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Abstract

Heart rate variability (HRV) is a well-established marker of autonomic regulation and

undergoes profound maturation during early human development. In this study, topo-

logical data analysis (TDA) is applied to investigate the evolving geometric com-

plexity of HRV across pediatric developmental stages. Using persistent homology

in homological dimension 1, we extracted topological descriptors from time-delay

embedded RR interval series of 127 individuals aged 1 month to 17 years. We iden-

tified statistically significant, age-dependent transformations in the topological struc-

ture of HRV signals. Neonates and infants exhibited a greater number and strength

of persistent features, reflecting highly heterogeneous cardiac control dynamics dur-

ing early autonomic maturation. In contrast, adolescents displayed reduced topolog-

ical complexity and increased entropy, suggesting a shift toward more uniform and

structured physiological control. Topological measures correlated with conventional

HRV indices, confirming their physiological relevance. Furthermore, pairwise dis-

tances between persistence landscapes revealed an inverse relationship between

intra-group topological variability and classical HRV measures. Collectively, our find-

ings demonstrate that persistent homology provides a powerful, multiscale-aware

framework to capture developmental trajectories in cardiac autonomic regulation, with

potential applications in pediatric monitoring, developmental physiology, and early

detection of dysautonomia.

1 Introduction

Heart rate variability (HRV) is a well-established, non-invasive biomarker of auto-
nomic nervous system (ANS) function, capturing the dynamic balance between sym-
pathetic and parasympathetic modulation of cardiac activity [1,2]. In pediatric pop-
ulations, HRV undergoes marked developmental transformations that parallel the
progressive maturation of autonomic regulation from the neonatal period through
adolescence [3–7]. Time-domain metrics, such as the standard deviation of normal-
to-normal intervals (SDNN) and the root mean square of successive differences
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(rMSSD) typically increase during infancy, reach their peak in middle childhood, and
stabilize or decline during adolescence, reflecting age-dependent reorganizations in
ANS dynamics [5,8,9].

Despite clinical utility, conventional time and frequency-domain analyzes may
fail to characterize the inherently complex, nonlinear, and multiscale nature of car-
diac dynamics, particularly during early developmental windows marked by rapid
physiological change [10]. To address these limitations, nonlinear methods such as
approximate entropy, sample entropy, and multiscale entropy have been introduced
to assess signal irregularity and complexity [11–13].

Complementary approaches, including fractal analyses - most notably detrended
fluctuation analysis (DFA) - have been applied to quantify long-range temporal cor-
relations and scale- invariant behavior in HRV time series [14]. However, these tech-
niques generally rely on global statistical characterizations and may overlook funda-
mental geometric and structural properties embedded in the signal’s phase-space
trajectory.

In addition, Recurrence Quantification Analysis (RQA) has been widely employed
to characterize cardiac dynamics through recurrence patterns that reflect transi-
tions between—and stability within—physiological states [15–18]. While RQA yields
informative statistics (e.g., recurrence rate, determinism, laminarity), these primarily
neighborhood-dependent, density-based measures provide only an indirect view of
the global geometry of the reconstructed attractor. Consequently, RQA may be lim-
ited in detecting higher-order structural organization—such as cyclic connectivity and
multiscale coordination—that can reveal global aspects of autonomic control. These
considerations motivate the complementary use of TDA, which summarizes global
structure across scales via persistent homology.

Topological data analysis (TDA) has recently emerged as a powerful paradigm
to capture the underlying shape and structure of complex biological signals. Among
TDA techniques, persistent homology provides a mathematically rigorous approach
to identify and quantify topological features such as connected components and
cycles across multiple spatial or temporal scales within embedded time series rep-
resentations [19–22]. These descriptors have shown efficacy in diverse biomedical
applications, including neural signal processing, cardiopulmonary monitoring, and
speech dynamics [23,24].

Yet, the application of TDA to the study of HRV developmental trajectories remains
largely unexplored. Although normative reference values of HRV across child-
hood and adolescence have been established using both linear and nonlinear tech-
niques [5,6,9,14], the topological organization of HRV signals - and how it evolves
through developmental stages - has not been systematically investigated. Given the
sensitivity of persistence homology to features such as cyclicity, recurrence, and geo-
metric transitions, TDA hold promise for revealing new dimensions of complexity in
cardiac regulation during autonomic maturation.

The central hypothesis of this study is that topological descriptors derived from
persistent homology can uncover age-dependent patterns of cardiac complexity that
are not fully captured by conventional time-, frequency-, and nonlinear HRV indices.
To test this hypothesis, we apply persistent homology to RR-interval time
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series from a cohort of healthy pediatric participants aged 1 month to 17 years, aiming to reveal developmental transi-
tions in the geometry of cardiac dynamics. Our motivation is to provide multiscale, topology-based markers that comple-
ment standard HRV measures as objective indicators of autonomic maturation.Through delay-coordinate embedding,
we reconstruct the dynamical state-space of each signal and compute topological descriptors in the first homology group
(H1), which captures one-dimensional structures such as loops. These include the number of persistent features, total
persistence, mean persistence, and persistence entropy. We then examine how these descriptors vary across defined
developmental age groups to assess age-dependent changes in cardiac structure.

The remainder of this paper is organized as follows. Section 1 reviews the relevant literature on heart rate variability
and topological data analysis. Section 2 describes the methodology, including the dataset, preprocessing steps, feature
extraction with persistent homology, and analytical techniques. Section 3 presents the results of the topological analy-
sis. Section 4 discusses the implications of these findings, their relation to existing research, and potential physiological
interpretations. Finally, Section 5 summarizes the main conclusions, highlights the study’s contributions, and suggests
directions for future research.

2 Literature review

The assessment of HRV in pediatric populations has progressively evolved from traditional linear methodologies toward
more advanced analytical frameworks aimed at capturing the intricate dynamics of autonomic maturation. Throughout
childhood and adolescence, HRV exhibits marked age-dependent modulations that reflect the structural and functional
development of cardiac autonomic regulation systems [4,6,8].

Conventional time-domain (e.g., SDNN, RMSSD, pNN50) and frequency-domain (e.g., LF, HF, LF/HF ratio) indices
have provided foundational insights into these developmental patterns [4–6,8,14]. However, their underlying assump-
tions of linearity and signal stationarity limit their interpretability in pediatric contexts characterized by inherently dynamic,
nonlinear, and multiscale physiological changes [10].

In response to these limitations, nonlinear analytical frameworks have been increasingly employed to capture the com-
plexity and adaptive properties of cardiac autonomic function. Seminal studies, such as that of Cysarz et al. [25] demon-
strated significant nonlinear developmental trajectories using entropy measures and DFA on long-term HRV recordings,
revealing non-monotonic trends in fractal scaling (DFA 𝛼1) peaking in mid-childhood. These findings challenged conven-
tional linear interpretations, highlighting the intrinsic complexity of autonomic maturation.

Recent normative studies have further expanded the analytical landscape by integrating indices derived from 24-hour
Holter recordings [26]. These have consistently shown age-related reductions in entropy and fractal self-similarity, rein-
forcing the need for multidimensional approaches that account for temporal, spectral, and nonlinear dimensions variabil-
ity. Clinical studies have additionally validated the diagnostic utility of nonlinear HRV measures in developmental psy-
chopathology. For instance, Fiskum et al. [9] reported that entropy-based indices effectively differentiated children with
internalizing disorders from healthy controls, while other investigations underscored the value of fractal and recurrence
analyses as sensitive markers of autonomic dysregulation in pediatric populations [27].

Comparative studies have emphasized the methodological robustness of combining multiple nonlinear measures —
such as multifractal DFA, entropy metrics, and Poincaré plot analysis — over single-metric approaches, particularly in
pediatric cohorts where developmental dynamics are highly heterogeneous [28]. Beyond classical nonlinear approaches,
methodological advances have extended HRV analysis to symbolic dynamics, temporal asymmetry, and fragmenta-
tion frameworks. Symbolic dynamics —often via entropy-like symbolic indices—encodes ordinal patterns in beat-to-
beat variability, capturing short-term organization and regime shifts within the cardiac signal [29]. Asymmetry metrics
quantify directional differences between heart-rate accelerations and decelerations, providing markers of sympathetic–
parasympathetic balance [30,31]. Heart-rate fragmentation characterizes abrupt, short-lived, and stochastic oscillations
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in RR intervals that may indicate disrupted or immature autonomic regulation [32]. These methods yield sensitive descrip-
tors of local temporal structure and regulation. Complementarily, TDA summarizes the global, multiscale geometry of the
reconstructed dynamics via persistent homology (e.g., H0, H1 features), offering noise-robust topological invariants that
augment symbol-, metric-, and fragmentation-based measures.

Furthermore, sex- and age-specific analyses have revealed consistent gender differences in nonlinear HRV indices, as
well as notable transitions in fractal complexity during pubertal onset [14,33], contributing to more precise age-appropriate
reference models.

Beyond developmental physiology, nonlinear HRV measures have demonstrated relevance in capturing autonomic
alterations associated with emotional and psychological states. Studies in young adults have shown that state anxiety is
associated with detectable changes in HRV structure, particularly through correlation dimension, Lyapunov exponents,
and entropy measures, supporting potential applications in pediatric stress and emotion monitoring [27]. Complementarily,
Gasior et al. [5] emphasized the need to normalize HRV indices relative to heart rate given age-related variations in base-
line rhythm, while other authors have highlighted the modulating effects of environmental and behavioral factors such as
physical activity, sleep, and body composition [8].

Despite these advances, most nonlinear methods yield scalar summaries of signal complexity and fail to capture the
geometric and topological structure embedded in the temporal organization of RR intervals. Topological data analysis —
and in particular, persistent homology — has emerged as a powerful mathematical framework capable of quantifying mul-
tiscale topological features, offering scale-invariant and noise-robust descriptors of signal structure [34–37]. Although per-
sistent homology has proven effective in differentiating pathological from healthy HRV patterns in adult populations (e.g.,
post-stroke cases [36]), its application to pediatric HRV analysis remains largely unexplored.

Notably, prior pediatric studies such as those by Lavanga et al. [6] and Harteveld et al. [4] have advanced our under-
standing of age-dependent HRV maturation using traditional linear and nonlinear metrics, but without addressing the topo-
logical and geometric evolution of cardiac autonomic regulation. This gap is critical, as persistent homology enables the
detection of structural transitions, recurrence patterns, and hierarchical organization in signal dynamics, properties that
are particularly relevant during the rapid physiological changes of early life.

Accordingly, the present study aims to bridge this methodological gap by integrating persistent homology into the anal-
ysis of HRV maturation. We apply TDA to RR interval time series from a cross-sectional pediatric cohort (1 month to 17
years of age), reconstructing the underlying dynamical systems via delay-coordinate embedding and extracting a set of
topological descriptors in the first homology group (H1), including the number of persistent features, total, maximum and
mean persistence, and persistence entropy. These descriptors are analyzed across developmental age groups and com-
pared with standard HRV indices to evaluate their physiological relevance.

Our findings reveal significant age-related shifts in topological HRV complexity, with early stages exhibiting high topo-
logical heterogeneity and adolescents demonstrating more structured and compact signal architectures. Topological
features also show meaningful correlations with conventional HRV indices, underscoring their validity as biomarkers of
autonomic maturation. This integrative topological framework offers novel insights into pediatric autonomic maturation
and holds promise for refining normative references and enhancing clinical assessment tools in pediatric physiology and
developmental medicine.

3 Methods

This study employed a TDA framework to investigate developmental changes in HRV. The methodological workflow com-
prised six sequential stages, which are detailed in the following subsections. First, we curated a publicly available dataset
of RR interval time series from a pediatric cohort [38,39]. The signals underwent preprocessing and quality control to
ensure artifact-free data. Participants were then stratified into developmental age groups according to established pedi-
atric definitions. Next, we extracted multiscale topological descriptors from time-delay embeddings of the HRV signals
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using persistent homology. Group-level differences were quantified through persistence landscapes to capture develop-
mental trajectories. Finally, statistical analyses were performed to evaluate inter-group differences and to examine corre-
lations between topological features and conventional HRV metrics. Fig 1 provides an overview of the analytical workflow,
summarizing the six stages from data acquisition to topological feature extraction and statistical analysis.

3.1 HRV dataset and participants

Heart rate variability time series were obtained from a publicly available dataset hosted on PhysioNet [38,39]. For this
study, we included only participants aged 1 month to 17 years to investigate age-dependent changes in cardiac auto-
nomic function during early development, yielding a final sample of 127 individuals. Participants were excluded if age
information was unavailable or if essential data were missing.

All data were collected with institutional ethics approval from the National University of La Plata, Argentina. Partici-
pants were medication-free and exhibited normal electrocardiographic profiles according to standard Holter monitoring
guidelines.

3.2 Signal acquisition and preprocessing

Twenty-four-hour ECG recordings were acquired using digital three-lead Holter monitors (DMS300-7, DMS300-3A, Galix),
with sampling frequencies ranging from 512 to 1024 Hz. RR intervals were extracted from sinus rhythm segments, and
artifacts were identified and corrected by expert cardiologists. Only recordings with fewer than 8% total artifact burden and
no individual artifact segment exceeding 20 seconds were included. Artifact-contaminated segments were excluded, and
only clean, continuous RR interval time series were retained for analysis.

No additional digital filtering was applied beyond artifact correction, ensuring that analyses were conducted on phys-
iologically valid, minimally processed data and that intrinsic beat-to-beat variability was preserved. For each partici-
pant, we selected a contiguous, artifact-free segment of 3,000 RR intervals. Because the segment length is defined in
beats, its duration depends on the average heart rate and thus spans approximately 25–43 minutes across our cohort
(≈ 3,000/120–3,000/70 min; infants ≈ 120 bpm, adolescents ≈ 70 bpm). This window provides sufficient data for reli-
able estimation of topological descriptors while standardizing data quantity across developmental stages. Prior to state-
space reconstruction, each RR series was z-score standardized on a per-subject basis to remove baseline heart-rate
differences, ensuring that extracted topological features reflect intrinsic temporal dynamics rather than absolute level.

3.3 Developmental age stratification

To evaluate age-related trends in HRV dynamics, participants were stratified into seven developmentally meaningful age
groups (see Table 1): neonates (0–1 month), early infancy (1–5 months), late infancy (6–11 months), toddlers (1–2 years),

Fig 1. Overview of the analytical workflow.

https://doi.org/10.1371/journal.pone.0337620.g001
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Table 1. Distribution of participants across defined developmental age groups.

Age group Sample size (n)
Neonates (0–1 mo) 8
Early infancy (1–5 mo) 33
Late infancy (6–11 mo) 29
Toddlers (1–2 yr) 22
Preschoolers (3–5 yr) 10
School-age (6–11 yr) 15
Adolescents (12–17 yr) 10
Total 127

https://doi.org/10.1371/journal.pone.0337620.t001

preschoolers (3–5 years), school-age children (6–11 years), and adolescents (12–17 years). These strata were designed
to capture key stages of the autonomic nervous system and cardiovascular development.

3.4 Topological feature extraction

To quantify the multiscale structural properties of heart rate variability signals, we employed TDA using persistent homol-
ogy, a computational framework derived from algebraic topology. This method characterizes the shape of data by identify-
ing persistent topological features that are robust to noise and provide a signature of the underlying dynamics [40].

Each RR interval time series {RR1,RR2, ...,RRN} was transformed into a point cloud in a reconstructed phase space
using the method of time-delay embedding via Takens’ embedding theorem [41]. This theorem guarantees that for a suffi-
ciently high embedding dimension, the topological properties of the unknown original dynamical system that generated the
time series are preserved in the reconstructed space. Each point vi in this cloud is defined as:

vi = (RRi,RRi+𝜏 ,RRi+2𝜏 , ...,RRi+(d−1)𝜏), (1)

where d is the embedding dimension and 𝜏 is the time delay.
The choice of embedding parameters was guided by physiological considerations and established practices in nonlin-

ear HRV analysis. The time delay (𝜏) was estimated using average mutual information [42], selecting the first minimum of
statistical dependence between successive samples; across developmental groups, the median optimal delay ranged 7–
12 beats, consistent with the first zero-crossing of the autocorrelation function reported for healthy HRV signals [43]. We
therefore adopted 𝜏 = 10 beats, ensuring that successive coordinates (RRi,RRi+10,…) are sufficiently decorrelated while
retaining short-term autonomic influences. This selection is also consistent with the geometry of lagged Poincaré plots,
where the structure at lag m reflects the signal’s autocovariance at that lag [44]. In temporal terms, for typical pediatric
heart rates (≈ 60–120 bpm), this corresponds to 5–10 s, an appropriate scale to capture respiratory sinus arrhythmia and
baroreflex modulation.

The embedding dimension d was evaluated via False Nearest Neighbors (FNN) and Cao’s quantitative measures [45].
FNN fell below 5% at d ≈ 6, and Cao’s ratios saturated near d ≈ 9, indicating adequate unfolding in a low-dimensional
space. Prior studies show that topological/geometric invariants of time series often stabilize at smaller embedding dimen-
sions, revealing essential dynamical structure without redundant coordinates [46]. Consistent with widespread practice in
nonlinear HRV, we adopted a three-dimensional embedding (d ≈ 3) to obtain a compact, interpretable phase space and to
facilitate extraction of topological features (e.g., H1 loops in 3D) linked to oscillatory components of autonomic regulation,
while avoiding the combinatorial complexity and noise sensitivity of higher-dimensional reconstructions [47,48].

This evidence supports the final parameter combination (d = 3, 𝜏 = 10) as a physiologically meaningful and compu-
tationally efficient representation of reconstructed cardiac dynamics, yielding stable and interpretable topological sum-
maries suitable for characterizing autonomic maturation. A complementary sensitivity analysis (S1 File) confirmed that the
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reconstructed attractor retains a stable topological organization at d = 3, with higher-dimensional embeddings contributing
minimal additional information at increased computational cost.

From each embedded time series, Vietoris–Rips filtrations were applied to construct persistence diagrams in homo-
logical dimension 1 (H1). This homological dimension encodes one-dimensional topological features - specifically, loops
and cycles - within the reconstructed state space. These features reflect the recurrent and oscillatory dynamics intrinsic
to HRV, governed by feedback mechanisms of the autonomic nervous system. Focusing on H1 is particularly relevant in
physiological time series analysis, as it captures temporally structured recurrence patterns that are not readily detectable
through conventional linear or spectral methods. Prior evidence supports the relevance of homological dimension one in
distinguishing physiologically distinct states [37].

From each persistence diagram Dk, we extracted the following quantitative descriptors of topological complexity:

• Number of Persistent Features (Nk). The total number of topological features (e.g., cycles in dimension k = 1) in the
diagram. Reflects the structural richness or complexity of the signal geometry:

Nk = |Dk|.

• Total Persistence (TPk). The cumulative lifespan of all persistent features, quantifying the overall prominence of the
topological structures:

TPk = ∑
(bi,di)∈Dk

(di − bi). (2)

• Maximum Persistence (MPk). The single longest-lived feature, indicating the most dominant cyclic structure in the sig-
nal:

MPk = max
(bi,di)∈Dk

(di − bi). (3)

• Mean Persistence (𝜇k). The average lifetime of features in the persistence diagram, representing typical cycle promi-
nence:

𝜇k =
1
Nk

∑
(bi,di)∈Dk

(di − bi). (4)

• Persistence Entropy (PEk). A Shannon entropy-based metric quantifying the diversity or disorder of persistent features,
normalized by their relative contribution to total persistence:

PEk = −
Nk

∑
i=1

pi log(pi), where pi =
di − bi
TPk

. (5)

These metrics jointly quantify abundance, stability, and diversity of cyclic structure in the reconstructed phase space,
providing interpretable and complementary summaries of autonomic oscillations. All descriptors were computed on z-
score standardized RR series using the same filtration and metric to ensure comparability across subjects and ages, fol-
lowing established practice and stability results for persistent homology.

All topological descriptors were computed using the Ripser library in Python [49], with customized post-processing
routines to standardize output formats and remove spurious low-persistence features where necessary.
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3.5 Quantifying topological dissimilarity between age groups via persistence landscapes

To evaluate inter- and intra-group differences in the topological structure of HRV dynamics across developmental stages,
we employed persistence landscapes — a functional summary representation of persistence diagrams introduced by
Bubenik [50].

A persistence landscape ℒ is defined as a sequence of functions {𝜆k(t)}∞k=1, where each function 𝜆k ∶ ℝ→ℝ≥0 denotes
the k-th largest tent function evaluated at filtration scale t. This transformation encodes the multiscale topological features
of a persistence diagram into a structured, Hilbert-space-compatible representation suitable for statistical comparison.

For computational tractability, each landscape was discretized by evaluating the first k = 1 landscape function over a
fixed grid of N = 100 uniformly spaced filtration values. The result is a vectorized representation ℝ:

ℒ = [𝜆1(t1), 𝜆1(t2), … , 𝜆1(tN)]
⊤ ∈ ℝN, (6)

where {t1, t2, … , tN} denotes the discrete filtration scale grid.
To quantify topological dissimilarity between pediatric age groups, we computed the average pairwise Euclidean dis-

tance between persistence landscapes derived from the first homology group of time-delay embedded HRV signals.
Let Gi and Gj denote two developmental age groups, and let ℒa and ℒb be the corresponding persistence landscapes

of subjects a ∈Gi and b ∈Gj, respectively. The mean pairwise topological distance between groups Gi and Gj is defined
as:

d̄Gi,Gj
= 1
|Gi||Gj|

∑
a∈Gi

∑
b∈Gj

d(ℒa, ℒb), (7)

where d(⋅, ⋅) denotes the Euclidean distance between the discretized landscapes vectors:

dEuc(ℒa, ℒb) = (
N

∑
k=1

(ℒ(k)
a − ℒ(k)

b )
2
)
1/2

. (8)

The procedure yields a symmetric distance matrix summarizing the pairwise topological dissimilarities between all
developmental groups. Each matrix entry (i,j) represents the mean Euclidean distance between the persistence land-
scapes of individuals in groups Gi and Gj, thereby quantifying the degree of divergence in the recurrent geometrical pat-
terns of their HRV dynamics.

Diagonal elements (i, i) capture the average within-group topological variability, providing insight into how heteroge-
neous the cardiac signal structure is among individuals of the same developmental stage. Off-diagonal elements (i, j), on
the other hand, reflect between-group differences: larger values indicate greater dissimilarity in topological organization
across age groups. This framework enables a joint assessment of both intra-group coherence and inter-group divergence
in the structural complexity of HRV signals.

3.6 Statistical analysis

To evaluate age-dependent differences in conventional HRV indices and topological descriptors derived from persistent
homology, we performed non-parametric groupwise comparisons using the Kruskal–Wallis H test. When the overall test
indicated statistically significant differences among age groups, post hoc pairwise comparisons were carried out using
Dunn’s test with Holm–Bonferroni correction to control for multiple testing.

To examine the relationship between topological descriptors and conventional HRV indices, such as SDNN, RMSSD,
pNN50, we computed Pearson correlation coefficients. Prior to correlation analysis, all indices were log-transformed to
approximate normality and stabilize variance.
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All statistical analyses were performed using Python (version 3.12), with relevant packages including: scipy, scikit-
posthocs, and statsmodels. A two-tailed significance threshold of p < 0.05 was applied throughout.

4 Results

To evaluate the proposed approach, we analyzed the HRV recordings across the different pediatric age groups and
derived their corresponding topological descriptors. The following subsections summarize the main outcomes of this anal-
ysis, including the age-dependent transformations observed in the persistence features, their relationship with conven-
tional HRV indices, and the variability patterns across groups.

4.1 Conventional HRV indices across developmental stages

To contextualize the topological findings, we first evaluated conventional time-domain HRV metrics across age groups
(Table 2). Kruskal–Wallis tests revealed significant between-group differences for Mean RR (p < 0.001), SDNNRR

(p < 0.001), and pNN50RR (p < 0.001), whereas RMSSDRR did not reach statistical significance (p = 0.115). Post-hoc
Dunn comparisons showed a monotonic increase in Mean RR from 404 ms in neonates to 674 ms in adolescents, consis-
tent with the well-known age-related slowing of heart rate. SDNNRR and pNN50RR were lowest in infant groups and high-
est in school-age children and adolescents, in line with established maturation patterns whereby overall HRV increases
through childhood before stabilizing or slightly declining in adolescence. These findings confirm that our cohort captures
fundamental developmental physiology and provide a benchmark against which to interpret the novel topological descrip-
tors.

4.2 Topological complexity of HRV exhibits age-dependent patterns

To investigate the structural evolution of cardiac autonomic regulation during development, we analyzed the one-
dimensional topological features of HRV signals across pediatric age groups using persistent homology. Representative
persistence diagrams for each developmental stage are presented in Fig 2, where each point (b,d) denotes the birth and
death of homological cycle in the embedded HRV signal. The vertical distance from the diagonal (d–b) represents the
persistence, or prominence, of the corresponding feature. Longer-lived features (further from the diagonal) reflect more
persistent topological cycles. Notably, neonatal subjects exhibit fewer topological features, but with longer persistence,
suggesting a smaller number of dominant, well-defined oscillatory patterns. In contrast, older children and adolescents
show denser distributions of short-lived cycles, indicating a transition toward more fragmented and temporally constrained
dynamics. This visual pattern suggests that the maturation of autonomic regulation may involve a topological shift from
strong, recurrent structures to a larger number of less persistent cycles. To quantify these observations, we computed five
topological descriptors from the persistence diagrams in homology dimension one: number of persistent features (N1),
total persistence (TP1), maximum persistence (MP1), mean persistence (𝜇1), and persistence entropy (PE1). The distribu-
tions of these descriptors across age groups are shown in Fig 3, and the corresponding statistical results are summarized

Table 2. Group-wise summary of conventional HRV indices (median [IQR]) across pediatric developmental stages.

Age Group Mean RR (ms) SDNNRR (ms) RMSSDRR (ms) PNN50RR (%)
Neonates (0–1 mo) 404 [395–417] 62.9 [57–66] 67.9 [61–73] 4.2 [3.9–4.4]
Early Infancy (1–5 mo) 402 [395–412] 40.9 [38–44] 26.6 [25–30] 1.2 [0.9–1.4]
Late Infancy (6–11 mo) 431 [423–438] 36.7 [34–40] 32.4 [30–35] 1.4 [1.1–1.8]
Toddlers (1–2 yr) 474 [467–482] 49.4 [45–53] 52.7 [48–55] 2.9 [2.6–3.2]
Preschoolers (3–5 yr) 508 [500–515] 55.6 [51–59] 30.7 [28–33] 4.1 [3.8–4.3]
School-age (6–11 yr) 609 [602–624] 70.9 [68–75] 40.7 [38–43] 15.2 [14–17]
Adolescents (12–17 yr) 674 [669–680] 81.4 [78–85] 39.2 [37–41] 14.1 [13–15]
Kruskal–Wallis p <0.001 <0.001 0.11 <0.001

https://doi.org/10.1371/journal.pone.0337620.t002
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Fig 2. Representative persistence diagrams (H1) of time-delay embedded HRV signals across developmental age groups.

https://doi.org/10.1371/journal.pone.0337620.g002
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in Table 3 (For more information see supplementary information in S2 File). Neonates exhibit lower topological complexity
and higher entropy in cycle structure compared to older groups.

Statistical analysis using the Kruskal–Wallis test revealed significant groupwise differences for all descriptors (p < 0.005
for all metrics). Post hoc Dunn’s comparisons further identified specific developmental contrasts, particularly between
neonates and older groups. For instance, neonates showed significantly lower N1 and PE1, but higher MP1 and 𝜇1, com-
pared to toddlers and preschoolers, indicating fewer but more pronounced topological features with lower structural dis-
order. These results suggest that early HRV signals exhibit globally simpler but more coherent dynamic patterns, which
become increasingly fragmented and variable with age.

Interestingly, while older age groups (school-age and adolescents) exhibited lower values of TP1 and flatter distribu-
tions of ℒ(t), they also displayed reduced interindividual variability, as reflected in narrower interquartile ranges in Fig 3.
This supports the hypothesis that autonomic function becomes not only less complex but also more topologically homoge-
neous with age.

Fig 3. Boxplots of topological descriptors across pediatric age groups.

https://doi.org/10.1371/journal.pone.0337620.g003

Table 3. Kruskal–Wallis and Dunn’s post-hoc test results for topological descriptors.

TDA metric p-value Significant differences
N1 <0.001 Neonates vs. Preschoolers, Toddlers
TP1 <0.001 Adolescents vs. Early infancy; Neonates vs. School-age
MP1 0.0048 Neonates vs. Adolescents, School-age
𝜇1 <0.001 Neonates vs. all older groups except Toddlers
PE1 <0.001 Neonates vs. Preschoolers, Toddlers

https://doi.org/10.1371/journal.pone.0337620.t003
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To further characterize group-level topological structure, we computed group-averaged persistence landscapes ℒ(t),
shown in Fig 4. These curves summarize the average strength and recurrence of topological cycles across filtration scales
for each age group. Each curve represents the mean landscape across individuals within an age group, with shaded
areas indicating ±1 standard deviation. Lower topological amplitude and flatter profiles in older groups reflect reduced
cycle strength and recurrence in cardiac dynamics.

The youngest groups (neonates, early infancy, and late infancy) showed markedly higher and more variable landscape
amplitudes, indicating greater recurrence and diversity of loop-like features in their HRV geometry. Older groups, par-
ticularly school-age children and adolescents, exhibited reduced landscape heights and flatter profiles, reflecting more
uniform cardiac dynamics and fewer dominant oscillatory patterns.

To assess topological dissimilarity between age groups, we computed pairwise Euclidean distances between individ-
ual persistence landscapes and averaged them within and between groups. The resulting symmetric distance matrix is
shown in Fig 5, where each element (i,j) represents the mean topological dissimilarity between subjects from age groups
Gi and Gj.

This matrix reveals several key findings. The highest intergroup dissimilarity was observed between neonates and ado-
lescents, suggesting that early-life HRV structure is not only quantitatively but also qualitatively distinct from later devel-
opmental stages. Intragroup variability, reflected in the diagonal elements, was maximal in neonates and early infancy,
confirming greater heterogeneity in HRV topological structure during early development, possibly reflecting individual vari-
ability in maturation rates of the autonomic nervous system. A gradual reduction in both intra- and intergroup variability
is observed with increasing age, particularly beyond the toddler stage, suggesting a developmental stabilization of HRV
structure and convergence toward a normative topological profile. An asymmetric dissimilarity trend is also noticeable: dis-
similarity between infants and school-age children is higher than between preschoolers and adolescents, implying that the
most pronounced topological shift occurs during the infancy-to-childhood transition rather than adolescence.

Collectively, these results establish that topological complexity in HRV is dynamically modulated across pediatric devel-
opment. Early life is characterized by a small number of strong, diverse, and heterogeneous recurrent cardiac patterns,
while later stages exhibit attenuated and more homogeneous topological structures. These observations indicate the
underlying maturation of autonomic control and support the utility of topological descriptors as sensitive biomarkers of
developmental physiological states.

4.3 Topological features correlate with conventional physiological HRV indices

To assess the physiological significance of the topological features extracted from HRV signals, we computed Pearson
correlation coefficients between the persistent homology descriptors and standard time-domain HRV metrics, all log-
transformed to ensure approximate normality and variance homogeneity.

Specifically, we examined associations between topological variables and the natural logarithms of MeanRR, SDNNRR,
RMSSDRR, and PNN50RR, and chronological age.

Fig 6 represents the six strongest statistically significant correlations (|r| > 0.52), revealing a consistent and robust rela-
tionship between the geometry of HRV dynamics and conventional autonomic indices. Each subplot reports Pearson’s r
and p-value (Holm-adjusted).

Notably, the mean persistence 𝜇1 exhibited the highest negative correlation with both HRV and age-related indices:
r = −0.75 with ln(SDNNRR), r = −0.67 with ln(Age), and r = −0.65 with ln(MeanRR) (all p < 10–10, Holm-adjusted). These
findings suggest that increased HRV and younger age are associated with shorter average lifetimes of topological cycles,
reflecting more rapid, transient, and less geometrically stable oscillatory dynamics, consistent with a less structured but
more adaptable autonomic regulation in early development.

Other descriptors also demonstrated physiologically significant associations (see the supplementary information
in S3 File for the full correlation table). Total persistence (TP1) showed moderate inverse correlations with ln(SDNNRR)
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https://doi.org/10.1371/journal.pone.0337620


i
i

“pone.0337620” — 2025/11/28 — 16:52 — page 13 — #13 i
i

i
i

i
i

Fig 4. Group-averaged persistence landscapes ℒ(t) for dimension H1.

https://doi.org/10.1371/journal.pone.0337620.g004

(r = −0.57), indicating that more complex and long-lived topological structures tend to occur in individuals with reduced
HRV. The number of persistent features (N1) was positively associated with ln(PNN50RR) (r = 0.49), ln(Age) (r = 0.41),
and ln(SDNNRR) (r = 0.40), suggesting that a greater number of topological events, albeit short-lived, co-occurs with
enhanced beat-to-beat variability. Persistence entropy (PE1), representing the heterogeneity of cycle lifetimes, showed
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Fig 5. Matrix of pairwise Euclidean distances between persistence landscapes across age groups.

https://doi.org/10.1371/journal.pone.0337620.g005

consistent positive correlations with all classical HRV measures (ranging from r = 0.32 to 0.43), indicating that higher sig-
nal irregularity is associated with broader spectral variability in RR intervals.

In sum, these results provide convergent evidence that topological complexity captures physiologically meaningful
properties of HRV, and that persistent homology offers descriptors that are not only statistically robust but also physiologi-
cally interpretable across development.

4.4 Topological dissimilarity patterns across pediatric age groups

To further explore the relationship between topological variability and conventional cardiac autonomic dynamics, we evalu-
ated the intra-group landscape dispersion. This measure, corresponding to the diagonal elements of the distance matrix
in Fig 5, quantifies the average pairwise Euclidean distance between persistence landscapes within each age group,
denoted as d̄Gi,Gi

.
As illustrated in Fig 7, a clear inverse association emerged between intra-group topological variability and conventional

HRV indices. Developmental stages characterized by higher internal topological heterogeneity, notably neonates and
early infants, exhibited lower HRV values, including ln(MeanRR), ln(SDNNRR), ln(RMSSDRR), and ln(PNN50RR). In con-
trast, school-age children and adolescents showed lower intra-group topological dispersion, reflecting more homogeneous
and structured cardiac dynamics, accompanied by elevated HRV levels.

This inverse relationship suggests that as the autonomic nervous system matures, the cardiac system becomes
not only more effective (higher HRV) but also more geometrically regular and topologically compact. Thus, topological
descriptors capture complementary information beyond mean HRV levels, reflecting the structural organization and coor-
dination of the underlying physiological system.

PLOS One https://doi.org/10.1371/journal.pone.0337620 December 2, 2025 14/ 21

https://doi.org/10.1371/journal.pone.0337620.g005
https://doi.org/10.1371/journal.pone.0337620


i
i

“pone.0337620” — 2025/11/28 — 16:52 — page 15 — #15 i
i

i
i

i
i

Fig 6. Scatter plots illustrating representative correlations between topological and log-transformed HRV features.

https://doi.org/10.1371/journal.pone.0337620.g006

Importantly, this pattern supports the hypothesis that early developmental stages are characterized by greater flexibility
and variability in autonomic output, as evidenced by the broad diversity of topological profiles, whereas later stages reflect
a consolidation of cardiac control mechanisms, leading to HRV signatures that are both topologically and physiologically
stable.
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Fig 7. Relationship between intra-group topological variability and conventional HRV indices across developmental stages.

https://doi.org/10.1371/journal.pone.0337620.g007

5 Discussion

This study provides compelling evidence that topological features derived via persistent homology from time-delayed
embedded HRV signals reflect critical developmental transitions in autonomic cardiac regulation across the pediatric lifes-
pan. By applying topological data analysis to RR interval time series of subjects ranging from neonates to adolescents, we
identified robust descriptors—such as the number of persistent cycles, mean persistence, and persistence landscapes—
that capture both intra-group variability and inter-group divergence in cardiac dynamics with developmental sensitivity.

Our findings indicate that neonates and early infancy (0–5 months) exhibit the richest and most heterogeneous topolog-
ical structure, characterized by a high number of persistent one-dimensional cycles (N1), elevated mean persistence (𝜇1),
and substantial intra-group topological dissimilarity. These features suggest a cardiac dynamic regime dominated by pro-
longed, recurrent structures in the embedded phase space, possibly reflecting immature, less constrained autonomic con-
trol. Notably, the diagonal elements of the pairwise persistence landscape distance matrix confirmed this heterogeneity,
indicating significant dispersion in topological features within the youngest cohorts.

In contrast, older age groups (particularly school-age children and adolescents) demonstrated a marked reduction in
topological variability, both within and between individuals. This was evidenced by a lower number of persistent cycles,
decreased mean and total persistence values, flatter and more homogeneous average persistence landscapes (Fig 4),
and a convergence in pairwise distances (Fig 5).

These topological results are consistent with the conventional indices, which exhibited the expected developmental
trends. Mean RR and SDNNRR increased from infancy to adolescence, while pNN50RR reflected greater vagal modula-
tion and autonomic balance in older groups (Table 2). Notably, RMSSDRR did not differ significantly between groups, sug-
gesting a relatively earlier stabilization of short-term vagal modulation, even as longer-term variability continues to evolve.
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The parallel trajectories of conventional and topological measures support that the observed topological transitions reflect
genuine physiological maturation rather than analytical artifacts.

These findings support the physiological interpretation that maturation of autonomic nervous system function is accom-
panied by a consolidation of cardiac control, resulting in more regular, efficient, and topologically compact dynamics. This
trajectory is consistent with known developmental trends involving baroreflex maturation, vagal tone stabilization, and
refinement of sympathetic–parasympathetic interactions.

Compared with other nonlinear HRV methods—such as entropy-based indices, fractal analyses, and recurrence quan-
tification analysis (RQA)—our approach characterizes the global, multiscale geometry of cardiac dynamics rather than
local irregularity or recurrence density [12,15,51,52]. While entropy and fractal measures summarize variability and corre-
lation structure, they may overlook higher-order relationships that govern phase-space evolution. By applying persistent
homology, we identify salient topological structures—specifically one-dimensional cycles (loop structures)—that reflect
multiscale physiological coordination [34,37,46]. These descriptors are noise-robust, interpretable, and complementary to
conventional HRV metrics, suggesting potential clinical utility as non-invasive markers of autonomic maturation and early
dysregulation [4,6,8].

The persistence landscape framework proved instrumental in elucidating these patterns. Group-averaged landscape
curves revealed high-amplitude, broad-bandwidth features in early development, indicative of strong and diverse recurrent
geometries, while adolescents exhibited markedly lower and more uniform landscape magnitudes, reflecting attenuation
and homogenization of cyclic structures. Furthermore, the top-left region of the distance matrix (corresponding to early
groups) consistently showed the highest inter-group dissimilarity, underscoring the distinctiveness of neonatal and infant
HRV dynamics within the topological feature space.

From a physiological perspective, we observed that the topological descriptors were strongly correlated with conven-
tional HRV metrics, supporting their interpretability and biological relevance. Mean persistence (𝜇1) exhibited strong neg-
ative correlations with ln(SDNNRR), ln(MeanRR), and ln(Age), suggesting that as the heart rate signal becomes more regu-
lar and autonomic maturation progresses, recurrent topological features become shorter-lived. Total persistence and the
number of persistent features were also negatively associated with age and positively linked to HRV variability indices,
indicating that individuals with richer cardiac variability patterns exhibit greater structural diversity in their signal’s phase-
space geometry. Interestingly, persistence entropy (PE1)—a measure of structural disorder—was positively associated
with HRV indices, but with weaker effect sizes, suggesting a nuanced relationship between diversity and physiological
adaptability.

A particularly novel observation was the inverse relationship between intra-group topological variability and conven-
tional HRV metrics (Fig 7). Groups with greater inter-individual topological dispersion, notably neonates and infants,
exhibited lower HRV values, while groups with higher HRV (e.g., school-age children and adolescents) displayed greater
topological consistency. This suggests that physiological maturation leads to both increased autonomic efficiency and
convergence toward a common structural template, reducing inter-individual variability in cardiac dynamics.

The nonparametric statistical tests (Table 3) further reinforce these insights. Kruskal–Wallis tests revealed significant
groupwise differences for all topological descriptors (p < 0.005), and Dunn’s post hoc comparisons confirmed that the
largest contrasts occurred between neonates and older groups, particularly adolescents. These results demonstrate that
TDA descriptors are sensitive to discrete developmental transitions, offering a new lens through which to interpret physio-
logical maturation.

From a methodological standpoint, the use of persistence landscapes and Euclidean inter-landscape distances adds
both interpretability and statistical tractability to TDA in biomedical time series. Unlike raw persistence diagrams, land-
scapes provide smooth, continuous, and averagable representations of topological structure, while the associated dis-
tance metrics enable quantification of group-level similarities and heterogeneity, enhancing comparative analyses.

PLOS One https://doi.org/10.1371/journal.pone.0337620 December 2, 2025 17/ 21

https://doi.org/10.1371/journal.pone.0337620


i
i

“pone.0337620” — 2025/11/28 — 16:52 — page 18 — #18 i
i

i
i

i
i

Collectively, these methodological advantages position persistent homology as a physiologically informed and com-
putationally robust framework for HRV analysis. By quantifying the global, multiscale geometry of cardiac dynamics—
features not readily captured by conventional or other nonlinear metrics—TDA provides a complementary perspective on
autonomic maturation. The age-related topological compactness and decreased inter-individual heterogeneity observed
here are consistent with biological systems evolving toward greater efficiency and stability, a hallmark of developmental
homeostasis.

Extending this framework to fetal HRV could enable direct comparisons between term and preterm maturation pat-
terns and provide early markers of autonomic development prior to birth. Given the higher fetal heart rates and modality-
specific noise characteristics, future studies will adapt preprocessing and embedding parameters accordingly, incorporate
gestational-age–stratified analyses, and evaluate whether persistence-based H1 descriptors robustly distinguish matura-
tion status under non-parametric testing with multiple-comparison control. Such analyses would clarify the developmental
sensitivity of topological summaries and their potential clinical utility in perinatal risk stratification. Such extensions could
enhance our understanding of autonomic plasticity, physiological resilience, and early pathophysiological deviations in
childhood, thereby broadening the utility of TDA in pediatric biomedical research.

6 Conclusion

This study demonstrates that topological data analysis, specifically persistent homology, provides a rigorous and physi-
ologically grounded framework to characterize developmental transformations in cardiac autonomic regulation. By ana-
lyzing RR-interval time series across pediatric stages, we identified consistent, interpretable age-related changes in the
geometry of HRV dynamics. H1 descriptors—number and persistence of cycles and persistence entropy—were sensitive
to developmental stage and correlated strongly with conventional HRV indices, underscoring their physiological validity.

Phenotypically, early life was marked by higher topological complexity and between-subject heterogeneity, suggest-
ing immature and variable autonomic regulation, whereas older children and adolescents presented more compact and
homogeneous profiles, consistent with increasing regulatory efficiency and stability. These findings indicate that persis-
tent homology yields multiscale, geometrically informed insights beyond traditional HRV analyses and may support early
detection of atypical autonomic maturation as well as longitudinal pediatric monitoring.
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