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Abstract 

The genus Polygonatum (Asparagaceae) comprises perennial herbaceous plants 

with significant economic and medicinal value. In this study, we analyzed the com-

plete chloroplast (cp) genome of Polygonatum sinopubescens and compared it with 

closely related species. The primary objective was to elucidate structural variations, 

species divergence, and phylogenetic relationships among taxa. The cp genome of 

P. sinopubescens exhibits the typical quadripartite structure, consisting of a large 

single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted 

repeats (IRs), with a total sequence length of 155,307 bp and a GC content of 

37.68%. The present analysis revealed a high degree of consistency in gene order 

and GC content between P. sinopubescens and other Polygonatum species. A total of 

112 genes were annotated, including 78 protein-coding genes, 30 tRNA genes, and 4 

rRNA genes. The genome contained 67 simple sequence repeats (SSRs), and codon 

usage was biased toward codons ending in A/T; among the 30 codons with RSCU > 1, 

93.3% ended with A/T. Nucleotide polymorphism analysis identified nine highly vari-

able regions, and selection pressure analysis revealed that only ndhA, ycf2, accD, 

and rbcL genes were under positive selection (Ka/Ks > 1), which was observed in only 

a subset of species. Phylogenetic analyses indicated that Polygonatum is a mono-

phyletic group that can be divided into three major clades. P. sinopubescens was 

placed in sect. Polygonatum and was most closely related to P. filipes. This study pro-

vides a comprehensive characterization of the cp genome of P. sinopubescens and 

clarifies its phylogenetic placement, offering important references for species identifi-

cation, evolutionary studies, and phylogenetic research within Polygonatum.

1.  Introduction

The genus Polygonatum Mill. (Asparagaceae) comprises perennial herbaceous 
plants, with approximately 39 species distributed in China [1]. “Polygonati Rhizoma”is 
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a medicinal and edible plant known for its pharmacological properties, including 
anti-aging, anti-tumor, hypoglycemic, and immune-enhancing effects [2–4]. Due to 
its high medicinal value, over a hundred commercial pharmaceutical and healthcare 
products are derived from Polygonatum [5]. Based on morphological, palynological, 
cytological, and molecular biological studies [6–10], recent research has classified 
Polygonatum into three sections: section Verticillata, section Polygonatum, and 
section Sibirica [11–13]. The Chinese Pharmacopoeia primarily records the dried rhi-
zomes of Polygonatum odoratum, Polygonatum sibiricum, Polygonatum kingianum, 
and Polygonatum cyrtonema as medicinal ingredients [14]. However, due to mor-
phological similarities among Polygonatum species, botanical identification is often 
challenging, leading to frequent adulteration in the market [15]. Common adulterants 
include Polygonatum zanlanscianense, Polygonatum cirrhifolium, Polygonatum 
verticillatum, and other species from section Verticillata [16,17]. These adulterants 
generally exhibit inferior medicinal properties, and some may compromise clinical 
safety and efficacy [18,19]. Therefore, effective identification methods are needed to 
ensure the quality of Polygonati Rhizoma medicinal materials.

The chloroplast (cp) is a crucial organelle for photosynthesis and energy con-
version in plant cells. In angiosperms, the cp genome is maternally inherited and is 
characterized by structural stability, conserved coding sequences, and rich genetic 
information, making it a valuable resource for species identification and genetic 
variation studies [20]. Most higher plants possess a typical quadripartite chloroplast 
genome structure, comprising a large single-copy (LSC) region, a small single-
copy (SSC) region, and a pair of inverted repeats (IRs) [21]. With the advent of 
high-throughput sequencing technologies, cp genomes have been widely employed 
in plant phylogenetics, species identification, genetic diversity analysis, and genetic 
engineering [22–24]. The complete chloroplast genome, used as a super-barcode, 
has shown great potential in the identification of medicinal plants. Wu et al. [25] 
applied this technique to successfully distinguish Fritillaria species recorded in the 
Chinese Pharmacopoeia from their close relatives and adulterants. This technology 
has also been widely applied in other medicinal plants and has achieved good results 
[26]. For example, Cui et al. [27] accurately identified three closely related species of 
Amomum (A. villosum, A. villosum var. xanthioides, and A. longiligulare). Similarly, 
Zhu et al. [28] confirmed that the complete chloroplast genome dataset provides the 
strongest discriminating power for Dendrobium officinale and its related species. 
Chen et al. [29] demonstrated that the chloroplast genome not only enables precise 
identification of Thalictrum fargesii, but that its highly variable regions (such as ndhD-
psaC and rpl16-rps3) also hold promise for developing specific molecular markers 
for identifying ethnomedicines and their contaminants. In addition, this technique has 
been successfully applied to identify Mussaenda pubescens [30], Sophora tonkinen-
sis [31], members of the subfamily Aroideae [32], and to determine their phylogenetic 
positions. Wang et al. [33] combined chloroplast genome and internal transcribed 
spacer(ITS) sequences to confirm that C. × ventricosum is most closely related to 
C. calceolus and supportsd its origin as an interspecific hybrid between C. calceo-
lus and C. macranthos. Similarly, studies on the genus Lasianthus not only clarified 
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phylogenetic relationships using the complete chloroplast genome but also identified an efficient identification marker 
composed of ITS2 + psaI-ycf4 [34].

Therefore, utilizing the cp genome for species identification within Polygonatum can enhance the safety and efficacy of 
medicinal applications and promote the sustainable development of Polygonatum resources. Polygonatum sinopubescens 
is an endemic species discovered in Yinjiang, Guizhou Province [35]. Morphologically, P. sinopubescens is distinguished 
from Polygonatum filipes by its densely hairy stems (approximately 30 cm tall), petioles with soft hairs, young leaves 
densely covered with short hairs on the abaxial surface, inflorescences bearing 2 ~ 3 flowers per peduncle, pedicels 
covered with long soft hairs, filaments measuring 7 ~ 11 mm in length with pubescent upper portions, and obovoid berries, 
These characteristics classify P. sinopubescens within sect. Polygonatum of Polygonatum [36]. Nutritional composition 
analysis has further confirmed that P. sinopubescens is a high-quality functional plant resource with both medicinal and 
edible applications [37]. This study reports the complete chloroplast genome of P. sinopubescens, expanding the genomic 
resources for Polygonatum and providing a valuable reference for species classification, genetic diversity research, and 
medicinal applications.

2.  Materials and methods

2.1.  Plant materials

The plant samples were collected from Yinjiang Tujia Autonomous County, Tongren City, Guizhou Province 
(27°43’1.98“N,108°28’15.21” E). They were identified as P. sinopubescens of the Polygonatum genus by Professor Yang 
Chuandong of Tongren University (Fig 1). The fresh leaves collected were stored in dry ice and sent to Qingke Company 
for DNA extraction and third-generation chloroplast gene sequencing.

2.2.  Chloroplast DNA extraction

Fresh young leaves of the P. sinopubescens sample were frozen in liquid nitrogen, and high-quality genomic DNA was 
extracted using a modified cetyltrimethylammonium bromide (CTAB) method. The DNA concentration was measured 
using the Thermo Scientific NanoDrop software, and DNA quality was assessed by 1% agarose gel electrophoresis. An 

Fig 1.  Photographs of Polygonatum sinopubescens (A) Habitat, (B) Inflorescence.

https://doi.org/10.1371/journal.pone.0338103.g001
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Illumina genomic library was constructed and subjected to 2 × 150 bp sequencing using the NovaSeq X Plus platform (Illu-
mina, San Diego, CA, USA) at Qingke Biotechnology (Beijing, China).

2.3.  Chloroplast DNA sequencing, assembly and data processing

For chloroplast genome assembly, clean data were processed using GetOrganelle v1.7.5 [38], with the seed database as 
a reference. Genome assembly was performed using SPAdes, and the assembly order of chloroplast contigs was verified 
by alignment against the NT database. Contigs with consistent sequence order were selected as the final genome assem-
bly. The starting position and orientation of the chloroplast genome sequence were determined based on a reference 
genome, along with the identification of possible partition structures (LSC/IR/SSC), resulting in the finalized chloroplast 
genome sequence. Gene annotation, including predictions of protein-coding genes, tRNA genes, and rRNA genes, was 
performed using GeSeq, with manual correction of gene boundaries and exon/intron junctions. The circular genome map 
was visualized using OGDRAW [39]. The final annotated chloroplast genome was submitted to NCBI, and the registration 
number PQ858224 was obtained.

2.4.  Comparative bioinformatic analysis

The relative synonymous codon usage (RSCU) values were calculated using the Cusp software (EMBOSS v6.6.0.0) to 
determine codon preference. Microsatellite loci were analyzed using the MISA software (version 1.0), with parameters set 
to ≥10 repeats for mononucleotides, ≥ 5 repeats for dinucleotides, ≥ 4 repeats for trinucleotides, and ≥3 repeats for tetra-
nucleotides, pentanucleotides, and hexanucleotides [40].The contraction and expansion of the IR regions were visualized 
using the IRscope online tool(https://irscope.shinyapps.io/irapp/) to investigate changes in the LSC/IRb/SSC/IRa boundary 
positions [41]. Phylogenetic analysis was performed using PhyloSuite_v1.2.3, with MAFFT alignment of P. sinopubescens 
and nine closely related species, followed by nucleotide diversity (Pi) analysis using DnaSP software (version 6.0). The 
window length and step size parameters were set to 600 and 200, respectively [42]. The Ka, Ks, and Ka/Ks ratios for the 
shared protein-coding genes (PCGs) across 10 Polygonatum species were extracted and calculated using CPStools and 
KaKs_calculator3 [43]. It is generally accepted that Ka/Ks < 1 indicates negative selection (purifying selection), meaning 
harmful mutations are eliminated, and the gene function is conserved. A Ka/Ks ratio of 1 suggests that the gene is in a 
neutral evolutionary state, with mutations not affected by natural selection. A Ka/Ks ratio > 1 suggests positive selection 
(adaptive evolution), where beneficial mutations are retained, aiding species adaptation to the environment.

2.5.  Phylogenetic analysis

Phylogenetic analysis was conducted using the complete chloroplast genomes, with Maianthemum as the outgroup. 
Except for P. sinopubescens, all chloroplast genome sequences were retrieved from GenBank. The total sequence matrix 
was aligned using the MAFFT plugin in PhyloSuite v1.2.3, and the optimal substitution model was selected using Mod-
elFinder based on the Bayesian Information Criterion (BIC). A maximum likelihood (ML) phylogenetic tree was recon-
structed under the TVM + F + I + I + R3 model using IQ-TREE with 5000 ultrafast bootstrap replicates. The Bayesian (BI) 
phylogenetic tree was constructed using MrBayes under the GTR + I + G + F model. The phylogenetic tree was further 
refined using FigTree v1.4.4.

3.  Results

3.1.  Structure and characteristics of chloroplast group in P. sinopubescens

The P. sinopubescens chloroplast genome was a double-stranded circular molecule with a typical quadripartite struc-
ture, comprising a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions 
(IRs). The total genome length was 155,307 bp (Fig 2), with an overall GC content of 37.68%. The LSC region was 

https://irscope.shinyapps.io/irapp/
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Fig 2.  Gene map of P. sinopubescens chloroplast genome.

https://doi.org/10.1371/journal.pone.0338103.g002
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84,252 bp in length with a GC content of 35.72%, the SSC region measured 18,455 bp with a GC content of 31.56%, 
and each IR region spanned 26,300 bp with a GC content of 42.98%. A total of 112 genes were annotated, including 78 
protein-coding genes, 30 tRNA genes, and 4 rRNA genes, These genes are primarily involved in photosynthesis and 
self-replication. Among them, 11 genes contain introns, with 7 genes containing one intron and 4 genes containing two 
introns (Table 1).

3.2.  simple repeat sequence

Simple sequence repeats (SSRs) in the chloroplast genome of P. sinopubescens were detected using the MISA software 
(version 1.0) tool. The results showed (Fig 3) that a total of 67 SSR sequences were identified, categorized into 5 types. 
Among these, the most abundant were mononucleotide SSRs, with 38 sequences, accounting for 56.72% of the total; 
followed by 15 dinucleotide SSRs, which accounted for 22.39%; trinucleotide, tetranucleotide, and pentanucleotide SSRs 
numbered 4, 8, and 2, respectively, with proportions ranging from 0% to 11.94%. For mononucleotide repeats, A and T 
repeats dominated, comprising 97.37% of the total; dinucleotide repeats were predominantly AT/TA (80%). In trinucle-
otide SSRs, repeats composed of A and T bases (such as AAT and ATT) accounted for 75% of the total trinucleotide 
SSRs. Additionally, the LSC region contained the most SSR sequences, representing 76.12% of all SSRs. The REPuter-
generated results indicated the identification of 59 dispersed repeat sequences, including 7 complementary repeat 
sequences (C) and 52 palindromic repeat sequences (P).

Table 1.  Chloroplast genome gene classification of P. sinopubescens.

Category Gene groups Gene names

Photosynthesis Subunits_of_photosystem_I psaA, psaB, psaC, psaI, psaJ

Subunits_of_photosystem_II pbf1, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, 
psbT, psbZ

Subunits_of_NADH_dehydrogenase ndhA*, ndhB**, (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits_of_cytochrome_b/f_complex petA, petB*, petD*, petG, petL, petN

Subunits_of_ATP_synthase atpA, atpB, atpE, atpF*, atpH, atpI,

Large_subunit_of_Rubisco rbcL

Self-replication Large_subunits_of_ribosome rpl14, rpl16*, rpl2**,(×2), rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36

Small_subunits_of_ribosome rps11, rps12(×2), rps14, rps15, rps16*, rps18, rps19(×2), rps2, rps3, rps4, rps7(×2), rps8

DNA-dependent_RNA_polymerase rpoA, rpoB, rpoC1*, rpoC2

Ribosomal_RNAs rrn16(×2), rrn23(×2), rrn4.5(×2), rrn5(×2)

Transfer_RNAs trnA-UGC(×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, 
trnH-GUG(×2), trnI-CAU(×2), trnI-GAU(×2), trnK-UUU, trnL-CAA(×2), trnL-UAA(×2),trnL-UAG, 
trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU(×2), trnS-GCU, 
trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC(×2), trnW-CCA, 
trnY-GUA,trnfM-CAU

Other genes Maturase matK

Protease clpP1**

Envelope_membrane_protein cemA

Acetyl-CoA_carboxylase accD

C-type_cytochrome_synthesis_gene ccsA

Translation_initiation_factor

protochlorophillide_reductase_subunit

Genes of 
unknown

Proteins_of_unknown_function ycf1, ycf2(×2), ycf3**, ycf4

Note: *gene with a single intron; **gene with two introns; (×2) duplicated gene.

https://doi.org/10.1371/journal.pone.0338103.t001
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3.3.  Codon usage frequency analysis

Based on the protein-coding genes of the complete chloroplast genome, the codon usage frequency in P. sinopubes-
cens was calculated. A total of 61 codons encoding 20 amino acids. Among these, leucine (Leu) was the most frequently 
used amino acid, with a total of 2,673 occurrences, followed by isoleucine (Ile) and serine (Ser), with 2,267 and 2,048 
occurrences, respectively. Cysteine (Cys) was the least frequently used amino acid, with only 304 occurrences. The most 
frequently used synonymous codon was ATT, encoding isoleucine (Ile), with 1,082 instances (4.14%), while the least fre-
quently used codon was TGC, encoding cysteine (Cys), with only 68 instances (0.26%). Codon usage bias was analyzed 
using Cusp (EMBOSS v6.6.0.0) software to calculate the Relative Synonymous Codon Usage (RSCU) values. High codon 
usage bias was detected for 30 codons with an RSCU > 1, while low codon usage bias was observed for 29 codons with 
an RSCU < 1. These results indicate that the chloroplast genome of P. sinopubescens exhibits a significant codon usage 
bias. Additionally, no codon usage bias was detected for methionine and tryptophan (RSCU = 1), and the third position of 
all highly preferred codons (RSCU > 1) primarily included 28 A/T codons (Fig 4).

3.4.  IR contraction and expansion

The contraction and expansion of the IR regions reveal structural variations at the LSC/IR/SSC junctions. Using the 
IRscope online program, we analyzed the expansion and contraction of the IR regions in the chloroplast genomes of 
10 Polygonatum species (Fig 5). The results showed that the length of the IR regions was relatively conserved, ranging 
from 25,008 bp in P. odoratum to 26,415 bp in P. sibiricum, and the gene content at the IR/SC boundaries was generally 
consistent. The genes rpl22, rps19, ndhF, ycf1, and psbA were located at the IR boundary regions, and significant differ-
ences were observed in the contraction and expansion of the IR regions. In most Polygonatum species, the rps19 gene 
was entirely located in the IRb region, positioned 13 bp or 17 bp from the IRb boundary. In contrast, rps19 was absent in 
P. cyrtonema and P. odoratum, which may be attributed to the extended length (1,492 bp) of the rpl2 gene that bridges the 
LSC and IRb regions, with distances of 754 bp and 663 bp from the IRb boundary, respectively. The ndhF gene spanned 
the junction between IRb and SSC, with 22–34 bp located within the IRb region. The ycf1 gene formed the junction 
between SSC and IRa, and its distance from the IRa boundary ranged from 883 bp to 895 bp. In addition, rpl2 and trnH 
were present in the IRa region, while psbA was located in the LSC region.

Fig 3.  Simple sequence repeat types of P. sinopubescens.

https://doi.org/10.1371/journal.pone.0338103.g003
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3.5.  Nucleotide diversity analysis and selective pressure

Nucleotide diversity (Pi) of ten chloroplast genes was analyzed using DnaSP software (version 6.0) to identify mutational 
hotspot regions in the chloroplast genomes of Polygonatum species. The results showed that nine regions had Pi values 
greater than 0.010, namely trnK-UUU, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, trnC-GCA, petA-psbJ, ndhF, rpl32, ccsA-
ndhD, and ycf1 (Fig 6). These high-Pi regions represent potential divergence loci within the chloroplast genomes of the 
ten Polygonatumspecies analyzed. Among them, five mutational hotspots (trnK-UUU, rps16-trnQ-UUG, trnS-GCU-trnG-
UCC, trnC-GCA, petA-psbJ) were located in the LSC region, while four (ndhF, rpl32, ccsA-ndhD, ycf1) were located in the 
SSC region. The rpl32gene fragment, located in the SSC region, exhibited the highest level of variation, with a coefficient 

Fig 4.  Codon usage graph of P. sinopubescens. Note: The horizontal coordinate is the amino acid encoded by the codon, and the vertical 
coordinate is the RSCU value.

https://doi.org/10.1371/journal.pone.0338103.g004
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of 0.01826. Notably, no highly variable sites were detected in the IR regions, further supporting the high conservation of 
the IR regions in the chloroplast genomes of Polygonatum species. These nine high-Pi sequences can serve as potential 
DNA markers for elucidating genetic differentiation among different taxa within the genus Polygonatum.

To investigate the molecular evolutionary processes of chloroplast protein-coding genes in Polygonatum, we estimated 
the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions using 78 shared protein-coding genes (CDS) for 
selection pressure analysis (Fig 7). The results showed that the Ka/Ks values of most genes were lower than 1, indicating 
that these protein-coding genes have been subjected to strong purifying selection. Only a very small number of genes 
exhibited Ka/Ks > 1 (including ndhA, ycf2, accD, and rbcL), and this pattern was observed only in a few species. Among 
them, the ycf2 gene showed the highest Ka/Ks value in P. verticillatum (2.31676), followed by P. sibiricum(2.00985) and 
P. kingianum (1.08535). The ndhA gene exhibited a Ka/Ks value of 1.34745 in P. verticillatum, the accD gene had a Ka/

Fig 5.  Comparison of boundaries regions of Polygonatum chloroplast genome.

https://doi.org/10.1371/journal.pone.0338103.g005

https://doi.org/10.1371/journal.pone.0338103.g005


PLOS One | https://doi.org/10.1371/journal.pone.0338103  December 5, 2025 10 / 17

Ks value of 1.00734 in P. kingianum, and the rbcL gene showed Ka/Ks values of 1.8394 in P. franchetii and 1.1006 in P. 
sibiricum. These genes exhibited relatively high substitution rates and evolutionary rates in specific species, suggesting 
evidence of positive selection. Functionally, the positively selected genes can be classified into photosynthesis-related 

Fig 6.  Nucleotide diversity (Pi) analysis of chloroplast genomes in Polygonatum species with 600 bp sliding window length and 200 bp step 
size.

https://doi.org/10.1371/journal.pone.0338103.g006

Fig 7.  The Ka/Ks ratio of 78 common protein-coding genes.

https://doi.org/10.1371/journal.pone.0338103.g007
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genes (e.g., ndhA, rbcL) and other functional categories (e.g., ycf2, accD), indicating that most of the genes under positive 
selection are closely associated with the photosynthetic system.

3.6.  Phylogenetic analysis

Chloroplast genomes are widely employed in phylogenetic analyses across diverse plant taxa. To clarify the phylogenetic 
position of Polygonatum species, Maianthemum henryi (Baker) LaFrankie and Maianthemum fuscum (Wall.) LaFrankie 
were selected as outgroups. A total of 44 complete chloroplast genome sequences were used to construct phylogenetic 
trees using Maximum Likelihood (ML) and Bayesian Inference (BI) methods. The ML and BI trees exhibited congruent 
topologies (Fig 8), with most nodes receiving strong statistical support, thereby confirming the monophyly of Polygonatum, 
Maianthemum, and Disporopsis. Polygonatum was resolved as a sister clade to Heteropolygonatum (BS = 100; PP = 1). 
Within Polygonatum, three major clades were identified: sect. Verticillata, sect. Polygonatum, and sect. Sibirica (BS = 100; 
PP = 1), with sect. Sibirica comprising only a single species, P. sibiricum. P. sinopubescens and P. filipes formed a distinct 
and strongly supported clade (BS = 100; PP = 1), indicating a close evolutionary relationship. Furthermore, the pharmaco-
poeial species P. odoratum, P. cyrtonema, P. sibiricum, and P. kingianum, which are listed in the Chinese Pharmacopoeia, 
were clearly distinguishable from other Polygonatum species with high support values, underscoring their distinct genetic 
identities.

4.  Discussion

4.1.  Characteristics analysis of the chloroplast whole genome

In this study, the complete chloroplast genome of P. sinopubescens was analyzed. The genome exhibits a typical quadri-
partite structure, consisting of a large single-copy (LSC) region, a small single-copy (SSC) region, and two inverted repeat 
(IR) regions forming a circular double-stranded molecule. The total genome length is 155,307 bp, which is comparable to 
previously reported chloroplast genomes of other Polygonatum species [44]. The chloroplast genome displays a higher AT 
content than GC content, with the GC content in the IR regions being higher than that in the LSC and SSC regions. Our 
results indicate that the total length, GC content, and gene composition of the P. sinopubescens chloroplast genome are 
nearly identical to those of other Polygonatum species [42]. In total, the chloroplast genome of P. sinopubescens encodes 
112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 11 genes contain introns, 
and 22 genes are located within the IR regions.

Simple sequence repeats (SSRs) are an important class of codominant DNA molecular markers that have been widely 
used in species identification, phylogeography, and population genetics due to their high abundance, random distribution 
in genomes, and rich polymorphism information [45–47]. In this study, a total of 67 SSRs were detected, among which 
mononucleotide SSRs were the most frequent in all genomes and were predominantly composed of A/T motifs, account-
ing for 97.37% of the total. Dinucleotide repeats ranked second in abundance, with AT/TA motifs being the most common, 
representing 80% of this category. These results indicate that SSRs in the chloroplast genomes of Polygonatum species 
are strongly biased toward A and T bases, consistent with findings from other Polygonatum taxa [42,44,48] and similar to 
the SSR composition observed in the chloroplast genomes of most angiosperms [49–52]. SSRs rich in A/T have higher 
mutation rates and are more likely to generate polymorphic loci, making them suitable as high-resolution genetic markers. 
The cpSSRs identified in this study hold promise as valuable molecular marker resources for Polygonatum species identi-
fication, genetic diversity assessment, and phylogenetic studies.

As the link between nucleic acids, proteins, and genetic material, codons play a crucial role in the transmission of 
genetic information and provide reliable insights into gene function and species evolution [53,54]. In this study, a total of 
61 codons were identified, among which leucine (Leu) was the most frequently encoded amino acid, followed by isole-
ucine (Ile) and serine (Ser). The most frequently used codons for these amino acids are TTA, ATT, and TCT. Previous 
studies have demonstrated that GC content is closely associated with mutational pressure or natural selection, whereas 
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Fig 8.  Maximum likelihood (ML) and Bayesian inference (BI) methods were used to reconstruct the tree. Only ML tree was shown, because of 
the highly identified topologies of ML tree and BI tree. The value of ML supports and Bayesian posterior probabilities were shown above the branches. 
The cp genomes newly sequenced in this study are highlighted with red font marks.

https://doi.org/10.1371/journal.pone.0338103.g008

https://doi.org/10.1371/journal.pone.0338103.g008
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interspecific differences in codon usage frequency may be related to evolutionary status, ecological environment, and 
nucleotide composition [55]. Elucidating the characteristics of codon bias and its variation is of great significance for 
advancing our understanding of molecular evolution and the biodiversity of heterologous gene expression across species 
[56,57]. Based on the relative synonymous codon usage (RSCU) analysis, most high-frequency and highly expressed 
codons ended with A or U, further supporting the A/U bias at the third codon position in medicinal Polygonatum species. 
Moreover, SSR analysis revealed a pronounced preference for A and T nucleotides. Given that A/T base pairs, which 
form two hydrogen bonds, are more easily disrupted than G/C base pairs, the preference for A and T nucleotides in the 
chloroplast genomes of Polygonatum species may contribute to their strong adaptive capacity and pronounced structural 
variation in response to environmental changes. However, the underlying mechanisms behind this phenomenon require 
further investigation.

4.2.  Comparative analysis of chloroplast genomes

The contraction or expansion of IR/SC boundaries is a major driver of chloroplast genome size variation. In Polygonatum, 
the boundary genes are primarily rpl22, rps19, ndhF, ycf1, and psbA, which is consistent with previous studies on this 
genus [58], suggesting that boundary characteristics are relatively conserved among closely related species [59]. Studies 
of chloroplast genomes in monocotyledonous plants have shown that the rps19 gene is located in the IR region [60]. In 
Polygonatum, many rps19 genes are entirely located within the IR region [46,61]; however, in this study, we found that 
the rps19 gene of P. sibiricum was partially located in the LSC region, which may be attributed to IR contraction. In P. 
cyrtonema and P. odoratum, the rps19 gene was missing, which may have resulted from the elongation of the rpl2 gene, 
thereby bridging the LSC and IRb regions. The stability of the IR/SC boundary suggests that Polygonatum species may 
have experienced relatively low selective pressure during evolution, consistent with their broad ecological adaptability and 
strong species differentiation ability [62].

Evaluation of Ka/Ks values for protein-coding genes containing RNA editing sites can provide insights into functional 
diversity, structural variation, and evolutionary processes. The Ka/Ks ratio is commonly used to determine whether 
protein-coding genes are subject to selective pressure and has been widely recognized as a key metric for assessing 
adaptive evolutionary rates and positive selection. Our selective pressure analysis indicated that most genes have under-
gone purifying selection, consistent with a pattern of conservative evolution. Notably, ndhA, ycf2, accD, and rbcL exhibited 
signatures of positive selection. Among these, ndhA and rbcL are photosynthesis-related and systemic genes, respec-
tively. Given that Polygonatum species predominantly grow on shaded forest slopes, in thickets, or under canopies, their 
adaptation to light stress may represent an important genetic basis for chloroplast genome evolution in this genus [58].

Nucleotide diversity analysis revealed that the highly variable regions of the Polygonatum chloroplast genome were 
mainly located in the LSC and SSC regions. Nine hypervariable Pi fragments were identified: trnK-UUU, rps16-trnQ-UUG, 
trnS-GCU-trnG-UCC, trnC-GCA, petA-psbJ, ndhF, rpl32, ccsA-ndhD, and ycf1. These mutational hotspots provide poten-
tial chloroplast DNA barcode references for the molecular identification of Polygonatum species in future studies.

4.3.  Phylogenetic analysis

The phylogeny and classification of the genus Polygonatum have long been controversial. In this study, a phylogenetic 
tree was reconstructed based on complete chloroplast genome sequences. The results provided strong support for the 
monophyly of Polygonatum (Fig. 8), with Polygonatum and Heteropolygonatum resolved as sister clades. Within Polyg-
onatum, three well-supported clades were identified: sect. Polygonatum, sect. Sibirica, and sect. Verticillata, with sect. 
Verticillata representing a relatively ancestral lineage within the genus. This finding is consistent with the results of Shi 
Naixing [53].The phylogenetic tree confirmed the systematic position of P. sinopubescens within Polygonatum, show-
ing that P. sinopubescens and P. filipes form a sister group within sect. Polygonatum. This relationship is supported by 
previous morphological, cytological, and molecular evidence [35,63,64], further corroborating the close phylogenetic 
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relationship between the two species. Additionally, strong support was found for the monophyly of P. sibiricum, consistent 
with findings from other studies [65–67].In summary, our study enriches the genomic resources of Polygonatum and pro-
vides valuable insights into the phylogenetic relationships within the genus. The findings on P. sinopubescens also have 
important implications for the exploration and conservation of Polygonatum genetic resources.

Supporting information

S1 File.  The new dataset generated by this study has been included in the supplementary materials, while 
the other datasets are all from the following public domain resources: https://www.ncbi.nlm.nih.gov/#!/edu/home/
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