PLOR. One

Check for
updates

E OPEN ACCESS

Citation: Awan MM, Anwar MW, Butt
WH, Azam F (2025) A blended modeling
framework for real-time design and
verification of safety-critical embedded
systems. PLoS One 20(12): e0337604.
https://doi.org/10.1371/journal.pone.
0337604

Editor: Asadullah Shaikh, Najran
University College of Computer Science

and Information Systems, SAUDI ARABIA

Received: July 20, 2025
Accepted: November 11, 2025
Published: December 4, 2025

Peer Review History: PLOS recognizes
the benefits of transparency in the peer
review process; therefore, we enable the
publication of all of the content of peer
review and author responses alongside
final, published articles. The editorial
history of this article is available here:
https://doi.org/10.1371/journal.pone.
0337604

RESEARCH ARTICLE

A blended modeling framework for real-time
design and verification of safety-critical
embedded systems

Misbah Mehboob Awan®®*, Muhammad Waseem Anwar®,
Wasi Haider Butt®, Farooque Azam{®

Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering,
National University of Sciences and Technology (NUST), Islamabad, Pakistan

® These authors contributed equally to this work.
* mmehboob.cse19ceme@ce.ceme.edu.pk

Abstract

Embedded systems often require multiple representations for design, verification, and
implementation, ranging from low-level programming languages to high-level formal
models and domain-specific abstractions. Generally, synchronization among different
representations or notations is achieved manually, a process that is labor-intensive
and prone to mistakes, adversely impacting productivity and time-to-market objec-
tives. Despite existing tool support, there remains a lack of unified, automated mech-
anisms that ensure semantic consistency across heterogeneous modeling and pro-
gramming notations. This article presents a scalable blended modeling framework
that automates the synchronizations across an extensible set of notations using bidi-
rectional transformations. This facilitates the system development, comprising design
and verification aspects of safety-critical embedded systems, using various notations
interchangeably. The applicability of the proposed framework is demonstrated using
four distinct representations: C, SystemVerilog, Timed Automata, and a domain-
specific modeling language. The framework supports a notation-agnostic design flow,
allowing development to begin from any of the supported languages. This enables
seamless transitions across notations based on design or verification needs. Vali-
dated through two industrial case studies, a ventilator system and a cruise control
system, the framework achieved high round-trip transformation accuracy with minimal
information losses in edge cases such as language-specific keywords. Performance
evaluations revealed low transformation latency and modest memory consumption,
supported by efficient Abstract Syntax Tree (AST) traversal. This research lays the
groundwork for the standardization of model-to-code, code-to-model, and code-to-
code transformations, significantly reducing manual engineering effort and improving
the reliability and agility of embedded systems design and verification processes.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 1/ 48

https://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0337604&domain=pdf&date_stamp=2025-12-04
https://doi.org/10.1371/journal.pone.0337604
https://doi.org/10.1371/journal.pone.0337604
https://doi.org/10.1371/journal.pone.0337604
https://doi.org/10.1371/journal.pone.0337604
https://orcid.org/0000-0003-0598-6959
https://orcid.org/0000-0002-7421-7400
mailto:mmehboob.cse19ceme@ce.ceme.edu.pk
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

Copyright: © 2025 Awan et al. This is an
open access article distributed under the
terms of the Creative Commons
Attribution License, which permits
unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All MRED
Project files are available from the Github

repository (https://github.com/
MisbahAwan/MRED_Project/tree/main).

Funding: This work is partially supported
by the Higher Education Commission,
Pakistan, through the NRPU MRED
project under Grant No. [20-15651]. The
funders had no role in study design, data
collection and analysis, decision to
publish, or preparation of the manuscript.
There was no additional external funding
received for this study.

Competing interests: The authors have

declared that no competing interests exist.

1 Introduction

Embedded systems have been a growing trend over the past decades in key indus-
tries such as consumer electronics, aerospace, industrial automation, and automo-
tive systems [1]. However, their design and verification present numerous challenges.
Design challenges arise from real-time requirements, integration of heterogeneous
components, resource constraints, and the need for cross-domain expertise. On the
other hand, verification challenges include managing temporal constraints, frag-
mented tools, disjoint representations, resource constraints, budget limitations, and
the complexity of formal methods.

Embedded systems have highly specific and diverse requirements, such as low
power consumption, high performance, real-time responsiveness, and cost efficiency.
Meeting these requirements simultaneously can be difficult. However, designing
embedded systems requires expertise across multiple domains. Using different tools
for design (e.g., Unified Modeling Language (UML), SysML (Systems Modeling Lan-
guage), SystemVerilog [2]) and verification (e.g., Timed Automata [3]) often leads to
inconsistencies and redundant efforts. They require specialized knowledge to trans-
form design representation into verification representation. Formal techniques like
model checking and theorem proving offer high assurance but are often resource-
intensive and time-consuming. These challenges, coupled with limited budgets and
development constraints, can hamper productivity and delay project delivery.

Embedded system development draws upon diverse technologies and notations
to address different facets of design and verification. Abstract modeling tools like
UML and meta-modeling frameworks support early-stage design by improving clar-
ity and reuse. Meanwhile, languages like C and SystemVerilog are indispensable for
actual implementation, especially on constrained hardware platforms. SystemVerilog
also plays a crucial role in verification through features like assertions and Universal
Verification Methodology (UVM). Timed automata contribute by modeling temporal
behaviour for real-time validation. However, the use of these tools in isolation can
create bottlenecks, inconsistencies, and longer verification cycles. Integrating these
approaches within a unified framework can improve design-verification alignment,
reduce manual overhead, and better meet the rapid timelines required in modern
product development.

Although Domain Specific Modeling Languages (DSMLs) simplify system model-
ing at an abstract level, the transformation into executable representations like C is
often one-way, limiting the ability to refine or verify changes iteratively. Reverse trans-
formation to the abstract model becomes challenging, complicating system updates
and traceability. Additionally, performing dynamic verification requires transformation
into SystemVerilog, demanding further effort, time, and resources. Yet another trans-
formation into specialized formal languages, such as Timed Automata, is needed for
formal verification, often requiring a separate design effort. These fragmented and
manual transitions across multiple representations create inefficiencies and inconsis-
tencies in the development process. To address these challenges, this research iden-
tifies the need for a real-time, unified framework that ensures bidirectional synchro-
nization among diverse notations. The proposed framework, though demonstrated

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

2/ 48

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/MisbahAwan/MRED_Project/tree/main
https://github.com/MisbahAwan/MRED_Project/tree/main
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

with synchronization among four representations including DSML, C, SystemVerilog, and Timed Automata, is generic and
scalable, capable of supporting synchronization across n number of notations for embedded system design and verifica-
tion.

Innovative solutions such as model-driven frameworks, integrated workflows, and automated tools effectively address
the challenges of embedded system design and verification by enhancing consistency, reducing redundancy, and stream-
lining processes. These approaches allow designers to focus on functionality while ensuring robust and reliable system
verification. Consequently, blended modeling and model-driven frameworks have emerged as transformative method-
ologies that simplify embedded system development through structured techniques for managing complexity, maintaining
consistency, and automating verification. Blended modeling [4] overcomes the fragmented nature of traditional workflows
by integrating multiple paradigms, languages, and tools into a unified framework. By combining abstract representations
like UML with concrete implementation and verification models such as SystemVerilog and Timed Automata, it delivers a
comprehensive system perspective that fosters shared understanding and smoother collaboration across hardware, soft-
ware, and verification domains. Moreover, blended modeling ensures coherence across heterogeneous notations by auto-
matically synchronizing changes between related views (e.g., C, DSML, Timed Automata), minimizing manual rework and
transformation errors, and enhancing the reliability of the development process. Through the integration of both visual and
textual representations, it bridges communication gaps among multidisciplinary teams and supports empirical coverage of
selected subsets of models, thereby advancing the efficiency and effectiveness of the overall embedded system lifecycle.

This paper presents a blended modeling framework that bridges domain-specific abstractions with executable and veri-
fiable models. The framework maintains real-time bi-directional consistency across notations, enabling dynamic switching
between modeling views without redundancy or semantic drift. Its scalable architecture allows for the integration of addi-
tional notations, ensuring adaptability to diverse embedded system contexts and accelerating the design—verification cycle
through unified, synchronized transformations.

The framework establishes traceability from requirements to implementation and verification, supporting iterative feed-
back loops that enable continuous refinement of designs based on validation outcomes. By automating transitions and
streamlining modeling workflows, the framework significantly reduces the time and effort required for embedded system
development, aligning well with the industry’s growing need for agile and efficient solutions.

The major contributions of this paper are as follows:

» The development of a blended modeling framework (Sect 3) that integrates the design and verification of embedded
systems by enabling synchronization among multiple notations. This includes specifying language subsets for each rep-
resentation, ensuring they capture the essential syntax and semantics needed for reliable transformation and validation.

* The implementation of a transformation engine that applies defined high-order transformation rules to the specified lan-
guage subsets, enabling seamless bidirectional transformations across multiple representations (Sect 3). Although this
paper focuses on four notations, the framework is inherently scalable, designed to support an arbitrary number of repre-
sentations. A graphical user interface is provided (Sect 4) to facilitate real-time visualization and transformation.

» The framework is validated (Sect 5) through two industrial case studies: a ventilator system and a cruise control system.
These applications demonstrate the practicality and effectiveness of the approach in addressing real-world challenges,
resulting in substantial productivity gains. Comparative evaluations indicate that the framework substantially reduces
development effort by automating transformations and minimizing manual tasks.

These contributions address fundamental challenges in embedded system design and verification by providing an
extensible, automated, and synchronized approach. By precisely defining language subsets for each notation (both
abstract and concrete) and implementing a robust transformation engine, the framework supports consistent and inter-
operable development across all supported representations. Its interactive graphical interface further simplifies the user
experience, enabling real-time, low-overhead transformations. Through validation on real-world systems, the framework

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 3/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO\SNL- One

proves its capability to handle complex embedded systems while maintaining flexibility for future expansion to additional
modeling domains.

Fig 1 illustrates the end-to-end workflow of the proposed blended modeling framework for embedded systems design
and verification. It begins with multiple input notations, ranging from abstract syntax models like DSML to three concrete
syntactic representations and potentially any n" notation. Each notation undergoes concept or subset identification to iso-
late key elements relevant for transformation. These are unified through grammar definitions, forming the basis for parsing
and transformation. High-order transformation rules are then applied to enable consistent, bidirectional mapping between
representations. A Graphical User Interface (GUI) editor facilitates real-time interactions, allowing designers to visual-
ize, edit, and switch seamlessly between synchronized views. The synchronized outputs, maintained across all notations,
can then be directly fed into industry-standard verification and validation tools like UPPAAL, QuestaSim, and C compilers.
This layered, modular structure highlights the framework’s generic, scalable, and automation-friendly design, making it
adaptable to any number of modeling languages while supporting agile and consistent embedded systems development.

2 Literature review

The design and verification of embedded systems continue to pose significant challenges due to the complexity, safety-
critical requirements, and heterogeneous nature of such systems [5]. Numerous studies have addressed various facets of
these challenges, ranging from design abstraction to runtime validation [5—8]. Among the programming languages used,
C remains dominant in embedded system development, particularly due to its efficiency and hardware-level control [9]. As
noted in [10], C continues to be the leading language for the development of IoT and embedded applications, underscor-
ing its foundational role in embedded system design.

For dynamic verification, languages such as Verilog and SystemVerilog have gained widespread adoption, especially
in the automotive and hardware design domains [7,8]. A detailed state-of-the-art review on UART design and verification
presented in [6] highlights the critical role SystemVerilog plays in the dynamic verification of embedded systems, particu-
larly in enabling assertion-based and simulation-driven testing.

Abstract Syntax Concrete Syntax

[
System C Timed nt"
Verilog Language Automata Notation

Concept Identification Subset Identification

High Order Transformations Rules

- Graphical User Interface (GUI) Editor -

Run-time Synchronized Output (DSML, System Verilog, C Language, Timed Automata ... n*" Notation)

Verification and Validation Tools
(e.g. Uppaal, Questasim, EDA Playground, C Compiler)

Fig 1. Blended modeling workflow for automated bidirectional transformations in embedded systems design and verification.

https://doi.org/10.1371/journal.pone.0337604.g001

PLOS One | hitps://doi.org/10.1371/journal.pone.0337604 December 4, 2025 4/ 48

https://doi.org/10.1371/journal.pone.0337604.g001
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

In parallel, significant progress has been made in the application of formal methods for ensuring the correctness of
embedded systems. Formal verification techniques offer mathematical rigor by allowing the exhaustive verification of
system properties through model checking [11]. For instance, [12] demonstrates how formal modeling and verification
enhance the reliability of distributed systems through structured validation. Tools like UPPAAL support real-time model
checking by enabling the modeling of timed automata and verifying temporal logic properties [13,14]. A recent study
[15] provides a comprehensive overview of UPPAAL-assisted formal verification methods and illustrates their applicabil-
ity across diverse domains, including the dynamic verification of embedded systems. These developments collectively
emphasize the need for integrating design, dynamic, and formal verification approaches within a unified framework.

Each representation, including C for low-level implementation, SystemVerilog for simulation and verification, and
UPPAAL for formal analysis, contributes uniquely to the design and validation of real-time embedded systems. C enables
efficient, hardware-near execution, while SystemVerilog supports dynamic verification and early bug detection through
simulation and assertions. UPPAAL complements this with formal model checking to validate time-critical and safety-
related properties with mathematical rigour. Collectively, these notations ensure correctness, performance, and safety,
especially in high-stakes domains. However, the absence of coordination across them often leads to duplicated effort,
semantic mismatches, and longer development cycles. This underscores the necessity for an integrated framework that
synchronizes these representations throughout the system lifecycle.

Model-Driven Development (MDD) has become a cornerstone for managing the complexities of embedded systems
design, enabling abstraction through high-level models. Schmidt et al. [16] demonstrated MDD’s ability to reduce com-
plexity via automated code generation, while Mellor’s [17] Model-Driven Architecture (MDA) standardized platform-
independent modeling. Anwar et al. [18] extended MDD for verification by introducing SVOCL, an OCL extension for Sys-
temVerilog, enabling automated consistency checks between models and code. However, their work focuses on single-
language transformations and lacks support for multi-notation bi-directional transformations.

Blended modeling [4] has emerged as a promising approach to address the fragmented nature of embedded systems
development. By enabling the integration of multiple representations in a unified framework, blended modeling facilitates
seamless transitions between design and verification stages. MDE complements this approach by emphasizing the use
of abstract models (abstract syntax) as primary artifacts in the development process. These models are iteratively refined
and transformed into various representations (concrete syntaxes), such as hardware description languages or formal
methods, through automated transformations. Further, blended modeling has become a key approach for embedded sys-
tems design and verification, with few studies [18,19] proposing frameworks to integrate heterogeneous representations.
However, these existing works do not cater for the embedded systems design and verification notations. In this context,
selecting relevant state-of-the-art blended modeling works is critical to contextualize the research gap.

Several frameworks and tools have been proposed to address the challenges of embedded systems design and veri-
fication. It is to be noted that our study focuses specifically on the automatic generation of horizontal model transforma-
tions. It does not examine approaches for the automatic generation of vertical model transformations. A recent SLR [20]
on blended modeling tools and frameworks has been conducted. They have identified 26 tools. Most of them use multi-
ple concrete notations for a single underlying abstract syntax. However, they either lack effective inconsistency tolerance
mechanisms or do not utilize blended modeling features to improve user experience via bi-directional transformations.

A lot of work has been done in blending the modeling of textual and graphical notations. They provide a limited set of
features as only one notation is editable and the other is read-only [21-23]. Hence, they don’t allow editing the model via
multiple notations. Few language-specific solutions have been proposed. Maro et al. [24] propose a solution for integrat-
ing graphical and textual editors for a UML profile-based domain-specific language (DSL). Their work focuses on generat-
ing a textual editor from an existing graphical editor and enabling seamless switching between the two views. To achieve
this, the UML profile-based DSL is first transformed into an Ecore model using ATL transformations. The Ecore model is
then utilized by the Xtext plugin to generate the textual editor. Synchronization between the graphical and textual views is
facilitated through ATL transformations, ensuring consistency across representations. However, their approach is limited

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 5/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

to UML profiles and does not support low-level languages like C or SystemVerilog, nor does it integrate formal verifica-
tion tools like UPPAAL. In contrast, our framework employs an abstract syntax, enabling bidirectional transformations
between multiple concrete syntaxes, thus bridging the gap between high-level design and low-level implementation for
the design and verification of embedded systems.

Addazi and Ciccozzi [25] present a proof-of-concept implementation for blended modeling of UML and UML profiles,
combining graphical and textual notations. Their solution leverages the Eclipse Modeling Framework (EMF), Xtext, and
Papyrus, with a single underlying abstract syntax and two notations (graphical and textual) sharing a common UML
resource. Synchronization is achieved through serialization and deserialization operations between Xtext and UML mod-
els. While their approach improves user performance compared to single-notation modeling, it remains restricted to
UML-based DSLs and lacks support for formal verification or runtime adaptability. Our framework, on the other hand,
integrates formal verification and provides an interactive GUI for real-time transformations, making it more versatile
and user-friendly.

Lazar [26] integrates the Alf textual editor with the Eclipse UML tree-based editor to create fUML models. However,
synchronization between the textual and graphical representations is on demand. This approach limits real-time consis-
tency and requires explicit user intervention to propagate updates. In contrast, our framework ensures real-time bidirec-
tional synchronization through an ANTLR-driven transformation engine, ensuring consistency across all representa-
tions.

Scheidgen [27] introduces embedded textual editors as an add-on feature for graphical editors. When a user selects
a model element for editing, the embedded textual editor generates an initial representation, which the user can modify.
Parsing operations are then used to create updated model elements. However, synchronization is also on-demand, as
changes to the underlying model are only applied when the user commits them and closes the textual editor, delaying
real-time updates. Our framework addresses this limitation by enabling runtime transformations through an interactive
GUI, allowing users to switch between multiple representations with minimal delay and ensuring immediate consistency.

Latifaj et al. [19] introduced higher-order transformations (HOTSs) to generate synchronization infrastructures for blended
models (e.g., UML to timed automata). This work automates synchronization mechanisms across multiple notations,
regardless of whether they share the same abstract syntax or belong to different languages. Their solution is designed
for modeling environments based on the Eclipse Modeling Framework (EMF) and DSMLs defined using EMF’s meta-
metamodel, Ecore. Hence, it is specific to UML and DSML unidirectional transformations.

Ciccozzi et al. [28]emphasized runtime representation switching to accelerate design-verification cycles. However,
existing frameworks (e.g., Anwar et al. [29], Latifaj et al.’s HOTs [19]) focus on high-level formalisms and lack support
for bidirectional and real-time transformations between low-level languages (C, SystemVerilog) and verification tools
like Uppaal. Recent work on EAST-ADL blended modeling has demonstrated the feasibility of real-time synchronization
across heterogeneous views. Anwar et al. [30] integrated Xtext and EATOP to achieve runtime bidirectional synchroniza-
tion between textual and graphical notations using EAXML as the common format. Validated through a Volvo car wiper
case study, the framework effectively maintained timing and variability consistency, showcasing the potential of blended
modeling for industrial applications. However, its applicability was limited to two notations and lacked dedicated tool
support, restricting its scalability to broader language domains such as C, SystemVerilog, and Timed Automata. This
highlights the need for a more extensible, tool-supported blended framework capable of ensuring real-time, semantically
consistent synchronization across multiple design and verification notations. Our proposed research bridges this gap
by enabling runtime transformations among abstract and concrete notations, ensuring traceability and reducing manual
rework. In our proposed solution, we are following a parser-based approach, which ensures the correctness of the syn-
tactic aspects of transformations. The other approach is the direct AST updation approach [31], which compromises con-
sistency and correctness among models. EAST-ADL/AutoSAR [32] provides a standardized development environment for
automotive systems, while UPPAAL supports formal verification of timed automata models. However, these solutions are
often domain-specific, lack support for multiple representations, or do not provide runtime transformation capabilities.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 6/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

2.1 Research gap

Despite notable progress in model-driven, blended, and formal methods for embedded system design and verification,
several critical limitations remain unaddressed. First, most existing frameworks lack a centralized abstract syntax to
maintain semantic consistency across heterogeneous notations. Approaches such as EAST-ADL/AutoSAR [32] and
Anwar et al. [18,29] remain domain-specific or language-bound, restricting interoperability across modeling and ver-
ification environments. Second, frameworks like those of Latifaj et al. [19] and Maro et al. [24] emphasize high-level
abstractions (e.g., UML-based DSMLs) while neglecting low-level implementation languages such as C and Sys-
temVerilog, which are indispensable for embedded systems development. Third, although bidirectional transformation has
been acknowledged as essential for maintaining synchronization between design and verification models, true round-
trip consistency remains largely unaddressed. Solutions based on AST-level synchronization (e.g., Atkinson et al. [31])
are prone to semantic drift, whereas others (e.g., Addazi & Ciccozzi [25]) support only partial or delayed synchronization.
Recent efforts in EAST-ADL blended modeling [30] demonstrate real-time synchronization capabilities, it remains lim-
ited to two notations and lacks a standalone transformation tool or extensibility toward additional representations. More-
over, its reliance on a domain-specific EAXML meta-model restricts scalability and generalization to other embedded
domains.

Moreover, most frameworks do not offer real-time or runtime transformations and lack interactive graphical inter-
faces, limiting their industrial scalability and adoption. Approaches like those of Scheidgen [27] and Lazar [26] depend on
on-demand synchronization, delaying consistency propagation, and reducing efficiency. A further gap exists in integrating
formal verification tools such as UPPAAL within blended environments, as formal verification is often treated as a post-
design activity rather than a continuous design component. Finally, the validation scope in current literature remains nar-
row, with most works limited to proof-of-concept or academic examples rather than comprehensive empirical coverage
of selected subsets validated through industrial case studies.

To overcome these limitations, the present research introduces a parser-based blended modeling framework that
unifies C, SystemVerilog, UPPAAL, and DSML under a shared abstract syntax, enabling runtime bidirectional syn-
chronization and round-trip transformations. This approach ensures syntactic and semantic consistency, strength-
ens traceability between notations, and achieves practical scalability validated through real-world embedded system case
studies.

3 Proposed framework

The proposed framework introduces a blended modeling approach that facilitates real-time transformations for the design
and verification of embedded systems. This comprehensive methodology is grounded in the principles of model-driven
engineering (MDE) and is utilized to support bidirectional transformations. By managing multiple system representations,
the framework ensures consistency, scalability, and efficiency in embedded systems development.

The framework, presented in Fig 2, introduces a unified environment for designing and verifying complex embedded
systems through simultaneous support of multiple modeling and programming languages. It is designed to be generic
and extensible, supporting a wide range of notations for system development. For proof of concept, we demonstrate
the framework using four notations: Domain-Specific Modeling Languages (DSMLs), C, SystemVerilog, and Timed
Automata, enabling designers to represent system behavior and structure in diverse paradigms (for example, software-
centric, hardware-aware, or formal-method-driven). Crucially, the framework allows bidirectional runtime switching
between representations. For instance, a DSML model can dynamically transform into SystemVerilog code or Timed
Automata states, and vice versa. By eliminating manual transformation bottlenecks, the proposed framework significantly
accelerates design iteration and verification cycles.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 7/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO&&- One

3.1 Architectural components of proposed framework

The proposed Blended Modeling Framework for Design and Verification of Safety Critical Embedded Systems
(Fig 2) integrates multiple modeling paradigms into a cohesive structure that supports real-time, bi-directional, and
multi-way transformations. This architecture is divided into three major components:

Language subset evaluation and selection. This section manages the abstract and concrete syntaxes of the nota-
tions. The abstract syntax is unified under a Domain Specific Modeling Language (DSML), which captures the core
semantics of the system regardless of its representation. The concrete syntaxes correspond to multiple notations such
as C Language, SystemVerilog, Timed Automata, and potentially many others. Each concrete syntax conforms to the
overarching DSML, ensuring a consistent semantic foundation across views. This employs static analysis, dependency
tracing, and semantic profiling to identify minimal yet sufficient subsets. The result is a streamlined subset with unified
syntax and semantics, enabling consistent and reliable transformation across different languages.

Transformation engine. This component manages the bi-directional transformation rules for each notation. The
transformation engine works by applying these rules over notation subsets and grammar, which include lexical and
syntactic definitions of each concrete notation. The engine supports seamless switching between representations while
maintaining semantic fidelity. The Mapping Rules interface links the transformation engine with the editor, enabling con-
sistent synchronization across notations. The engine encodes one-to-one, one-to-many, and many-to-many mapping
rules directly into transformation logic, ensuring syntactic and semantic fidelity during conversions. For example, a Sys-
temVerilog function block may map to a Timed Automata template via AST traversing.

Multi-representation editor. Integrates a rich editor to visualize and manipulate designs in any supported language.
The editor performs model-to-text (DSML— SystemVerilog) and text-to-model (C—Timed Automata) transformations in
real time. Anyone can interact with the system via various notation-specific views, such as C View, SystemVerilog View,
etc. These views are synchronized in real time using bi-directional transformation rules. This ensures that a change in
one view automatically reflects across others. The High-Order Transformations block at the bottom handles multi-way bi-
directional transformations, allowing for more complex and scalable interactions across multiple notations simultaneously.

Blended Modeling Framework for Design and Verification of Safety Critical Embedded Systems l

L = e e e | gttty e e !
I| Transformation Engine l I Multi-Representation Editor I

Bi-Directional \

Transformation Rules

Notation 1 Rules
Notation 2 Rules
Notation 3 Rules

1
1
i
] ‘n” Notations View
1
1

Domain Specific Modeling Language [[-—
(DSML)

Notation 1 View

Notation 2 View

Notation 3 View

1
1
1
1
1
1
1
i
1
Notation 1: C Language !
1
1
1
1
1
1
1
1

Notation 3: Timed Automata 1|
Notation 4: Anyother

Notation n’:

1
1
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
: Notation 2: System Verilog
!
1
1
1
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
!

- Lexical Rules

- Syntactic Rules

Mapping
Rules

Notation 4 View

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
i Notation ‘n’ View
1

Fig 2. Architecture of the blended modeling framework for design and verification of real-time embedded systems.

https://doi.org/10.1371/journal.pone.0337604.g002

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

8/ 48

https://doi.org/10.1371/journal.pone.0337604.g002
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Within the proposed architecture, data exchange between heterogeneous notations occurs through a well-defined
intermediate representation inside the Transformation Engine and Multi-representation Editor. The exchange pro-
cess is not based on direct file-level conversion but on the shared DSML meta-model, which serves as a neutral data
bridge between C, SystemVerilog, Timed Automata (UPPAAL), and DSML structures. When a user modifies a model in
any notation, the Transformation Engine serializes the change into an intermediate AST form conforming to the meta-
model and propagates it across other notations through transformation rules Sect 3.4. The Language Subset Evalua-
tion and Selection layer defines the syntactic and semantic scope for each notation, but does not perform data transfer
itself. The Multi-representation Editor then visualizes and synchronizes these updates in real time, allowing consistent
co-editing and validation. This model-centric data exchange process ensures semantic integrity, supports bidirectional
synchronization, and enables round-trip engineering across all supported representations.

The proposed blended modeling framework integrates an abstract meta-model (DSML) with multiple concrete syntaxes
to address embedded system design and verification challenges. The meta-model provides a unified semantic base, while
the concrete syntaxes offer domain-specific views for designers and verification engineers. Through High-Order Transfor-
mations (HOTSs), the framework automates bidirectional translations between models and code, ensuring correctness-by-
construction and minimizing manual validation. This scalable and synchronized environment unifies formal, software, and
hardware paradigms, streamlining the design, verification, and evolution of complex embedded systems.

3.2 Abstract syntax meta-model (Domain Specific Modeling Language DSML)

To formalize the abstract syntax, we developed a foundational meta-model (Fig 3) that encapsulates the structural, behav-
ioral, and temporal semantics common across all concrete syntaxes (e.g., C, SystemVerilog, Timed Automata, etc.). This
meta-model acts as a universal semantic backbone, explicitly defining core entities such as system, components, vari-
ables, and statements, along with their interrelationships and operational rules. By abstracting domain-agnostic con-
structs, the meta-model ensures semantic consistency while accommodating domain-specific extensions required for
each concrete syntax. This approach enables seamless mapping between heterogeneous syntaxes, preserves cross-
domain interoperability, and provides a unified framework for verification tools to operate upon. Domain-specific details
are integrated as specialized annotations within the meta-model, ensuring fidelity to their native semantics while main-
taining alignment with the abstract layer. The result is a robust, extensible foundation that reduces ambiguity in cross-tool
workflows and supports automated transformations via HOTSs.

The meta-model serves as a unified semantic foundation for representing programs in C, SystemVerilog, and Timed
Automata. It abstracts domain-agnostic constructs while accommodating language-specific features through hierarchical
composition. Fig 3 illustrates its structure, which is organized as follows:

3.2.1 Constructs. System class. The System class serves as the root entity, encapsulating the global structure of a
program. It aggregates:

« Component: Represents modular units such as functions (C), modules (SystemVerilog), or automata (Timed
Automata).
« Comment: Captures annotations for documentation and readability.
* Preprocessor/include Directives: Manages cross-file dependencies, macros, and library inclusions.
Declaration: Defines variables, signals, or functions.
The declaration further refines into:
* Attribute: Metadata.
* Enum: Enumerated types for state or signal definitions.
» Function Prototype: Specifies function signatures, including parameters and return types.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 9/ 48

https://doi.org/10.1371/journal.pone.0337604

N p— r
- [0.4] comment FunctionCall [0."] comment
& PreprocessorDirective H Comment O comment & FunctionCa
= keyword : EString = commentText : EString " = functionName : EString [0.#] expression
= name : EString [0.] preprocessordirective [0..7] functioncall - E:‘ra_meterStnug.
= value : EStrin ring
< [0.] comment)
_ [0..#] furjctioncal
0. functioncall
H system [0.] comment
If [0.7if
{0.] component —————————$~ =
————— 0. injcludedirective B c = keyword : EString | -
& IncludeDirective - i = rame : ESuing S variable : EString 0. £ Expression
= keyword : EString L, 0.7 declaration | o y 56 - EString 0.4 if < operator : EString = operator : EString
= name : EString {0.4[print = value : EString = value : EString
—_— (0.4 aftribute B statement || = index : EString
4] B = attribute : EString
[0.%] statement| = name : EString . . i
& value : EString (0.7 assignment [0.] agsignment (0.4if
0.#] declarption 0.4
Bl [0.4] fxpression
g 0.4 print <
Hlisrarnetay = leftAttribute : EString
Enum > name : EString = operator : EString D—
= 0.4 enum = dataType : EString 0.4 statbment = AssignedSide : EString [0.%) assignment
= enumiD : EString = qualifier : EString statpme
. > pointer : EString
10.%] comment 0.4] assignment
—_— & Declaration B Print B Loop T
TS = printText : EString 0.7 loop = type : EString N
< initial : EString i
= isGlobal : EString S condition : EString] switchCase
& dataType : EString [0.#] paranfeter S increment EString B kel)/worgS:‘FS(rlng
T = name : EString = value : EString
B i = value : EString)
0] enumlist (0.4 atribute o size : EString [0..*) assignment
= initialValue : EStrin] l—
5 EnumList 9 Blrnciorienn & switch
= enumltem : EString . ! - = keyword : EString
(0. functionprototype retimly S & value : EString [0.] expression
= functionName : EString
0.4] switch
0.] switchcase
0.4 print

Fig 3. Abstract syntax metamodel for blended modeling in embedded systems.

https://doi.org/10.1371/journal.pone.0337604.g003

Component class. The Component class represents reusable, self-contained units of functionality and encapsulates the
functional flow of a program, aggregating:

Declaration: Local variables, Global variables, signals, or registers.

» Parameter: Configurable constants (e.g., #define in C, parameter in SystemVerilog).

« Print: Output operations for debugging or logging (e.g., printf, $display).

Statement: Defines the control and data flow within the components and their Execution logic. (Detailed below).

Statement class. The Statement class forms the backbone of program logic, capturing execution flows across lan-
guages. The Statement hierarchy defines control and data flow. It aggregates:

* FunctionCall: Invokes procedures or methods.

« If-Else: Conditional branching, using Expression to evaluate logic (e.g., if (x 1= 0) {...}).
+ Assignment: Variable updates, driven by Expression (e.g., x =y + 5;).

» Loop: Iteration constructs (for, do, while), which recursively nest Statement blocks.

» Switch: Multi-way branching, aggregating SwitchCase instances.

» Each SwitchCase may contain nested Statement blocks.

Cross-language consistency.

« Expression: A shared construct for arithmetic, Boolean, or temporal logic (e.g., C expressions, SystemVerilog asser-
tions, Timed Automata guards).
* Recursive Structure: Loops and conditional blocks reuse the Statement class, enabling nested logic across languages.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 10/ 48

https://doi.org/10.1371/journal.pone.0337604.g003
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

The meta-model, developed in the Eclipse Modeling Framework (EMF) (Fig 3), provides a common semantic backbone
that bridges syntactic differences among C, SystemVerilog, and Timed Automata. It defines shared abstractions such as
Declaration, Statement, and Expression to enable bidirectional mappings and maintain consistency during runtime switch-
ing and automated transformations. Serving as a centralized abstract syntax, it encapsulates the semantic essence of all
supported languages through components like variables, control statements, and declarations, ensuring correctness and
integrity across transformations. The hierarchical structure of the meta-model places System at the root, branching into
Component, Declaration, and Statement, which further expands into FunctionCall, If-Else, Assignment, Loop, and Switch,
with explicit aggregation and recursive relationships as shown in Fig 3.

3.3 Concrete Syntaxes (C Language, SystemVerilog, Time Automata)

In our blended modeling framework, concrete syntaxes represent the tangible, language-specific formulations of system
models prior to their abstraction and unification. Although the framework is inherently extensible and capable of accom-
modating any number of concrete syntaxes, we focus on three prominent representations: C, SystemVerilog, and Timed
Automata. These have been deliberately selected due to their significant roles in the design and verification of embedded
systems. C facilitates low-level imperative programming with direct access to memory and hardware, SystemVerilog offers
a robust environment for hardware modeling and simulation, and Timed Automata provide formal semantics for model-
ing and verifying time-critical behaviors. Each of these languages is defined using context-free grammars and is system-
atically mapped to a unified abstract syntax meta-model, enabling automated, traceable, and consistent transformations
across different modeling levels.

3.3.1 Definition of language subsets. The full syntactic and semantic complexity of languages like C, SystemVer-
ilog, and Timed Automata often introduces challenges when integrating them into a unified transformation framework. To
overcome these challenges, we adopt a subset selection process that distills each language to its most essential con-
structs. This process is driven by three primary criteria: relevance, simplicity, and consistency. First, we retain only those
constructs that are critical for accurate modeling, design verification, and ensuring semantic fidelity across representa-
tions. Second, by eliminating rarely used or overly complex features, we simplify the grammars and the mapping process
to the abstract meta-model, thereby reducing ambiguity and easing maintenance. Ensuring consistency across language
subsets is essential for effective bidirectional transformations. Shared concepts such as control flow, expressions, and
data types must be uniformly represented. The subsets are selected through static analysis, dependency tracking, and
semantic profiling to keep them both minimal and sufficiently expressive.

The methodology begins by defining concise subsets for each language relevant to embedded systems:

» C Subset: Captures fundamental constructs like data types, control structures, functions, print statements, assignment
statements, etc., streamlining the transformation without compromising essential functionality.

» SystemVerilog Subset: Includes elements needed for system behaviour and verification, such as modules, data types,
variable assignments, control flows, etc.

+ Timed Automata Subset: Aligns with UPPAAL'’s structure, focusing on transitions, states, clocks, and invariants to
support formal verification of real-time behaviour.

These tailored subsets simplify parsing and transformation while ensuring fidelity and precision. Tables 1, 2, 3 present the
selected constructs used in our framework.

C Language subset selection. Table 1 outlines the selected C language constructs used in our transformation frame-
work. These elements are carefully chosen to balance modeling precision with computational expressiveness, ensuring
compatibility with formal verification needs.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 11/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOS Y. one

Table 1. C Language subset.

Category Construct
Data Types int, char, float, double
long, short

signed, unsigned

struct, union

enum

Control Structures if-else

switch-case

for, while, do-while loops
break, continue

goto

Functions Function definition
Function declaration
Function call (with/without parameters)

Recursion
Pointers Pointer variables
Arrays One-dimensional arrays
Preprocessor #define, #include

#ifdef, #ifndef, #endif
Variables Extern variables
Assignments Assignment with constant

Assignment with variable
Assignment with function call

https://doi.org/10.1371/journal.pone.0337604.t001

Table 2. SystemVerilog subset.

Category Construct

Data Types bit, logic, reg

integer, real

enum, typedef
Control Structures if-else

case

loop

break, continue
Procedural Blocks initial, always
assign, deassign
Assignments variable assignment
assignment through function
constant assignment
Function call with parameters
without parameters

https://doi.org/10.1371/journal.pone.0337604.t002

The selected subset focuses on essential constructs for transformation and verification, intentionally excluding concur-
rency and low-level operations to maintain alignment with formal methods and manageable complexity. The current pro-
totype supports both simple and moderately complex case studies, reflecting practical relevance through alignment with
industry needs. While streamlined for feasibility, the framework remains extendable to incorporate additional constructs in
future enhancements.

SystemVerilog language subset selection. Table 2 outlines the selected SystemVerilog constructs used for model-
ing, simulation, and verification. The subset is chosen to maintain a balance between descriptive capability and practical
transformation, supporting compatibility with formal verification processes.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 12/ 48

https://doi.org/10.1371/journal.pone.0337604.t001
https://doi.org/10.1371/journal.pone.0337604.t002
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

Table 3. Timed automata subset.

Category Construct

Locations States (committed, urgent)
Transitions Synchronization (channels)
Guards

Updates

Invariants

Data Types int, bool

clocks

arrays

Control Structures if-else

loops (while, for)

functions

https://doi.org/10.1371/journal.pone.0337604.t003

Timed Automata (UPPAAL) subset selection. The UPPAAL subset selection (Table 3) focuses on timed automata
modeling constructs that facilitate accurate system behaviour representation. By focusing on these constructs, the subset
ensures a structured transformation process while maintaining alignment with UPPAAL’s modeling paradigms.

3.3.2 Empirical coverage of selected subsets. While the subset definitions in Tables 1, 2, 3 were guided by rele-
vance, simplicity, and consistency, it is essential to empirically validate their adequacy against representative industrial
codebases. To this end, we analyzed established benchmark suites and industrial case studies commonly employed in
embedded system research and practice. Table 4 summarizes the observed coverage of our subsets relative to the con-
structs encountered in these sources.

To substantiate the practical adequacy of the defined subsets, an empirical analysis was conducted using represen-
tative programs from two public benchmark suites, MiBench [33] and WCET [34], and two industrial case studies: Auto-
motive Engine Control and Medical Ventilator Controller. These selections ensured both research-standard validation
and industrial relevance. The objective was to evaluate how effectively the subsets capture frequently occurring syntactic
constructs in real-world embedded code while excluding rarely used or verification-incompatible features.

Analysis Procedure: Each benchmark was parsed using custom front-end parsers built with ANTLR grammars for
C and SystemVerilog. The UPPAAL subset was formulated to remain compatible with C and SystemVerilog constructs,
ensuring consistency across design and verification levels. The DSML subset provides a generic abstraction layer, encap-
sulating common semantics across all notations. This structure ensures that transformations among C, SystemVerilog,
UPPAAL, and DSML remain semantically aligned and practically verifiable through benchmark-based evidence. The pro-
cess involved:

« Enumerating all syntactic constructs (loops, conditionals, declarations, expressions, etc.) in each benchmark.
* Mapping these constructs to corresponding elements in the defined subsets (Tables 1-3).
+ ldentifying unsupported or excluded constructs (e.g., dynamic memory, recursion, hardware-specific primitives).

The ratio of supported constructs to total constructs yielded an estimated coverage percentage, reflecting the representa-
tional adequacy of each subset.

Coverage values were estimated by statically analyzing the selected programs using the subset-aware parser. Each
construct type was counted based on its syntactic occurrence and verified for compatibility with the defined subsets.
Across MiBench (ADPCM, Dijkstra, CRC32) and WCET (Automotive, FFT), the subsets covered approximately 70-85%
of observed constructs, excluding low-level or hardware-specific features deliberately omitted to ensure alignment with
formal verification semantics. Both industrial case studies achieved full coverage as their models were designed within
subset boundaries.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 13/ 48

https://doi.org/10.1371/journal.pone.0337604.t003
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Table 4. Empirical coverage of selected language subsets across representative benchmarks.

Benchmark/Case Study Representative Programs/Modules | Estimated Coverage Range (%) | Key Excluded Features

MiBench Embedded Suite [33] ADPCM, Dijkstra, CRC32 70-80% Dynamic memory, inline assembly,
thread-level concurrency

WCET Benchmark Suite [34] Automotive, FFT 75-85% Recursive calls, low-level timing

primitives, hardware-specific
optimizations

Automotive Engine Control Case Start Ventilator Mode, Mode Shift 100% None (subset-compliant)
Study Control Module

Medical Ventilator Controller Speed Monitoring Module 100% None (subset-compliant)
Prototype

https://doi.org/10.1371/journal.pone.0337604.t004

This empirical evaluation confirms that the proposed subsets are semantically coherent and practically expressive for
embedded system modeling and transformation tasks. By combining benchmark-driven analysis with domain-specific
validation, the study provides both quantitative and qualitative evidence supporting the completeness and generalizabil-
ity of the subset definitions. The excluded constructs primarily correspond to advanced concurrency features (threads,
tasks, interrupts) and certain low-level optimizations that were deliberately omitted to maintain tractability and alignment
with formal verification tools. These findings empirically validate the suitability of our subset definitions for a wide range of
embedded system applications, while also highlighting clear directions for future extensions.

3.3.3 Grammar definition. Defining a formal grammar is essential for parsing and transforming programming and
modeling languages, as it guarantees syntactic correctness and enables feasible transformations. In this work, we
designed a concrete syntax grammar for C, SystemVerilog, Timed Automata (UPPAAL), and DSML, drawing on context-
free grammars (CFGs), attribute grammars, and parsing expression grammars (PEGs). ANTLR (Another Tool for Lan-
guage Recognition) was adopted due to its LL(*) parsing strategy, modular design, error handling, and automated parse
tree generation, making it suitable for unifying the syntactic treatment of software, hardware, and formal models within
a single framework. This ANTLR-based grammar forms the backbone of our transformation engine by ensuring precise
syntax definitions, scalability, and seamless cross-domain integration. To maintain readability, complete grammar speci-
fications and transformation rules are not reproduced in full; instead, the C grammair, its rules, and illustrative AST exam-
ples are provided in Appendix 9, while the SystemVerilog, UPPAAL, and DSML grammars remain available in our GitHub
repository [35]. This division preserves clarity in the manuscript while ensuring transparency and reproducibility.

3.4 Bi-directional transformation rules

The core of the proposed framework lies in its ability to perform real-time bi-directional transformations between the
selected representations. Although the proposed framework supports 'n’ representations, for this research work, we have
defined four representations: C, SystemVerilog, Timed Automata (UPPAAL), and Meta-Model DSML. Each transforma-
tion is designed to preserve the semantics and structure of the source model while ensuring compatibility with the target
language’s syntax and constraints. Bidirectional transformations (BX) enable seamless conversion between different mod-
eling languages, ensuring consistency and synchronization across representations. In the context of Blended Modeling
and Higher-Order Transformations (HOTSs), transformation rules facilitate the interoperability between the four notations.
These rules provide a structured approach to maintaining equivalence between abstract models and their concrete repre-
sentations. However, defining such rules is highly challenging due to syntactic and semantic differences among these lan-
guages. This section formalizes the bidirectional transformation rules, highlighting key challenges and the innovative
strategies used to address them.

A bidirectional transformation rule (BTR) ensures that a construct in source language L1 can be mapped to a
semantically equivalent construct in target language L2 and vice versa. However, in practice, not all constructs have a
one-to-one correspondence. To handle such cases, transformations involve:

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 14/ 48

https://doi.org/10.1371/journal.pone.0337604.t004
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

* Preservation: Retaining core semantic meaning across transformations.

+ Workarounds: Creating alternative representations where direct mappings do not exist.
» Consistency Management: Ensuring bidirectionality without information loss.

« Automation Strategies: Efficient parsing and transformation mechanisms.

This study systematically defines transformation rules across multiple modeling paradigms. These rules account for
syntactic, structural, and semantic variations among these languages, aiming to preserve key functional properties during
transformation.

3.4.1 Transformation complexity and scope. While this research involves four core notations, the true transforma-
tion space extends well beyond four simple conversions. Due to the bidirectional nature of the framework, each notation is
capable of being transformed to and from every other notation. Consequently, the total number of directed transformations
is significantly higher.

Let N be the number of distinct notations considered in the framework. The total number of directed transformations is
given by:

T=N+x=(N-1)
For:N=4
T=4+x4-1)=12

Thus, the proposed transformation framework realizes 12 unique bidirectional transformation paths (Fig 4), forming a
complete directed graph among the four notations.

To maintain clarity and avoid redundancy, this transformation section focuses solely on the transformations originating
from the C language to the other three notations. These include: SystemVerilog, UPPAAL (Timed Automata), and DSML.
The remaining transformation paths (SystemVerilog Others, UPPAAL Others, DSML Others) follow structurally similar
principles and are provided in the extended documentation..

The decision to focus on C-to-X transformations in this section stems from multiple factors. Firstly, C serves as a funda-
mental language for system modeling and embedded systems, making it a logical starting point for showcasing transfor-
mation methodologies. Secondly, including all bidirectional transformations within a single paper would introduce exces-
sive complexity, making it difficult to maintain clarity and readability. By focusing on C-to-X transformations, this study pro-
vides a structured and comprehensible foundation while acknowledging the need for future extensions to fully formalize
bidirectional mappings across all languages.

SystemVerilog

UPPAAL

Fig 4. Directed transformation graph across multiple notations in embedded systems.

https://doi.org/10.1371/journal.pone.0337604.9g004

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 15/ 48

https://doi.org/10.1371/journal.pone.0337604.g004
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

3.4.2 C to timed automata (UPPAAL) transformation rules. The transformation of imperative C code into declar-
ative Timed Automata (UPPAAL) is a cornerstone of the blended modeling framework, enabling formal verification of
real-time embedded systems. There were a lot of challenges while transforming C code to Timed Automata code. Timed
Automata require all locations to be pre-defined before being used in transitions, which is not a requirement in C. The
biggest challenge was to define all the locations before they are used between transitions. To resolve this, the entire C
file is first parsed to count and store locations. Therefore, all locations are pre-created based on this count before trans-
formation begins. Moreover, Uppaal lacks equivalent constructs for C Preprocessor directives. Thus, these directives are
transformed into comments in the UPPAAL model. When transforming back, comments are reinterpreted as preprocessor
directives. Another challenge was to handle Enum. UPPAAL does not support enum. Each typedef enum is converted into
a set of constant integer variables:

typedef enum {light on, light off};
Transforms into:

const int light on = 0;

const int light off = 1;

Table 5 presents a structured transformation approach from C language constructs to their equivalent representations
in UPPAAL. Each C construct, such as functions, control structures, loops, and data types, is systematically mapped to a
corresponding UPPAAL representation. The transformation process addresses essential features like preprocessor direc-
tives, global variables, and function calls, adapting them within the constraints of UPPAAL’s modeling semantics. Con-
structs that are incompatible or semantically complex, including pointers and extern variables, are either omitted or require
restructuring. This mapping strategy establishes a structured approach for translating C programs into formal models
compatible with UPPAAL verification.

3.4.3 C to SystemVerilog transformation rules. In our transformation framework, converting C code to SystemVer-
ilog is achieved through a series of carefully defined rules that ensure semantic equivalence while accommodating inher-
ent syntactic differences. Each C function is systematically transformed into a SystemVerilog module, encapsulated
within a “module VerilogSimulation; ... endmodule” structure, so that every function corresponds to a spe-
cific hardware block. Variables in C are mapped to system variable data types based on their usage, ensuring that data
storage and signal integrity are maintained in the hardware representation. Preprocessor directives such as #include
and #define are transformed into constant declarations or preserved as comments, thereby retaining essential macro
definitions and inclusion information. Additionally, t ypedef enum constructs in C are converted into SystemVerilog enu-
merations or constant definitions with distinct values to represent various states. Control flow constructs, including if-

statements, switch-case structures, and loops, are encapsulated within “begin ... end” blocks, effectively modeling
them as state machines to reflect the sequential and conditional behavior inherent in the source code. Function prototypes
and definitions are similarly transformed by enclosing them within “function ... endfunction” constructs, ensuring

that both the interface and the implementation details are preserved. These rules collectively address the challenges of
mapping an imperative software language to a hardware description language, thereby enabling robust and semantically
sound bidirectional transformations.

Table 6 provides a structured comparison between C and SystemVerilog constructs, detailing how various elements of
C code are transformed into SystemVerilog. The first column lists common C constructs along with example code snip-
pets, while the second column presents their corresponding representations in SystemVerilog. The third column outlines
the transformation rules, ensuring a clear mapping between the two languages.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 16/ 48

https://doi.org/10.1371/journal.pone.0337604

. One

PLOS

Table 5. C to uppaal transformation rules.

C Representation

UPPAAL Representation

Transformation Rule

Entire C Code Structure Example: int main()

(.-}

Mapped to a UPPAAL Template Example:
<template>...</template>

The entire C code structure is transformed into a
UPPAAL template, representing the main
process of execution.

Preprocessor Directives (#define, #include)
Example: #define MAX 10 #include <stdio.h>

Defines mapped to const; includes omitted
Example: const int MAX = 10;

#define macros are converted into UPPAAL
const declarations. #include directives are
omitted since UPPAAL does not require them.

typedef enum Example: typedef enum {IDLE,
RUNNING} State;

Mapped to an Integer or UPPAAL typedef
Example: typedef int[0,1] State;

C enum is transformed into an integer range or a
UPPAAL typedef, depending on its usage.

Functions (definition & prototype) Example:
void foo() { x = 5; }

Mapped to UPPAAL process or functions
Example: void foo() { x = 5; }

Functions in C are either represented as
UPPAAL processes (if asynchronous) or as
functions (if they return values).

Control Statements (if, switch) Example: if
(x>8){y=10;}

Mapped to Guards in Transitions Example:
x>5->y=10;

Conditional statements are expressed as
transition guards in UPPAAL. switch cases are
transformed into multiple guarded transitions.

Loops (for, while, do-while) Example: for (int
i=0;i<10;i++) { sum +=i; }

Mapped to UPPAAL Iterations using while
Example: while (i < 10) { sum +=i; i++; }

Loops are represented as while constructs in
UPPAAL, ensuring bounded execution.

Variable Declarations (int, float, char)
Example: int count = 0O;

Mapped to UPPAAL int or clock Example: int
count = 0;

Integer and floating-point types are directly
mapped, while UPPAAL clocks are used for
time-dependent variables.

Global Variables (extern) Example: extern
uint32_t count;

Excluded in UPPAAL

extern variables are not directly supported in
UPPAAL and must be refactored into
process-local or global declarations.

Pointer Variables (*ptr) Example: int *ptr; ptr =
&var;

Not Supported in UPPAAL

UPPAAL does not support pointers; references
must be handled via direct variable assignments.

Structs (struct) Example: struct {int a; float b;}
data;

Mapped to UPPAAL typedef struct Example:
typedef struct { int a; int b; } data_t;

Structs are converted into UPPAAL typedef
struct, but floating-point members are
transformed into integer equivalents.

Function Calls Example: foo();

Mapped to Function Calls or Synchronization
Example: foo();

Function calls are retained if supported,
otherwise modeled using templates

Comments (//, I* *I) Example: // This is a
comment

Preserved as UPPAAL Comments Example: //
This is a comment

Comments are retained exactly as in C to ensure
readability.

https://doi.org/10.1371/journal.pone.0337604.t005

Key transformations include encapsulating the entire C code structure within a SystemVerilog module, converting pre-
processor directives into 1ocalparam or comments, mapping C functions to SystemVerilog function constructs, and
transforming control statements and loops while maintaining block integrity. Additionally, data types such as int, float,
and struct are carefully mapped to SystemVerilog equivalents. At the same time, certain constructs like extern vari-
ables and pointers require special handling or exclusion due to SystemVerilog’s limitations. Table 6 serves as a reference
guide for systematically converting C code into SystemVerilog, ensuring compatibility and functional equivalence.

3.4.4 C to meta-model DSML transformation rules. In the transformation from C to the DSML meta-model, various

programming constructs are systematically mapped to corresponding DSML elements to ensure structural and semantic
preservation. This transformation enables model-driven analysis and verification while maintaining the integrity of the orig-
inal C code. The Table 7 outlines the transformation rules, illustrating how key C constructs such as functions, variables,
control structures, and assignments are represented within the DSML framework. By encapsulating C elements into struc-
tured DSML components, the transformation facilitates interoperability with model-based tools, enabling further analysis,
verification, and code generation.

Below is a concise yet comprehensive Table 7 summarizing the transformation rules from C to the Meta-Model DSML.
This outlines how various C language constructs are mapped into DSML elements in our blended modeling framework:

Table 7 reflects our rigorous approach to mapping C constructs into DSML elements, ensuring that the semantic
essence and structural integrity of the original C code are maintained within the DSML meta-model. The meta-model
transformations serve as an intermediate representation between C, SystemVerilog, and Timed Automata. Constructs are

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 17/ 48

https://doi.org/10.1371/journal.pone.0337604.t005
https://doi.org/10.1371/journal.pone.0337604

. One

PLOS

Table 6. C to SystemVerilog transformation rules.

C Representation

SystemVerilog Representation

Transformation Rule

Entire C Code Structure Example: int main()

(.-}

Enclosed within module VerilogSimulation
Example: module VerilogSimulation; ...
endmodule

The entire C code structure is encapsulated
within a SystemVerilog module, ensuring that
execution remains within Verilog’s simulation
scope.

Preprocessor Directives (#define, #include)
Example: #define MAX 10 #include <stdio.h>

Defines mapped to localparam; includes
commented out Example: localparam int MAX =
10; // #include <stdio.h>

#define macros are converted into localparam or
const int declarations. #include directives are
commented out since SystemVerilog does not
require them.

typedef enum Example: typedef enum {IDLE,
RUNNING} State;

Mapped to SystemVerilog enum Example:
typedef enum logic [1:0] {IDLE, RUNNING}
State;

C enum is transformed into a SystemVerilog
enum with an explicit bit-width specification.

Functions (definition & prototype) Example:
void foo() { x = 5; }

Mapped to function ... endfunction Example:
function void foo(); x = 5; endfunction

Functions in C are directly mapped to
SystemVerilog functions, preserving their
parameter and return types.

Control Statements (if, switch) Example: if (x >
5){y=10;}

Mapped to if ... else or case with begin ... end
Example: if (x > 5) begin y = 10; end

Conditional statements are enclosed within
begin ... end to maintain block structure. switch
statements are converted into case constructs.

Loops (for, while, do-while) Example: for (int i
=0;i<10; i++) { sum +=1i; }

Mapped to for ... end, while ... end constructs
Example: for (inti=0;i < 10; i++) begin sum +=
i; end

Loops are directly mapped while ensuring begin
... end encapsulation. SystemVerilog does not
support do-while, so it is rewritten as a while
loop.

Variable Declarations (int, float, char)
Example: int count = 0;

Mapped to SystemVerilog data types (logic,
int, real) Example: int count = 0;

Integer and floating-point types are directly
mapped, while pointers and arrays require
transformation.

Global Variables (extern) Example: extern
uint32_t count;

Mapped to SystemVerilog import or extern
Example: extern int count;

Global extern variables are defined in one
module and accessed using import or extern in
SystemVerilog.

Pointer Variables (*ptr) Example: int *ptr; ptr =
&var;

Mapped to indirect memory references
Example: int ptr; ptr = var;

SystemVerilog lacks pointers; references are
transformed into direct assignments where
applicable.

Structs (struct) Example: struct {int a; float b;}
data;

Mapped to struct in SystemVerilog Example:
typedef struct {int a; real b;} data_t;

Structs in C are converted into SystemVerilog
typedef struct.

Function Calls Example: foo();

Mapped to direct function invocations
Example: foo();

Function calls are directly translated if
arguments match SystemVerilog types.

Comments (//, I* *I) Example: // This is a
comment

Preserved as-is in SystemVerilog Example: //
This is a comment

Comments are retained exactly as in C to ensure
readability.

https://doi.org/10.1371/journal.pone.0337604.t006

mapped into XML-based representations that facilitate model-to-model transformations. The meta-model ensures that
semantic correctness is maintained across conversions.

This shows how various C elements, such as preprocessor directives, functions, control statements, loops, and vari-
able declarations, are transformed into equivalent DSML components. Each transformation rule ensures that the seman-
tics of C code are preserved while adapting to the hierarchical and model-driven structure of DSML. The Table 7 highlights
direct mappings, like functions becoming DSML operations and loops transforming into iteration nodes, as well as cases
where C features, such as pointers, require alternative modeling approaches. This structured transformation is crucial for
enabling systematic code translation and facilitating model-based analysis and verification.

In conclusion, this study establishes a structured framework for language transformation across C, SystemVerilog,
UPPAAL, and a meta-model-based DSML. While the complete bidirectional transformation rules are extensive, this
section presents only C-to-X transformations to provide a clear and foundational understanding of the methodology. The
challenges and strategies outlined here highlight key aspects of preserving syntactic and semantic integrity during trans-

formation.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

18/ 48

https://doi.org/10.1371/journal.pone.0337604.t006
https://doi.org/10.1371/journal.pone.0337604

. One

PLOS

Table 7. C to meta-model DSML transformation rules.

C Representation

Meta-Model DSML Representation

Transformation Rule

Entire C Code Structure Example: int main()

(.-}

Mapped to a DSML Model Element Example:
<System name="MainSystem”> <Component
name="MainComponent” /></System>

The entire C code structure is transformed into a
root system element in DSML, containing
components representing functions and
execution units.

Preprocessor Directives (#define, #include)
Example: #define MAX 10 #include <stdio.h>

Mapped to Constants and Library References
Example: <Constant name="MAX” value="10" />

#define macros are converted into DSML
constants, while #include directives are
transformed into library references where
applicable.

typedef enum Example: typedef enum {IDLE,
RUNNING} State;

Mapped to an Enumeration in DSML Example:
<Enumeration name="State"><Literal
name="IDLE” /><Literal name="RUNNING”
/></Enumeration>

Enumerations in C are directly mapped to DSML
enumeration types with corresponding literals.

Functions (definition & prototype) Example:
void foo() { x = 5; }

Mapped to DSML Operations within
Components Example: <Component
name="Computation”><Qperation
name="foo”><Statement> x = 5;
</Statement></Operation></Component>

Functions are represented as DSML operations
contained within components.

Control Statements (if, switch) Example: if (x >
5){y=10;}

Mapped to Conditional Nodes Example:
<Conditional condition="x > 5"><Assignment
target="y” value="10" /></Conditional>

Conditional statements are modeled as
conditional nodes in DSML with corresponding
conditions and assignments.

Loops (for, while, do-while) Example: for (int i
=0;i<10; i++) { sum +=1i; }

Mapped to Iteration Nodes Example: <Loop
type="for” condition="i < 10”><Assignment
target="sum” value="sum + i” /></Loop>

Loops are converted into iteration nodes,
ensuring that loop behavior is captured in DSML.

Variable Declarations (int, float, char)
Example: int count = 0;

Mapped to DSML Attributes Example:
<Component name="DataStorage”><Attribute
name="count” type="int” initialValue="0"
/></Component>

Variables are transformed into DSML attributes
within their respective components.

Global Variables (extern) Example: extern
uint32_t count;

Mapped to Shared Attributes Example:
<GlobalAttribute name="count” type="uint32” />

Global variables are represented as shared
attributes accessible across model elements.

Pointer Variables (*ptr) Example: int *ptr; ptr =
&var;

Not Supported Directly in DSML

Pointers are not directly supported; instead,
references are modeled using object
relationships or ID-based mappings.

Structs (struct) Example: struct {int a; float b;}
data;

Mapped to DSML Composite Data Types
Example: <CompositeType
name="data”><Attribute name="a" type="int"
[><Attribute name="b" type="float”
/></Composite Type>

Structs are transformed into composite types in
DSML, maintaining their hierarchical structure.

Function Calls Example: foo();

Mapped to DSML Call Expressions Example:
<CallExpression operation="foo” />

Function calls are retained as call expressions
within DSML models.

Comments (//, I* */) Example: // This is a
comment

Preserved as DSML Annotations Example:
<Annotation text="This is a comment” />

Comments are converted into DSML annotations
to retain documentation within the model.

https://doi.org/10.1371/journal.pone.0337604.t007

3.5 Critical analysis of round-trip transformations in blended modeling

Blended modeling integrates multiple modeling paradigms by enabling transformations between 'n’ different notations,
such as C, SystemVerilog, Timed Automata (UPPAAL), and DSML meta-models. While these transformations facilitate
interoperability, a critical challenge is ensuring bi-directionality, i.e., that transformations can be reversed without loss

of information. An ideal transformation framework should allow for round-trip consistency, meaning that translating a
model from one language (L1) to another (L2) and then back (L1 — L2 — L1) should reproduce the exact source rep-
resentation. However, due to semantic mismatches between languages, this is not always achievable. Each of the tar-
get languages, including C, SystemVerilog, Timed Automata, and DSML, has different abstractions and expressiveness,
making certain constructs non-reversible. The key challenge is designing transformation rules that minimize information

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

19/ 48

https://doi.org/10.1371/journal.pone.0337604.t007
https://doi.org/10.1371/journal.pone.0337604

. One

PLOS

loss, ensuring that the original structure can be reconstructed as accurately as possible when transforming back. Achiev-
ing full bi-directional fidelity across these languages remains an open challenge requiring traceability mechanisms, hybrid

modeling approaches, and improved transformation heuristics.

In model-driven transformations, ensuring a lossless round-trip conversion between different languages is a crucial
challenge. Fig 5 illustrates round-trip transformations across multiple notations (1 to n) in a blended modeling framework.
Each forward transformation introduces some delta loss, indicating potential information loss. The return transforma-
tion (n — 1) may not fully restore the original due to accumulated losses. It highlights the challenge of achieving accu-
rate, lossless bidirectional transformations. The primary goal of round-trip transformations (L1 — L2 — L1) is to maintain
semantic integrity, meaning that converting a source language (L1) to a target language (L2) and then back to the source
should ideally yield the original code. However, due to differences in language constructs, information loss can occur.
Table 8 highlights some key challenges encountered during bidirectional transformations between C, SystemVerilog,
UPPAAL, and DSML, along with the strategies adopted to mitigate these losses.

Transform 2 -> 3

Notation 2 Notation 3

Delta loss

Transform 1 ->2
Delta loss
ss0] e12a
U <- € wJojsuel]

Notation
\\4 ‘n’

Delta loss

Transformn->1

Notation 1

Fig 5. Round-trip transformations across multiple notations.

https://doi.org/10.1371/journal.pone.0337604.9g005

Table 8. Round trip transformations analysis.

Round Trip Challenge
Transformation

Adopted Strategy

Information Loss

C — SystemVerilog — C extern variable declaration in C has no extern is lost in transformation and cannot be Yes
equivalent in SystemVerilog. restored.

C — SystemVerilog — C uint8_t and uint32_t has no equivalent in During round trip, all int types map back to intin | Yes
SystemVerilog. C, losing original type precision.

C — SystemVerilog — C In C, array is defined as txx[13] and in Handled programmatically to ensure correct No
SystemVerilog, it is defined as txx[12:0]. transformation back to C.

C — SystemVerilog — C #include directives have no direct mapping in Preserved as comments in SystemVerilog, No
SystemVerilog. parsed, and restored in C.

C - UPPAAL - C #define preprocessor directives have no Transformed into const int in UPPAAL and Yes
equivalent in UPPAAL. remains const int on round trip back to C.

C — SystemVerilog — C #define preprocessor directives have no Transformed into const int in SystemVerilog and | Yes
equivalent in SystemVerilog. remains const int on round trip back to C.

C - UPPAAL - C #include directives have no direct mapping in Preserved as comments in UPPAAL, parsed, No
UPPAAL. and restored in C.

C - UPPAAL - C enum types from C has no equivalent in On round trip back to C, enum types remain Yes
UPPAAL. const int.

C - UPPAAL - C Print statements from C have no direct Preserved in UPPAAL comments, parsed, and No
equivalent in UPPAAL. restored in C.

C - UPPAAL - C Function calls from C are transformed into Handled programmatically to ensure function No

transitions in UPPAAL, as no equivalent is
available.

calls are correctly restored in C.

https://doi.org/10.1371/journal.pone.0337604.t008

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

20/ 48

https://doi.org/10.1371/journal.pone.0337604.g005
https://doi.org/10.1371/journal.pone.0337604.t008
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

While the Table 8 also outlines some of the most significant challenges and solutions in round-trip transformations,
there are numerous other cases where discrepancies may arise due to language-specific constructs. Ensuring complete
bidirectional transformation remains an ongoing research challenge in blended modeling, requiring further refinements
and adaptive strategies to preserve as much information as possible.

3.6 Pseudocode (Algorithm)

This section provides the pseudocode for the bidirectional transformation engine, a system designed to enable the seam-
less translation of code between multiple programming languages. The engine ensures that updates made in one lan-
guage are automatically reflected in the corresponding target languages, maintaining consistency across all represen-
tations. Through a series of structured steps, the engine saves updated code, executes transformations for other lan-
guages, detects errors, and refreshes the graphical user interface (GUI) to display the most current code. The pseu-
docode detailed in this section illustrates the core workflow of the engine, emphasizing its ability to manage language
synchronization and ensure the integrity of transformations across diverse codebases. The pseudocode is as follows:

Algorithm 1. Pseudocode for blended modeling framework.

Initialization Phase: Initialize C, SystemVerilog, Timed Automata, and Meta-Model DSML tree.
On User Update:
1. User modifies code and triggers save.
2. Retrieve the source file and save the updated code:[1]
source file < GetSourceFile(updated language)
SaveToFile(source file, updated code)

Transformation Phase: for each target language in {C, SystemVerilog, UPPAAL,DSML} do
if target_language # updated_language then

Lexical Analysis: [1] lexer«< InitializeLexer(source code)

token_stream < GenerateTokens(lexer)

Parsing: [1] parser< InitializeParser(token stream)
parse tree < parser.StartRule ()

Error Handling: [1] if ParseErrorsExist(parser) then
| THROW ”“Syntax Error in Source Code”

AST Construction: [1] ast<« ConvertParseTreeToAST(parse_tree)

Code Transformation: [1]

visitor < InitializeVisitor(source language,target language)
transformed _code < " for each node in ast do

transformed code «

transformed code + visitor.ApplyTransformation(node)

Save Transformed Code: [1]
SaveToFile(GetSourceFile(target language),transformed code)

Update Phase: for each language in {C, SystemVerilog, UPPAAL,DSML} do
[1] source file < GetSourceFile(language)
latest_code < ReadFromFile(source_file)

| UpdateGUI(language, latest code)

repeat
until all GUI updates complete;

The Bidirectional Transformation Engine is designed to facilitate seamless code transformation between C, Sys-
temVerilog, UPPAAL (Timed Automata), and Meta-Model DSML. One can modify any of these representations via a
GUI, which displays all four languages in separate tabs, each linked to an underlying source file. Upon pressing the Save

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 21/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

button, the system determines which language was last updated and commits the changes to its respective source file.
The engine then executes transformations for the other three languages by leveraging ANTLR’s parsing and transfor-
mation process.

The transformation process begins with lexical analysis, where the lexer tokenizes the source code into meaning-
ful components. The parser then applies grammar rules to construct a parse tree, ensuring the correctness of the input.
If any syntax errors are detected, the process is halted, and an error is thrown. Upon successful parsing, an Abstract
Syntax Tree (AST) is generated, which serves as the structured representation of the code. The visitor pattern is used
to traverse this AST, applying language-specific transformation rules. Each node in the AST is processed, and the
transformed code is iteratively constructed and saved to the corresponding source file for the target language.

This approach ensures consistency among the representations, enabling bidirectional transformations while preserv-
ing structural integrity. Although some information loss is inevitable due to semantic differences among languages,
careful preservation strategies (such as maintaining preprocessor directives in comments) mitigate these challenges.
This transformation engine allows for an efficient and automated round-trip engineering process, which is crucial for
model-driven development, embedded system design, and formal verification workflows.

This pseudocode effectively captures the bidirectional transformation process, ensuring consistency and accurate
synchronization of code across multiple languages. The integration of parsing, structured error handling, and the visitor
design pattern establishes a reliable framework that facilitates language transformations while maintaining both syntactic
accuracy and semantic consistency.

4 Implementation architecture

The framework is equipped with an interactive graphical user interface developed using Java Swing, integrated within

the Eclipse IDE to benefit from its robust development environment. This interface facilitates real-time transformations
among multiple language representations. While the current implementation supports C, SystemVerilog, Timed Automata
(UPPAAL), and DSML, the underlying architecture is designed to be extensible, allowing integration of additional notations
as needed for broader applicability.

Eclipse was chosen as the primary development environment for its robust support for modular development, debug-
ging, and integration of various frameworks. The Eclipse Modeling Framework (EMF) was utilized to define and manage
the Meta-Model for the DSML representation. Additionally, the Eclipse environment facilitated the organization of transfor-
mation rules, grammar files, and GUI (Graphical User Interface) components into distinct packages, ensuring a clean and
scalable architecture.

Fig 6 presents the implementation architecture of the proposed blended modeling framework for the design and verifi-
cation of safety-critical embedded systems. The architecture begins with the grammars of supported languages, C, Sys-
temVerilog (SV), Timed Automata (TA), and DSML, notated on the left. Each grammar is processed through a lexer and
parser, generating an Abstract Syntax Tree (AST) for each respective notation. These ASTs are maintained in a central-
ized repository and serve as the foundation for transformation. The visitor pattern is employed to traverse the AST tokens,
applying notation-specific transformation rules. These transformations are governed by a command design pattern that
decouples the transformation logic and allows modular execution. The output is then propagated to update the other mod-
eling notations consistently, preserving synchronization across all views. This layered and modular structure ensures scal-
ability, enabling the seamless integration of additional notations or transformation rules in the future, while maintaining the
system’s responsiveness and maintainability.

4.1 Modular development approach (BackEnd)

To maintain clarity and scalability, the GUI and transformation logic were implemented using a modular approach. The
system adopts a layered architecture to decouple the GUI, transformations, and utilities:

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 22/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Blended Modeling Framework for Design and Verification of Safety Critical Embedded Systems
Implementation Architecture

Grammars Notations
- Abstract AST Tokens ; T
strac
c Lexers Visitor(s)
Syntax . =
— against each Command =
= Tree(s) notation Desi o
esign
v Repository . >
i Pattern s
against each =

notation

Parsers
TA

= Transformation

DSML Rule against L

each notation

Fig 6. Implementation architecture of the proposed blended modeling framework.

https://doi.org/10.1371/journal.pone.0337604.9g006

Separate Packages for Each Transformation:

+ CTransformations: Contains ANTLR grammar files, visitor classes, and utility methods specific to transforming C repre-
sentations to other formats.

» SVTransformations: Handles transformations from SystemVerilog to other representations.

+ TATransformations: Encapsulates rules and logic for converting Timed Automata to other formats.

+ DSMLTransformations: Includes ANTLR grammar files, visitor classes, and utility methods for DSML-to-other transfor-
mations.

* GUIComponents: Contains all GUI-related components, including tab management, event handling, and Ul rendering.

« Utilities: Includes shared utilities for file handling, logging, and natifications.

This modular approach ensures that any updates or enhancements to a specific transformation do not impact the
rest of the application, promoting maintainability and extensibility. The abstract syntax meta-model for the DSML rep-
resentation was developed using the EMF DSML framework, with dsml.ecore defines the meta-model in Ecore. This
meta-model serves as the foundation for creating instances that represent various DSML elements.

4.2 GUI design and functionality (FrontEnd)

GUI features a user-friendly interface with four tabs arranged side by side, corresponding to the four representations
(Fig 7). Each tab allows one to view, edit, and manage the respective representation. Changes made in one tab can be
propagated to other representations through real-time transformations.

The GUI implementation is structured around a multi-tab layout that displays all four modeling representations simulta-
neously, facilitating effortless navigation between C, SystemVerilog, Timed Automata, and DSML views. Transformations
are seamlessly handled through a central transformation engine, triggered explicitly upon detecting code changes. The
system leverages ANTLR grammars and tailored visitor implementations to parse and convert code efficiently, ensuring

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 23/ 48

https://doi.org/10.1371/journal.pone.0337604.g006
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

= Blended Modeling Environment - o X
File
. MRED X =8
B Transform & Save
ES Uppaal B c Langusge & veriog
<tsml version="10" encoding="ut£.8"7> 1| Jextern uints_t New_Mode_Flag; + | |module VesilogSimulation; =
<IDOCTYPE nta PUBLIC -/ /Uppaal Team//DTT _| |- [extern wint$_t initial_flag;
<nta> 1| Jextesn uintS_t Running Mode; int New_Mode_Flag;
<declaration> extern uint8_t Set_Button; _ | [int initial_flag: =
int New_Mode_Flag; extern vintS_t Stast_Button; int Running Mode;
int initial_flag; extern uintS_t Standby_Button; int Set_Button;
int Running Mode; extern uint32_t check_flag VCV; int Start_Button;
int Set_Button; extern uintS_t In_Init_Flag; int Standby_Button;
int Stast_Button; estern uint32_t In_Start_Tick; int check_flag VCV;

extern vintS_t InEx_Flag; int In_Init_Flag;
t peep_observed; int In_Stazt_Tick:
tIn_End_Tick; int InEx_Flag;
extern uintS_t Ex_Init_Flag; int peep_observed;
estern uintS_t p_plateau_flag; int In_End_Tick;
extern uint32_t p_platean_cycles; int Ex_Init_Flag;
intIn_End_Tick extern uint2_t p_plateau; int p_plateau_flag:
int Ex_Init_Flag, 132_t Exhale_Time; int p_platcau_cycles;
_flag; tInhale_Time; int p_plateau;
int p_plateau_cyeles; estern uintS_t ExtraDelayFlag: int Exhale_Time;
Property Value E int p_pla extern uintS_t volumeORpressuzeMode; int Inhale_Time;

Tres Propertes

int Exhale_Time; extern uintS_t Sensors_Running; [int ExtraDelayFlag;

int Inhale_Time; extern uint32_t cheek_flag_sensors; int volumcORpressureMode;
int ExtraDelayFlag; extern osTheeadld VCVimodeHandle; int Sensors_Running;

£ int volumeORpressuzeMode; etern osTheeadld SensossHandle; int check_flag_sensors;

int Sensors_Running; extern char txx([13]; [longint VCVmodeHandle;
int check_flag_sensors; at8_t cmd_end[3]; llongint SensorsHandle;

int VCVmodeHandle; :

int SensorsHandle;

I
I

| B#] consoLe

Fig 7. Graphical User Interface (GUI) of the proposed blended modeling framework.
https://doi.org/10.1371/journal.pone.0337604.g007

real-time synchronization across all views. Background transformations enable to continue working in one tab while trans-
formations are applied to others, without experiencing any performance lag. Furthermore, the application supports com-
prehensive file management features, allowing import and export of models in various formats. Changes are persistently
stored within the workspace, maintaining data consistency and ensuring smooth integration into the modeling workflow.

The blended modeling framework features an interactive GUI that enables seamless real-time transformation across
multiple modeling notations. As code is modified within the active tab, the system detects changes upon request and trig-
gers the transformation process. A live parsing engine processes the updated code to generate the abstract syntax tree
(AST), and transformation rules, implemented using the visitor pattern, are applied to produce corresponding represen-
tations across the remaining views (C, SystemVerilog, Timed Automata, or DSML). These representations are updated
instantly and synchronized across tabs without requiring manual intervention. The GUI, developed using Java Swing
integrated with Eclipse RCP, provides an intuitive and responsive environment for model management. Its modular and
extensible architecture allows easy incorporation of additional languages and representations, supporting future scalabil-
ity. This design simplifies complex model handling and makes the framework accessible with limited expertise in formal
methods.

To promote reproducibility and facilitate future research, the complete implementation of the proposed blended mod-
eling framework has been made publicly available. The source code, including grammars, transformation rules, visitor
classes, and the Eclipse RCP-based GUI, is hosted on GitHub [35]. Additionally, a pre-built Eclipse RCP product is also
provided [35] for direct execution without requiring compilation. The repository contains detailed instructions for setup
and usage. Researchers and practitioners are encouraged to explore, reuse, or extend the tool to support additional lan-
guages or verification workflows in the embedded systems domain.

5 Proof of concept - validation and evaluation

Two case studies have been conducted to validate the proposed bi-directional transformation framework: (1) a ventilator
system and (2) a cruise control system. These case studies demonstrate how transformations are applied in real-world
embedded systems, where different aspects of the system are modeled using multiple representations. The ventilator

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 24/ 48

https://doi.org/10.1371/journal.pone.0337604.g007
https://doi.org/10.1371/journal.pone.0337604

PLO?%- One

system case study consists of two use cases, each highlighting different subsets of the specified languages, ensuring a
thorough evaluation of the transformation process.

The transformation engine operates in a dynamic manner where the last modified representation is identified as the
source language, while the other three representations are transformed accordingly. The transformed representations are
then seamlessly reflected in the GUI, ensuring real-time synchronization between all four representations.

5.1 Case study 1: Ventilator system

5.1.1 Overview of ventilator systems in embedded design. A ventilator is a real-time embedded system used in
medical applications to regulate a patient’s breathing cycle. The system automates the inhalation and exhalation process
by controlling airflow based on parameters such as pressure, volume, and timing, as presented in Fig 8. The software
governing the ventilator operates under strict real-time constraints, ensuring precise breath delivery while continuously
monitoring sensor data for feedback. The embedded system comprises actuators to control valves, RTOS-based task
scheduling for managing multiple breathing modes, and safety mechanisms to handle system failures. Given its
complexity, a ventilator system is an ideal case study to validate the multi-representational transformation framework,
as it encompasses both software and hardware-level descriptions.

5.1.2 Use Case 1: Start ventilator mode. This use case illustrates the ventilator’s transition into its active mode of
operation, where all essential control parameters are verified and configured before ventilation begins. The transforma-
tion framework ensures that changes made at this stage are consistently reflected across all four representations, C,
SystemVerilog, Timed Automata (UPPAAL), and the DSML model, maintaining semantic alignment.

At the core of this scenario is the initialization phase, which is triggered either when the ventilator is powered on or
when switching between operating modes. The focus here is to confirm that the system is prepared for safe operation.

‘WiFi Module
T ’ +24V
ee e
oo +5V Power Supply sV
- —_—— I
o -
Controls@ E = A’ |
Button . B =
° o8 7 N 1
= o 7/ \ Brushless Fan |
7/ |
» ° '
INJOUT
o LCD DISPLAY | @ o Flow
] . ° { :
’,-:' Microcontroller Board Sensor
—p> : Analog on Fan Controller
—
-
[.
-
L) -
n [

Potentiometer
Control

PWM Control, rpm Count, Brake, Errors detect

Fig 8. Abstract model of the ventilator system.

https://doi.org/10.1371/journal.pone.0337604.g008

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 25/ 48

https://doi.org/10.1371/journal.pone.0337604.g008
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

Key tasks include initializing control variables, deactivating non-critical threads to reduce startup overhead, using system

timers for task scheduling, and handling exceptional cases such as sensor readiness or calibration checks.

This scenario also serves as a functional test case for the transformation process, given its variety of programming

features commonly used in embedded systems. It integrates basic and advanced elements such as fixed-width data

types (uint8 t, uint32 t), function declarations and invocations, conditional and loop structures, and various assign-
ment operations. These constructs are transformed across the target languages while preserving structural and seman-
tic integrity. For example, fixed-width integers in C are mapped to type-compatible constructs in SystemVerilog, abstract
clocks or variables in UPPAAL, and corresponding elements in the DSML meta-model, supporting a reliable and synchro-

nized multi-notation representation. The Transformations work as follows:

Transformation Rule: TR-1.1

C: if (New_Mode Flag)
{
New Mode Flag = 0;
}

SystemVerilog: if (New Mode Flag) begin
New Mode Flag = 0;
end

Uppaal:<transition>
<source ref=7id0”/>
<target ref=7idl”/>
<label kind="guard”>
New Mode Flag
</label>
<label kind="assignment”>
New Mode Flag = 0
</label>
</transition>

DSML: <statement>
<if
keyword="1if"
variable="New Mode Flag”
operator=""
value="">
<assignment
leftAttribute="New Mode Flag”
operator="="
AssignedSide="0"/>
</if>
</statement>

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

26/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Function prototypes and function calls play a crucial role in this case, as they define modular operations within the ven-
tilator system. The transformation framework ensures that function signatures remain intact across all representations,
maintaining logical consistency. Control flow statements, particularly if-else constructs, regulate ventilator operations
based on sensor inputs and system states. These are transformed into guarded transitions in UPPAAL (TR-1.1), struc-
tured begin-end conditionals in SystemVerilog, and structured decision blocks in DSML. Additionally, the case includes
various types of assignments such as constant assignments, variable-to-variable assignments, function call-based assign-
ments, and structured array assignments. These assignments are systematically transformed, preserving semantic cor-
rectness across all representations.

When one modifies any of the four representations, an Abstract Syntax Tree (AST) is generated, which serves as an
intermediate representation for transformation. The visitor-based transformation logic then traverses the AST, apply-
ing the pre-defined transformation rules. For instance, in SystemVerilog, extern uint8_t from C is transformed into an int
mode_flag; whereas in UPPAAL, an if statement from C is translated into a state transition with an associated guard con-
dition. The DSML representation, on the other hand, structures control flow statements as hierarchical XML-based deci-
sion blocks.

When transforming from C to SystemVerilog, the extern keyword is omitted, and uint8 t is converted into int,
ensuring compatibility with SystemVerilog’s data type system. Similarly, for C to Timed Automata (UPPAAL) transfor-
mations, uint8 t and uint32_t are mapped to int, maintaining numerical consistency. However, in the case of C to
Meta-Model DSML, the data type syntax and semantics are preserved, ensuring that the high-level abstraction retains
the original structure of the embedded system representation.

The transformation of arrays across different representations is also managed. In SystemVerilog, arrays are trans-
formed into the format byte txx [12:0], while in C, they are represented as extern char txx[13].During trans-
formation from C to Timed Automata (UPPAAL), the char data type is mapped to string, whereas the array structure
txx [13] remains unchanged. Finally, in the Meta-Model DSML representation, both the syntax and semantics of the
array are preserved without modification, ensuring consistency in the structural representation across transformations.

Comments remain unchanged during transformations between C and SystemVerilog, preserving both single-line and
multi-line formats. However, Timed Automata (UPPAAL) follows a different comment syntax, using <!-- -->, requiring
conversion during transformation. Despite this syntactic adjustment, no information is lost. In contrast, the Meta-Model
DSML representation maintains comments in their original source language syntax, ensuring that annotations remain
intact across transformations.

This use case demonstrates the effectiveness of the proposed transformation framework in managing multi-paradigm
embedded system representations while preserving logical and functional equivalence.

5.1.3 Use Case 2: Mode shift control. This use case addresses the controlled switching between various ventilation
modes, such as Pressure-Controlled (PCV), Volume-Controlled (VCV), and Assisted-Controlled (ACV). The system han-
dles these transitions by updating control parameters and suspending or resuming relevant threads, ensuring no disrup-
tion in ongoing operations.

The mode switching logic is implemented through a switch statement based on the Running Mode variable, cover-
ing all defined modes with a default case for safety. The transformation framework accurately maps these constructs
into C, SystemVerilog, Timed Automata, and DSML representations, preserving the structure and logic essential for sys-
tem stability.

The implementation of this use case includes several key programming constructs that are transformed into equivalent
representations across different modeling languages.

The extern variable declarations are essential for storing key system parameters. The ventilator system relies on mul-
tiple extern variables of type uint8 t and osThreadId. These include critical parameters such as Running Mode,
ventilation control flags, and thread handles for different ventilation modes. In SystemVerilog, the extern keyword is

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 27/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

removed as there is no equivalent construct, hence information loss on round-trip transformation, while uint8 t is trans-
formed into int. For Timed Automata (UPPAAL), osThreadId is converted into an integer representation to align with
the automaton-based execution model.

The switch-case structure plays a crucial role in handling mode transitions. The switch construct determines the cur-
rent mode of operation by evaluating Running Mode. Each case represents a specific ventilation mode, ensuring smooth
transitions between different states. Within each case, multiple assignment statements update system parameters dynam-
ically. These include updates to control variables such as volumeORpressureMode, which dictates whether the venti-
lator operates in volume or pressure control mode. Additionally, function calls are executed to apply necessary system
adjustments, including Update Internal Parameters () and osThreadSuspend (), which dynamically suspend
or resume ventilation threads. The inclusion of comment statements provides clarity regarding system behavior, helping
in debugging and traceability. To maintain execution flow integrity, the break statement is used at the end of each case,
ensuring that only one case executes at a time and preventing unintended fall-through behavior.

Transformation Rule: TR-2.1

C: switch(Running Mode)
{

case 1:

{
//other code
break;

}

//rest of the cases and code

SystemVerilog:
case (Running Mode)
1: begin
//other code
end
//rest of the cases and code

Uppaal:

<transition>
<source ref="1d0”/>
<target ref="idl”/>
<label kind="guard”>

switch== Running Mode

</label>

</transition>

<transition>
<source ref="idl1”/>

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 28/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

<target ref="id2”/>
<label kind="guard”>
Running Mode==
</label>
//other code
</transition>
//BREAK_STATEMENT

DSML:

<switch

keyword="switch”
value="Running Mode”>
<switchcase

keyword="case”

value="1">

//other code

</switchcase>

//rest of the cases and code

Regarding transformations across representations, the proposed framework ensures structural preservation and
semantic correctness. In SystemVerilog, the switch construct is directly mapped, maintaining the same logical struc-
ture (TR-2.1). Assignments, function calls, and comments are transformed into their equivalent SystemVerilog constructs
while preserving their execution order. For Timed Automata (UPPAAL), each case is mapped to a transition within the
automaton model. Assignment statements are transformed into transition assignments (kind=assignment), while func-
tion calls are handled as either kind=guard or kind=assignment, depending on whether they act as conditions or
actions in the state transitions. Finally, in Meta-Model DSML, the switch structure and its cases are represented in XML
format, with <switch> and <switchcase> elements encapsulating assignments, function calls, and comments in a
hierarchical manner.

The proposed framework ensures that complex mode-switching remains structurally intact across all representations
while transforming each construct to the target language. The bidirectional transformation approach guarantees that mod-
ifications in one representation are transformed into all others, thereby enabling seamless verification of ventilator system
behavior.

5.2 Case Study 2: Cruise control system

5.2.1 Overview of cruise control systems in embedded design. The cruise control system operates through
real-time interactions between software and hardware components (Fig 9). It maintains a steady vehicle speed by auto-
matically adjusting the throttle based on feedback from speed sensors. The system allows the driver to set, increase,
decrease, or cancel the desired speed through button interactions. The embedded control logic ensures that speed
remains within predefined limits while adjusting for variations in terrain and resistance.

5.2.2 Use Case 1: Speed monitoring. The execution of the cruise control use case involves continuous monitor-
ing of vehicle speed and dynamic state transitions based on inputs. The system initializes in the CRUISE OFF state,
where manual speed control is required. Upon activation, the system transitions to CRUISE ON, where it maintains a

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 29/ 48

https://doi.org/10.1371/journal.pone.0337604

Throttle Engine & Actual Speed

Unit GB

\ 4

Controller ~p>

T

Speed Sensor

Fig 9. Abstract model of the automotive cruise control system.

https://doi.org/10.1371/journal.pone.0337604.9g009

steady speed using the controlThrottle () function. If the driver manually adjusts the speed, the system enters the
CRUISE HOLD state, allowing gradual acceleration or deceleration while preserving automated control. These transitions
rely on a structured implementation using enumerations, conditional logic, function calls, and iterative loops, ensuring
precise control over vehicle speed regulation. Applying transformation rules across different representations is crucial to
maintaining the integrity and correctness of the cruise control system.

The cruise control system case study implementation incorporates a variety of fundamental programming constructs
that are essential for embedded systems development. Preprocessor directives such as #include and #define are
utilized to include standard input-output libraries for debugging and to define constants for speed limits, throttle con-
trol, and step increments. The system employs an enumeration (typedef enum) to define three operational states—
CRUISE OFF, CRUISE ON, and CRUISE_HOLD—which govern the behavior of the cruise control logic. Global variables,
including currentSpeed, desiredSpeed, throttle, and state, are used to maintain the system’s state and dynami-
cally update parameters based on real-time inputs.

Function implementations play a crucial role in executing the system’s logic. The readCurrentSpeed () function
simulates sensor data retrieval, while controlThrottle () adjusts the throttle based on speed differences to maintain
the set speed. The updateCruiseControl () function incorporates a switch statement that processes inputs to set,
change, or cancel cruise control, ensuring smooth state transitions. Conditional statements (i f-e1se) are extensively
used throughout the program to facilitate decision-making, such as adjusting speed limits, regulating the throttle, and han-
dling system transitions. A for loop within the main () function simulates continuous monitoring of speed adjustments
and system responses.

Additionally, print f statements provide real-time feedback, assisting in debugging and interaction by displaying
speed, state transitions, and throttle adjustments. This combination of constructs ensures that the cruise control sys-
tem functions effectively, simulating real-world embedded control mechanisms while enabling seamless transformations
between different representations.

The transformation process follows a structured approach to ensure the correct mapping of constructs across different
representations. Preprocessor directivessuch as #include and #define in C do not have direct equivalents in UPPAAL
and SystemVerilog; therefore, they are transformed into comments and, on round-trip transformations, will be transformed
back. The typedef enum construct, which represents cruise control states, is transformed (TR-3.1) into integer con-
stants in both UPPAAL, as there is no equivalent available. However, in SystemVerilog, it is transformed into an SV syntax
enum. Finally, the enum is transformed into a relevant tag in DSML.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 30/ 48

https://doi.org/10.1371/journal.pone.0337604.g009
https://doi.org/10.1371/journal.pone.0337604

PLO&&- One

Transformation Rule: TR-3.1

C:
typedef enum {
CRUISE OFF,
CRUISE ON,
CRUISE HOLD
} CruiseState;
CruiseState state = CRUISE OFF;

SystemVerilog:
typedef enum logic([1:0] {
CRUISE OFF,
CRUISE ON,
CRUISE HOLD
} CruiseState;
CruiseState state=CRUISE OFF;

Uppaal:

const int CRUISE OFF = 0;
const int CRUISE ON = 1;
const int CRUISE HOLD = 2;
int state=CRUISE OFF;

DSML:

<declaration>

<enum enumID="CruiseState”>
<enumlist enumItem=”CRUISE OFF”/>
<enumlist enumItem=”CRUISE ON”/>
<enumlist enumItem="CRUISE HOLD”/>
</enum>

<attribute

isGlobal=""

dataType="CruiseState”
name="state”

size=""
initialvValue="CRUISE OFF”/>

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025

31/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

In C, a Function definition has a defined syntax with a return type, parameters, and code inside parentheses. In Sys-
temVerilog, it is defined within function...endfunction keywords, while in UPPAAL, they are abstracted as tem-
plates or transitions depending on their role in the execution flow. Finally, DSML has relevant tags for each construct of
concrete notations.

Control flow statements, including i f-else and switch-case, are transformed into equivalent constructs across rep-
resentations. In SystemVerilog, they are enclosed within begin. . .end blocks, while in UPPAAL, they are represented
as guarded transitions between states. Loop constructs (TR-3.2), such as for loops, are converted into iterative transi-
tion structures in UPPAAL, preserving the logic while adapting to the target model’s syntax. Loop start and end are pre-
served in Uppaal by introducing comment statements //FOR-LOOP-OPEN and //FOR-LOOP-CLOSE as it will preserve
the opening and closing of the loop during the round-trip transformation cycle.

Transformation Rule: TR-3.2

C:
for (int i = 0; 1 < 20; 1i++) {
// some code

SystemVerilog:

for (int i = 0;1i < 20;i++) begin
// some code

end

Uppaal:
//FOR_LOOP_OPEN
<transition>
<source ref=7id14”/>
<target ref="1id15”/>
<label kind="assignment”>7j=0</label>
</transition>
<transition>
<source ref="1d14"”/>
<target ref="idl6”/>
<label kind="guard”>
j&1t;1000000
</label>
<label kind="assignment”>7j++</label>
</transition>
<transition>
<source ref="id16”/>
<target ref="id15”/>
</transition>

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 32/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

//FOR_LOOP CLOSE
// some code

DSML:

<statement>

<loop

type="for”
initial="int i=0"
condition="1i < 20"
increment="1i++">
//some code

</loop>

</statement>

Through this structured transformation approach, the cruise control system is effectively mapped across different repre-
sentations, ensuring that its functional behavior remains intact while adapting to the syntactic and semantic constraints of
each target language.

The ventilator system case study successfully validates the proposed transformation framework by demonstrating
that a complex real-time embedded system can be effectively represented and synchronized across C, SystemVerilog,
UPPAAL, and DSML. The study highlights how different programming constructs, including conditional logic, func-
tion calls, and switch-case statements, are accurately mapped to their corresponding representations while preserving
semantic integrity.

6 Performance evaluation

To validate the efficacy of the proposed transformation framework, we conducted a comprehensive performance evalua-
tion across all transformation pathways among the four modeling notations: C, SystemVerilog, UPPAAL, and DSML. The
proposed transformation framework is evaluated based on multiple performance metrics, including transformation latency,
round-trip accuracy, edge-case handling, memory usage, and scalability. These metrics were measured on a Windows

11 (64-bit) machine with an Intel Core i5-1135G7 processor (2.42 GHz) and 8GB RAM, ensuring realistic performance
expectations.

6.1 Performance evaluation parameters

1. Transformation Latency Time required to convert source code to a target representation (measured for 100 lines
of code or model elements). Results are summarized in Table 9. Transformation times vary due to differences in language
complexity and the computational effort required to map constructs between source and target notations. For instance,
transformations involving UPPAAL exhibit higher latency (110—-130 ms for 100 LOC) because timed automata require flat-
tening of state-space models and handling synchronization semantics. In contrast, DSML-based transformations are
faster (60—70 ms) owing to high-level template-based abstraction and simpler structural mappings. Procedural languages
like C and SystemVerilog show intermediate latency (80-100 ms), reflecting the moderate parsing and traversal costs
associated with their control-flow constructs and data types.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 33/48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Table 9. Transformation latency across different paths.

Source — Target Latency (ms)
C — UPPAAL 120
C — SystemVerilog 80
C - DSML 100
SystemVerilog - C 90
SystemVerilog — UPPAAL 110
SystemVerilog — DSML 70
UPPAAL — C 130
UPPAAL — SystemVerilog 100
UPPAAL — DSML 85
DSML — C 95
DSML — SystemVerilog 60
DSML — UPPAAL 70

https://doi.org/10.1371/journal.pone.0337604.t009

2. Round-Trip Accuracy Semantic fidelity is maintained during forward and reverse transformations and assessed
through automated trace comparison and manual inspection. Results are shown in Table 10. Accuracy is largely deter-
mined by semantic alignment between source and target languages. Transformations between C and SystemVerilog
achieve the highest fidelity (~98%) due to structural similarity and well-defined control constructs. Lower accuracy (~90%)
is observed for paths involving UPPAAL, mainly because timed behaviors and preemption semantics are approximated
during bidirectional mapping. Minor deviations also arise from language-specific features, such as preprocessor direc-
tives in C, concurrency constructs in SystemVerilog, or complex state hierarchies in UPPAAL.

3. Edge-Case Handling Success rate in managing syntactic and semantic complexities like recursion, nested con-
structs, and mixed data types. Results are presented in Table 11. The framework demonstrates robust handling of stan-
dard control constructs (100% success for switch statements across all languages). Variability in handling loops and
mixed data types (80-95%) reflects challenges in mapping nested or heterogeneous structures while maintaining seman-
tic fidelity. Higher success rates in DSML (90-95%) are due to its abstract, template-driven design, which accommo-
dates diverse patterns more flexibly. Procedural languages, such as UPPAAL and C, require explicit handling of recursion,
loops, and type heterogeneity, accounting for slightly lower success percentages.

4. Memory Usage Average memory consumption during transformation.Results are summarized in Table 12. Memory
requirements are determined by AST sizes, internal DSML meta-model representations, and intermediate transformation

Table 10. Round-trip transformation accuracy and observations.

Transformation Path Accuracy (%) Notable Causes of Deviation

C - UPPAAL 92 Limited support for preprocessor directives

C < SystemVerilog 98 Concurrency semantic misalignments

C « DSML 93 Inconsistencies in variable naming and hierarchy
SystemVerilog < C 95 Manual annotations needed for process constructs
SystemVerilog < UPPAAL 90 Timing abstraction inaccuracies

SystemVerilog < DSML 95 Structural match well maintained

UPPAAL « C 90 Flattening of state logic reduces expressiveness
UPPAAL < SystemVerilog 92 Synchronization mismatches

UPPAAL <~ DSML 94 High fidelity via template-based mapping

DSML « C 91 Challenges in control-flow recovery

DSML « SystemVerilog 95 Good mapping of architectural constructs

DSML « UPPAAL 96 Well-preserved state transitions

https://doi.org/10.1371/journal.pone.0337604.t010

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 34/ 48

https://doi.org/10.1371/journal.pone.0337604.t009
https://doi.org/10.1371/journal.pone.0337604.t010
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

Table 11. Edge-case handling success rates.

Construct C (%) SystemVerilog (%) UPPAAL (%) DSML (%)
Switch Statement 100 100 100 100
Loops 85 88 80 90

Mixed Data Types 88 90 85 95

https://doi.org/10.1371/journal.pone.0337604.t011

Table 12. Memory usage during transformations.

Source — Target Memory Usage (MB)
C — UPPAAL 50
C — SystemVerilog 40
C —» DSML 45
SystemVerilog - C 42
SystemVerilog - UPPAAL 48
SystemVerilog — DSML 35
UPPAAL - C 55
UPPAAL — SystemVerilog 50
UPPAAL — DSML 40
DSML — C 45
DSML — SystemVerilog 30
DSML — UPPAAL 35

https://doi.org/10.1371/journal.pone.0337604.t012

structures. Transformations involving UPPAAL require additional memory to maintain clocks, synchronization, and state-
space information, while DSML transformations are most memory-efficient due to template reuse and high-level abstrac-
tion. Overall, memory usage remains modest (<60 MB), confirming the framework’s suitability for real-time embedded
applications.

5. Scalability Transformation performance trends relative to input size and model complexity. The results demonstrate
that all transformation pathways scale predictably, with UPPAAL transformations being the most computationally demand-
ing due to timing and synchronization semantics. DSML’s abstraction provides superior scalability for complex designs.

C-based Transformations: Latency grows linearly (e.g., 120 ms for 100 LOC to 1.2 s for 1000 LOC).

+ SystemVerilog-based Transformations: Linear increase, maintaining efficiency even at scale.
UPPAAL-based Transformations: Near-linear growth; scalability influenced by state-space complexity.
DSML-based Transformations: Sublinear growth due to high-level abstractions and template reuse.

The expanded analysis of all transformation routes confirms that the proposed framework maintains reliable and high-
quality transformations across heterogeneous notations. Among all directions, transformations involving UPPAAL (both to
and from) proved to be the most challenging. These paths required careful management of timed behaviors, synchroniza-
tion semantics, and the flattening of complex state-based constructs, particularly when transitioning to or from procedu-
ral or structural representations like C and SystemVerilog. Nonetheless, the framework maintains good accuracy even in
these complex cases.

C transformations show robust handling of logic but need enhancements for complex data structures. SystemVerilog
transformations benefit from strong structural mappings and type clarity. DSML transformations, while abstract, provide
scalability and ease of high-level modeling. The consistent accuracy, low latency, and broad edge-case handling capa-
bilities make this framework a suitable choice for formal verification, model-based design, and multi-domain software
synthesis in embedded system engineering.

Minor information loss occurs due to language mismatches (extern, enum conversions), but most transformations
maintain semantic integrity. The adoption of execution strategies significantly enhances performance, making the

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 35/ 48

https://doi.org/10.1371/journal.pone.0337604.t011
https://doi.org/10.1371/journal.pone.0337604.t012
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

framework suitable for large-scale embedded system projects. The performance evaluation shows that the framework
achieves high transformation accuracy (> 98%) with minimal information loss, primarily occurring due to construct
mismatches across languages. Additionally, low transformation latency (< 60ms) ensures real-time usability, making
the framework practical for large-scale embedded system applications.

6.2 Complexity analysis of the transformation engine

We analyzed the Transformation Engine in terms of time and space complexity under realistic assumptions about the
grammar and transformation workflow. Parsing is performed by ANTLR-generated LL(*) parsers, and transformation logic
is implemented via a single-pass Visitor traversal of the Abstract Syntax Tree (AST). Under well-formed, non-pathological
grammars and without excessive use of semantic predicates or backtracking, ANTLR’s adaptive LL(*) parsing behaves
linearly with respect to the input size. Consequently, a complete forward or reverse transformation that visits each AST
node once has an expected time complexity of ©O(n), where n denotes the number of syntactic constructs or tokens pro-
cessed.

Space complexity is dominated by the AST and the in-memory DSML meta-model; these structures scale approxi-
mately linearly with input size, yielding O(n) space demand. Empirical measurements in Sect 6 corroborate this theoreti-
cal assessment. Typical transformations on large lines of embedded C/SystemVerilog required modest memory and com-
pleted with low latency. To preserve near-linear behavior in larger or more complex inputs, we recommend (and have
implemented where appropriate) incremental parsing, symbol-table-based resolution, and avoidance of expensive global
scans during routine transformations.

Memory profiling reveals efficient resource utilization, with Java’s garbage collection effectively managing mem-
ory overhead. Multi-threaded execution improves scalability, achieving 1.6x speedup, though dependencies between
constructs necessitate careful execution strategies. Furthermore, the framework robustly handles edge cases, such as
deeply nested control structures and recursive function calls, ensuring correctness and stability across transformations.

While the current implementation demonstrates strong empirical validation, future improvements, such as incremen-
tal parsing, metadata-based type preservation, and adaptive hybrid execution, can further enhance performance. These
refinements will help mitigate minor information loss, optimize processing time, and improve transformation fidelity. In
conclusion, the proposed framework provides a reliable, scalable, and efficient solution for automated bidirectional
transformations in embedded systems design and verification, significantly reducing manual effort and improving system
consistency across multiple representations.

7 Discussion

This study introduces a blended modeling framework that enables bidirectional, real-time synchronization across het-
erogeneous notations, including C, SystemVerilog, Timed Automata (UPPAAL), and DSML. The framework has been
evaluated on two industrially relevant case studies, including ventilator control and adaptive cruise control, demonstrating
practical applicability and low-latency transformations.

In order to conduct a rigorous and meaningful comparative analysis, several key parameters were identified to evalu-
ate the capabilities, scope, and maturity of existing blended modeling frameworks. These parameters include: (1) Nota-
tion Coverage, indicating whether the framework supports single, dual, or multiple notations; (2) Notation Name, refer-
ring to the specific languages or modeling formalisms integrated within the framework; (3) Blended Modeling, denoting
the extent to which textual and graphical representations are integrated into a unified environment; (4) Bi-Directional and
Round-Trip Transformation support, assessing whether the framework maintains semantic synchronization between
heterogeneous representations during iterative design—verification cycles; (5) Formal Verification, reflecting the frame-
work’s ability to integrate or support formal analysis tools; (6) Tool Support, representing the degree of implementation
maturity and availability of prototype or industrial-grade tooling; and (7) Public Availability, signifying the accessibility

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 36/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

of the framework for replication or community adoption. Based on these parameters, a detailed evaluation of prominent
state-of-the-art blended modeling frameworks was conducted, as summarized in Table 13.

As shown in Table 13, most existing frameworks offer dual-notation integration, commonly between graphical and
textual UML-based representations, enabling partial synchronization but lacking complete round-trip and real-time con-
sistency. Works such as Maro et al. (2015) [24] and Addazi & Ciccozzi (2021) [25] demonstrate blended modeling but
are limited to UML notations and partial bidirectionality. Latifaj et al. (2023)[19] extend synchronization toward timed
automata and formal verification, though without runtime or low-level language integration. Scheidgen (2008) [27] and
Atkinson et al. (2016) [31] depend on on-demand or AST-level synchronization, which may cause semantic drift and
delayed updates. The EAST-ADL blended modeling framework (2023) [30], while domain-relevant, lacks verification
integration and practical tool support. In contrast, the proposed blended modeling framework (2025) introduces a multi-
notation, parser-based approach unifying C, SystemVerilog, UPPAAL, and DSML under a centralized abstract syntax. It
supports runtime bidirectional and round-trip transformations while ensuring semantic consistency and formal verification
through an integrated, publicly available tool environment. This comprehensive integration bridges the long-standing gap
between design, verification, and implementation workflows, providing a scalable, verifiable, and industrially applicable
blended modeling solution.

A key challenge in blended modeling is the resolution of semantic mismatches between heterogeneous languages.
For example, SystemVerilog timing constructs often need to be approximated when translated into UPPAAL clocks, while
preprocessor directives in C have no direct counterparts in SystemVerilog or UPPAAL, requiring encoding as constants
or annotations. Type systems further complicate transformations, as constructs such as uint8\ _t or enumerations are
often generalized to integer types, potentially leading to irreversibility in round-trip conversions. Similarly, control-flow
differences necessitate restructuring function calls in C into transitions in UPPAAL, introducing further abstraction. To
address these challenges, the framework employs approximation strategies, traceability annotations, and hybrid seman-
tic preservation mechanisms, balancing the need for semantic fidelity with practical tractability across heterogeneous
languages.

Table 13. Comparative analysis of existing blended modeling frameworks.

Framework/Year Notation Notation Blended Bi- Round-trip | Formal Tool Public
Coverage Name Modeling Directional Verification | Support Availability
Maro et al. (2015) [24] Dual UML Yes Yes (Limited) | No No Yes No
(Graphical +
Textual)
Addazi & Ciccozzi (2021) Dual UML + UML | Yes Yes (Limited) | No No Prototype Yes
[25] Profiles
Lazar (2011) [26] Dual fUML + Alf Yes Yes (Limited) | No No Yes No
Scheidgen (2008) [27] Dual Embedded Partial No No No Yes No
Textual +
Graphical
Latifaj et al. (2023) [19] Dual UML + Timed | Yes No No Yes Prototype Yes
Automata
Atkinson et al. (2016) [31] | Dual AST-level Partial Partial Partial No Prototype No
Synchronization
Anwar et al. (2023) [30] Dual EAST-ADL + | Yes Yes No No Prototype Yes
Xtext
Proposed Framework Multi C, Sys- Yes Yes Yes Yes Yes Yes
(2025) temVerilog,
UPPAAL,
DSML

https://doi.org/10.1371/journal.pone.0337604.t013

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 37/ 48

https://doi.org/10.1371/journal.pone.0337604.t013
https://doi.org/10.1371/journal.pone.0337604

PLOR. One

The current evaluation demonstrates satisfactory performance in terms of latency, memory usage, and transforma-
tion accuracy. Nevertheless, broader industrial validation is required to fully demonstrate the framework’s utility. Con-
trolled studies involving multiple development teams in real-world settings will provide quantitative insights into productiv-
ity improvements, defect detection, and scalability, thereby complementing the technical metrics presented here.

7.1 Limitations and threats to validity

Despite its contributions, the proposed framework has several limitations and potential threats to validity that inform direc-
tions for future refinement. The current implementation does not yet support explicit concurrency modeling, as con-
structs such as threads, tasks, and interrupts were deliberately excluded from the selected language subsets. This con-
strains its applicability in domains where parallelism and real-time responsiveness are central, such as safety-critical
embedded systems. Furthermore, scalability remains an open challenge. Although correctness and feasibility have
been demonstrated through case studies, systematic validation on large-scale industrial codebases and complex model
instances is yet to be undertaken. Similarly, the framework currently provides only partial support for heterogeneous
hardware—software co-design, as maintaining semantic equivalence across behavioral models, hardware description
languages, and formal verification tools introduces non-trivial synchronization complexity.

Additionally, while the framework supports round-trip transformations among C, SystemVerilog, Timed Automata
(UPPAAL), and DSML, complete integration with external environments, such as compilers, simulators, and veri-
fication tools, remains limited. Users must manually import generated artifacts into corresponding environments (e.g.,
UPPAAL, GCC, or Simulink), constraining full automation. Minor information losses are also inherent due to abstrac-
tion differences, execution semantics, and expressiveness mismatches across languages. Constructs such as recursion,
polymorphism, inter-process communication, and complex temporal dependencies are not yet comprehensively handled,
which may affect transformation fidelity in specialized contexts.

From a validity perspective, several risks were identified. Construct validity may be affected because certain timing-
sensitive behaviors in UPPAAL cannot be perfectly mirrored in untimed languages, possibly reducing representational
fidelity. Internal validity may be influenced by parser limitations in handling rare constructs or dynamic behaviors. Exter-
nal validity is constrained by the domain scope of current case studies, which may not generalize to aerospace or
robotics systems without rule adaptation. Conclusion validity could also be impacted by environmental factors such as
JVM configurations or tool dependencies that influence runtime behavior.

These limitations and validity concerns collectively emphasize the need for cautious interpretation of results while pro-
viding a roadmap for future work focused on improving scalability, semantic precision, concurrency modeling, and seam-
less toolchain integration.

7.2 Future work

Building upon the current foundation, future work will address these limitations and enhance both the expressiveness and
industrial relevance of the framework. One important direction is the integration of concurrency constructs. Threads,
tasks, and interrupts will be modeled explicitly, and synchronization channels will be enhanced in UPPAAL to capture par-
allel execution semantics accurately. Alongside these modeling improvements, advanced verification techniques, includ-
ing compositional reasoning and assume—guarantee analysis, will be incorporated to manage the increased state space
complexity introduced by parallel constructs.

Another focus will be large-scale industrial validation. Planned studies with multiple partners in automotive,
aerospace, and medical domains will examine the framework’s scalability, productivity benefits, and defect detection

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 38/ 48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

capabilities in real-world projects. These evaluations are intended to provide empirical evidence for the framework’s
robustness and to guide refinements in transformation strategies, tool integration, and user interaction design.

Further enhancements will explore hybrid approaches for heterogeneous hardware—software co-design, enabling
synchronized transformations across behavioral models, hardware descriptions, and formal verification artifacts. This will
extend the framework’s applicability to domains with tightly coupled hardware—software interactions, which are prevalent
in modern embedded systems.

Finally, the framework will be extended to support richer language subsets and improved usability. Additional
notations, including VHDL, MATLAB Simulink, and AADL, will be incorporated to accommodate diverse industrial model-
ing practices. At the same time, the GUI will evolve into a fully interactive environment, providing visualization, live simula-
tion feedback, and seamless integration with external verification and code-generation tools. These enhancements aim to
reduce manual intervention, improve semantic fidelity, and facilitate adoption in industrial engineering workflows.

Collectively, these future directions will strengthen the framework’s capability to support bidirectional transformations,
ensure semantic fidelity across heterogeneous notations, and provide a scalable, usable tool for complex, safety-critical
embedded system development.

7.3 Tool support and reproducibility

The current framework provides round-trip transformation support across C, SystemVerilog, Timed Automata (UPPAAL),
and DSML tree notations. However, full external tool collaboration (e.g., direct simulation in UPPAAL, compilation in GCC,
or co-simulation with Simulink) is not automated. Users are required to manually import the generated artifacts into their
respective environments. For compatibility, the framework has been tested and validated with UPPAAL 4.1.26, GCC 11.2,
SystemVerilog IEEE 1800-2017, and ANTLR 4.13.0.

Conclusively, enhancing transformation fidelity remains a key priority, especially for semantics-rich languages like
UPPAAL. Future improvements will aim to support complex constructs such as recursion, polymorphic types, inter-
process communication, and temporal behaviours. Techniques like refined parsing strategies, timing abstraction, and
consistency rule checking will be incorporated to minimize semantic loss and manual intervention during transforma-
tions. From a usability standpoint, the current GUI prototype will evolve into a comprehensive modeling environment. This
includes visualization features, live simulation feedback, and seamless integration with external verification tools. These
improvements will support broader industrial adoption by making the framework more interactive, traceable, and aligned
with existing model-driven engineering toolchains.

8 Conclusion

This research proposes a robust and extensible bidirectional transformation framework for synchronized modeling across
multiple notations in embedded system design and verification. It addresses the critical challenge of semantic consistency
among heterogeneous languages by supporting round-trip transformations, ensuring the fidelity of structure and logic
across models. Minor, noncritical information loss (e.g., omission of certain keywords) was observed, yet the framework
preserved core semantics effectively.

Distinct from unidirectional or UML-reliant methods, this implementation-level approach caters to the real-time demands
of embedded systems by accommodating low-level constructs and domain-specific notations. The efficiency of the frame-
work was validated through empirical results. Validity threats were systematically addressed through construct, internal,
and external evaluations using diverse case studies such as ventilator and cruise control systems. These assessments
demonstrate the robustness and adaptability of the framework across contexts. The framework thus contributes to a scal-
able and practical foundation for the development of next-generation embedded systems.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 39/48

https://doi.org/10.1371/journal.pone.0337604

PLOR. One

9 Appendix A
9.1 Grammar definition

Defining a formal grammar is fundamental for accurately parsing and transforming programming and modeling languages.
Given the subsets identified in the previous section, a concrete syntax grammar must capture the structural semantics of
C, SystemVerilog, Timed Automata, and DSML while ensuring syntactic correctness and transformation feasibility. Vari-
ous grammar-based mechanisms exist, including context-free grammars (CFGs), attribute grammars, and parsing expres-
sion grammars (PEGs). Context-free grammars (CFGs) are traditionally used to define the syntax of programming lan-
guages, while attribute grammars extend CFGs by associating semantic rules with syntax productions. Parsing Expres-
sion Grammars (PEGs) offer deterministic parsing, although they may introduce additional complexity when dealing with
ambiguity.

ANTLR (Another Tool for Language Recognition) has been adopted as the primary grammar specification tool in this
research. Its support for LL(*) parsing, modular grammar construction, and automated parse tree generation makes it
suitable for handling multiple language syntaxes within a unified framework. This work introduces a novel ANTLR-based
grammar to support the parsing and transformation of C, SystemVerilog, Timed Automata (UPPAAL), and DSML Meta-
Model representations. This grammar forms the backbone of the automated transformation engine, facilitating formal
verification and model-driven development.

Several factors contribute to the selection of ANTLR in this context:

* Precise Syntax Definition: Enables structured and syntactically accurate grammar specifications for each target lan-
guage.

» Modular and Extensible Design: Supports easy adaptation and scalability to additional languages or constructs with-
out requiring major redesigns.

» Error Handling Capabilities: Built-in mechanisms provide structured reporting and facilitate debugging.

* Cross-Domain Applicability: Integrates software, hardware, and formal modeling languages under a single transfor-
mation framework.

ANTLR operates in three primary phases. The first phase, Lexical Analysis (Tokenization), involves the lexer (scan-
ner) breaking the input source code into tokens such as keywords, identifiers, and operators. Each token is then assigned
a specific type, such as INT, IF, or IDENTIFIER. The second phase, Parsing (Syntax Analysis), applies grammar
rules to recognize syntactic patterns within the token sequences. During this process, the parser constructs a parse tree,
ensuring that the input adheres to the predefined grammar rules. The final phase, Abstract Syntax Tree (AST) Genera-
tion, involves traversing the parse tree using the visitor or listener pattern to create an AST. This structured represen-
tation of the code is later utilized for transformations, enabling efficient processing and conversion into the desired target
format. ANTLR components are summarized in Table 14, for reference.

ANTLR grammars were created for each language subset (C language, SystemVerilog, Timed Automata, and Meta-
Model DSML) to provide a robust mechanism for parsing and validating input code.

Table 14. ANTLR components.

ANTLR Component Description

Lexer Tokenizes the input source code into meaningful symbols.

Parser Uses grammar rules to generate a parse tree.

Listener Uses event-driven traversal of the parse tree (auto-generated by ANTLR).
Visitor Uses custom tree traversal logic for transformations.

AST (Abstract Syntax Tree) Represents the hierarchical structure of the source code, aiding transformation.

https://doi.org/10.1371/journal.pone.0337604.t014

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 40/ 48

https://doi.org/10.1371/journal.pone.0337604.t014
https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

« C Grammar: Defines the syntax and semantics of C constructs, including declarations, loops, and function calls.

+ SystemVerilog Grammar: Captures the syntactical rules for hardware modeling, verification logic, and assertion con-
structs.

Timed Automata Grammar: Specifies the structure for modeling timed state transitions, clocks, and timing constraints.
DSML Grammar: Focuses on high-level abstractions and visual representations tailored to embedded systems.

Each grammar was carefully designed to enable bidirectional transformations while minimizing ambiguities, maximizing
consistencies, and ensuring compatibility with the domain model. To maintain conciseness and avoid redundancy, this
paper presents only the definition of grammar, transformation rules, and illustrative examples of the C language. Due to
space limitations, the complete grammar specifications and transformation rules for the remaining notations (SystemVer-
ilog, Timed Automata -UPPAAL, and DSML) are not included herein. However, these resources are fully documented and
publicly available at the provided GitHub repository, which can be accessed by following reference [35].

C Language grammar. The C grammar is designed to parse a subset of C language constructs (as identified earlier)
and facilitate their transformation into other notations through abstract and concrete syntaxes. It is structured into three
key components: lexical analysis (tokenization), parsing (syntax analysis), and AST generation. These align with ANTLR’s
standard processing phases. The rules below follow a BNF-style representation with corresponding descriptions.

1. Lexical Analysis (Tokenization) The lexer defines rules for recognizing tokens:

* Keywords: IF, FOR, SWITCH, RETURN, VOID, INT, FLOAT, etc.

Identifiers: <I1D>

Constants: <INT>, <HEX INT>

Operators: + (PLUS), - (MINUS), == (EQUAL), && (AND), || (OR)

Delimiters: ; (SEMICOLON), , (COMMA), {}, [1, ()

+ Comments: // (SINGLE LINE COMMENT), /* */(MULTI LINE COMMENT)

Tokens are the basic building blocks of C source code and are essential for breaking down the code into meaningful
components before syntax parsing.

2. Parsing Rules (Syntax Analysis) The grammar rules below describe a subset of C used for transformation into
other notations. The rules are written in BNF style with corresponding natural language explanations.

Rule 1. <File> ::=<PreprocessorDirective> <IncludeDirective> <ModuleDecl>

This rule defines the top-level structure of the file. A file can contain preprocessor directives, include directives, or mod-
ule declarations.

Rule 2. <PreprocessorDirective> ::= #define <ID> [= <INT>] [;]

A preprocessor directive can be a define statement with an optional assignment and a semicolon.

Rule 3. <IncludeDirective> ::= include <SystemInclude> | <LocalInclude>

Include directives allow the inclusion of system headers or local headers in angle or double quotes.

Rule 4. <ModuleDecl> ::= <ModuleItem>

A module declaration consists of a single module item, such as a declaration, function, or statement.

Rule 5. <ModuleItem> ::= <Declaration> | <FunctionDecl> | <Statement> | <EnumDecl>

A module item can be a variable declaration, function declaration, statement, or enumeration.

Rule 6. <FunctionDecl> ::= <ReturnType> <ID> ([<ParameterList>]) [;] [{<Statement>* }]

This rule defines a function with return type, name, optional parameters, and an optional body of statements.

Rule 7. <ReturnType> ::= int | uint8 t | uint32 t | osThreadId | char | TickType t |
osEvent | float | void | <ID>

A return type can be one of the common types or a user-defined identifier.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 41/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

Rule 8. <ParameterList> ::= <Parameter>* [* <ID>] [, <Parameter>*]

A parameter list can have one or more parameters, optionally followed by a pointer identifier.

Rule 9. <Parameter> ::= <ID> | void | const | <DataType>

Each parameter can be an identifier, 'void’, ‘const’, or a data type.

Rule 10. <Declaration> ::= [extern] [const] <DataType> <ID> [[<INT>]] [= <Primary>] ;

A variable declaration may be preceded by extern or const, followed by a type, name, optional array size, and an
optional initializer.

Rule 11. <DataType> ::= int | uint8 t | uint32 t | osThreadId | char | TickType t |
osEvent | float | <ID>

A data type can be a primitive type or a user-defined identifier.

Rule 12. <EnumDecl> ::= typedef enum { <EnumList> } <ID> ;

An enumeration is declared using the typedef keyword followed by a list of identifiers and the enum name.

Rule 13. <EnumList> ::= <ID> (, <ID>)*

A list of comma-separated identifiers inside an enum.

Rule 14. <statement> ::= <Assignment> | <Declaration> | <FunctionCall> | <IfStatement> | <
LoopStatement> | <Switch Statement> | <PrintStatement> | <Comment> | <Return>

This rule defines the different types of executable statements in the language.

Rule 15. <ReturnStatement> ::= return [<Expression>] ;

A return statement optionally returns a value.

Rule 16. <Assignment> ::= <IndexedID> = <Expression> | <AssignmentType> <ID | INT>

An assignment modifies a variable or array element, optionally using compound assignment operators.

Rule 17. <AssignmentType> ::= ++ | ——- | -= | += | =- | =+

Compound assignment types like increment, decrement, and arithmetic updates.

Rule 18. <IndexedID> ::= <ID> [[<Expression>]]*

An indexed identifier can be a simple variable or an array access.

Rule 19. <FunctionCall> ::= <ID> ([<Argument List>])

A function call contains a function name and an optional list of arguments.

Rule 20. <ArgumentList> ::= <Argument> (, <Argument>)*

A list of comma-separated arguments.

Rule 21. <Argument> ::= <Expression> | <TransformedArgument>

An argument can be an expression or a special transformed form.

Rule 22. <TransformedArgument> ::= <DataCast Argument> | <FunctionCall Argument>

Transformed arguments can involve casting or nested function calls.

Rule 23. <DataCastArgument> ::= (<DataType> *)<ID>

A data type cast expression.

Rule 24. <FunctionCallArgument> ::= <ID> (<ID>)

A function call is used as an argument.

Rule 25. <IfStatement> ::= if (<Expression>){ <Statement>* } [else { <Statement>* } |
else <IfStatement>]

An if statement can optionally include an else clause with either a block or a nested if.

Rule 26. <L.oopStatement> ::= <ForLoop> | <WhileLoop>

Loop statements can be either for-loops or while-loops.

Rule 27. <ForLoop> ::= for ([volatile] <DataType>

A for loop includes initialization, condition, and increment expressions inside parentheses.

Rule 28. <WhileLoop> ::= while (<Expression>){ <Statement>+ }

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 42/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO.“... One

A while loop evaluates a condition and executes a block of statements repeatedly.

Rule 29. <switchStatement> ::= switch (<Expression>){ <CaseBlock>+ [<DefaultBlock>] }

A switch statement uses cases and an optional default block to handle multi-branch logic.

Rule 30. <CaseBlock> ::= case <Expression> : { <Statement>* break ; }

Each case block handles a specific value and ends with a break.

Rule 31. <DefaultBlock> ::= default : <Statement>* break ;

A default block handles cases not matched by any specific case.

Rule 32. <PrintStatement> ::= printf ([<STRING>] [, <Argument>] [, <ArgumentList>])

A print statement using printf syntax can include a string and multiple arguments.

Rule 33. <Comment> ::= // <text> | /* <text> */

Single-line or multi-line comments.

Rule 34. <Expression> ::= [&]? <Primary> ((<ArgumentList>))? (<Operator> <Primary>)*

An expression can optionally be a reference, involve function calls, and use binary operators.

Rule 35. <Primary> ::= <ID> | <HEX INT> | <INT> | <STRING> | <CHAR> | <CastFunction Call>
| <DataType> | (<Expression>)

A primary element of an expression can be an identifier, a literal, or a nested expression.

Rule 36. <Operator> ::=+ | - | * | / | $ | < | > | <=] >= | == | =]&&!

Operators for arithmetic, relational, equality, and logical operations.

Rule 37. <CastFunctionCall> ::= (<DataType>)<ID> ()

A cast function call consists of a data type cast followed by a function call.

Rule 38. <PointerDeclaration> ::= <DataType> * <ID> [= <Expression>] ;

A pointer declaration consists of a data type followed by an asterisk to denote the pointer, an identifier as the variable
name, and an optional initialization using an expression.

This rule-based format allows clear mapping between grammar components and transformation logic in C-to-other
notation conversions.

3. Abstract Syntax Tree (AST) Generation Example 1: Function Declaration and Compound Statement

void SetMode (int mode)
{

Mode = mode;
osDelay (100) ;

Applied Rules:
* Rule 7: <FunctionDecl> ::= <ReturnType> <ID> (<ParameterList>?)[;] ({ < Statement>* })?
* Rule 8: <ReturnType> ::= void

Rule 9/10: Parameter list with <DataType> and <ID> — int mode
Rule 14/39: <CompoundStatement> contains two <Statement>s inside {}
Rule 12: <statement> for assignment

(Mode = mode;) and function call (osDelay (100) ;)

Explanation: This example defines a function SetMode with a void return type and one integer parameter. Its
body is a compound block containing two statements: an assignment and a delay function call. The parse tree for
this structure would have a root node for FunctionbDec]l, branching into ReturnType, ID, ParameterList, and
CompoundStatement as shown in Fig 10. In the figure, the orange boxes connected via green arrows represent the

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 43/ 48

https://doi.org/10.1371/journal.pone.0337604

PLO&&- One

[Function Declaration]

[RETURN TYPE: void] [ID:SetMode] | PARAMETERLIST I

\ 4
|
Statement I 4
[DataType: int][ID: mode]

ASSIGNMENT

[FUNCTION NAME: oSDelay] [AUGUMENT LIST: (100)]

3
] | (o)

[ASSIGNMENT TYPE: =]

Fig 10. Abstract Syntax Tree (AST) representation for Example 1.
https://doi.org/10.1371/journal.pone.0337604.g010

leaf nodes of the AST. These are terminal symbols from the grammar, such as void, SetMode, int, mode, Mode, =,
and 100. They are lexical elements identified after parsing, with no further syntactic breakdown. The purple-bordered
white boxes represent non-terminal nodes that group related structures, mapping directly to grammar rules (like
<FunctionDecl>, <Assignment>, <FunctionCall>).

Example 2: Switch Statement and Enum

typedef enum {IDLE, RUNNING, ALARM} State;
switch (state)
{ case IDLE:
prepare (); break;
case RUNNING:
monitor(); break;
case ALARM:
alert(); break;

Applied Rules:

Rule 6: <EnumbDecl> ::= typedef enum { <EnumList> } <ID>;
Rule 12: <Statement> — SwitchStatement
Rule 20: <FunctionCall>s inside cases

Explanation: This example shows a user-defined enum type named State, and a switch-case control structure
operating on a variable state. Each case invokes a corresponding function. This composite structure demonstrates
rule composition with nested function calls inside branching logic, which corresponds to subtrees in the AST, much

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 44/ 48

https://doi.org/10.1371/journal.pone.0337604.g010
https://doi.org/10.1371/journal.pone.0337604

PLOS Y. one

Enum Declaration

/
4

‘V) A
L ! [TYPEDEF][Enum List][ID: State]
[EXPRESSION: state]LCASEBI.OCK] / | ™~
— . [ID: IDLE] “ [ID: ALARM]
- R y

[CASE: IDLE] [CASE: ALARM][CASE: RUNNING]

7 Y,

[FUNCTION NAME: prepare] [FUNCTION NAME: alert] \ [FUNCTION NAME: monitor] .

| 3
[AUGUMENT LIST: null] [AUGUMENT LIST: null] AUGUMENT LIST: null

Fig 11. Abstract Syntax Tree (AST) representation for Example 2.
https://doi.org/10.1371/journal.pone.0337604.9g011

like those depicted in Fig 11. The Abstract Syntax Tree (AST) for Example 2 represents both the enum declaration and
the switch-case control logic. At the top level, the AST begins with a FILE node, branching into two main components:
Enum Declaration and SWITCH STATEMENT. The Enum Declaration node further expands into TYPEDEF, an
Enum List, and individual 1D nodes representing the enumerated values: IDLE, RUNNING, and ALARM, all grouped
under the State type. On the other side, the SWITCH STATEMENT node is composed of an EXPRESSTION hode
(with the variable state) and a CASE BLOCK. Each CASE node, IDLE, RUNNING, and ALARY, is associated with a
Function Call node. These function calls (prepare (), monitor (), and alert ()) each have a FUNCTION NAME
and an ARGUMENT LIST, whichis null in all cases here. The AST structure clearly captures how the enum values con-
trol the logic flow through a switch-case mechanism, invoking different functions based on the current state.

This C grammar effectively captures C syntax and enables seamless transformation into other representations through
a structured grammar parsing pipeline.

Author contributions

Conceptualization: Misbah Mehboob Awan, Muhammad Waseem Anwar, Wasi Haider Butt.
Formal analysis: Muhammad Waseem Anwar, Wasi Haider Butt, Farooque Azam.

Funding acquisition: Farooque Azam.

Investigation: Misbah Mehboob Awan.

Methodology: Misbah Mehboob Awan, Muhammad Waseem Anwar.

Project administration: Wasi Haider Butt, Farooque Azam.

Resources: Misbah Mehboob Awan.

Software: Misbah Mehboob Awan.

Supervision: Muhammad Waseem Anwar, Wasi Haider Butt.

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 45/ 48

https://doi.org/10.1371/journal.pone.0337604.g011
https://doi.org/10.1371/journal.pone.0337604

PLO\S\%- One

Validation: Misbah Mehboob Awan, Wasi Haider Butt, Farooque Azam.
Writing — original draft: Misbah Mehboob Awan.

Writing — review & editing: Misbah Mehboob Awan, Muhammad Waseem Anwar, Wasi Haider Butt, Farooque Azam.

References

1. Pasricha S. Embedded systems education in the 2020s: challenges, reflections, and future directions. In: Proceedings of the Great Lakes
Symposium on VLSI 2022. 2022. p. 519-24. https://doi.org/10.1145/3526241.3530348

. |EEE SystemVerilog Standard 1800-2009. http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=5354133.
3. Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science. 1994;126(2):183-235. https://doi.org/10.1016/0304-3975(94)90010-8

4. Ciccozzi F. Blended modeling—what, why and how. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). 2019.

5. MaJ, Wang G, Lu J, Vangheluwe H, Kiritsis D, Yan Y. Systematic literature review of MBSE tool-chains. Applied Sciences. 2022;12(7):3431.
https://doi.org/10.3390/app12073431

6. Basavaiah J, Bharadwaj AR, Raj TK. A review on design and verification of programmable UART with AXI. International Journal for
Multidisciplinary Research (IJFMR). 2024 .https://doi.org/10.36948/ijfmr.2024.v06i03.19860

7. Todorov V, Mihalache A, Azil A, Hernandez A. Design by contract formal verification for automotive embedded software robustness. In: ERTS
2024; 2024.

8. S S, M P, Madhumedha S, Adiga P, K SK. Design and verification of on-chip instruments for functional safety. In: 2024 International Conference
on Recent Innovation in Smart and Sustainable Technology (ICRISST). 2024. p. 1-6. https://doi.org/10.1109/icrisst59181.2024.10921918

9. De Oliveira Nunesl, Jakkamsetti S, Kim Y, Tsudik G. Casu: Compromise avoidance via secure update for low-end embedded systems. In:
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design; 2022. p. 1-9.

10. Plauska I, Liutkevi€ius A, JanaviCiut® A. Performance evaluation of C/C++, MicroPython, rust and TinyGo programming languages on ESP32
microcontroller. Electronics. 2022;12(1):143. https://doi.org/10.3390/electronics 12010143

11. Jha CK, Qayyum K, Hassan M, Drechsler R. FARAD: automated formal verification of approximate restoring array dividers. In: 2025 38th
International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID). 2025. p. 43-8.
https://doi.org/10.1109/vlsid64188.2025.00021

12. Basile D. Formal analysis of the contract automata runtime environment with Uppaal: modeling, verification and testing. arXiv preprint 2025.
https://doi.org/10.48550/arXiv.250112932

13. Foughali M, Hladik P-E, Zuepke A. Compositional verification of embedded real-time systems. Journal of Systems Architecture. 2023;142:102928.
https://doi.org/10.1016/j.sysarc.2023.102928

14. Nigro L, Cicirelli F. Formal modeling and verification of embedded real-time systems: an approach and practical tool based on constraint time petri
nets. Mathematics. 2024;12(6):812. https://doi.org/10.3390/math12060812

15. Zhou W, Zhao Y, Zhang Y, Wang Y, Yin M. A comprehensive survey of UPPAALRassisted formal modeling and verification. Softw Pract Exp.
2024;55(2):272-97. https://doi.org/10.1002/spe.3372

16. Schmidt DC. Model-driven engineering. Comput. 2006;39(2):25.
17. Mellor SJ, et al. Model-driven architecture. In: International Conference on Object-Oriented Information Systems. Springer; 2002.

18. Anwar MW, Rashid M, Azam F, Kashif M. Model-based design verification for embedded systems through SVOCL: an OCL extension for
SystemVerilog. Des Autom Embed Syst. 2017;21(1):1-36. https://doi.org/10.1007/s10617-017-9182-z

19. Latifaj M, Ciccozzi F, Mohlin M. Higher-order transformations for the generation of synchronization infrastructures in blended modeling. Front
Comput Sci. 2023;4. https://doi.org/10.3389/fcomp.2022.1008062

20. David I, Latifaj M, Pietron J, Zhang W, Ciccozzi F, Malavolta I, et al. Blended modeling in commercial and open-source model-driven software
engineering tools: a systematic study. Softw Syst Model. 2022;22(1):415—47. https://doi.org/10.1007/s10270-022-01010-3

21. Charfi A, Schmidt A, Spriestersbach A. A hybrid graphical and textual notation and editor for UML actions. In: European Conference on Model
Driven Architecture-Foundations and Applications. Springer; 2009. p. 237-52.

22. Lethbridge TC, Forward A, Badreddin O, Brestovansky D, Garzon M, Aljamaan H, et al. Umple: model-driven development for open source and
education. Science of Computer Programming. 2021;208:102665. https://doi.org/10.1016/j.scico.2021.102665

23. Ries B, Capozucca A, Guelfi N. Messir: a text-first DSL-based approach for UML requirements engineering (tool demo). In: Proceedings of the
11th ACM SIGPLAN International Conference on Software Language Engineering. 2018. p. 103—7. https://doi.org/10.1145/3276604.3276614

24. Maro S, Steghdfer J-P, Anjorin A, Tichy M, Gelin L. On integrating graphical and textual editors for a UML profile based domain specific language:
an industrial experience. In: Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language Engineering, 2015. p. 1-12.
https://doi.org/10.1145/2814251.2814253

25. Addazil, Ciccozzi F. Blended graphical and textual modelling for UML profiles: a proof-of-concept implementation and experiment. Journal of
Systems and Software. 2021;175:110912. https://doi.org/10.1016/j.jss.2021.110912

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 46/ 48

https://doi.org/10.1145/3526241.3530348
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5354133
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.3390/app12073431
https://doi.org/10.36948/ijfmr.2024.v06i03.19860
https://doi.org/10.1109/icrisst59181.2024.10921918
https://doi.org/10.3390/electronics12010143
https://doi.org/10.1109/vlsid64188.2025.00021
https://doi.org/10.48550/arXiv.250112932
https://doi.org/10.1016/j.sysarc.2023.102928
https://doi.org/10.3390/math12060812
https://doi.org/10.1002/spe.3372
https://doi.org/10.1007/s10617-017-9182-z
https://doi.org/10.3389/fcomp.2022.1008062
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/10.1145/3276604.3276614
https://doi.org/10.1145/2814251.2814253
https://doi.org/10.1016/j.jss.2021.110912
https://doi.org/10.1371/journal.pone.0337604

PLO&&- One

26.
27.
28.

29.

30.

31.
32.

33.

34.
35.
36.

Luttge A. Experimental techniques for cement hydration studies. Studia UBB Geologia. 2011;56(2):3-15. https://doi.org/10.5038/1937-8602.56.2.1
Scheidgen M. Springer; 2008. p. 153-68.

Ciccozzi F, Malavolta |, Selic B. Execution of UML models: a systematic review of research and practice. Softw Syst Model. 2018;18(3):2313-60.
https://doi.org/10.1007/s10270-018-0675-4

Anwar MW, Rashid M, Azam F, Kashif M, Butt WH. A model-driven framework for design and verification of embedded systems through
SystemVerilog. Des Autom Embed Syst. 2019;23(3—4):179-223. https://doi.org/10.1007/s10617-019-09229-y

Anwar MW, Ciccozzi F, Bucaioni A. Enabling blended modelling of timing and variability in EAST-ADL. In: Proceedings of the 16th ACM SIGPLAN
International Conference on Software Language Engineering, 2023. p. 169-80. https://doi.org/10.1145/3623476.3623518

Atkinson C, Gerbig R. Flexible deep modeling with MelanEE. In: Modellierung 2016; 2016.

Bo H, Hui D, Dafang W, Guifan Z. Basic concepts on AUTOSAR development. In: 2010 International Conference on Intelligent Computation
Technology and Automation, 2010. p. 871-3. https://doi.org/10.1109/icicta.2010.571

Guthaus MR, et al. MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. 2001.

Gustafsson J. The Malardalen WCET benchmarks—past, present and future. 2010.
MRED Tool. 2023. https://github.com/MisbahAwan/MRED _Project/tree/main

Veers P, Bottasso CL, Manuel L, Naughton J, Pao L, Paquette J, et al. Grand challenges in the design, manufacture, and operation of future wind
turbine systems. Wind Energ Sci. 2023;8(7):1071-131. https://doi.org/10.5194/wes-8-1071-2023

PLOS One | https://doi.org/10.1371/journal.pone.0337604 December 4, 2025 47/ 48

https://doi.org/10.5038/1937-8602.56.2.1
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/s10617-019-09229-y
https://doi.org/10.1145/3623476.3623518
https://doi.org/10.1109/icicta.2010.571
https://github.com/MisbahAwan/MRED_Project/tree/main
https://doi.org/10.5194/wes-8-1071-2023
https://doi.org/10.1371/journal.pone.0337604

	A blended modeling framework for real-time design and verification of safety-critical embedded systems
	Introduction
	Literature review
	Research gap

	Proposed framework
	Architectural components of proposed framework
	Abstract syntax meta-model (Domain Specific Modeling Language DSML)
	Constructs.

	Concrete Syntaxes (C Language, SystemVerilog, Time Automata)
	Definition of language subsets.
	Empirical coverage of selected subsets.
	Grammar definition.

	Bi-directional transformation rules
	Transformation complexity and scope.
	C to timed automata (UPPAAL) transformation rules.
	C to SystemVerilog transformation rules.
	C to meta-model DSML transformation rules.

	Critical analysis of round-trip transformations in blended modeling
	Pseudocode (Algorithm)

	Implementation architecture
	Modular development approach (BackEnd)
	GUI design and functionality (FrontEnd)

	Proof of concept - validation and evaluation
	Case study 1: Ventilator system
	Overview of ventilator systems in embedded design.
	Use Case 1: Start ventilator mode.
	Use Case 2: Mode shift control.

	Case Study 2: Cruise control system
	Overview of cruise control systems in embedded design.
	Use Case 1: Speed monitoring.

	Performance evaluation
	Performance evaluation parameters
	Complexity analysis of the transformation engine

	Discussion
	Limitations and threats to validity
	Future work
	Tool support and reproducibility

	Conclusion
	Appendix A
	Grammar definition

	References

