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Abstract

Objectives

The primary goal of this research is to analyze the transmission dynamics of Maize Streak
Virus (MSV) by means of a computational and stochastic modeling technique where the
time delay and uncertainty factors in the epidemic process are vital considerations.

Methodology

A compartmental MSV deterministic model was established, which later got an exten-
sion to a stochastic delay differential system having five biological compartments
consisting of susceptible, insecticide-treated, exposed, infected, and recovered
plants. Analytical methods were employed to find the maize streak—free and endemic
equilibriums and to derive the treatment reproduction number. The stability of the
deterministic and stochastic systems was studied. The numerical methods used

for comparison were Euler-Maruyama, stochastic Runge—Kutta, and the stochastic
Nonstandard Finite Difference (NSFD) scheme, which were assessed for accuracy,
stability, and computational efficiency.

Key Results

Theoretical results show that under some parameter values, both equilibrium points
are stable in an asymptotic sense. The numerical experiments reveal that the sto-
chastic NSFD scheme is more stable, preserves positivity better, and is independent
of step size than the classical methods. Including the stochasticity captures the
uncertainty associated with MSV transmission in the real world, thereby enhancing
the predictive simulation’s validity.
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Conclusions

The suggested stochastic NSFD model is indeed a strong computationally efficient
and biologically realistic method to simulate MSV and other plant virus epidemics.
The results boost our understanding and management of the agricultural disease
control strategies.

1 Introduction

Maize (Zea mays) or corn is one of the world’s most important cereal crops, glob-
ally produced. Its domestication in Mesoamerica has rendered it a cornerstone of
world agricultural production and a prime source of food security and economic
development [1]. Maize production is threatened by Maize Streak Virus (MSV), a
leafhopper-transmitted disease-causing significant loss in yield, particularly in the
tropical and subtropical regions of the world. There have been attempts at mod-
eling MSV transmission dynamics via various mathematical and computational
approaches. For instance, Seidu [2] proposed a deterministic ODE model involving
fractional-order derivatives—i.e., the Atangana—Baleanu Caputo-type operator to
capture memory effects and non-local interactions more accurately than traditional
approaches. Liu [3] proposed an integrated stochastic model of variability in infection
dynamics due to random environmental factors, modeling infection fluctuations via

a logarithmic Ornstein—Uhlenbeck process. Mrope and Kigodi [4] gave an elaborate
review of MSV control and transmission models in agroecosystems while O’Halloran
et al. [5] researched the implementation of advanced deep-learning techniques for
early detection of maize disease. They worked on the basis of integrating artificial
intelligence for real-time monitoring of disease to enhance the responsiveness and
efficiency of agricultural health systems. In another study, Ackora-Prah et al. [6]
examined disease interactions within maize farms with Holling’s functional response
within a fractal—fractional setting and showed that such models better capture biolog-
ical complexities. We extend these efforts by developing a stochastic delayed model
for which positivity and stability are assured. By the Newton polynomial routine, we
carried out numerical simulations to examine the qualitative behavior of the model
and confirm theoretical results. A few notable contributions are studies conducted

by Mrope and Kigodi [7], in which they investigated the dynamic interaction of maize
plants with Homopteran insect virus vectors. Facchi et al. [8] proposed the use of
chitosan- and tannin-based polymeric coatings as antimicrobial agents for the man-
agement of Xanthomonas vasicola pv. vasculorum (Xvv), in which they demonstrated
promising applications at the field level. Ali and Ameen [9] applied fractional calculus
to investigate MSV persistence and transmission and noted its application in devel-
oping disease control policies. Dash and Sethy [10] noted that maize infections are
a major cause of production loss but can be avoided by early detection and preven-
tion. Kalyango and Ntanda [11] created an explainable deep-learning model for the
diagnosis of maize diseases with the trade-off between predictive performance and
explainability in order to facilitate effective agricultural decision-making. Suriani et al.
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[12] documented in morphological, physiological, and molecular detail the pathogens of bacterial stalk rot in maize, mak-

ing possible species-level diagnosis. Malar et al. [13] applied Caputo—Fabrizio fractional derivative to describe MSV com-
plex dynamics, while Mrope and Kigodi [14] also took into account the effects of control actions that are insecticide-based
in an effort to decrease infection levels. Other deterministic and fractional models [15,16] have also provided information

about the persistence of infection, memory effects, and long-term maize epidemic dynamics.

Beyond MSV-specific studies, more general stochastic epidemic models incorporating mechanical, chemical, and pre-
ventative control measures [17] have highlighted the central position of multi-strategy methods in reducing infection prev-
alence. Robaina et al. [18] standardized the inoculation protocol of Xvv in maize and determined a diagrammatic scale for
resistance screening, and Tembo et al. [19] reported a quick and sensitive LAMP assay for MSV field detection. Ketsela
et al. [20] confirmed the morphological symptoms of MSV infection chlorotic leaf streaks, chlorophyll loss, and growth
retardation causing reduced yield or plant death through field observations. Finally, Wang et al. [21] demonstrated that
stochastic models incorporating environmental transmission can explain periodic epidemic patterns, a concept relevant
to multi-year epidemics of MSV. Recent studies have applied stochastic and delay-based epidemic modeling methods to
a variety of infectious diseases, demonstrating the usefulness of dynamical consistency and global stability analyses for
the interpretation of disease transmission and control measures [22,23]. Similar stochastic and bifurcation-based model-
ing methods have recently been formulated for human infectious diseases, such as influenza transmission and control,
demonstrating the importance of stochastic effects and treatment—vaccination dynamics in epidemic models [24-27-].
Polynomial numerical schemes have proven successful in complex fractional dynamic systems, demonstrating Morgan
Voyce polynomial approaches to time-fractional models [28,29]. Stochastic and cost-effectiveness modeling frameworks
have been applied in recent epidemiological studies to examine intervention strategies for major infectious diseases such
as HIV/AIDS and COVID-19, highlighting the applicability of data-driven approaches to the optimization of control strate-
gies and vaccine efficacy [30-32].

Previous studies on Maize Streak Virus (MSV) dynamics have primarily relied on deterministic or fractional-order dif-
ferential equation models, which, though useful, have a tendency to leave out the stochastic fluctuations and time-delays
that occur in real-world agro-ecosystems. The majority of such studies have been idealized and have not tried to incor-
porate uncertainty due to environmental fluctuations, random infection, or heterogeneity in insect vector behavior. These
limitations restrict their application to realistic field-scale epidemic prediction. To account for these lacunae, the present
study develops a stochastic delayed model of MSV transmission incorporating randomness and temporal memory effects
in plant-virus interactions. The study also provides a stochastic Nonstandard Finite Difference (NSFD) scheme, which is
defined by positivity, boundedness, and step-size independence properties significant in the context of biological realism.
The model combines theoretical analysis with computational efficiency and provides a more solid foundation for controlling
MSV as well as other plant diseases.

The organization of the paper is as follows: Section 1 gives a review and thorough review of infectious maize streak
disease-like disease reported in the literature. Sections 2 and 3 consider the establishment of the delayed model and the
mathematical analysis later, and the two types of model equilibria and reproduction numbers. Sections 4 and 5 consider
an investigation of the stochastic model, for example, its extinction and persistence. The stochastic NSFD approach is
discussed in Section 6. Sections 7 and 8 are devoted particularly to numerical simulations and the presentation of results.
Long-term opinions give a complete outline of the work under Section 9.

2 Formulation of model

This section presents a mathematical model describing the transmission dynamics of Maize Streak Virus (MSV) within a
maize plant population. The total plant population at time t is denoted by

N(t) = S(t) + F(t) + E(f) + I(t) + R(?),
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where each compartment represents a distinct epidemiological state:
« S(t—Susceptible plants: uninfected plants that can acquire infection after contact with infected plants or vectors.

» F(t)—Insecticide-treated plants: plants protected partially by insecticide application; protection depends on the insecti-
cide’s effectiveness.

E(t—Exposed plants: plants that have been infected but are in the latent (non-infectious) stage.

I(t—Infected plants: plants currently infectious and capable of transmitting MSV.

R(t—Recovered plants: plants that have gained temporary immunity following infection or treatment.

2.2 Model description

The dynamics of the system are governed by the following biological processes (Fig 1):
» Recruitment: Susceptible plants enter the population from the environment at a constant rate A.

« Infection: Healthy plants in the susceptible class S(t) become exposed E(t) after effective contact with infected plants /(t).
The disease transmission follows the law of mass action at a rate 3S(¢)/(f).

« Insecticide application: A fraction of susceptible plants S(f) is treated with insecticide at a rate 6, moving them into the
insecticide-treated class F(t). The insecticide confers partial protection, determined by its efficacy .

* Loss of protection: Treated plants F(t) gradually lose protection due to insecticide degradation or resistance and return
to the susceptible class S(t) at a rate «.

» Exposure and infection: Exposed plants E(t) progress to the infectious class /(t) at a rate «.
* Recovery: Infected plants /(t) recover naturally or through treatment at a rate 4, moving into the recovered class R(t).

* Loss of immunity: Recovered plants R(t) lose their immunity and return to the susceptible class S(t) at a rate .

R

Fig 1. Flow map of maize streak disease.

https://doi.org/10.1371/journal.pone.0337556.9001
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+ Secondary exposure: A proportion of insecticide-treated plants F(t) may still become exposed E(t) due to reduced insec-
ticide efficacy or reinfection pressure.

The corresponding system of differential equations (not shown here) is derived based on these transition processes
using the standard law of mass action.

%50 = A= BS(t=7)I(t=T)e™ + F(t) + $R(t) — (0 + 1) S(b), (1)
T 45(t) - (1 =) 8F(t =)t =) — (e + W), @)

%t) = BS(t=T)(t=7)e™ + (1=7)BF(t—)l(t=7)e™" — (o + w)E(), (3)
%f) — aE(t)= (5 + o + (), (4)

%f) = 51(t) = (& + WR(D), (5)

where: S(0) > 0, F(0) >0, E(0) >0, /(0) >0, R(0)>0,andt> 0, 7 < t are initial conditions.

3 Analysis of feasible properties

This section provides an analysis of the feasible properties of the stochastic delayed model (1)-(5).

3.1 Positivity and boundedness

To preserve the significant analysis of the model, each of the variables S(f), F(t), E(f), I(f), and R(f) must be non-negative.
That is, the outcomes of the model analysis at every time t > 0, 7 < t in a practical range.

A

M:{(S,F,E,/,R) ER Nt <2, 8>0F>0E> O,IzO,RZO}.
1

Theorem 1. (Positivity of Solutions): For the system (1)-(5), the solutions
(S(b), F(t), E(t), I(t), R(t)) € RS
remain positive for all t > 0 and for all 7 < £, given non-negative initial conditions.

Proof. To show that each state variable remains non-negative, consider the system (1)-(5) and evaluate its right-hand
sides on the corresponding boundary surfaces where one compartment equals zero while the others remain non-negative.

L le, =A+eF+9R>0,

& ey = 6S(t) > 0,

i’i e, =BSle™ +(1-~)5Fle™™ >0,
k o = aE(t) > 0,

B e = 6l(t) > 0.

PLOS One | https:/doi.org/10.1371/journal.pone.0337556  December 12, 2025 5/28




PLCE?%xOne

Since all model parameters are positive and the inflow terms are non-negative, the vector field on each boundary of the
positive orthant points inward. Consequently, solutions starting in RS cannot cross the coordinate planes, ensuring that

(S(t), F(t), E(t), I(t), R(t)) e RIV t > 0.
Hence, the system (1)-(5) admits positive solutions for all t > 0, as required.

Theorem 2. (Boundedness of Solutions): For the system (1)-(5), the solutions
(S(t), F(t), E(t), (1), R(D) € R}

are uniformly bounded for all t > 0.
Proof. Define the total population of maize plants as

N(t) = S(b) + F(t) + E(t) + I(t) + R(t).

By summing the differential equations (1)-(5), we obtain

%’ =A—pu(S+F+E+I14+R)=A-uN.
This differential inequality implies
dN
— < A—uN.
at =27 H

Solving this inequality using the Grénwall lemma yields

MOSM@?”+2O—€MJZO

Ast— oo,
lim sup N(t) <

t—oo

==

Therefore, N(t) - and consequently all state variables S(t), F(f), E(f), I(t), R(f) remain bounded for all t > 0.

3.2 Model equilibria and reproduction number
The MS disease delayed model’s equilibria will be briefly discussed in this section, and the maize streak free equilibrium

(MSFE — M,), and the maize streak endemic equilibrium (MSEE — M*) will all be covered.

As
Ale + 1) A9 ,OALO),

Mo = (S oo ) = (e 0 =29

M= (S*",F,E*" I',R"),

- oS -
-~ (1=)Blrer +e+p)’

_ BSretT + (1—~)BF e
(a+p)

b

A+ eF + oR*
S = F*
0+ Blrer + )

oE*
(0+o+n)

=
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S
(p+p)

3.3 Basic reproduction number R,

We compute R, via the next-generation matrix (NGM) method. The infected state vector is
_ (E®
0= (5y).

Near the disease-free equilibrium (DFE) M, = (S,, Fy, E, = 0,1/, = 0, R, = 0), the infection subsystem (with a fixed
infection delay 7) linearizes to

E(t) =pe™(So+ (1=7)Fy) I(t=7) = (a+ p) E(t),

it) = aE(t)—(5+ 0+ p) I(t)

DFE values (S,,F,)
At the DFE (E = I = R = 0) the susceptible insecticide subsystem satisfies

0 =A—(0+p)Sy+eFy,

0 :080_(E+M)F07
which gives
— _Aletp) — __0A
So = u(0+6fu) Fo= p(O+etp)”

Next-generation matrices
Write x = & (x) — V(x) with new-infection terms 7 and transition terms V. The Jacobians at the DFE are

P R S R ) W GRAC IR §

The next-generation matrix is K = FV-L. Since

1
— 0
V_l = az# 1 )
(a+p)(0+o+pn)  o+o+pu

we obtain

(a+p)(0+0+p) 0+o+p

BerT(Sy+(1F)a  BerT(Sy+(1—v)F))
K= 0

The spectral radius of K (largest eigenvalue) is therefore

R. — BT (So+(1=y)Fy) o
0 (atp)(6+0+p)

PLOS One | https:/doi.org/10.1371/journal.pone.0337556  December 12, 2025 7128




PLO\Sﬁ\\.- One

4 Stability analysis

In this part, we study the stability of the model both locally and globally at its equilibrium point, with the findings proven in
the established results as follows:

Jig =Bl = (0 + p)diy =€, i3 = 0,J1, = —BSe™7, Jis = ¢ Jpy = 0, Jpp = —(1=7)Ble7" = (e + ), Jp3 = 0,
Joy = —(1—7)BFe™7, Jps = 0,31 = Ble™H7, J3p = (1=7)Ble™H7, J33 = —(a + p), J34 = ST + (1-7)BFe™7,
35 =0, Jyy =0,Jp =0,dy3 =0,y =—(0 + 0+ 1), J51 = 0, Js, = 0, Js3 = 0,Js4 = 6,55 = —(¢ + p).
Theorem 3. (Local Stability of the Disease-Free Equilibrium)

The maize streak—free equilibrium

MO = (807F07E03I0’R0)

of the system (1)-(5) is locally asymptotically stable (LAS) if the basic reproduction number R; < 1.
Proof. The Jacobian matrix of the system (1)-(5) evaluated at the equilibrium point M, is given by

—(0+ ) € 0 —BS,e7*7 7
0 —(e4p) 0 —(1=~v)BF,e™*" 0
I m,= 0 0 —(a+p) BSe™ + (1-7)BFe™" 0
0 a 0 —(0+o0+p) 0
0 0 0 ) —(p+ )
The characteristic equation associated with Jy |y is
det(JM |,\/10 —)\I> - O7
which can be written as the fifth-degree polynomial
N+ AN+ AN+ AN A N+A; =0,
where the coefficients A;(i= 0, ..., 4) depend on model parameters as follows:
Ay =lla+p)+ 00 +o+p)+E+p)+(@+p)][1+0+np)
As = (a4 p)(0 + 0+ p) —a(BSpe™" + (1-7)BFye™ )] [(a + ) + (6 + 0 + p)]
+lEe+u) + (e + w1+ (0 + p))) —be,
A, = (e +p) + (¢ +pllla+p)(6+ 0+ p)—a(BSe™ + (1-7)8Fe™7)]

+He+p) + (e +wllla+p) + (0 +o+ w1+ (0+p))
—te[(a+p) + (0 + 0 + )] = (¢ + ),
Al =(a+p)(d+o+p)(a+p)(0+o+p) —a(BS,e™ + (1—7)BFe™M)]|(1+ (0 + 1))
(o + (e + p) + (6 + o+ p)],
Ay = a(BSge™ + (1=7)BFpe™7) = (a + p)(d + o + p)
+0ca(5S,e7" + (1=7)BFpe™7) (¢ + 1) (19)
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For biologically feasible parameter values, all coefficients A; > 0. Applying the Routh—Hurwitz stability criterion for a
fifth-degree polynomial, the necessary and sufficient conditions for all roots to have negative real parts are satisfied when
R, < 1.Hence, all eigenvalues of Jy, |M0 possess negative real parts, and the maize streak—free equilibrium M, is locally
asymptotically stable whenever R, < 1.

Theorem 4. (Local Stability of the Maize Streak Endemic Equilibrium)

The maize streak endemic equilibrium

M =(S*,F,E".I",R")

of system (1)-(5) is locally asymptotically stable (LAS) if the basic reproduction number R, > 1.
Proof. The Jacobian matrix of system (1)-(5) evaluated at the endemic equilibrium M* is

—BlFreHT — (0 + p) e 0 —3S e ¢
b —(1=v)Blre™™—(e+p) 0 —(1—v)BFe™” 0
Ju = BlFe T (1—~)BlFre —(a+p) BS*€HT + (1—7)sF e 0
0 a 0 —(6+0o+p) 0
0 0 0 5 —~(¢+ )

The characteristic equation associated with Jy; | is

det(Jy,

e =) =0,

which can be written as the fifth-degree polynomial

N+ AN AN+ AN +ANHA, =0,

where

Ay = (a; +ag) + (a; +ay) + a,,

A3 = (8388 + Oéa4) + (a3 + 88)(31 -+ ag> + alag + (a3 + ag> + 87(31 -+ ag) _50,

A, = (a; +aq)(asag + aa,) +a,aq(as + ag) + a;(azag + aa,) + a;(a; + ag)(a; + ag)
+aa,aq —c(a; + ay) —cbag — Oaa,,

A = a,aq(azag + aa,) + (8333 + aay)(a; + ag)a; + a,a,aq(a; + ag)
—cba,ay —cbag(a; + aq) — oo,
Ap = a,a,a9(asag + aa,) —cbajaga, — aba,a,aq — a,0apd,

with parameter substitutions
a, = BlerT 4 (04 p),a, = BST€HT, a5 = (1—7)BIe™ + (e + ),

a,=(1-v)pFe* as = plret,a, = (1-~)plre*r,
a; = (O‘+,u')7a8 = (6+O—+H)7a9 = (Q0+:U‘)

Since all biological parameters are positive, the coefficients A4, (i = 0, ..., 4) are positive and satisfy

AAs > Ay, (AAs = AyAL > (ALA - AgA,.

By the Routh—Hurwitz stability criterion for a fifth-degree polynomial, all eigenvalues of Jy, |- have negative real parts
when Ry, > 1.
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Therefore, the maize streak endemic equilibrium M* is locally asymptotically stable whenever R, > 1.
Theorem 5. (Global Stability of the Disease-Free Equilibrium)
The disease-free equilibrium

Mo = (SO’FO’E07IO7R0>

of system (1)-(5) is globally asymptotically stable (GAS) whenever R, < 1.
Proof. Consider the continuously differentiable Lyapunov function U : M — R defined by

U= (S=S;=SoIng) + (F=Fy=Folnf) + E+1+R.

Its time derivative along trajectories of system (1)-(5) is

au _ S-SdS | F-FydF | dE | dI | dR
dat — S dt+ F dt+dt+dt+dt'

Substituting the corresponding right-hand sides of system (1)-(5) gives

U — S5 (A~ 3SIeT + eF + R~ (6 + 1) S] + F50 [0S - (1 =) BFle™™ — (e + p)F]

+ [8SIe™ + (1—~)BFle™™ — (o + p)E] + [aE = (0 + o + p)I] + [0/ = (¢ + 1)R].

After algebraic simplification, we obtain

au (S=S,)?

F=Fol _ () 4 iy P87 +(1=7)8Fe

A T —uE- R.
FF, Sy | =pE—(p+p)

—(6S)

All parameters are positive, and when R, < 1 the bracketed term is positive, ensuring that

au
— <0.
o/

Equality 2/ = 0 holds only at
S:SO’ F:FO7 E:I:RZO.

By LaSalle’s Invariance Principle, the largest invariant set where U=o corresponds precisely to the equilibrium M,,.
Therefore, every trajectory of the system tends to M, as t — co.

Hence, M, is globally asymptotically stable whenever R, < 1.
Theorem 6. (Global Stability of the Maize Streak Endemic Equilibrium)

The maize streak endemic equilibrium

M = (S*,F",E*,I',R")

of system (1)-(5) is globally asymptotically stable (GAS) whenever R, > 1.
Proof. Define the continuously differentiable Lyapunov function V: M — R as

V=(S-S8"-SIng)+ (F-F-Fhk)
+(E-E*-E'Ing) + (I-F-rnf) + (R-R*—=R'Inf).
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Its time derivative along the solutions of system (1)-(5) is given by

SSdS F=F dF EEdE =+ di RRdR
- +7E+ + dt+ ot

dt

Substituting the model equations into (29) yields

& = *[A BSle™™ + eF + oR— (0 + p1)S]
+ £ [0S — (1—7)BFle™™ — (¢ + p)F]

EE[8Sle™™ 4 (1-~)BFle™"™ — (o + p)E]

+$ aE— (8 + o+ pl + BE[5l- (¢ + pR).

After simplification, we obtain

av (S—S*)?

F—F*)?
o = A HEF RS L

_ F*)2 _x\2 _ p*\2
—(93)( £r— — (BSIe™7 4 (1-7)5Fle™tT) (E-E") (I-1) (R-R")

e BT O T Re

All model parameters and equilibrium components are positive. When R, > 1, each term is non-positive, ensuring that
4¥ < 0. Equality 2 = 0 holds only when

S=S"F=FE=FE"I=IR=R"
By LaSalle’s Invariance Principle, the only invariant set contained in {V = 0} corresponds to the equilibrium M.

Therefore, all trajectories of the system approach M* as t — co. Hence, the maize streak endemic equilibrium M* is glob-
ally asymptotically stable whenever R, > 1.

5 Stochastic formulation Phase 1

Based on the model (1)-(5), consider a vector W = [S(t), F(t), E(t), I(t), R(t)]T of stochastic delay differential equations
(SDDEs). Calculating the variance &* [AU (AU)T] and expectations £* [AU] is our goal. Table 1 lists the likelihood of
changes together with the corresponding transition time.

A=BSle™ 4 eF + ¢R— (0 + p)S
13 0S—(1—~)BFle "™ — (e + u)F
Expectation = £* [AU] = Z,-:1 P;(AU), = | BSle™ ™ + ([:}—Ey(s)ﬂFle‘l”)—l (a+pE | AL
oac—(0+o+pu
6l=(o+pR

Variance = Zil P; (AU), [(Au)i]T

P, + P, +P; + P, + P + P, _P,—P, _P, 0 _P,
P, —P, Py + Ps + P, + Py P, 0 0
_ “p, P, P, + P, + Py + Py, P, 0 At,
0 0 —Py Py + Py + Py, —Py
—P, 0 0 Py Py + P11+ Pi3

A—BSle™™ + eF + ¢R— (6 + p)S
* 0S— (1—~)BFle ™ — (= + p)F
Drift = (4, t) = 18U — | gSle™ + (1 —v)ﬁFlz"”( - (a+ /J))El At
ac—(0+o+pu
6l=(¢+ R (7)
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Table 1. lllustrates an implicit modification to the model’s process.

Transition

Probabilities

(A),=[1 0 0 0 0

P, = (A)At

(At),=[-1 0 1 0 o

P, = (Sle+) At

(Ah),=[1 -1 0 0 0 P; = (cF)At
(A),=[1 0 0 0 -1 P, = (6R)At

(A, =[-1 1 0 0 o P, = (§S)At

(A, =[-1 0 0 0 o P, = (uS)At
(aty,=p -1 1 0 o Py = ((1-7)BFle™™) At
(A, =0 -1 0 0 o Py = (uF)At

(A, =0 0 -1 1 0o P, = (aE)At

(A, =0 0 -1 0 o Pio = (HE(t)) At
(Ag), =0 0 0 -1 1]’ Py = (3)At
(At),=[0 0 0 -1 0 Py, = (0 + p)l) At
(At),=[0 0 0 0 - P.s = (WR)At

https://doi.org/10.1371/journal.pone.0337556.t001

Diffusion = 7 (U,t) =

AAPNTEONTI

At ’
P+ P, + P+ P, Pt P P, P, P, 0 =y
—P3—Ps P3 + Ps + P; + Pg —P; 0 0
= —P, —P; P, +P7 + Py + Py —P, 0 (8)
0 0 —Pq Py + Py + Py, —P1
P, 0 0 Py, P, + Py + Py
Therefore, di(t) = G (4, t) + H (L, t) dB(t).
S A—BSle™™ 4 cF + 6R—(0+ 1)S
F 6S — (1—~)BFle™ — (¢ + p)F
E | = | BSle™ + (1=~)BFle™™ —(a + p)E | dt+
/ aE—(0+ o+ pl
R 51— (¢ + )R )
P 1P, +P,+ P, +P.+P, P, —P, P, 0 P,
—P3 =P P3 + Ps + P; + Pg —P; 0 0
—P, -P; P, + P; + Py + Py —Py 0 aB(1).
0 0 —F Py + P11 + Py —Pu
—P, 0 P Py + P11+ Pi3
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The next section will cover the conventional numerical methods for approximating solutions to Stochastic models. We
all concur that/, = {0, 1, 2, 3, ..., n}. If N € N, then the temporal interval [0, T] is consistently divided with a uniform
partition equal to 7 = % and the corresponding nodes are givenas 0 = f, <t <t, <..<ty=T.

Foreach n € Iy. Further, this will be agreed by us i, = 4, , however, n € Iyand U(f) = (S,F,E, I, R)
AW, =W(t,+1)-W(t)).

The academic literature on the subject is consulted to simulate its results of Eq. (9) using the Euler-Maruyama
approach. The details are displayed in Table 1 and are as follows;

Upq = Uy + G (8, 1) At + 7 (U, 1) dB(t).

t

Snl S" A—pBSle™ ™ 4 eF + pR— (6 4+ 1)S
Fr+1 F" 0S—(1—~)BFle ™ — (¢ + u)F
El | — | B | + | BSle ™ + (1—~)BFle™ —(a+p)E | At

/1 " aE—(§+ o0+ p)l
R+ R’ 51— (¢ + )R

Pit P, 1P+ P,tPs 1P, P, P, P, 0 "y

—P3; = Ps P3; + Ps + P; + Pg —P; 0 0
+ “p, P, Py + Py + Py + Py P, 0 AB,,
0 0 —Ps Py + Py + Py, —P1
—P, 0 0 Py Py+ Py + Py3 (10)

where the discretization parameter is indicated by At.

6 Stochastic formulation Phase 2

By incorporating Brownian motion, we get the dynamical system unreliable parameters (1)-(5). In the sequence described
below:

% = A=BS(OI(t)e™™ + eF(t) + oR(t) = (0 + u) S(t) + o1 S(t)dB(?), (11)
T _ hs(t) — (1 =) 8F D™ ~ (e + wF(D) + 7, F(OIB0), (12)
%&0 = BS(OI(t)e™ ™ + (1=7)BFDI(te™ (o + p)E(t) + o3E()dB(1), (13)
I — ()~ 6+ o+ IO + o 4laB(1), (14)

%Et) = 0l(t) = (¢ + pR(t) + osRAB(1), (15)

where the uncertainty of each compartment and existence of B(f) Brownian motion are denoted by ¢;;i =1, 2, 3, 4, 5.

6.1 Feasible properties

This model (11)—(15) concludes the examination of the positivity and boundedness features of the system.
Let us assume the following vector:

V(t) = (S(t), F(1), E(D), (), R(Y)) ,

and norm
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()] = V/S2() + F2(t) + E2(D) + (1) + Re(d). (16)

Moreover, let D‘l*’l (R5x(0,00) : R, ) represent the set of all positive functions 2, (', t) that are subsequently defined on
R5x(0, 00). Furthermore, in 77, the function is once differentiable and twice differentiable. We have defined differentiable.
We have defined the differentiable operator 7 ;, which is associated with stochastic delay differential equations (SDDESs) in
four dimensions.

dv(t) = D, (V. dt + &, (V, 1) dB(b). (17)
As,

0 5 82

71*§+Zi:1‘@ 22”1 w0 x, (v, t)iauiauj'

If 7, acts on function * € D! (R*x(0,0) : R, ) then we denote

TV (V1) =V; (V,0) + V5 (V1) D, (V1) + %Trace (%7 (V) Vi (V1) Ky (10, 1))

where T is Transportation.

Theorem 7: Demonstrates that there exists only one solution (S(t), F(t), E(t), I(f), R(t)) for the system (11)—(15) for all
initial conditions (S(0), F(0), E(0),/(0), R(0)) € R3.. With a probability of one, these solutions will also invariably stay in R3.

Proof. Given that all model parameters are locally satisfiable by the Lipschitz bounds. Therefore, based on Ito’s
formula, the above model has a positive solution locally on the interval [0, £,], and £, is the timing of the explosion. The
global solution of the model can be shown when ¢, equals infinity.

Define g, = 0 to be a big enough number so that S(0), F(0), E(0),/(0), and R(0) are all included in the interval {gio,go}.

Let’s construct the subsequent sequence for each positive integer "g".
e, =inf{te 0, £]:S(t) € (%,9),F(t) € (L,9),0rE(t) € (1,9),0ri(t) € (L,9), orR(t) € (1,9)}, (18)

where we set infy = co(yp is the empty set). Since ¢, is non-decreasing as n — oo,

{ = lim4,.

oo = JM (19)

According to the inequality, £ is either equal to or smaller than ¢,. Our goal now is to show that, as we intended, ¢
equals infinity.
When 7 > 0 and &, € (0, 1) are found, the statement is satisfied. If this condition is not met.

U{L, <T}y>486, Vb>4b,. (20)

Define a ¢*~function f: R* — R, by

$(S,F,E,I,R) = (S—1-InS) + (F-=1—InF) + (E-1—1InE) + (I-1—In/) + (R—1—1nR) . 21)

By using Ito’s formula, we calculate

_ 1 1 1 0% + 05 + 0% + 05 + of
df(S,F,E,/,R)_<1—§) dS+< F) dF + (1‘E> dE + (1—7> dl+<1—§> dR + & dt.
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dﬁ(SFE/R)=( —é)((A BS(OI)e™™ + eF(t) + oR(t) — (6 + 1) S(1)) dt

+01S +(1 £) (6S(8) = (L =) BF(OI(e™ — (¢ + p)F(1)) ot

+az )+ (1-2) (8 )/(t> e + (1—-7)BF()I(H)e™” — (o + p)E(t)) dt

+o3E +(} j) = (6 + o+ pl(t) dt + o, I(t)dB(1) + (1 - &) ((31() = (¢ + wR(D)) ot
+05R(t)dB(t) + wdt

df(S,F,E,I,R) = (A+9+5,u+5+oz+5+a+¢+ M) dt
+ 0, S(AB(t) + o, F(HdB(t) + o5 E(t)dB(t) + o, I(t)dB(t) + o R(t)dB(Y). 22)

To simplify, we assume P, = (A +0+5u+eta+d+o+o+ w) then Eq. (22) could be written as:

df(S,E,I,R) < Pdt+ [0,S(t) + 0, F(t) + o3E(t) + o,l(t) + o R(H)] d (B(¥)), (23)

where P, is a positive constant, after integrating from 0 to £, A I, we get,

B dp(S FLELR) < [ Pids + [ [0,S(t) + 0,F(t) + 03E(t) + 04)(t) + o5R(B)] d (B(H), (24)
where ¢, Al=min (¢,,T), taking the expectations leads to
EV* (S (g A1) F (8, A E (8 A1 (85 AT) R (£, AD)) < V7 (S(0), F(0), £(0), 1(0), R(0)) + P47 (25)
Set S, = {£, < T} forn > n, and from (19), we have X (&, > b).
For each element a, in the set &, there exist certain indices i such that V;(¢,,a,) is equal to either n or 1, where i
takes on the values 1, 2, 3, 4, and 5.
Hence, V* ((S (¢,,a1) , F (£y.a,) , E(£,,a,) 1 (£,,a,), R (£,,a,))) is less than min {n_ 1—Inn, % -1 _In%} :
Next, we obtain
V*(8(0), F(0), £(0),1(0), R(0) + P, T > & (lga)V* (S (£,) . F (£,) . E (£,),1(£5) ,R(£,))) >
min{n—-1-Inn, 2 -1—Ini}. (26)

The indicator function is denoted as /s (,,) within the set &,,. As n approaches infinity, we get to the contradiction that
infinity is equal to the value of V* (S(0), F(0), E(0), /(0), R( )) + P,T, which is finite, as desired.

Theorem 8. If the spectral radius and the variance o3 < BSO?;;;;(Q;%)& “" then the number of infected plants in the
system (11)-(15) will exponentially approach zero.

Proof: Let's examine the initial data (S(0), F(0), £(0),/(0), R(0)) € R and the system (11)-(15) has a solution
(S(b), F(t), E(t), I(f), R(?)) if it satisfies the stochastic delayed differential equation, where o, represents randomness and ¢
represents drift.

di(t) = (55(0’(09"” + (1=7)BF(D)I(te™

(o + ) —(0+o+ u)/(t)> dt + co,I(t)dB(t),

Applying Ito’s lemma to the function g(/) = In(/), we obtain
din (I(t)) = g’ (I(t)) dI + %g"(l)lzaﬁdt,

— i 1 _l 2 2
din(i) = jordl+ ( /2> Podt,
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din(I(t)) = %dl— Lotat
din(I(t)) % Kﬂ S(lye™ Lﬁ;;)ﬁ FIORDE™ _ 54 o+ u)l(t)) dt + 004/(t)dB(t)] - %aﬁdt,

BS(t)e™™ + (1—v)BF(t)e™"
(c+ )

din(I(t)) = ( —(6+o+ u)) dt + co, dB(t) - %azdz:

BS(He™ " + (1—v)BF(t)e ™"
(o + p)

t
In(I(t)) =Inl(0) + ( —(6+o+p)—- ;az) ot + /0 co,dB(1).

Notice that N(t) = [ ca,dB(t) with N(0) = 0.

2 BSyetT (1) BF et
If ot > = armErorm

BS(H)e™™ + (1 —)BF(t)e™"
(a4 p)
Ini(t) - (1 BSee™ + (1=7)BFye™"
t 2 (a+p)0+o+p)

. In/(t) 1 ﬁsoe_ﬁ”' + (1 _'7>ﬂF()e_HT _
L <2 @+ m0+o+p

138067 + (1=7) 8™
2 (a+p)0+o+p)

(6+a+u)> +@+ml§0),

(0+0+ u)) > 0, with lim @: 0,

t—oo

—(64+o+pn-—

In(I(t)) > ( ) t+ N(t) + Inl(0),

tsoo

2 _ BS)e (1) BF e
If o3 < ey — then

BSye™ 4 (1—~)BFye " 1,
In(i() < ( e —(5—|—a+u)—204> £+ N(t) + Inl(0),
Ini(t) 3SyeT + (1—~)BF e 1 N(t)  Ini(0)
t<(5+"+’“‘>< ICET Ty _1_20‘%)+t+ t

Jim sup™® <(5+ o+ ) (R~ 1). when R§ < 1, we get fim sup™; <0,
—00 —00

lim I(t) = 0, as desired,
t—o0
&

RS=RI- %
> % 20+o+p

< 1.

7 Numerical methodology

Let &, be the set defined for each ec N as 2/, = {0, 1, 2,..., e}. In this section, we will denote and analyze a discretization
of the system (11)-(15). To achieve the objective, we consider the temporal interval where T > 0. Create a consistent parti-
tion of the time interval [0, T] into n subintervals, with a length of k = ;T for each subinterval. For each ael,,

where [, is the collection of indices by considering t, = ak. The numerical approximations for the functions S, F, E, I,

and R are denoted as S", F", E", I", and R", respectively. The discrete initial data (S, Fy, Ey, Iy, Ry) is defined, satisfying

S, = S(0),F, = F(0),E, = E(0), I, =1(0), R, = R(0) as required.

7.1 Stochastic nonstandard computational method

In our first equation (11) of the parametric perturbation model can be expressed with a non-standard computing approach;
namely, equations (11)-(15) might be solved with a stochastic non-standard finite difference method.
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dS(t) = (A—pSle™™™ + eF+ ¢pR— (0 + 1)S) dt + o, Sd (B(1)) . (27)
For the stochastic NSFD approach
Sn+1 - gn
— = [A=BS™ e T 4+ eF" + ¢R" — (0 4+ p)S™ + 0, S"AB,)] . (28)

The system (11)-(15) can be decomposed by the stochastic NSFD process, as indicated in (28), and the entire system
can then be expressed as follows:

g1 _ S"HN[A+EF 4 6R" + 0, S"AB,)

1+ h(Blrer™ + (0 + p)) ’ (29)

n1_ _ F"+h[0S"+0,F"AB,]
1+h((1=7)Ble ™ + (e +p))’ (30)

pri1 _ ET T h[BS"e™T 4 (1—7)BF"I"e™” + 03E"AB, |
1+ h(a+ p) (31)
el _ I" + h[aE" + 0,I"AB,)

1+h(6+o+p) (32)

et _ R+ h[8F + 05R'AB,)

1+ h(¢+ ) ’ (33)

where, n =0, 1, 2,...and AB, = AB; —AB, is a general normal distribution, i.e., AB, ~ N(0, 1).

7.2 Convergence analysis

The following theorems are stated concerning the convergence analysis.

Theorem 8: There is only one positive solution (S, F, E, I, R) € R3, V n > 0 for any initial value
(S(0), F(0), E(0), 1(0), R(0)) € R} for equations (29) through (33).

Proof: The evidence is verifiable since the non-positive property of the biological problems’ constraint facilitates ease in
demonstration.

Theorem 9: For the region
M= {(S”,F”,E”,I”,R”) ERY:S"+F +E"+I"+R"=N< %, S">0,F">0,E">0,I">0,R" > 0}. Foreveryn>0
is an area of equations that is feasible and positively invariant (29) to (33).

Proof: The system (29) to (33) can be deconstructed and considered AB,, = 0, as follows:

Sn+l - Sn
S = A8+ PN 4 R = (0 + ) S™,
Fn+1 —Fn
e = 08" = (1= ) F e — (e 4 ) P
En+1 —E"
T = BS"MeT 4 (1) BF e — (ar+ p)ET,
In+1 _m
h =aE"— (0 + o+ )",
n+1 _ pn
: h R oo+ R,
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Next, we get

(Sn+1 + Fril L Erel 4 it +Rn+1)_(s” +F 4+ E 4"+ R
h

(Sn+1+Fn+1+En+1—|—ln+1—|—Rn+1)—(sn+Fn—|—En+/n—|—Rn>ShA—h,u(Sn—FFn—i-En—Fln—‘ar),

<A—u(S"+F +E" 4+ 1"+ R,

(8™ P Bttt L R (ST 4 P BT 4 P RY) < hA—hu(S" + FT 4+ E" 4 I + RY),

(8" 4 Pl Bl g+l | R+l < 2, as desired.
Theorem 10: The suggested computational method is stable for any n > 0 if the eigenvalue is located in the unit circle.
Proof: Let the function Y, G, H, P, and Q, which are the right-hand sides of the equations (29-33). Consider AB,, = 0.

Here,
y = SthidreFioRl o F+h[0S)] H — EthlBSle™ 4 (1—)3Fle7]
1+h(Ble=*™+(0+w)) 1+h((1—y)ple*7+(e+p)) " 1+-h(a+p) ’
p— _lthlaEl o _ Rthld]
1+h(6+0+p)’ 1+h(p+p)"
It is well known that a system of the forms (29-33) converges to the optimal state of the model if and only if the spectral

radius of the Jacobian, (J),

9y 9y 9y oY  OY
% 8 96 b6 o8
| % o
1583
EERE o

For the stability of the model. It follows the conditions:

When p(J) < 1, the model’s equilibrium is stable. The stability of the model’s equilibria depends on whether p(J) > 1.
The model’s equilibria are naturally stable when p(J) = 1.

The components of the method-related Jacobian can be expressed as follows: maize streak-free equilibrium,
My = (So. Fo: Eo, Iy, Ro)-

1 0 0 (Syth[AteFytR) (hoe™™)  _hlé] 7
1+h(0+p) (1+h(0 +M)) 1+h(0+p)
h[6S,] 1=h[e](h[6S,]) 0 (Foth[6Se])((1=y)hBe77) 0
Lth(etp)  1+h(etp) s (1+r}(s+,;>) |
— 1 h[3S,e H7+(1—y)BF,e ™
](MO) 0 0 I_H;ﬁa]_’_u) ‘ 1+h(i)z-!’—yu) ‘ 0
0 0 e ") 1+h<,‘§[§]"+“) (1)
L 0 0 0 TTh(aTR) Trhi g
So, the eigenvalues of the Jacobian at M,, as follows:
1-hle] (h[0S,]) 1 1
M=——7— <Ly =—— <1 3= —.
! 1+h(e+p) 2714+ h(0+p) 37T 14+ h(p+p)
1 h[BS,e™T+(1—) BFpe 7]
1+h%a+u) 1+h(a+p) -0
hla) hls) :
1+h(6+o+p) 1+h(p+p)

1 h[o]
T+hlatp)  1+ho+m

A; =Trceof ] (M,) =
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A, =Determinent of ] (M) = ( ( 1+h(1a—|—u) ) < 1+h}z£§]+ m ) ) + ( (h [5506‘::;?(1);73)5%6“] ) ( 1+h(?£ﬂ vy ) ) )

Lemma. For the quadratic equation \, —A; A+ A, =0, |\;| < 1, i = 1, 2 if and only if the following conditions are
satisfied:

i. 1+A+A, >0.
i. 1-A;+ A, > 0.
ii. A, < 1
Proof. The proof is straightforward.

8 Computational results

In this section, we compare conventional numerical methods with a non-conventional computational technique to evaluate
their efficiency, precision, and computational cost in solving the proposed model. This consideration highlights the advantages
and potential drawbacks of using nonstandard numerical methods in advanced epidemiological models. Parameter estimates
used in this work were drawn in great part directly from the literature, making proper consistency with earlier validated MSV
transmission models. A few parameters (e.g., recruitment rate A, natural mortality rate y, and noise intensity o) were assumed
to be in biologically reasonable ranges since there is no special experimental data. All parameters are displayed in Table 2. All
simulations were conducted using identical parameter sets (Table 2) and a fixed time horizon t=500. The deterministic solution
was used as the benchmark reference. The stochastic NSFD method demonstrates the best overall performance, achieving
lower error and faster computation while maintaining numerical stability independent of step size (see Table 3).

8.1 Discussion

This section covered the discussion of graphical representations of the behavior of infected plants for different time

step sizes (h) with time delay (7 = 1). Fig 2 shows the infected plants over time at the endemic equilibrium point with a
step size of h = 0.01. The model uses the Euler-Maruyama method, the stochastic NSFD method, and a deterministic
approach. The small step size allows for more precise modeling of infection dynamics, capturing subtle changes in infec-
tion rates. In Fig 2, the stochastic nature leads to small fluctuations around the deterministic trajectory, which stabilizes
as time progresses. Maize Streak Disease has a regular pattern with minimal variability, suggesting that for instances

Table 2. Parameter values used in the model.

Parameter Description Value Source/ Assumption
A Recruitment rate of susceptible plants 0.5 Assumed within biological range
B Transmission rate 0.018 Literature [1]

0 Insecticide application rate 0.1 Literature [1]

u Natural mortality rate of plants 0.5 Assumed

€ Rate of loss of insecticide protection 0.001 Literature [1]

9 Recovery rate of infected plants 0.03 Literature [1]

y Efficacy of insecticide treatment 0.9998 Literature [1]

a Progression rate from exposed to infectious class 0.1 Literature [1]

¢ Rate of loss of immunity 0.015 Literature [1]

o Noise intensity in stochastic model 0.02 Assumed

https://doi.org/10.1371/journal.pone.0337556.t002
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Table 3. Quantitative comparison of stochastic numerical methods.

Numerical Method CPU Mean Squared Maximum Stable Remarks
Time (s) Error (MSE) Step Size (h,,.)
Stochastic Euler—Maruyama 4.82 2.41x10°8 0.5 Stable only for small h; exhibits oscillations for large delays
Stochastic Runge—Kutta 5.37 1.86x1073 0.6 Moderate accuracy; partial loss of positivity for h > 0.6
Stochastic NSFD (proposed) 3.15 0.97x107® Step-size Preserves positivity and stability for all tested h values
independent

https://doi.org/10.1371/journal.pone.0337556.t003

Comparison-Endemic Equilibrium (EE)

0.1 T

T

= Euler Maruyama Method
0.09 | e NSFD Method

s Deterministic
0.08 b
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Infected Plants

X:493.4
0.03 Y: 0.02587

0.02

0.01

0 1 1 1 1 1 1 1 1 1
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Time (days), 7= 1, h=0.01

Fig 2. Infected plants at EE when h = 0.01.

https://doi.org/10.1371/journal.pone.0337556.9002

with minimal environmental or vector behavior variation, the infection is quite under control. By boosting the step size to
h=1, Fig 3 creates larger stochastic fluctuations. With bigger steps, the infection graph appears to be more unpredict-
able, particularly during the initial stage of the epidemic. The stochastic Euler-Maruyama and stochastic NSFD methods
are the ones that have more variability than the deterministic model. This conveys that with less time resolution (larger
delays or less frequent observations), the disease spread is less predictable with more chance of larger outbreaks. The
step size increment shows the stochastic effects amplification, that is, environmental noise (for instance, abrupt tem-
perature changes or vector activity) can cause fluctuations in the infection rate that are more than the normal by a large
margin. Likewise, Fig 4 presents the same with a step size of h=0.01 but it emphasizes the Euler method of stochastic
modeling. The rate of infection is rather stable at endemic equilibrium and very little variability occurs. The Maize Streak
Disease secures a uniform pattern, and the stochastic methods’ variability is undetectable, which means that the disease
is kept under control in very strict and well-monitored conditions. In Fig 5 the step size is set to h=1 and the variability
of infection is significantly increased. The infected plant populations are showing larger fluctuations, with the stochas-
tic methods (stochastic Euler and stochastic NSFD) straying quite a bit from the deterministic trajectory. This infers that
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in situations where there are delayed responses or more coarse time scales, the disease can fluctuate more severely,
thereby making the control more challenging. The increase in step size illustrates how delay or inaccurate monitoring can
result in ever more random outcomes. The stochastic Runge-Kutta method is being used in Fig 6 with a small step size
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Fig 6. Infected plants at EE when i = 0.01.
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(h=0.01). The infection curve is unchanged with slight variations, just like in the other figures with smaller step sizes. The
dissemination of Maize Streak Disease is under control, and there is no considerable stochastic impact. The stochastic
Runge-Kutta method, like the Euler-Maruyama method, shows very low variability at this step size, which gives further
evidence that the disease can be controlled fairly well if closely monitored. In Fig 7, where the step size is larger, h=1,
more variability is seen in the infection rate. The infection curve becomes less smooth, showing that the progress of the
disease is more difficult to predict for larger steps. Delays in observation or in intervention might lead to greater outbreaks.
Fig 8 illustrates how different delays affect the number of susceptible plants over time. Four different delays are shown:

7 = 0.1, 0.3, 0.5, and 0.7. As the delay increases, the number of susceptible plants drops more slowly, indicating that
larger delays in implementing control measures allow more plants to remain vulnerable to infection. This explains that
effective interventions happen to be those at appropriate times for the prevention of the disease by Maize Streak Disease.
In Fig 9 infected plant population in a function of time with different time delays. Different values of time delay between
7=0.1and 7 = 0.7. As the delay increases, the rate of acceleration of infected plants increases and keeps increasing
with time. This would be interpreted as the longer duration held in the interventions of the disease reveals more severe
outbreaks of Maize Streak Disease. Shorter delays translated to quicker recovery of the disease (7 = 0.1), however, the
longer delays showed constant outbreaks and higher infection rates. The illustration above stresses how timely interven-
tions are essential to control the transmission of the disease. Fig 10 shows how the delay (r) affects the basic reproduc-
tion number (R,). We can observe that as (7) increases, so does R,,. An increase in R, certainly tells one that the disease
becomes more transmissible as the delay increases. After introducing the delays into the control measures of Maize
Streak Disease, therefore, it can infect more plants and make the disease generally more transmissible. Without delays
(t = 0), R, is relatively low, which means that this disease is more easily controlled. Increasing (7) causes R, to rise thus,
the disease starts to be uncontrollable.
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Fig 7. Infected plants at EE when h = 2.

https://doi.org/10.1371/journal.pone.0337556.9007
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9 Conclusion

This paper formulates a computational and mathematical study of the MSV disease transmission model of time-delay
dynamics. Maize plants were divided into five compartments: susceptible, insecticide-treated, recovered, infected, and
exposed. Dynamical analysis considered key epidemiological features such as the basic reproduction number, equilibria,
boundedness, and positivity conditions. Both the local and global stability of the endemic and maize streak—free equilib-
rium points were investigated, establishing the asymptotic behavior of the system under various parameter conditions.
The stochastic generalizations of the model, such as positivity, extinction, and persistence of the disease under stochastic
perturbation, were also studied. Among the computational methods attempted, the stochastic Nonstandard Finite Differ-
ence (NSFD) scheme offered improved accuracy, stability, and biological consistency performance. In particular, stability
is crucial in stochastic epidemic modeling to prevent spurious oscillations and numerical instability. Compared to other
conventional numerical methods such as the stochastic Runge—Kutta, stochastic Euler, and Euler—Maruyama schemes,
the stochastic NSFD method-maintained robustness and consistency even at large simulation times. Overall, the results
confirm that the stochastic NSFD method provides a reliable, efficient, and biologically sound model for describing com-
plex plant viral epidemics like MSV, with implications for future research and disease management practices.
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