive benefit of 0.94 with an employment 
driving intensity of 1,235 people per 10,000 yuan and a land utilization rate of 85.4%, verifying the scientific nature of the 
“location priority” principle. Although the technology penetration rate in the technology-intensive area reaches 82.3%, the 
employment coefficient is only 980 people per 10,000 yuan, reflecting the substitution effect of automation technology 
on labor. The key finding is the “double low trap” in the underdeveloped peripheral areas: a vicious cycle formed by a 

Fig 10.  Technical performance comparison.

https://doi.org/10.1371/journal.pone.0338133.g010

https://doi.org/10.1371/journal.pone.0338133.g010
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technology penetration rate of 38.9% and a land utilization rate of 30.5%, which requires breakthrough through disruptive 
technologies such as perovskite and policy coordination. The pilot policy areas demonstrate the value of the “sandbox 
mechanism” with a comprehensive benefit of 0.96, providing a template for differentiated regional governance.

The employment driving intensity in labor-intensive areas reaches 1,560 people per 10,000 yuan, breaking through 
traditional industry cognition. The core lies in the activation of the social network multiplier effect – every 10% increase in 
relational network density can increase employment elasticity by 23%. In areas with scarce land resources, it is necessary 
to focus on adopting high-tech and low-land solutions, achieving a marginal revenue of 35 million yuan through the alloca-
tion of 5 hectares of land. It is recommended to construct a “light-technology-labor” three-dimensional evaluation matrix: 
when the regional light index is below 1200kWh/m², automatically switch to technology-specific support policies to avoid 
benefit decay caused by resource mismatch.
The core conclusion is that areas with abundant light resources and policy pilot zones exhibit the highest comprehensive 
benefits, while areas with scarce land resources and underdeveloped peripheral regions require synergistic intervention 
through technology and policy to enhance their benefits.

The intensity of policy subsidies demonstrates the strongest dual driving force: for every additional 100 million yuan 
invested, technology maturity increases by 0.15 units and market penetration grows by 0.22 units. However, beyond 
850 million yuan, diminishing marginal returns are triggered. As shown in Fig 12, technological R&D investment exhibits 
significant asymmetry – the impact on technology maturity (0.28 units) is 2.3 times that on market penetration (0.12 units), 

Table 11.  Comprehensive evaluation table of system performance.

Performance dimension System 
indicators

ARIMA model 
indicators

LSTM model 
metrics

Increase 
proportion

Hardware resource 
consumption

real-time

Technology forecast accuracy 4.2 8.5 6.7 50.6 12.5 320

Market penetration forecast error 2.7 6.3 4.9 57.1 8.2 280

Policy simulation convergence steps 150 300 220 50.0 15.8 500

Resource optimization to solve time 38 120 85 68.3 10.1 380

Efficiency of multi-source data fusion 5.8 2.1 3.5 176.2 6.3 420

System fault tolerance rate 99.98 99.80 99.90 0.18 — —

https://doi.org/10.1371/journal.pone.0338133.t011

Fig 11.  Table of policy adaptation effects in different regional scenarios.

https://doi.org/10.1371/journal.pone.0338133.g011
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revealing an efficiency bottleneck in the commercialization of laboratory results. Market competition intensity has been 
identified as the greatest risk source: when it exceeds 0.25, it will trigger a 10.5% decline in marginal returns, necessitat-
ing the suppression of vicious bidding through the industrial chain power game model (Table 5 Regulatory Agency Pay-
ment Function 4.20).

Fluctuations in light intensity only result in a marginal change of 3.5% in revenue, overturning the traditional climate-led 
theory. As shown in Fig 13, the sensitivity map indicates that land constraints (−0.15 market penetration rate) and labor 
costs (−0.10 technology maturity) are the core constraints. The innovation lies in identifying the threshold of policy cost 
elasticity: the elasticity of technology-specific support policies decreases to 8.3% when R&D investment intensity exceeds 
6%, while the elasticity of land policies is less than 4.2% when utilization rate is below 65%. It is recommended to estab-
lish a dynamic early warning mechanism, which will automatically activate the regulatory agency intervention protocol 
when market competition intensity exceeds the warning value for three consecutive quarters.
When benchmarked against 2023 SOTA approaches (e.g., federated learning-based market prediction), the system 
reduces long-term market penetration errors to 2.7% (vs. 6.3% in system dynamics models). For emerging perovskite 
technologies, the prediction error decreases by 18.6% through Monte Carlo-augmented scenario simulation.

In financial credit risk assessment, domain adaptation (modifying 12 industrial indicators to financial ratios) achieves 
F1 = 0.846, a 19.4% improvement over the native photovoltaic model. For medical device entrepreneurship, adjusting 
the technology maturity α parameter (0.12 → 0.32) reduces prediction errors from 21.7% to 9.5%, validating architecture 
flexibility.

5.  Discussions

The empirical results reveal three critical tensions that reshape conventional understandings of technology diffusion in 
rural contexts. First, while the system achieves <5% prediction errors for mainstream PERC/TOPCon technologies (Table 
8), its performance on emerging perovskite cells (33.3% error) exposes a fundamental limitation: the denoising diffusion 
process struggles with sparse patent data (<150 samples) and non-linear commercialization paths. This aligns with Ben-
gio’s (2021) observation that high-dimensional latent spaces require minimum data thresholds, but contradicts the prevail-
ing assumption that laboratory efficiency breakthroughs directly translate to market readiness (Kavlak et al., 2020).

Second, the policy sandbox simulations uncover unexpected nonlinearities. As shown in Fig 9, subsidy intensity 
demonstrates diminishing returns beyond ¥850M - a threshold 23% lower than urban industrial estimates (Rodrik, 2020). 

Fig 12.  Marginal revenue.

https://doi.org/10.1371/journal.pone.0338133.g012
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Field surveys trace this to village-level resource constraints: when subsidies exceed 15% of local GDP, land prices inflate 
by 40–60%, canceling out entrepreneurial benefits. This suggests that rural policy models cannot simply scale down urban 
frameworks.

Most strikingly, the structural hole analysis reveals that 68% of technology transfers occur through kinship networks 
rather than market channels. This “social first” adoption pattern explains why labor-intensive regions achieve 1,560 
jobs/¥10k investment (Table 10) despite lower technology maturity. Such findings challenge the SCP paradigm’s focus 
on industrial organization, urging reconsideration of Granovetter’s (1985) embeddedness theory in energy transitions.
This study validated the significant advantages of the DDPM framework over traditional models through pilot testing 
in 16 counties in Anhui Province. In terms of prediction accuracy, DDPM reduced the average absolute error (MAE) of 
mainstream technologies adoption rate to 4.2%, which was 79.1% lower than the Bass diffusion model. The root mean 
square error (RMSE) of long-term market penetration rate was 57.1% lower than that of the LSTM time series model 
(6.3%). In terms of computational efficiency, implementing 10000 policy scenario simulations based on NVIDIA A100’s 
distributed architecture only takes 38 seconds, which is 4.8 times faster than the system dynamics model, and opti-
mizes memory usage by 31.6%. The robustness test shows that in the scenario of 30% random missing data, DDPM 
maintains MAPE<8.5% through hidden space mapping, which is significantly better than the 23.7% error rate of the 
Bass model. This advantage stems from the triple innovation of DDPM: (1) the continuous noise injection mechanism 
based on stochastic differential equations enhances the model’s generalization ability. (2) The strategy of dynamically 
expanding the dimensions of latent variables accurately captures the nonlinear coupling characteristics between tech-
nology and market. (3) Adversarial training strategies enhance adaptability to policy changes such as subsidy reduc-
tion. The experimental setup strictly follows the principle of controlling variables: all comparison models use the same 
input data and hardware environment.

Fig 13.  Sensitivity heat map.

https://doi.org/10.1371/journal.pone.0338133.g013
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Three limitations require attention: (1) Temporal lags: digital twins updates lag ≤ 38ms, but monsoon-season sensor 
outages create 2–5 minute gaps. (2) Power asymmetry: The FAHP model underestimates informal leaders’ influence 
by 18–22%. (3) Geographic specificity: Results from Anhui may not transfer to coastal provinces with different clan 
structures.

As shown in the above analysis, this system improves the accuracy of technology forecasting by 50.6% com-
pared to the Bass diffusion model, primarily due to the hybrid architecture of U-Net and Transformer in DDPM, which 
effectively captures the nonlinear transition characteristics of the technology maturity curve.As show in Table 12, 
Compared to the LSTM time series model (Zhang et al., 2019), the market penetration forecasting error is reduced 
by 45.8%, attributed to the dynamic constraint mechanism of the technology-market coupled partial differential 
equations. In terms of policy simulation, the convergence steps of this system are reduced by 50% compared to the 
traditional system dynamics model (Sterman, 2020), verifying the synergistic advantage of Monte Carlo and stochas-
tic differential equations. Empirical data shows that the actual adoption rate of HJT technology exceeds the diffusion 
model prediction by 6.7%.

The robustness score of this model to extreme policy fluctuations is only 7.8/10, which is lower than the 9.2 score of the 
policy sandbox model proposed by Janssen et al. (2020). The adversarial training mechanism needs to be strengthened. 
The comprehensive benefit index of areas rich in lighting resources is significantly higher than that of areas with scarce 
land, which is consistent with the principle of location advantage in Porter’s (2021) industrial cluster theory. However, the 
employment driving coefficient in labor-intensive areas surpasses traditional cognition, validating the social network multi-
plier effect theory proposed by Stam et al. (2019).

Heatmap analysis reveals that the rule combination “subsidy intensity <0.4 ∩ technology maturity T<0.7” triggers risk 
alerts in 85.3% of entrepreneurial failure cases, with activation weights reaching 0.89. Symbolic rules contribute 72.5% 
to TOPCon technology selection interpretability, significantly surpassing neural features (27.3%, p < 0.01). Case studies 
demonstrate 92.7% consistency between rule-triggered paths and expert evaluations.

The system exhibits 33.3% prediction errors for perovskite technologies due to data sparsity, while maintaining <5% 
errors for mainstream technologies (PERC/TOPCon). Structural hole quantification in social networks reduces entrepre-
neurial failure misjudgments by 22.1%.

Table 12.  Comparison table between dual-drive decision system and traditional methods.

Evaluation dimension The system (diffusion  
model + digital twins)

conventional method

PERC/TOPCon error <5% Regression model: 20%

Perovskite technology error 33.3% Not modeled

Long term permeability error 2.7 per cent (2030) System dynamics: 6.3%

Policy volatility tolerance 99.98% ≤90.80%

The comprehensive benefits of resource 
patchwork

0.98 Experience decision: 
less than or equal to 0.72

Policy simulation convergence steps 150 steps 300 steps

The failure rate of start-ups is lower 18% No system support: 0%

Annual growth in photovoltaic installations 12% Natural growth: less than 
5%

Net income from special policies one billion, four hundred  
and ten million yuan

Not quantified

Real-time responsiveness 38 seconds 120 seconds

Multi-source data fusion efficiency 5.8TB/h 2.1TB/h

https://doi.org/10.1371/journal.pone.0338133.t012
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6.  Conclusion and outlook

This study has achieved the collaborative optimization of technology diffusion and market penetration in the photovoltaic 
industry by constructing a “technology-market dual-driven” decision support system, providing a scientific and dynamic 
decision-making tool for Huizhou merchants returning home to start businesses. At the theoretical level, it integrates diffu-
sion models, digital twinss, and network embedding theories, proposing a “society-industry-village” triple network coupling 
framework, breaking through the limitations of traditional single models in explaining complex systems. Empirical results 
show that the system significantly improves the prediction accuracy of technology adoption and the ability to predict mar-
ket risks, with the prediction error for mainstream technologies being less than 5% and the simulation error for long-term 
market penetration being controlled within 3%. This provides a high-confidence basis for local governments to formulate 
photovoltaic support policies and enterprises to optimize their technological routes.

At the methodological level, this study innovative integrates the generative capabilities of diffusion models with the real-
time mapping characteristics of digital twinss, overcoming the adaptability bottleneck of traditional models under dynamic 
policy interventions and resource constraints. By designing a policy sandbox module and a multi-agent game model, the 
system can quantify the impact of different subsidy reduction schemes on entrepreneurial survival rates. For example, a 
high subsidy policy can increase the survival rate to 92.5%, while the net benefit of a technology-specific support policy 
reaches 1.41 billion yuan. Furthermore, the multi-scenario configuration schemes generated by the resource bricolage 
optimizer provide a practical decision-making reference for returning entrepreneurs to balance risks and benefits, filling 
the gap in intelligent tools for rural entrepreneurship.Six-month deployment in Anhui pilot counties increased photovoltaic 
startup survival rates from 74.3% to 86.2%, with user satisfaction scores reaching 4.7/5.0. The resource bricolage opti-
mizer boosted land utilization to 88.7% via “high-tech, low-land” solutions, driving 12.4% annual growth in installed PV 
capacity. Third-party audits confirm 14.1 billion RMB net income from policy adaptations.

Three prioritized extensions include: (1) Federated learning for cross-province data barriers, (2) Reinforcement 
learning-based adaptive risk control, (3) Cantonese dialect adaptation for Pearl River Delta deployments.This study 
also has certain limitations: First, the barriers to data acquisition lead to high prediction errors for emerging technolo-
gies. Second, the robustness of the system to extreme policy fluctuations still needs to be improved. In the future, fed-
erated learning can be combined to break through data silos, and reinforcement learning can be introduced to achieve 
adaptive risk control. The application of the results will promote the precise matching of technology-market resources in 
the photovoltaic industry, assist in the coordinated achievement of rural revitalization and the “dual carbon” goals, and 
provide theoretical paradigms and practical paths for the digital transformation of the rural innovation and entrepreneur-
ship ecosystem.
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