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Abstract 

Introduction

Prognostication at 90 and 180 days after thrombolysis for acute ischemic stroke (AIS) 

is critical, yet the temporal evolution of key predictors remains inadequately under-

stood. The utility of machine learning for systematically comparing prognostic factors 

across these distinct time points remains to be fully established.

Method

We retrospectively analyzed consecutive AIS patients undergoing intravenous 

thrombolysis from October 2020 to December 2024. Features were selected from 

pre-therapy baseline data via univariable analysis and LASSO regression to develop 

five machine learning models. Model performance and clinical utility were assessed 

by AUC-ROC and Decision Curve Analysis (DCA), respectively. The primary endpoint 

was a modified Rankin Scale > 2 at 90 and 180 days.

Results

A total of 432 patients were included. At 90 days, 81 patients (18.8%) had an unfavor-

able outcome. By the 180-day follow-up, 86 patients (19.9%) were lost to follow-up. 

Among the remaining 346 patients, 48 (13.9%) had an unfavorable outcome. 

On the holdout test set, Logistic Regression (AUC = 0.757) and Random Forest 

(AUC = 0.833) were the optimal models for 90- and 180-day outcomes, respectively. 

While baseline NIHSS score and age were dominant predictors for both endpoints, a 

notable temporal shift in biomarker significance emerged: admission fibrinogen was a 

key predictor at 90 days, but was supplanted by white blood cell count for the 180-

day prognosis.
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Conclusion

Our study reveals a crucial temporal evolution in prognostic biomarkers after throm-

bolysis, shifting from fibrinogen at 90 days to white blood cell count at 180 days. This 

dynamic landscape of predictors, identified through machine learning, underscores 

the necessity of developing time-specific models to accurately forecast patient 

recovery.

Introduction

Acute ischemic stroke (AIS) is the most common subtype, accounting for 72.9% of 
all stroke cases in China. As a leading cause of mortality and disability in adults, it 
places a significant burden on families and society [1,2]. Intravenous thrombolysis, 
when administered within the therapeutic window, is the standard of care for salvag-
ing the ischemic penumbra and improving functional outcomes [3]. However, clinical 
outcomes after thrombolysis vary widely. One major challenge is futile recanaliza-
tion—the failure to achieve good long-term functional recovery despite successful 
vessel reopening. This phenomenon highlights the critical need for accurate early 
prognostication [4].

In stroke research, the 90-day functional outcome, measured by the modified 
Rankin Scale (mRS), is the gold-standard endpoint for assessing therapeutic efficacy 
[5]. However, since neurological function can continue to improve beyond this time 
point, the 180-day outcome may better reflect a patient’s stable, long-term functional 
status [6]. Evaluating both endpoints offers a more complete picture of the patient’s 
recovery trajectory and can help guide stage-specific rehabilitation strategies. Nev-
ertheless, likely due to the challenges of extended follow-up, the 180-day outcome 
has been studied less frequently, which limits our understanding of the full long-term 
benefits of thrombolytic therapy.

To better predict functional outcomes after thrombolysis for AIS, previous research 
has identified key factors associated with an unfavorable 90-day prognosis [7,8]. 
These factors span multiple domains, including baseline characteristics, acute clinical 
metrics, and laboratory biomarkers. At baseline, advanced age, a history of prior 
stroke, and pre-existing functional disability (mRS > 1) are established risk factors 
[7,9]. Among core clinical features, the severity of neurological deficit on admission, 
as measured by the National Institutes of Health Stroke Scale (NIHSS) score, is 
considered the most potent independent predictor, while onset-to-treatment time 
(ONT), glucose levels, and blood pressure also play important roles [8]. Further-
more, specific laboratory biomarkers, such as white blood cell count, fibrinogen, and 
neutrophils, have also been linked to 90-day functional outcomes [10–12]. However, 
it remains unclear if these factors are also predictive of 180-day outcomes or if their 
relative importance changes over this longer period. Therefore, this study aimed to 
develop and validate a predictive model for 180-day functional outcomes to deter-
mine the long-term prognostic value of these key factors.
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In recent years, machine learning (ML) algorithms have become powerful tools for building precise prognostic models. 
Their strength lies in their ability to capture complex non-linear relationships and handle high-dimensional data [13]. In 
stroke research, ML models have shown superior performance compared to traditional statistical models for predicting 
complications like hemorrhagic transformation (HT) [14] and early neurological deterioration (END) [15]. However, ML 
techniques have been less commonly applied to predict mid- to long-term functional outcomes after thrombolysis [16]. 
This gap exists for two main reasons. First, research on 180-day prognosis is scarce. The only modeling study we identi-
fied was limited for early clinical decision-making because it included “length of hospital stay” as a predictor [17]. Second, 
few studies have systematically compared the performance of different ML models for predicting both 90- and 180-day 
outcomes in the same patient cohort.

Therefore, this study aims to develop and systematically compare several machine learning models using clinical data 
from a cohort of AIS patients who received intravenous thrombolysis. Our primary objectives are to identify the best-
performing models for predicting unfavorable outcomes at 90 and 180 days and to determine the key clinical predictors 
at each of these time points. We expect this research to provide clinicians with accurate prognostic tools for different 
post-treatment stages and to offer new evidence on the long-term benefits of thrombolytic therapy.

Materials and methods

This study follows the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) guidelines [18].

Study participants

This was a retrospective analysis of prospectively collected data from consecutive patients with AIS who received IVT with 
recombinant tissue plasminogen activator (rt-PA) at People’s Hospital of Longhua, Shenzhen between October 2020 and 
December 2024. The hospital’s Department of Neurology is a major stroke center serving a population of approximately 3 
million. All patients were treated in the emergency observation room following standardized protocols.

Inclusion criteria were as follows: (1) were aged ≥18 years; (2) met the diagnostic criteria for AIS and indications for 
IVT according to the 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke developed by the 
American Heart Association (AHA)/American Stroke Association (ASA); (3) received rt-PA (alteplase; total dose 0.9 or 
0.6 mg/kg; maximum dose 90 mg) within 4.5 hours after symptom onset; (4) had a premorbid mRS score ≤1; and (5) had 
complete clinical, laboratory, and follow-up data available at 90 days. We excluded patients who: (1) underwent concur-
rent intra-arterial thrombectomy; (2) had a pre-existing functional disability (premorbid mRS > 1); or (3) had a posterior 
circulation infarction. This study was approved by the Institutional Review Board of the People’s Hospital of Longhua, 
Shenzhen (Approval No. 2024073). Data were accessed for research on January 15, 2025. All patient data were fully ano-
nymized prior to analysis, and the authors had no access to identifying information. For the secondary analysis of 180-day 
outcomes, follow-up data were available for 346 of the 432 eligible patients (80.1%).

Data collection

We collected the following baseline data for each patient prior to IVT through standardized assessments. Clinical param-
eters included demographic characteristics (age, sex), vascular risk factors (hypertension, diabetes mellitus, atrial fibril-
lation, coronary artery disease, prior stroke, smoking status, alcohol consumption), baseline functional status (premorbid 
mRS score), stroke severity (NIHSS score), TOAST classification, and critical time intervals (onset-to-door time, door-to-
needle time). Laboratory parameters included (LDL cholesterol), coagulation studies (fibrinogen, international normalized 
ratio, D-dimer), inflammatory markers (high-sensitivity C-reactive protein), hematological parameters (white blood cell 
count), and metabolic indices (blood glucose, serum creatinine). All laboratory tests were performed prior to IVT using 
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standardized automated analyzers. Fibrinogen levels were measured using the Clauss method. Attending neurologists 
and emergency physicians documented the clinical data, which were then entered into a specialized research database 
by trained personnel. The database underwent regular quality control assessments. Missing data were imputed using the 
K-Nearest Neighbors (KNN) method. To ensure model reliability, variables with >10% missing values were excluded from 
the analysis.

Clinical outcomes

Trained neurologists, blinded to the study objectives, assessed clinical outcomes at 90 days for all participants through 
structured telephone interviews or outpatient follow-up visits. The same procedure was followed for the 180-day assess-
ment, for which data were available for 346 participants. Functional outcomes were evaluated using the mRS. A mRS 
score of ≤2 indicated functional independence (good outcome), whereas a mRS score of >2 suggested functional depen-
dence (unfavorable outcome).

Sample size justification

Sample size adequacy was retrospectively assessed using the method proposed by Riley et al. for prediction model 
development [19]. Based on an expected C-statistic of 0.70 and acceptable margin of error of 0.05, the minimum required 
sample size was calculated as:

	
n =

(1.96)2 × 0.188× 0.812
(0.05)2

≈ 233
	 (1)

Our cohort of 432 patients exceeded this minimum requirement, providing sufficient statistical power for model develop-
ment and validation.

Statistical analysis

All statistical analyses were conducted in Python (version 3.10) using key libraries such as NumPy, Pandas, SciPy, 
Statsmodels, and Scikit-learn. Continuous variables are expressed as mean ± standard deviation (SD) for normally 
distributed data and median [interquartile range (IQR)] for non-normally distributed data. Categorical variables were 
presented as counts and percentages (%). The Shapiro-Wilk test was used to assess the normality of continuous 
variables. For baseline comparisons, independent samples t-tests or Mann-Whitney U tests were used for continuous 
variables as appropriate. Chi-square or Fisher’s exact tests were used for categorical variables, with the latter applied 
when expected cell counts were below 5. For modeling, categorical variables were one-hot encoded, and continuous 
variables were standardized using z-score normalization. A two-stage feature selection process was employed to iden-
tify predictors for the primary functional outcome (defined as mRS 0–2 at 90 days). First, univariate analysis was con-
ducted, and variables with a p-value < 0.10 were considered potential predictors. Second, a Least Absolute Shrinkage 
and Selection Operator (LASSO) regression model with 5-fold cross-validation was applied to these candidate variables 
to perform final feature selection and mitigate overfitting. A p-value < 0.05 was considered statistically significant for all 
final analyses.

To assess potential selection bias due to the 19.9% loss to follow-up at 180 days, we compared baseline characteristics 
between patients with (n = 346) and without (n = 86) follow-up data. The groups were similar in most key variables, includ-
ing NIHSS score (p = 0.76), though small vessel occlusion was less frequent in the lost-to-follow-up group (p = 0.005) (S1 
Table). Stratifying by NIHSS quartiles confirmed no association between stroke severity and follow-up status (p = 0.316) 
(S2 Table). Finally, a sensitivity analysis imputing outcomes under worst- and best-case scenarios established a plausible 
range for the true 180-day outcome rate (S3 Table).
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Model development

We trained and evaluated five machine learning algorithms to predict the primary functional outcome: Logistic Regres-
sion (LR), Random Forest (RF), Decision Tree (DT), SVM, and Extreme Gradient Boosting (XGBoost). The dataset was 
randomly partitioned into a training set (80%) and a holdout testing set (20%). Stratified sampling based on the outcome 
variable was used to ensure proportional representation in both sets. Hyperparameters for each model were tuned on the 
training set using a 5-fold cross-validation grid search (GridSearchCV). Using the optimized hyperparameters, the models 
were then retrained on the entire training set. Final model performance was evaluated on the holdout testing set. Evalua-
tion metrics included the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), precision, recall, F1-score, 
and accuracy. The DeLong test was used to statistically compare the AUCs of different models. The RF model, which 
demonstrated the best performance (see Results), was selected for all subsequent analyses. To compare the evolution of 
predictor importance over time, we analyzed the feature importance profiles of the RF models trained for 90-day and 180-
day outcomes. Finally, a nomogram was created for clinical application, and patients were stratified into risk groups based 
on the predicted probabilities from the 180-day RF model.

Results

Patient characteristics

We initially screened 536 patients with acute ischemic stroke who received intravenous thrombolysis between October 
2020 and December 2024 were initially identified. As detailed in the flowchart (Fig 1), 104 patients were excluded due to 
missing key baseline data (n = 24), unavailable outcome data (n = 42), receipt of endovascular treatment (n = 23), or severe 
systemic comorbidities (n = 15), leaving a final cohort of 432 patients for the 90-day outcome analysis.

Fig 1.  Flowchart of Patient Enrollment and Selection.

https://doi.org/10.1371/journal.pone.0338011.g001

https://doi.org/10.1371/journal.pone.0338011.g001
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Of these 432 patients, 81 (18.8%) experienced an unfavorable outcome (mRS > 2) at 90 days. For the 180-day anal-
ysis, 86 patients were excluded due to loss to follow-up (n = 39) or incomplete follow-up (<180 days; n = 47), leaving 346 
patients for the long-term analysis. Among these, 48 (13.9%) had an unfavorable outcome. Baseline demographic and 
clinical characteristics of the cohort are shown in Table 1.

Univariate analysis and LASSO feature selection

Following this, variables with a P-value < 0.10 were entered into a LASSO regression model unfavorable outcomes at both 
90 and 180 days, including older age, higher pre-treatment NIHSS score, and large-artery atherosclerosis subtype (all 
P < 0.1, S4 Table). Conversely, the small-vessel occlusion subtype was a consistent predictor of a good outcome.

Variables with a P-value < 0.10 were subsequently included in a LASSO regression model to mitigate multicollinearity 
and select the most robust predictors. The optimal penalty parameter (λ) was selected by minimizing the binomial devi-
ance, as shown in Fig 2. This process yielded 14 predictors for the 90-day model and 13 for the 180-day model. The 
pre-treatment NIHSS score and age were the most influential predictors for the 90-day outcome, while the NIHSS score 
was the single most powerful predictor for the 180-day outcome (S5 Table).

Machine learning model performance and clinical utility

In 5-fold cross-validation, the RF model demonstrated the highest mean Area Under the Curve (AUC) for the 90-day end-
point (mean AUC = 0.760, 95% CI [0.676–0.823]), closely followed by the Logistic Regression (mean AUC = 0.759, 95% 
CI [0.684–0.835]) and SVM (mean AUC = 0.756, 95% CI [0.671–0.810]) models (Fig 3A). For the 180-day endpoint, the 
RF model again achieved the highest performance (mean AUC = 0.847, 95% CI [0.808–0.886]), followed by the Logistic 
Regression (mean AUC = 0.828, 95% CI [0.754–0.902]) and SVM (mean AUC = 0.823, 95% CI [0.765–0.921]) models (Fig 
3B). The superior performance of these models was confirmed on the holdout test set, with radar plots showing balanced 
performance across accuracy, precision, recall, and F1-score (Fig 3C, 3D).

To evaluate the clinical utility of the models, we performed Decision Curve Analysis (DCA). The analysis showed that 
the top-performing 90-day LR model (Test set AUC = 0.757) and 180-day RF model (Test set AUC = 0.833) also yielded the 
highest net benefit across a wide range of clinically relevant threshold probabilities (Fig 3E, 3F). This indicates that using 
these models to inform clinical decisions would be more beneficial than the default strategies of treating all or no patients, 
thereby confirming their clinical utility.

Feature importance in predicting outcomes

To investigate the temporal evolution of predictor importance, we compared feature importance from the RF models for 
90- and 180-day outcomes (Fig 4). To highlight temporal shifts, features in the plot are unified and sorted by descending 
importance for the 180-day outcome. While Pre-treatment NIHSS Score and Age are confirmed as the two most dominant 
predictors across both time points, reinforcing their fundamental role, the analysis revealed a significant prognostic shift. 
Acute physiological markers, most notably Fibrinogen and Blood Glucose, were highly influential for the 90-day outcome, 
but their predictive power diminished substantially when predicting the 180-day outcome. Conversely, the importance 
of factors representing underlying patient state and potential chronic inflammation, such as White Blood Cell Count and 
Pre-morbid mRS score, became more pronounced over the longer term. This finding demonstrates an evolution from the 
influence of acute-phase physiological factors in short-term prediction to the greater importance of baseline patient char-
acteristics and chronic inflammatory states for long-term prognosis.

Discussion

In this study, we developed and validated multiple machine learning models to predict long-term unfavorable outcomes in 
patients with AIS following intravenous thrombolysis. Our results indicate that the models demonstrated good to excellent 



PLOS One | https://doi.org/10.1371/journal.pone.0338011  December 4, 2025 7 / 14

discriminative performance. The optimal model, however, varied by the prediction endpoint: LR demonstrated the best 
overall performance for 90-day outcomes, whereas RF proved superior for 180-day predictions. Our analysis first con-
firmed the importance of established predictors, particularly the pre-treatment NIHSS score and patient age, which are 
fundamental to prognostic assessment. Notably, our findings revealed a dynamic shift in the predictive importance of key 

Table 1.  Baseline Demographic and Clinical Characteristics of the Study Cohort.

Characteristic Total (N = 432) 90 Days Outcome P-Value 180Days Outcome P-Value

Good Outcome 
(n = 351)

Unfavorable Out-
come (n = 81)

Good Outcome 
(n = 298)

Unfavorable Out-
come (n = 48)

Demographics

Age, years 57.0 [48.0-68.0] 56.0 [47.0-66.5] 66.0 [56.0-77.0] <0.001 56.0 [47.0-67.0] 65.0 [54.0-79.2] <0.001

Male sex 309 (71.5) 255 (72.6) 54 (66.7) 0.350 217 (72.8) 32 (66.7) 0.570

Alcohol consumption 89 (20.6) 77 (21.9) 12 (14.8) 0.200 73 (24.4) 6 (12.5) 0.200

Current or former smoking 152 (35.2) 128 (36.5) 24 (29.6) 0.300 117 (39.2) 11 (22.9) 0.070

Baseline Assessment

Premorbid mRS score 0.0 [0.0-1.0] 0.0 [0.0-1.0] 0.0 [0.0-2.0] 0.090 0.0 [0.0-1.0] 0.0 [0.0-2.2] 0.002

Pre-treatment NIHSS score 4.0 [2.0-8.0] 4.0 [2.0-7.0] 9.0 [4.0-14.0] <0.001 4.0 [2.0-7.0] 11.0 [5.8-14.2] <0.001

Baseline GCS score 15.0 [15.0-15.0] 15.0 [15.0-15.0] 15.0 [12.0-15.0] <0.001 15.0 [15.0-15.0] 15.0 [12.0-15.0] <0.001

Medical History

Hypertension 139 (32.2) 118 (33.6) 21 (25.9) 0.230 93 (32.3) 12 (25.0) 0.400

Diabetes mellitus 70 (16.2) 51 (14.5) 19 (23.5) 0.070 47 (16.3) 8 (16.7) 1.000

Atrial fibrillation 18 (4.2) 12 (3.4) 6 (7.4) 0.120 9 (3.1) 5 (10.4) 0.040

Coronary artery disease 15 (3.5) 14 (4.0) 1 (1.2) 0.320 12 (4.2) 0 (0.0) 0.230

Prior stroke 71 (16.4) 58 (16.5) 13 (16.0) 1.000 49 (17.0) 8 (16.7) 1.000

Prior myocardial infarction 2 (0.5) 2 (0.6) 0 (0.0) 1.000 2 (0.7) 0 (0.0) 1.000

Prior atrial fibrillation 17 (3.9) 11 (3.1) 6 (7.4) 0.110 7 (2.4) 5 (10.4) 0.020

Prior coronary artery disease 24 (5.6) 17 (4.8) 7 (8.6) 0.180 12 (4.2) 4 (8.3) 0.260

TOAST Classification

Large artery atherosclerosis 162 (37.5) 118 (33.6) 44 (54.3) <0.001 100 (33.5) 27 (56.2) 0.001

Small vessel occlusion 176 (40.7) 154 (43.9) 22 (27.2) 0.008 139 (48.3) 10 (20.8) <0.001

Cardioembolism 33 (7.6) 25 (7.1) 8 (9.9) 0.540 18 (6.2) 8 (16.7) 0.020

Other determined 31 (7.2) 26 (7.4) 5 (6.2) 0.880 18 (6.2) 2 (4.2) 0.750

Undetermined 30 (6.9) 28 (8.0) 2 (2.5) 0.130 23 (8.0) 1 (2.1) 0.220

Time Metrics

Onset to door time, minutes 90.5 [51.0-150.0] 90.0 [52.0-150.5] 102.0 [50.0-145.0] 0.790 96.0 [55.0-151.0] 77.0 [38.5-140.0] 0.070

Door to needle time, minutes 36.0 [24.0-32.0] 36.0 [24.0-32.0] 36.0 [24.0-32.0] 0.910 36.0 [24.0-32.0] 36.0 [24.0-36.0] 0.660

Laboratory Values

LDL cholesterol, mmol/L 3.0 [2.4-3.6] 3.0 [2.4-3.6] 3.0 [2.4-3.6] 0.940 2.9 [2.4-3.6] 3.0 [2.3-3.5] 0.890

Fibrinogen, g/L 2.9 [2.4-3.5] 2.9 [2.4-3.4] 3.1 [2.6-3.7] 0.030 2.9 [2.4-3.4] 3.1 [2.6-4.1] 0.100

White blood cell count, × 10⁹/L 8.0 [6.5-9.6] 7.8 [6.5-9.4] 8.6 [6.8-10.2] 0.040 8.0 [6.5-9.3] 9.2 [7.5-11.2] 0.003

High-sensitivity C-reactive protein, 
mg/L

0.6 [0.5-2.9] 0.5 [0.5-2.5] 1.0 [0.5-5.8] 0.003 0.5 [0.5-2.5] 0.9 [0.5-5.2] 0.090

International normalized ratio 1.0 [0.9-1.0] 1.0 [0.9-1.0] 1.0 [0.9-1.1] 0.020 1.0 [0.9-1.0] 1.0 [0.9-1.1] 0.060

D-dimer, mg/L 0.3 [0.2-1.1] 0.3 [0.2-1.0] 0.4 [0.2-1.5] 0.140 0.3 [0.2-0.8] 0.5 [0.2-1.4] 0.060

Blood glucose, mmol/L 5.5 [5.1-6.8] 5.4 [5.0-6.5] 5.7 [5.2-9.0] 0.002 5.3 [5.0-6.6] 5.7 [5.2-7.4] 0.020

Serum creatinine, μmol/L 77.0 [63.0-91.6] 76.8 [62.7-91.0] 78.6 [65.0-97.0] 0.500 76.0 [62.0-91.0] 80.7 [65.2-100.2] 0.130

https://doi.org/10.1371/journal.pone.0338011.t001

https://doi.org/10.1371/journal.pone.0338011.t001
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biomarkers when predicting outcomes at the 90-day versus the 180-day time point. This finding suggests evolving patho-
physiological mechanisms that characterize distinct phases of post-stroke recovery.

A key finding of this study is the dynamic shift in the prognostic importance of different biomarkers over time following 
thrombolysis. The biomarkers analyzed, including fibrinogen and white blood cell count, were derived from the first labo-
ratory tests conducted within 24 hours of admission, providing a critical snapshot of the pathophysiological state during 
the hyperacute phase of stroke. For 90-day outcomes, the admission fibrinogen level was a strong predictor. This is not 
only because fibrinogen, as an acute-phase reactant, reflects the immediate post-stroke inflammatory storm and blood-
brain barrier disruption, but also because its significance is directly linked to the core therapeutic intervention of intrave-
nous thrombolysis [20]. Elevated fibrinogen levels may signify a greater initial thrombus burden or potential resistance to 
thrombolytic therapy [21]. These factors are decisive for early neurological outcomes. This observation is consistent with 
previous studies, which have repeatedly reported a strong association between fibrinogen levels and 90-day prognosis 
in patients with AIS, both with and without thrombolysis [22]. However, when the observational window was extended to 
180 days, the predictive power of fibrinogen diminished, while the baseline white blood cell (WBC) count emerged as a 
more important factor for long-term prognosis. This transition strongly suggests that the key pathophysiological drivers 

Fig 2.  Feature Selection Using LASSO Regression for Predicting 90-Day and 180-Day Outcomes.

https://doi.org/10.1371/journal.pone.0338011.g002

https://doi.org/10.1371/journal.pone.0338011.g002
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Fig 3.  Comparative Performance of Models Showing (A, B) Cross-Validation AUC, (C, D) Test Set Radar Plots, and (E, F) Decision Curve 
Analysis.

https://doi.org/10.1371/journal.pone.0338011.g003

https://doi.org/10.1371/journal.pone.0338011.g003
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shaping the long-term recovery trajectory shift from acute-phase thrombosis and injury to sustained inflammatory and 
immunomodulatory processes in the subacute and chronic stages [23]. As a sensitive indicator of systemic inflammation, 
the sustained impact of WBC count may modulate the ultimate outcome over a longer time horizon by influencing neuro-
immune responses, affecting neuroplasticity, and potentially increasing the risk of secondary infection [24]. This “temporal 
drift” in the prognostic value of biomarkers, observed in our cohort of thrombolysis-treated patients with AIS, provides new 
clues for individualized prognostication in this field. A key avenue for future research is to explore how this time-dependent 
predictive pattern can be leveraged. For instance, developing novel dynamic models that integrate the prognostic weight 
of fibrinogen at 90 days and WBC count for long-term prediction could significantly enhance the accuracy of risk stratifica-
tion, thereby helping to match patients at different recovery stages with the most appropriate rehabilitation and follow-up 
strategies.

Our 180-day RF model (test set AUC = 0.833) compares favorably with previous prognostic tools, such as a nomogram 
study reporting an accuracy of 71.99% [17]. We attribute this improved performance to two key factors. First, the RF algo-
rithm can effectively capture complex, non-linear interactions between predictors (e.g., WBC count, age, and glucose), 
which may better reflect the underlying pathophysiology of stroke [25]. Second, our model relies exclusively on routine 
laboratory tests available upon admission, ensuring it can be integrated into clinical workflows without additional cost or 
delay. This contrasts with models requiring advanced imaging or genomic data, which are often impractical in the hyper-
acute setting.

The observed temporal shift in predictor importance likely reflects the evolving pathophysiology of stroke recovery. 
Fibrinogen, a key acute-phase reactant, serves as a marker for the initial vascular event and subsequent inflamma-
tory storm. Its elevated levels may indicate a larger thrombus burden or resistance to thrombolysis, and its degradation 

Fig 4.  Feature Importance Analysis: Random Forest Models for Stroke Outcome Prediction Temporal Evolution from 90-Day to 180-Day 
Outcomes.

https://doi.org/10.1371/journal.pone.0338011.g004

https://doi.org/10.1371/journal.pone.0338011.g004
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products can amplify neuroinflammation and blood-brain barrier disruption [26]. Consequently, its predictive power is most 
pronounced in the early phase (i.e., 90 days). In contrast, the growing importance of the WBC count at 180 days points to 
the role of sustained systemic inflammation in long-term outcomes. A persistently elevated WBC count may signal unre-
solved chronic inflammation or stroke-induced immunosuppression, which impairs neurorepair and increases susceptibility 
to secondary infections—a major cause of long-term morbidity and mortality [27,28]. Therefore, WBC count may act as an 
early indicator of a patient’s long-term inflammatory burden and resilience, with its impact accumulating over time.

Finally, DCA confirmed the clinical utility of our models. The analysis showed that using the models for decision-making 
yields a higher net benefit than treating all or no patients across a wide range of risk thresholds. This suggests that the mod-
els can serve as practical decision-support tools. For example, by inputting several baseline metrics, clinicians could stratify 
patients by their long-term risk. Such early risk stratification is crucial for personalizing post-acute care, such as tailoring reha-
bilitation intensity or scheduling more frequent follow-ups, thereby optimizing resource allocation for patients at highest risk.

Pre-morbid functional status, as measured by the mRS, is an independent and significant predictor of long-term func-
tional outcomes. Its consistent incorporation as a core variable in both conventional multivariable predictive models 
and advanced machine learning algorithms supports this association [29]. The clinical implication of this finding is that 
the pre-morbid mRS serves not only as a baseline for prognostic assessment but also as a guide for clinical practice. It 
enables clinicians to establish realistic rehabilitation expectations with patients and their families early on and to devise 
more tailored long-term treatment and care plans accordingly. Large artery atherosclerosis (LAA) was identified as an 
independent predictor of unfavorable prognosis. This observation aligns with the established view that different stroke 
subtypes follow distinct clinical trajectories and carry varying risks of recurrence [30]. Previous research has consistently 
demonstrated that strokes secondary to LAA, such as those caused by intracranial arterial stenosis, are associated with 
poorer long-term outcomes compared to those from small-vessel disease, like lacunar infarcts [31]. Therefore, precise 
etiological subtyping of stroke, particularly the identification of LAA, is essential for guiding secondary prevention strate-
gies. Decisions regarding whether to intensify statin and antiplatelet therapy or to consider endovascular intervention are 
important for improving patients’ long-term quality of life, as these interventions target the pathophysiological mechanisms 
of atherosclerosis. Traditional vascular comorbidities, particularly diabetes mellitus (DM) and coronary artery disease 
(CAD), were also confirmed as key negative prognostic factors, a conclusion widely substantiated in the literature. Studies 
have consistently shown that the presence of diabetes significantly worsens functional outcomes in patients with ischemic 
stroke, both in the acute phase and over the long term [32]. This adverse impact likely reflects a more extensive, underly-
ing systemic vascular pathology. For instance, the combination of hypertension and diabetes not only directly exacerbates 
unfavorable post-stroke outcomes but also frequently amplifies the risk of future cardiocerebrovascular events through 
intermediary mechanisms, such as the impairment of renal function [33]. From a clinical standpoint, therefore, a history 
of DM or CAD should be viewed as an indicator of poor overall vascular health. This underscores the necessity for com-
prehensive and intensified secondary prevention strategies in these patients, focusing on the systemic management of all 
coexisting vascular risks rather than solely addressing the index cerebrovascular event.

Several limitations of this study should be acknowledged. First, this was a single-center, retrospective study, which may 
limit the generalizability of our findings. Although our study included a large sample from Shenzhen, a diverse metropolis, 
which may support its external validity, the generalizability of our findings may still be limited, and the conclusions require 
cautious interpretation. Institution-specific protocols and patient demographics might have influenced the results. There-
fore, future large-scale, multi-center prospective studies are warranted to validate our models in different populations and 
healthcare settings. Second, our predictive models were constructed based on clinical and laboratory variables readily 
available at baseline, but did not include imaging data, such as infarct volume, collateral circulation status, or recanaliza-
tion grades. Due to the retrospective design, standardizing and retrieving quantitative imaging metrics across all patients. 
These imaging markers are known to be powerful prognostic factors for stroke outcomes. Future research should aim to 
integrate multi-modal imaging information to develop more comprehensive and accurate predictive models.
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Conclusion

In this cohort study of patients with acute ischemic stroke receiving intravenous thrombolysis, machine learning models, 
particularly logistic regression for 90-day and random forest for 180-day outcomes, effectively predicted long-term func-
tional dependence. While confirming the strong predictive power of baseline NIHSS score and age, this study identified 
a temporal shift in the prognostic significance of key biomarkers. Admission fibrinogen levels were a stronger predictor of 
90-day outcomes, whereas white blood cell count emerged as more influential for 180-day prognosis. This finding sug-
gests that the underlying pathophysiological drivers of recovery evolve from acute-phase thrombosis and injury to more 
sustained systemic inflammatory processes over time. These findings support the use of time-specific machine learning 
models as practical tools for improving early, individualized prognostication and suggest that tailoring long-term manage-
ment strategies to the evolving inflammatory state may be important for improving patient outcomes.
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