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Abstract 

Objectives

The primary goal of this research is to analyze the transmission dynamics of Maize Streak 

Virus (MSV) by means of a computational and stochastic modeling technique where the 

time delay and uncertainty factors in the epidemic process are vital considerations.

Methodology

A compartmental MSV deterministic model was established, which later got an exten-

sion to a stochastic delay differential system having five biological compartments 

consisting of susceptible, insecticide-treated, exposed, infected, and recovered 

plants. Analytical methods were employed to find the maize streak–free and endemic 

equilibriums and to derive the treatment reproduction number. The stability of the 

deterministic and stochastic systems was studied. The numerical methods used 

for comparison were Euler-Maruyama, stochastic Runge–Kutta, and the stochastic 

Nonstandard Finite Difference (NSFD) scheme, which were assessed for accuracy, 

stability, and computational efficiency.

Key Results

Theoretical results show that under some parameter values, both equilibrium points 

are stable in an asymptotic sense. The numerical experiments reveal that the sto-

chastic NSFD scheme is more stable, preserves positivity better, and is independent 

of step size than the classical methods. Including the stochasticity captures the 

uncertainty associated with MSV transmission in the real world, thereby enhancing 

the predictive simulation’s validity.
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Conclusions

The suggested stochastic NSFD model is indeed a strong computationally efficient 

and biologically realistic method to simulate MSV and other plant virus epidemics. 

The results boost our understanding and management of the agricultural disease 

control strategies.

1  Introduction

Maize (Zea mays) or corn is one of the world’s most important cereal crops, glob-
ally produced. Its domestication in Mesoamerica has rendered it a cornerstone of 
world agricultural production and a prime source of food security and economic 
development [1]. Maize production is threatened by Maize Streak Virus (MSV), a 
leafhopper-transmitted disease-causing significant loss in yield, particularly in the 
tropical and subtropical regions of the world. There have been attempts at mod-
eling MSV transmission dynamics via various mathematical and computational 
approaches. For instance, Seidu [2] proposed a deterministic ODE model involving 
fractional-order derivatives—i.e., the Atangana–Baleanu Caputo-type operator to 
capture memory effects and non-local interactions more accurately than traditional 
approaches. Liu [3] proposed an integrated stochastic model of variability in infection 
dynamics due to random environmental factors, modeling infection fluctuations via 
a logarithmic Ornstein–Uhlenbeck process. Mrope and Kigodi [4] gave an elaborate 
review of MSV control and transmission models in agroecosystems while O’Halloran 
et al. [5] researched the implementation of advanced deep-learning techniques for 
early detection of maize disease. They worked on the basis of integrating artificial 
intelligence for real-time monitoring of disease to enhance the responsiveness and 
efficiency of agricultural health systems. In another study, Ackora-Prah et al. [6] 
examined disease interactions within maize farms with Holling’s functional response 
within a fractal–fractional setting and showed that such models better capture biolog-
ical complexities. We extend these efforts by developing a stochastic delayed model 
for which positivity and stability are assured. By the Newton polynomial routine, we 
carried out numerical simulations to examine the qualitative behavior of the model 
and confirm theoretical results. A few notable contributions are studies conducted 
by Mrope and Kigodi [7], in which they investigated the dynamic interaction of maize 
plants with Homopteran insect virus vectors. Facchi et al. [8] proposed the use of 
chitosan- and tannin-based polymeric coatings as antimicrobial agents for the man-
agement of Xanthomonas vasicola pv. vasculorum (Xvv), in which they demonstrated 
promising applications at the field level. Ali and Ameen [9] applied fractional calculus 
to investigate MSV persistence and transmission and noted its application in devel-
oping disease control policies. Dash and Sethy [10] noted that maize infections are 
a major cause of production loss but can be avoided by early detection and preven-
tion. Kalyango and Ntanda [11] created an explainable deep-learning model for the 
diagnosis of maize diseases with the trade-off between predictive performance and 
explainability in order to facilitate effective agricultural decision-making. Suriani et al. 
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[12] documented in morphological, physiological, and molecular detail the pathogens of bacterial stalk rot in maize, mak-
ing possible species-level diagnosis. Malar et al. [13] applied Caputo–Fabrizio fractional derivative to describe MSV com-
plex dynamics, while Mrope and Kigodi [14] also took into account the effects of control actions that are insecticide-based 
in an effort to decrease infection levels. Other deterministic and fractional models [15,16] have also provided information 
about the persistence of infection, memory effects, and long-term maize epidemic dynamics.

Beyond MSV-specific studies, more general stochastic epidemic models incorporating mechanical, chemical, and pre-
ventative control measures [17] have highlighted the central position of multi-strategy methods in reducing infection prev-
alence. Robaina et al. [18] standardized the inoculation protocol of Xvv in maize and determined a diagrammatic scale for 
resistance screening, and Tembo et al. [19] reported a quick and sensitive LAMP assay for MSV field detection. Ketsela 
et al. [20] confirmed the morphological symptoms of MSV infection chlorotic leaf streaks, chlorophyll loss, and growth 
retardation causing reduced yield or plant death through field observations. Finally, Wang et al. [21] demonstrated that 
stochastic models incorporating environmental transmission can explain periodic epidemic patterns, a concept relevant 
to multi-year epidemics of MSV. Recent studies have applied stochastic and delay-based epidemic modeling methods to 
a variety of infectious diseases, demonstrating the usefulness of dynamical consistency and global stability analyses for 
the interpretation of disease transmission and control measures [22,23]. Similar stochastic and bifurcation-based model-
ing methods have recently been formulated for human infectious diseases, such as influenza transmission and control, 
demonstrating the importance of stochastic effects and treatment–vaccination dynamics in epidemic models [24–27−]. 
Polynomial numerical schemes have proven successful in complex fractional dynamic systems, demonstrating Morgan 
Voyce polynomial approaches to time-fractional models [28,29]. Stochastic and cost-effectiveness modeling frameworks 
have been applied in recent epidemiological studies to examine intervention strategies for major infectious diseases such 
as HIV/AIDS and COVID-19, highlighting the applicability of data-driven approaches to the optimization of control strate-
gies and vaccine efficacy [30–32].

Previous studies on Maize Streak Virus (MSV) dynamics have primarily relied on deterministic or fractional-order dif-
ferential equation models, which, though useful, have a tendency to leave out the stochastic fluctuations and time-delays 
that occur in real-world agro-ecosystems. The majority of such studies have been idealized and have not tried to incor-
porate uncertainty due to environmental fluctuations, random infection, or heterogeneity in insect vector behavior. These 
limitations restrict their application to realistic field-scale epidemic prediction. To account for these lacunae, the present 
study develops a stochastic delayed model of MSV transmission incorporating randomness and temporal memory effects 
in plant-virus interactions. The study also provides a stochastic Nonstandard Finite Difference (NSFD) scheme, which is 
defined by positivity, boundedness, and step-size independence properties significant in the context of biological realism. 
The model combines theoretical analysis with computational efficiency and provides a more solid foundation for controlling 
MSV as well as other plant diseases.

The organization of the paper is as follows: Section 1 gives a review and thorough review of infectious maize streak 
disease-like disease reported in the literature. Sections 2 and 3 consider the establishment of the delayed model and the 
mathematical analysis later, and the two types of model equilibria and reproduction numbers. Sections 4 and 5 consider 
an investigation of the stochastic model, for example, its extinction and persistence. The stochastic NSFD approach is 
discussed in Section 6. Sections 7 and 8 are devoted particularly to numerical simulations and the presentation of results. 
Long-term opinions give a complete outline of the work under Section 9.

2  Formulation of model

This section presents a mathematical model describing the transmission dynamics of Maize Streak Virus (MSV) within a 
maize plant population. The total plant population at time t is denoted by

	 N(t) = S(t) + F(t) + E(t) + I(t) + R(t),	
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where each compartment represents a distinct epidemiological state:

•	S(t)—Susceptible plants: uninfected plants that can acquire infection after contact with infected plants or vectors.

•	 F(t)—Insecticide-treated plants: plants protected partially by insecticide application; protection depends on the insecti-
cide’s effectiveness.

•	E(t)—Exposed plants: plants that have been infected but are in the latent (non-infectious) stage.

•	 I(t)—Infected plants: plants currently infectious and capable of transmitting MSV.

•	R(t)—Recovered plants: plants that have gained temporary immunity following infection or treatment.

2.2  Model description

The dynamics of the system are governed by the following biological processes (Fig 1):

•	 Recruitment: Susceptible plants enter the population from the environment at a constant rate Λ.

•	 Infection: Healthy plants in the susceptible class S(t) become exposed E(t) after effective contact with infected plants I(t). 
The disease transmission follows the law of mass action at a rate 𝛽𝛽S(t)I(t).

•	 Insecticide application: A fraction of susceptible plants S(t) is treated with insecticide at a rate 𝜃𝜃, moving them into the 
insecticide-treated class F(t). The insecticide confers partial protection, determined by its efficacy 𝛾𝛾 .

•	 Loss of protection: Treated plants F(t) gradually lose protection due to insecticide degradation or resistance and return 
to the susceptible class S(t) at a rate 𝜀𝜀.

•	 Exposure and infection: Exposed plants E(t) progress to the infectious class I(t) at a rate 𝛼𝛼.

•	 Recovery: Infected plants I(t) recover naturally or through treatment at a rate 𝛿𝛿 , moving into the recovered class R(t).
•	 Loss of immunity: Recovered plants R(t) lose their immunity and return to the susceptible class S(t) at a rate 𝜑𝜑.

Fig 1.  Flow map of maize streak disease.

https://doi.org/10.1371/journal.pone.0337556.g001

https://doi.org/10.1371/journal.pone.0337556.g001
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•	 Secondary exposure: A proportion of insecticide-treated plants F(t) may still become exposed E(t) due to reduced insec-
ticide efficacy or reinfection pressure.

The corresponding system of differential equations (not shown here) is derived based on these transition processes 
using the standard law of mass action.

	

dS(t)
dt

= Λ – 𝛽𝛽S(t – 𝜏𝜏𝜏I(t – 𝜏𝜏𝜏e–𝜇𝜇𝜇𝜇 + 𝜀𝜀F(t) + 𝜙𝜙R(t) – (𝜃𝜃 𝜃 𝜃𝜃𝜃S(t),
	 (1)

	

dF(t)
dt

= 𝜃𝜃S(t) – (1 – 𝛾𝛾𝛾𝛾𝛾F(t – 𝜏𝜏𝜏I(t – 𝜏𝜏𝜏e–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀 𝜀𝜀𝜀F(t),
	 (2)

	

dE(t)
dt

= 𝛽𝛽S(t – 𝜏𝜏𝜏I(t – 𝜏𝜏𝜏e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t – 𝜏𝜏𝜏I(t – 𝜏𝜏𝜏e–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼 𝛼𝛼𝛼E(t),
	 (3)

	

dI(t)
dt

= 𝛼𝛼E(t) – (𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿I(t),
	 (4)

	

dR(t)
dt

= 𝛿𝛿I(t) – (𝜙𝜙 𝜙 𝜙𝜙𝜙R(t),
	 (5)

where: S(0) ≥ 0, F(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, and t ≥ 0, 𝜏𝜏 𝜏 t are initial conditions.

3  Analysis of feasible properties

This section provides an analysis of the feasible properties of the stochastic delayed model (1)-(5).

3.1  Positivity and boundedness

To preserve the significant analysis of the model, each of the variables S(t), F(t),E(t), I(t), and R(t) must be non-negative. 
That is, the outcomes of the model analysis at every time t ≥ 0, 𝜏𝜏 𝜏 t in a practical range.

	
ℳ = {(S,F,E, I,R) ∈ ℝ5

+ ∶ N(t) ≤ Λ
𝜇𝜇 , S ≥ 0,F ≥ 0,E ≥ 0, I ≥ 0,R ≥ 0} .

	

Theorem 1. (Positivity of Solutions): For the system (1)-(5), the solutions

	 (S(t),F(t),E(t), I(t),R(t)) ∈ ℝ5
+	

remain positive for all t ≥ 0 and for all 𝜏𝜏 𝜏 t , given non-negative initial conditions.
Proof. To show that each state variable remains non-negative, consider the system (1)-(5) and evaluate its right-hand 

sides on the corresponding boundary surfaces where one compartment equals zero while the others remain non-negative.

	

dS
dt ∣

S=0 = Λ + 𝜀𝜀F + 𝜑𝜑R > 0,
dF
dt ∣

F=0 = 𝜃𝜃S(t) > 0,
dE
dt ∣

E=0 = 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 > 0,
dI
dt ∣

I=0 = 𝛼𝛼E(t) > 0,
dR
dt ∣

R=0 = 𝛿𝛿I(t) > 0. 	
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Since all model parameters are positive and the inflow terms are non-negative, the vector field on each boundary of the 
positive orthant points inward. Consequently, solutions starting in ℝ5

+ cannot cross the coordinate planes, ensuring that

	 (S(t),F(t),E(t), I(t),R(t)) ∈ ℝ5
+∀ t ≥ 0.	

Hence, the system (1)-(5) admits positive solutions for all t ≥ 0, as required.
Theorem 2. (Boundedness of Solutions): For the system (1)-(5), the solutions

	 (S(t),F(t),E(t), I(t),R(t)) ∈ ℝ5
+	

are uniformly bounded for all t ≥ 0.
Proof. Define the total population of maize plants as

	 N(t) = S(t) + F(t) + E(t) + I(t) + R(t).	

By summing the differential equations (1)-(5), we obtain

	
dN
dt

= Λ – 𝜇𝜇𝜇S + F + E + I + R) = Λ – 𝜇𝜇N.
	

This differential inequality implies

	
dN
dt

≤ Λ – 𝜇𝜇N.
	

Solving this inequality using the Grönwall lemma yields

	
N(t) ≤ N(0)e–𝜇𝜇t + Λ

𝜇𝜇 (1 – e–𝜇𝜇t), t ≥ 0.
	

As t → ∞,

	
lim sup
t→∞

N(t) ≤ Λ
𝜇𝜇 .	

Therefore, N(t) - and consequently all state variables S(t),F(t),E(t), I(t),R(t) remain bounded for all t ≥ 0.

3.2  Model equilibria and reproduction number

The MS disease delayed model’s equilibria will be briefly discussed in this section, and the maize streak free equilibrium 
(MSFE –M0), and the maize streak endemic equilibrium (MSEE –M∗) will all be covered.

As

	
M0 = (S0,F0,E0, I0,R0) = ( Λ(𝜀𝜀 𝜀 𝜀𝜀𝜀

(𝜀𝜀 𝜀 𝜀𝜀𝜀𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀 – 𝜀𝜀𝜀𝜀 , Λθ
(𝜀𝜀 𝜀 𝜀𝜀𝜀𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀 – 𝜀𝜀𝜀𝜀 , 0,0,0) ,

	

	 M∗ = (S∗,F∗,E∗, I∗,R∗) ,	

	
S∗ = Λ + 𝜀𝜀F∗ + 𝜙𝜙R∗

(𝜃𝜃 𝜃 𝜃𝜃I∗e–𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇 ,F∗ = 𝜃𝜃S∗

((1 – 𝛾𝛾𝛾𝛾𝛾I∗e–𝜇𝜇𝜇𝜇 + 𝜀𝜀 𝜀𝜀𝜀𝜀  ,E∗ = 𝛽𝛽S∗I∗e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F∗I∗e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼𝛼𝛼𝛼  ,
	

	
I∗ = 𝛼𝛼E∗

(𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿 ,
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R∗ = 𝛿𝛿I∗

(𝜙𝜙 𝜙 𝜙𝜙𝜙 .	

3.3  Basic reproduction number R0

We compute R0 via the next-generation matrix (NGM) method. The infected state vector is

	
x(t) = (E(t)

I(t) ) .
	

Near the disease-free equilibrium (DFE) M0 = (S0,F0,E0 = 0, I0 = 0,R0 = 0), the infection subsystem (with a fixed 
infection delay 𝜏𝜏) linearizes to

	

Ė(t) = 𝛽𝛽𝛽e–𝜇𝜇𝜇𝜇(S0 + (1 – 𝛾𝛾𝛾F0) I(t – 𝜏𝜏𝜏 – (𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼E(t),
̇I(t) = 𝛼𝛼𝛼E(t) – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿𝛿 I(t). 	

DFE values (S0,F0)
At the DFE (E = I = R = 0) the susceptible insecticide subsystem satisfies

	
0 = Λ – (𝜃𝜃 𝜃 𝜃𝜃𝜃S0 + 𝜀𝜀F0,
0 = 𝜃𝜃S0 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F0, 	

which gives

	 S0 = Λ(𝜀𝜀𝜀𝜀𝜀𝜀
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ,F0 = 𝜃𝜃𝜃

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 .	

Next-generation matrices
Write ẋ = ℱ(x) – 𝒱𝒱𝒱x) with new-infection terms ℱ and transition terms 𝒱𝒱. The Jacobians at the DFE are

	
F = [ 𝜕𝜕𝜕i

𝜕𝜕xj ]
M0

= (0 𝛽𝛽𝛽e–𝜇𝜇𝜇𝜇(S0 + (1 – 𝛾𝛾𝛾F0)
0 0 ) ,V = [ 𝜕𝜕𝜕𝜕i

𝜕𝜕xj ]M0
= (𝛼𝛼 𝛼 𝛼𝛼 0

–𝛼𝛼 𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼) .
	

The next-generation matrix is K = FV–1. Since

	
𝑉𝑉 –1 = (

1
𝛼𝛼𝛼𝛼𝛼 0

𝛼𝛼
(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

1
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

) ,
	

we obtain

	
K = (

𝛽𝛽𝛽e–𝜇𝜇𝜇𝜇(S0+(1–𝛾𝛾𝛾F0) 𝛼𝛼
(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

𝛽𝛽𝛽e–𝜇𝜇𝜇𝜇(S0+(1–𝛾𝛾𝛾F0)
𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

0 0 ) .
	

The spectral radius of K  (largest eigenvalue) is therefore

	
R0 = 𝛽𝛽𝛽e–𝜇𝜇𝜇𝜇(S0+(1–𝛾𝛾𝛾F0) 𝛼𝛼

(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 .
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4  Stability analysis

In this part, we study the stability of the model both locally and globally at its equilibrium point, with the findings proven in 
the established results as follows:

	

𝐽𝐽𝑀𝑀 =
⎡
⎢
⎢
⎢
⎣

𝐽𝐽11 𝐽𝐽12 𝐽𝐽13 𝐽𝐽14 𝐽𝐽15
𝐽𝐽21 𝐽𝐽22 𝐽𝐽23 𝐽𝐽24 𝐽𝐽25
𝐽𝐽31 𝐽𝐽32 𝐽𝐽33 𝐽𝐽34 𝐽𝐽35
𝐽𝐽41 𝐽𝐽42 𝐽𝐽43 𝐽𝐽44 𝐽𝐽45
𝐽𝐽51 𝐽𝐽52 𝐽𝐽53 𝐽𝐽54 𝐽𝐽55

⎤
⎥
⎥
⎥
⎦

,

	 (6)

J11 = –𝛽𝛽Ie–𝜇𝜇𝜇𝜇 – (𝜃𝜃 𝜃 𝜃𝜃𝜃,J12 = 𝜀𝜀, J13 = 0, J14 = –𝛽𝛽Se–𝜇𝜇𝜇𝜇, J15 = 𝜙𝜙 J21 = 𝜃𝜃, J22 = –(1 – 𝛾𝛾𝛾𝛾𝛾Ie–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀 𝜀𝜀𝜀, J23 = 0,  
J24 = –(1 – 𝛾𝛾𝛾𝛾𝛾Fe–𝜇𝜇𝜇𝜇 , J25 = 0, J31 = 𝛽𝛽Ie–𝜇𝜇𝜇𝜇 , J32 = (1 – 𝛾𝛾𝛾𝛾𝛾Ie–𝜇𝜇𝜇𝜇 , J33 = –(𝛼𝛼 𝛼 𝛼𝛼𝛼, J34 = 𝛽𝛽Se–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾Fe–𝜇𝜇𝜇𝜇 , 
J35 = 0, J41 = 0, J42 = 0, J43 = 𝛼𝛼, J44 = –(𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿, J51 = 0, J52 = 0, J53 = 0, J54 = 𝛿𝛿𝛿 J55 = –(𝜙𝜙 𝜙 𝜙𝜙𝜙.
Theorem 3. (Local Stability of the Disease-Free Equilibrium)

The maize streak–free equilibrium

	 M0 = (S0,F0,E0, I0,R0)	

of the system (1)-(5) is locally asymptotically stable (LAS) if the basic reproduction number R0 < 1.
Proof. The Jacobian matrix of the system (1)-(5) evaluated at the equilibrium point M0 is given by

	

JM ∣M0
=

⎡
⎢
⎢
⎢
⎣

–(𝜃𝜃 𝜃 𝜃𝜃𝜃 𝜃𝜃 0 –𝛽𝛽S0e
–𝜇𝜇𝜇𝜇 𝜑𝜑

𝜃𝜃 –(𝜀𝜀𝜀𝜀𝜀𝜀   0 –(1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇 0
0 0 –(𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼  S0e

–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇 0
0 𝛼𝛼 0 –(𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿  0
0 0 0 𝛿𝛿 –(𝜑𝜑 𝜑𝜑𝜑𝜑

⎤
⎥
⎥
⎥
⎦

.

	

The characteristic equation associated with JM ∣M0is

	 det(JM ∣M0
–𝜆𝜆I) = 0,	

which can be written as the fifth-degree polynomial

	 𝜆𝜆5 + A4𝜆𝜆4 + A3𝜆𝜆3 + A2𝜆𝜆2 + A1𝜆𝜆 𝜆 A0 = 0,	

where the coefficients Ai(i = 0, … , 4) depend on model parameters as follows:

	

A4 = [(𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼1 + (𝜃𝜃 𝜃𝜃𝜃𝜃𝜃 𝜃
A3 = ([(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 – 𝛼𝛼𝛼𝛼𝛼S0e

–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇)] [(𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼
+[(𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀      1 + (𝜃𝜃 𝜃𝜃𝜃𝜃𝜃𝜃  – 𝜃𝜃𝜃𝜃𝜃

A2 = ([(𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀             – 𝛼𝛼𝛼𝛼𝛼S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇)]

+[(𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀              1 + (𝜃𝜃 𝜃𝜃𝜃𝜃𝜃
–𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃         – 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃  𝜃

A1 = (𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 – 𝛼𝛼𝛼𝛼𝛼S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇)](1 + (𝜃𝜃 𝜃𝜃𝜃𝜃𝜃

–𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃          𝜃
A0 = 𝛼𝛼𝛼𝛼𝛼S0e

–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇) – (𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼
+𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃S0e

–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇)(𝜑𝜑𝜑𝜑𝜑𝜑  . 	 (19)
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For biologically feasible parameter values, all coefficients Ai > 0. Applying the Routh–Hurwitz stability criterion for a 
fifth-degree polynomial, the necessary and sufficient conditions for all roots to have negative real parts are satisfied when 
R0 < 1. Hence, all eigenvalues of JM ∣M0 possess negative real parts, and the maize streak–free equilibrium M0 is locally 
asymptotically stable whenever R0 < 1.
Theorem 4. (Local Stability of the Maize Streak Endemic Equilibrium)

The maize streak endemic equilibrium

	 M∗ = (S∗,F∗,E∗, I∗,R∗)	

of system (1)-(5) is locally asymptotically stable (LAS) if the basic reproduction number R0 > 1.
Proof. The Jacobian matrix of system (1)-(5) evaluated at the endemic equilibrium M∗ is

	

JM ∣M∗=
⎡
⎢
⎢
⎢
⎣

–𝛽𝛽I∗e–𝜇𝜇𝜇𝜇 – (𝜃𝜃 𝜃 𝜃𝜃𝜃 ε 0 –𝛽𝛽S∗e–𝜇𝜇𝜇𝜇 𝜙𝜙
θ –(1 – 𝛾𝛾𝛾𝛾𝛾I∗e–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀  0 –(1 – 𝛾𝛾𝛾𝛾𝛾F∗e–𝜇𝜇𝜇𝜇 0

𝛽𝛽I∗e–𝜇𝜇𝜇𝜇 (1 – 𝛾𝛾𝛾𝛾𝛾I∗e–𝜇𝜇𝜇𝜇 –(α +𝜇𝜇𝜇𝜇𝜇  S∗e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F∗e–𝜇𝜇𝜇𝜇 0
0 α 0 –(𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿  0
0 0 0 𝛿𝛿 –(𝜙𝜙 𝜙𝜙𝜙𝜙

⎤
⎥
⎥
⎥
⎦

.

	

The characteristic equation associated with JM ∣M∗ is

	 det(JM ∣M∗ –𝜆𝜆I) = 0,	

which can be written as the fifth-degree polynomial

	 𝜆𝜆5 + A4𝜆𝜆4 + A3𝜆𝜆3 + A2𝜆𝜆2 + A1𝜆𝜆 𝜆 A0 = 0,	

where

	

A4 = (a3 + a8) + (a1 + a9) + a7,
A3 = (a3a8 + 𝛼𝛼a4) + (a3 + a8)(a1 + a9) + a1a9 + (a3 + a8) + a7(a1 + a9) – 𝜀𝜀𝜀𝜀𝜀
A2 = (a1 + a9)(a3a8 + 𝛼𝛼a4) + a1a9(a3 + a8) + a7(a3a8 + 𝛼𝛼a4) + a7(a3 + a8)(a1 + a9)

+a1a7a9 – 𝜀𝜀𝜀𝜀𝜀a7 + a9) – 𝜀𝜀𝜀𝜀a8 – 𝜃𝜃𝜃𝜃a2,
A1 = a1a9(a3a8 + 𝛼𝛼a4) + (a3a8 + 𝛼𝛼a4)(a1 + a9)a7 + a1a7a9(a3 + a8)

–𝜀𝜀𝜀𝜀a7a9 – 𝜀𝜀𝜀𝜀a8(a7 + a9) – 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃
A0 = a1a7a9(a3a8 + 𝛼𝛼a4) – 𝜀𝜀𝜀𝜀a7a8a9 – 𝛼𝛼𝛼𝛼a2a7a9 – a7𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 	

with parameter substitutions

	

a1 = 𝛽𝛽I∗e–𝜇𝜇𝜇𝜇 + (𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 a2 = 𝛽𝛽S∗e–𝜇𝜇𝜇𝜇 , a3 = (1 – 𝛾𝛾𝛾𝛾𝛾I∗e–𝜇𝜇𝜇𝜇 + (𝜀𝜀 𝜀𝜀𝜀𝜀𝜀
a4 = (1 – 𝛾𝛾𝛾𝛾𝛾F∗e–𝜇𝜇𝜇𝜇 ,a5 = 𝛽𝛽I∗e–𝜇𝜇𝜇𝜇 ,a6 = (1 – 𝛾𝛾𝛾𝛾𝛾I∗e–𝜇𝜇𝜇𝜇 ,

a7 = (𝛼𝛼 𝛼𝛼𝛼𝛼𝛼  a8 = (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿𝛿  a9 = (𝜑𝜑 𝜑𝜑𝜑𝜑 . 	

Since all biological parameters are positive, the coefficients 𝐴𝐴𝑖𝑖 (𝑖𝑖 𝑖 0, … , 4) are positive and satisfy

	 A4A3 > A2, (A4A3 – A2)A1 > (A4A1 – A0)A2.	

By the Routh–Hurwitz stability criterion for a fifth-degree polynomial, all eigenvalues of JM ∣M∗ have negative real parts 
when R0 > 1.
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Therefore, the maize streak endemic equilibrium M∗ is locally asymptotically stable whenever R0 > 1.
Theorem 5. (Global Stability of the Disease-Free Equilibrium)
The disease-free equilibrium

	 M0 = (S0,F0,E0, I0,R0)	

of system (1)-(5) is globally asymptotically stable (GAS) whenever R0 < 1.
Proof. Consider the continuously differentiable Lyapunov function U ∶ M → ℝ defined by

	
U = (S – S0 – S0ln S

S0
) + (F – F0 – F0ln F

F0
) + E + I + R.

	

Its time derivative along trajectories of system (1)-(5) is

	
dU
dt = S–S0

S
dS
dt + F–F0

F
dF
dt + dE

dt + dI
dt + dR

dt .	

Substituting the corresponding right-hand sides of system (1)-(5) gives

	

dU
dt = S–S0

S [Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜑𝜑R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S] + F–F0
F [𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F]

+ [𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E] + [𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I] + [𝛿𝛿I – (𝜑𝜑 𝜑𝜑𝜑𝜑 R]. 	

After algebraic simplification, we obtain

	

dU
dt

= –(Λ + 𝜀𝜀F + 𝜑𝜑R) (S – S0)2
S0

– (𝜃𝜃S) (F – F0)2
FF0

– (𝜎𝜎 𝜎 𝜎𝜎𝜎I[1 – 𝛽𝛽Se–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾Fe–𝜇𝜇𝜇𝜇

𝜎𝜎 𝜎 𝜎𝜎 ] – 𝜇𝜇E – (𝜑𝜑 𝜑𝜑𝜑𝜑 R.
	

All parameters are positive, and when R0 < 1 the bracketed term is positive, ensuring that

	
dU
dt

≤ 0.
	

Equality dUdt = 0 holds only at

	 S = S0, F = F0, E = I = R = 0.	

By LaSalle’s Invariance Principle, the largest invariant set where U̇ = 0 corresponds precisely to the equilibrium M0. 
Therefore, every trajectory of the system tends to M0 as t → ∞.

Hence, M0 is globally asymptotically stable whenever R0 < 1.
Theorem 6. (Global Stability of the Maize Streak Endemic Equilibrium)

The maize streak endemic equilibrium

	 M∗ = (S∗,F∗,E∗, I∗,R∗)	

of system (1)-(5) is globally asymptotically stable (GAS) whenever R0 > 1.
Proof. Define the continuously differentiable Lyapunov function V ∶ M → ℝ as

	

V = (S – S∗ – S∗ln S
S∗ ) + (F – F∗ – F∗ln F

F∗ )
+(E – E∗ – E∗ln E

E∗ ) + (I – I∗ – I∗ln I
I∗ ) + (R – R∗ – R∗ln R

R∗ ).	
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Its time derivative along the solutions of system (1)-(5) is given by

	
dV
dt = S–S∗

S
dS
dt + F–F∗

F
dF
dt + E–E∗

E
dE
dt + I–I∗

I
dI
dt + R–R∗

R
dR
dt .	

Substituting the model equations into (29) yields

	

dV
dt = S–S∗

S [Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜑𝜑R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S]
+F–F∗

F [𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F]
+E–E∗

E [𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E]
+ I–I∗

I [𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I] + R–R∗
R [𝛿𝛿I – (𝜑𝜑 𝜑𝜑𝜑𝜑 R].	

After simplification, we obtain

	
dV
dt

= –(Λ+𝜀𝜀F+𝜑𝜑R) (S – S∗)2
SS∗ – (𝜃𝜃S) (F – F∗)2

FF∗ – (𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇) (E – E∗)2
EE∗ – (𝛼𝛼E) (I – I∗)2

II∗
– (𝛿𝛿I) (R – R∗)2

RR∗ .
	

All model parameters and equilibrium components are positive. When R0 > 1, each term is non-positive, ensuring that
dV
dt ≤ 0. Equality dVdt = 0 holds only when

	 S = S∗,F = F∗,E = E∗, I = I∗,R = R∗.	

By LaSalle’s Invariance Principle, the only invariant set contained in {V̇ = 0} corresponds to the equilibrium M∗. 
Therefore, all trajectories of the system approach M∗ as t → ∞. Hence, the maize streak endemic equilibrium M∗ is glob-
ally asymptotically stable whenever R0 > 1.

5  Stochastic formulation Phase 1

Based on the model (1)-(5), consider a vector 𝒲𝒲 𝒲 𝒲S(t), F(t), E(t), I(t),R(t)]T  of stochastic delay differential equations 
(SDDEs). Calculating the variance ℰ∗ [ΔU (ΔU)T] and expectations ℰ∗ [ΔU] is our goal. Table 1 lists the likelihood of 
changes together with the corresponding transition time.

Expectation = ℰ∗ [ΔU] = ∑13

i=1
𝒫𝒫i (ΔU)i =

⎡
⎢
⎢
⎢
⎣

Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜙𝜙R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S
𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F

𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E
𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I

𝛿𝛿I – (𝜙𝜙 𝜙𝜙𝜙𝜙 R

⎤
⎥
⎥
⎥
⎦

Δt.

	
Variance = ∑13

𝑖𝑖𝑖1
𝒫𝒫𝑖𝑖 (Δ𝔘𝔘𝔘𝑖𝑖 [(Δ𝔘𝔘𝔘𝑖𝑖]

𝑇𝑇
	

	

=
⎡
⎢
⎢
⎢
⎣

P1 + P2 + P3 + P4 + P5 + P6 –P3 – P5 –P2 0 –P4
–P3 – P5 P3 + P5 + P7 + P8 –P7 0 0
–P2 –P7 P2 + P7 + P9 + P10 –P9 0
0 0 –P9 P9 + P11 + P12 –P11
–P4 0 0 –P11 P4 + P11 + P13

⎤
⎥
⎥
⎥
⎦

Δt,

	

	

Drift = 𝒢𝒢 𝒢𝒢𝒢𝒢 t) = ℰ∗[ΔU]
Δt =

⎡
⎢
⎢
⎢
⎣

Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜙𝜙R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S
𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F

𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E
𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I

𝛿𝛿I – (𝜙𝜙 𝜙𝜙𝜙𝜙 R

⎤
⎥
⎥
⎥
⎦

Δt,

	 (7)



PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 12 / 28

	
Diffusion = ℋ (𝔘𝔘𝔘 t) = √ℰ∗ [Δ𝔘𝔘 𝔘𝔘𝔘𝔘𝔘T]

Δt ,
	

	 =

√√√√√√√
⎷

⎡
⎢
⎢
⎢
⎣

P1 + P2 + P3 + P4 + P5 + P6 –P3 – P5 –P2 0 –P4
–P3 – P5 P3 + P5 + P7 + P8 –P7 0 0
–P2 –P7 P2 + P7 + P9 + P10 –P9 0
0 0 –P9 P9 + P11 + P12 –P11
–P4 0 0 –P11 P4 + P11 + P13

⎤
⎥
⎥
⎥
⎦

	 (8)

Therefore, d𝔘𝔘𝔘t) = G (𝔘𝔘𝔘 t) + H (𝔘𝔘𝔘 t) dB(t).

	

d

⎡
⎢
⎢
⎢
⎣

S
F
E
I
R

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜙𝜙R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S
𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F

𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E
𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I

𝛿𝛿I – (𝜙𝜙 𝜙𝜙𝜙𝜙 R

⎤
⎥
⎥
⎥
⎦

dt+

√√√√√√√
⎷

⎡
⎢
⎢
⎢
⎣

P1 + P2 + P3 + P4 + P5 + P6 –P3 – P5 –P2 0 –P4
–P3 – P5 P3 + P5 + P7 + P8 –P7 0 0
–P2 –P7 P2 + P7 + P9 + P10 –P9 0
0 0 –P9 P9 + P11 + P12 –P11
–P4 0 0 –P11 P4 + P11 + P13

⎤
⎥
⎥
⎥
⎦

dB(t).

	(9)

Table 1.  Illustrates an implicit modification to the model’s process.

Transition Probabilities

(Δ𝔘𝔘𝔘1 = [1 0 0 0 0]T P1 = (Λ)Δt

(Δ𝔘𝔘𝔘2 = [–1 0 1 0 0]T P2 = (𝛽𝛽SIe–𝜇𝜇𝜇𝜇) Δt

(Δ𝔘𝔘𝔘3 = [1 –1 0 0 0]T P3 = (𝜀𝜀F)Δt

(Δ𝔘𝔘𝔘4 = [1 0 0 0 –1]T P4 = (𝜙𝜙R)Δt

(Δ𝔘𝔘𝔘5 = [–1 1 0 0 0]T P5 = (𝜃𝜃S)Δt

(Δ𝔘𝔘𝔘6 = [–1 0 0 0 0]T P6 = (𝜇𝜇S)Δt

(Δ𝔘𝔘𝔘7 = [0 –1 1 0 0]T P7 = ((1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇) Δt

(Δ𝔘𝔘𝔘8 = [0 –1 0 0 0]T P8 = (𝜇𝜇F)Δt

(Δ𝔘𝔘𝔘9 = [0 0 –1 1 0]T P9 = (𝛼𝛼E)Δt

(Δ𝔘𝔘𝔘10 = [0 0 –1 0 0]T P10 = (𝜇𝜇E(t)) Δt

(Δ𝔘𝔘𝔘11 = [0 0 0 –1 1]T P11 = (𝛿𝛿I)Δt

(Δ𝔘𝔘𝔘12 = [0 0 0 –1 0]T P12 = ((𝜎𝜎 𝜎 𝜎𝜎𝜎I) Δt

(Δ𝔘𝔘𝔘13 = [0 0 0 0 –1]T P13 = (𝜇𝜇R)Δt

https://doi.org/10.1371/journal.pone.0337556.t001

https://doi.org/10.1371/journal.pone.0337556.t001
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The next section will cover the conventional numerical methods for approximating solutions to Stochastic models. We 
all concur that In = {0, 1, 2, 3, ..., n}. If N ∈ ℕ, then the temporal interval [0, T] is consistently divided with a uniform 
partition equal to 𝜏𝜏 𝜏 T

N , and the corresponding nodes are given as 0 = t0 < t1 < t2 < … < tN = T .
For each n ∈ IN. Further, this will be agreed by us 𝔘𝔘n = 𝔘𝔘tN, however, n ∈ IN and 𝔘𝔘𝔘t) = (S,F,E, I, R)t, 

ΔWn = W (tn + 1) –W (tn).
The academic literature on the subject is consulted to simulate its results of Eq. (9) using the Euler-Maruyama 

approach. The details are displayed in Table 1 and are as follows;

𝔘𝔘n+1 = 𝔘𝔘n + 𝒢𝒢 𝒢𝒢𝒢n, t) Δt + ℋ (𝔘𝔘n, t) dB(t).

	

⎡
⎢
⎢
⎢
⎣

Sn+1

Fn+1

En+1

In+1

Rn+1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Sn

Fn

En

In

Rn

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜙𝜙R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S
𝜃𝜃S – (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F

𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E
𝛼𝛼E – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I

𝛿𝛿I – (𝜙𝜙 𝜙𝜙𝜙𝜙 R

⎤
⎥
⎥
⎥
⎦

Δt

+

√√√√√√√
⎷

⎡
⎢
⎢
⎢
⎣

P1 + P2 + P3 + P4 + P5 + P6 –P3 – P5 –P2 0 –P4
–P3 – P5 P3 + P5 + P7 + P8 –P7 0 0
–P2 –P7 P2 + P7 + P9 + P10 –P9 0
0 0 –P9 P9 + P11 + P12 –P11
–P4 0 0 –P11 P4 + P11 + P13

⎤
⎥
⎥
⎥
⎦

ΔBn,

	 (10)

where the discretization parameter is indicated by Δt .

6  Stochastic formulation Phase 2

By incorporating Brownian motion, we get the dynamical system unreliable parameters (1)-(5). In the sequence described 
below:

	

dS(t)
dt

= Λ – 𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + 𝜀𝜀F(t) + 𝜙𝜙R(t) – (𝜃𝜃 𝜃 𝜃𝜃𝜃S(t) + 𝜎𝜎1S(t)dB(t),
	 (11)

	

dF(t)
dt

= 𝜃𝜃S(t) – (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀 𝜀𝜀𝜀F(t) + 𝜎𝜎2F(t)dB(t),
	 (12)

	

dE(t)
dt

= 𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼 𝛼𝛼𝛼E(t) + 𝜎𝜎3E(t)dB(t),
	 (13)

	

dI(t)
dt

= 𝛼𝛼E(t) – (𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿I(t) +𝜎𝜎 4IdB(t),
	 (14)

	

dR(t)
dt

= 𝛿𝛿I(t) – (𝜙𝜙 𝜙 𝜙𝜙𝜙R(t) + 𝜎𝜎5RdB(t),
	 (15)

where the uncertainty of each compartment and existence of B(t) Brownian motion are denoted by 𝜎𝜎i; i = 1, 2, 3, 4, 5.

6.1  Feasible properties

This model (11)–(15) concludes the examination of the positivity and boundedness features of the system.
Let us assume the following vector:

	 𝒱𝒱𝒱t) = (S(t),F(t),E(t), I(t),R(t)) ,	

and norm



PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 14 / 28

	 |𝒱𝒱𝒱t)| = √S2(t) + F2(t) + E2(t) + I2(t) + R2(t).	 (16)

Moreover, let 𝒟𝒟4,1
1 (ℝ5x(0, ∞) ∶ ℝ+) represent the set of all positive functions 𝒰𝒰1 (𝒱𝒱𝒱 t) that are subsequently defined on 

ℝ5x(0, ∞). Furthermore, in 𝒱𝒱𝒱 the function is once differentiable and twice differentiable. We have defined differentiable. 
We have defined the differentiable operator 𝒯𝒯1, which is associated with stochastic delay differential equations (SDDEs) in 
four dimensions.

	 d𝒱𝒱𝒱t) = 𝒟𝒟1 (𝒱𝒱𝒱 t) dt + 𝒦𝒦1 (𝒱𝒱𝒱 t) dB(t).	 (17)

As,

	
𝒯𝒯1 = 𝜕𝜕

𝜕𝜕𝜕𝜕 + ∑5

𝑖𝑖𝑖1
𝒟𝒟1𝑖𝑖 (𝒱𝒱𝒱 𝒱𝒱𝒱 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
+ 1

2 ∑5

𝑖𝑖𝑖𝑖𝑖𝑖1
𝒦𝒦1

𝑇𝑇 (𝒱𝒱𝒱 𝒱𝒱𝒱 𝒱𝒱1 (𝒱𝒱𝒱 𝒱𝒱𝒱 𝜕𝜕2

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑗𝑗
.
	

If 𝒯𝒯1 acts on function 𝒱𝒱∗ ∈ 𝒟𝒟4,1
1 (ℝ4x(0, ∞) ∶ ℝ+) then we denote

	
𝒯𝒯1𝒱𝒱∗ (𝒱𝒱𝒱 t) = 𝒱𝒱∗

t (𝒱𝒱𝒱 t) + 𝒱𝒱∗
𝒱𝒱 (𝒱𝒱𝒱 t) 𝒟𝒟1 (𝒱𝒱𝒱 t) + 1

2Trace (𝒦𝒦1
T (𝒱𝒱𝒱 t) 𝒱𝒱∗

𝒱𝒱𝒱𝒱 (𝒱𝒱𝒱 t) 𝒦𝒦1 (𝔘𝔘𝔘 t)) ,
	

where 𝒯𝒯 is Transportation.
Theorem 7: Demonstrates that there exists only one solution (S(t),F(t),E(t), I(t),R(t)) for the system (11)–(15) for all 

initial conditions (S(0),F(0),E(0), I(0),R(0)) ∈ ℝ5
+. With a probability of one, these solutions will also invariably stay in ℝ5

+.
Proof. Given that all model parameters are locally satisfiable by the Lipschitz bounds. Therefore, based on Ito’s 

formula, the above model has a positive solution locally on the interval [0, 𝓁𝓁e], and 𝓁𝓁e is the timing of the explosion. The 
global solution of the model can be shown when 𝓁𝓁e equals infinity.

Define 𝔤𝔤0 = 0 to be a big enough number so that S(0),F(0),E(0), I(0), and R(0) are all included in the interval { 1
𝔤𝔤0

, 𝔤𝔤0}. 
Let’s construct the subsequent sequence for each positive integer "𝔤𝔤𝔤.

	 𝓁𝓁n = inf{t ∈ [0, 𝓁𝓁e] ∶ S(t) ∈ ( 1
𝔤𝔤 , 𝔤𝔤𝔤 𝔤F(t) ∈ ( 1

𝔤𝔤 , 𝔤𝔤𝔤 𝔤 or E(t) ∈ ( 1
𝔤𝔤 , 𝔤𝔤𝔤 𝔤 or I(t) ∈ ( 1

𝔤𝔤 , 𝔤𝔤𝔤 𝔤 or R(t) ∈ ( 1
𝔤𝔤 , 𝔤𝔤𝔤𝔤 𝔤	 (18)

where we set inf𝜑𝜑 𝜑 𝜑𝜑𝜑𝜑 is the empty set). Since 𝓁𝓁n is non-decreasing as n → ∞,

	
𝓁𝓁∞ = lim

n→∞
𝓁𝓁n. 	 (19)

According to the inequality, 𝓁𝓁∞ is either equal to or smaller than 𝓁𝓁e. Our goal now is to show that, as we intended, 𝓁𝓁∞ 
equals infinity.

When 𝒯𝒯 𝒯 0 and 𝒷𝒷1 ∈ (0, 1) are found, the statement is satisfied. If this condition is not met.

	 𝔘𝔘 𝔘𝓁𝓁n ≤ 𝒯𝒯𝒯 𝒯 𝒷𝒷1 ∀ b ≥ 𝒷𝒷1.	 (20)

Define a 𝒞𝒞4– function f ∶ ℝ4
+ → ℝ+ by

	 𝒻𝒻(S,F,E, I,R) = (S – 1 – lnS) + (F – 1 – lnF) + (E – 1 – lnE) + (I – 1 – lnI) + (R – 1 – lnR) .	 (21)

By using Ito’s formula, we calculate

	
d𝒻𝒻(S,F,E, I,R) = (1 – 1

S
)dS+ (1 – 1

F
)dF+ (1 – 1

E
)dE+ (1 – 1

I
)dI+ (1 – 1

R
)dR+ 𝜎𝜎2

1 + 𝜎𝜎2
2 + 𝜎𝜎2

3 + 𝜎𝜎2
4 + 𝜎𝜎2

5
2 dt.
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d𝒻𝒻(S,F,E, I,R) = (1 – 1
S) ((Λ – 𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + 𝜀𝜀F(t) + 𝜙𝜙R(t) – (𝜃𝜃 𝜃 𝜃𝜃𝜃S(t)) dt

+𝜎𝜎1S(t)dB(t) + (1 – 1
F) ((𝜃𝜃S(t) – (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀𝜀𝜀𝜀 F(t))dt

+ 𝜎𝜎2F(t)dB(t) + (1 – 1
E) ((𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼𝛼𝛼𝛼 E(t))dt

+𝜎𝜎3E(t)dB(t) + (1 – 1
I ) ((𝛼𝛼E(t) – (𝛿𝛿 𝛿𝛿𝛿𝛿𝛿𝛿𝛿   I(t))dt + 𝜎𝜎4I(t)dB(t)) + (1 – 1

R) ((𝛿𝛿I(t) – (𝜙𝜙 𝜙𝜙𝜙𝜙 R(t))dt
+𝜎𝜎5R(t)dB(t) + 𝜎𝜎2

1+𝜎𝜎2
2+𝜎𝜎2

3+𝜎𝜎2
4+𝜎𝜎2

5
2 dt. 	

	

d𝒻𝒻(S,F,E, I,R) = (Λ + 𝜃𝜃 𝜃 5𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜎𝜎2
1+𝜎𝜎2

2+𝜎𝜎2
3+𝜎𝜎2

4+𝜎𝜎2
5

2 ) dt
+ 𝜎𝜎1S(t)dB(t) + 𝜎𝜎2F(t)dB(t) + 𝜎𝜎3E(t)dB(t) + 𝜎𝜎4I(t)dB(t) + 𝜎𝜎5R(t)dB(t). 	 (22)

To simplify, we assume 𝒫𝒫1 = (Λ + 𝜃𝜃 𝜃 5𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜇𝜇 𝜇 𝜎𝜎2
1+𝜎𝜎2

2+𝜎𝜎2
3+𝜎𝜎2

4+𝜎𝜎2
5

2 ), then Eq. (22) could be written as:

	 d𝒻𝒻(S,E, I,R) ≤ 𝒫𝒫1dt + [𝜎𝜎1S(t) + 𝜎𝜎2F(t) + 𝜎𝜎3E(t) + 𝜎𝜎4I(t) + 𝜎𝜎5R(t)] d (B(t)) ,	 (23)

where 𝒫𝒫1 is a positive constant, after integrating from 0 to 𝓁𝓁n ∧ l,  we get,

	 ∫𝓁𝓁n∧l
0 d𝒻𝒻(S,F,E, I,R) ≤ ∫𝓁𝓁n∧l

0 𝒫𝒫1ds + ∫𝓁𝓁n∧l
0 [𝜎𝜎1S(t) + 𝜎𝜎2F(t) + 𝜎𝜎3E(t) + 𝜎𝜎4I(t) + 𝜎𝜎5R(t)]d (B(t)),	 (24)

where 𝓁𝓁n ∧ l = min (𝓁𝓁n, 𝒯𝒯𝒯 𝒯 taking the expectations leads to

	 ℰ𝒱𝒱∗ (S (𝓁𝓁n ∧ l) ,F (𝓁𝓁n ∧ l) ,E (𝓁𝓁n ∧ l) , I (𝓁𝓁n ∧ l) ,R (𝓁𝓁n ∧ l)) ≤ 𝒱𝒱∗ (S(0),F(0),E(0), I(0),R(0)) + 𝒫𝒫1𝒯𝒯.	 (25)

Set 𝔖𝔖n = {𝓁𝓁n ≤ 𝒯𝒯𝒯 for n > n1 and from (19), we have 𝒳𝒳 𝒳𝒳𝒳n ≥ b) .
For each element 𝒶𝒶1 in the set 𝔖𝔖n, there exist certain indices i such that 𝒱𝒱i(𝓁𝓁n,𝒶𝒶1)  is equal to either n or 1n, where i 

takes on the values 1, 2, 3, 4, and 5.
Hence, 𝒱𝒱∗ ((𝑆𝑆 𝑆𝓁𝓁𝑛𝑛,𝒶𝒶1) , 𝐹𝐹 𝐹𝓁𝓁𝑛𝑛,𝒶𝒶1) , 𝐸𝐸 𝐸𝓁𝓁𝑛𝑛,𝒶𝒶1) , 𝐼𝐼 𝐼𝓁𝓁𝑛𝑛,𝒶𝒶1) , 𝑅𝑅 𝑅𝓁𝓁𝑛𝑛,𝒶𝒶1)))  is less than min{n – 1 – lnn, 1

n – 1 – ln 1
n} .

Next, we obtain

	

𝒱𝒱∗ (S(0),F(0),E(0), I(0),R(0)) + 𝒫𝒫1𝒯𝒯 𝒯 𝒯 𝒯I𝔖𝔖n(𝒶𝒶1)𝒱𝒱∗ (S (𝓁𝓁n) ,F (𝓁𝓁n) ,E (𝓁𝓁n) , I (𝓁𝓁n) ,R (𝓁𝓁n))) ≥
min{n – 1 – lnn, 1n – 1 – ln 1

n} . 	 (26)

The indicator function is denoted as I𝔖𝔖n(𝒶𝒶1) within the set 𝔖𝔖n. As n approaches infinity, we get to the contradiction that 
infinity is equal to the value of 𝒱𝒱∗ (S(0),F(0),E(0), I(0),R(0)) + 𝒫𝒫1𝒯𝒯, which is finite, as desired.

Theorem 8. If the spectral radius and the variance σ2
4 < 𝛽𝛽S0e

–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 , then the number of infected plants in the 
system (11)-(15) will exponentially approach zero.
Proof: Let’s examine the initial data (S(0),F(0),E(0), I(0),R(0)) ∈ ℝ5

+ and the system (11)-(15) has a solution 
(S(t),F(t),E(t), I(t),R(t)) if it satisfies the stochastic delayed differential equation, where 𝜎𝜎4 represents randomness and c 
represents drift.

	
dI(t) = (𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I(t))dt + c𝜎𝜎4I(t)dB(t),
	

Applying Ito’s lemma to the function g(I) = ln(I), we obtain

	
dln (I(t)) = g′ (I(t))dI + 1

2g
′′ (I)I2𝜎𝜎2

4dt,	

	
dln(I(t)) = 1

I(t)dI + 1
2 (– 1

I2
) I2𝜎𝜎2

4dt,
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dln(I(t)) = 1

I(t)dI –
1
2𝜎𝜎2

4dt,
	

	
dln(I(t)) = 1

I(t) [(𝛽𝛽S(t)I(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)I(t)e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 I(t))dt + c𝜎𝜎4I(t)dB(t)] – 1
2𝜎𝜎2

4dt,
	

	
dln(I(t)) = (𝛽𝛽S(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿dt + c𝜎𝜎4dB(t) – 1
2𝜎𝜎2

4dt,
	

	
ln(I(t)) =lnI(0) + (𝛽𝛽S(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿  – 1
2𝜎𝜎2

4)dt + ∫
t

0
c𝜎𝜎4dB(t).

	

Notice that N(t) = ∫t

0 c𝜎𝜎4dB(t) with N(0) = 0.

If σ2
4 > 𝛽𝛽S0e

–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 ,

	
ln(I(t)) > (𝛽𝛽S(t)e–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F(t)e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿 𝛿 𝛿𝛿 𝛿𝛿𝛿𝛿  – 1
2

𝛽𝛽S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼    𝛼𝛼𝛼 ) t + N(t) + lnI(0),
	

	

lnI(t)
t

> (1
2

𝛽𝛽S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿    𝛿 𝛿 N(t)
t

+ lnI(0)
t

,
	

	
lim
t→∞

lnI(t)
t

> (1
2

𝛽𝛽S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿    𝛿 𝛿 0, with lim
t→∞

N(t)
t

= 0,
	

If σ2
2 < 𝛽𝛽S0e

–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 , then

	
ln(I(t)) < (𝛽𝛽S0e

–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼𝛼 – (𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿     – 1
2𝜎𝜎2

4) t + N(t) + lnI(0),
	

	

lnI(t)
t

< (𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿 𝛿𝛽𝛽S0e
–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾F0e–𝜇𝜇𝜇𝜇

(𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼      – 1 – 1
2𝜎𝜎2

4) + N(t)
t

+ lnI(0)
t

,
	

lim
t→∞

sup lnI(t)
t <(𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿 𝛿RS

0 – 1), when RS
0 < 1, we get lim

t→∞
sup lnI(t)

t ≤0,

lim
t→∞

I(t) = 0, as desired,

	
RS
o = Rd

o –
𝜎𝜎2
4

2(𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿 < 1.
	

7  Numerical methodology

Let 𝒰𝒰n be the set defined for each e 𝜖𝜖 𝜖 as 𝒰𝒰𝑒𝑒 = {0, 1, 2, … , 𝑒𝑒}. In this section, we will denote and analyze a discretization 
of the system (11)-(15). To achieve the objective, we consider the temporal interval where T > 0. Create a consistent parti-
tion of the time interval [0, T] into n subintervals, with a length of k = T

𝑒𝑒  for each subinterval. For each a 𝜖𝜖I𝑒𝑒,  
where I𝑒𝑒 is the collection of indices by considering t𝒶𝒶 = ak. The numerical approximations for the functions S, F, E, I, 
and R are denoted as Sn,Fn,En, In, and Rn, respectively. The discrete initial data (S0,F0,E0, I0,R0) is defined, satisfying 
S0 = S(0),F0 = F(0),E0 = E(0), I0 = I(0), R0 = R(0) as required.

7.1  Stochastic nonstandard computational method

In our first equation (11) of the parametric perturbation model can be expressed with a non-standard computing approach; 
namely, equations (11)-(15) might be solved with a stochastic non-standard finite difference method.
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	 dS(t) = (Λ – 𝛽𝛽SIe–𝜇𝜇𝜇𝜇 + 𝜀𝜀F + 𝜙𝜙R – (𝜃𝜃 𝜃 𝜃𝜃𝜃S) dt + 𝜎𝜎1Sd (B(t)) .	 (27)

For the stochastic NSFD approach

	
Sn+1 – Sn

h
= [Λ – 𝛽𝛽Sn+1Ine–𝜇𝜇𝜇𝜇 + 𝜀𝜀Fn + 𝜙𝜙Rn – (𝜃𝜃 𝜃 𝜃𝜃𝜃Sn+1 + 𝜎𝜎1S

nΔBn] .	 (28)

The system (11)-(15) can be decomposed by the stochastic NSFD process, as indicated in (28), and the entire system 
can then be expressed as follows:

	
Sn+1 = Sn + h [Λ + 𝜀𝜀Fn + 𝜙𝜙Rn + 𝜎𝜎1S

nΔBn]
1 + h (𝛽𝛽Ine–𝜇𝜇𝜇𝜇 + (𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 ,

	 (29)

	
Fn+1 = Fn + h [𝜃𝜃Sn + 𝜎𝜎2F

nΔBn]
1 + h ((1 – 𝛾𝛾𝛾𝛾𝛾Ine–𝜇𝜇𝜇𝜇 + (𝜀𝜀 𝜀 𝜀𝜀𝜀𝜀 ,

	 (30)

	
En+1 = En + h [𝛽𝛽SnIne–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FnIne–𝜇𝜇𝜇𝜇 + 𝜎𝜎3E

nΔBn]
1 + h(𝛼𝛼 𝛼 𝛼𝛼𝛼 ,

	 (31)

	
In+1 = In + h [𝛼𝛼En + 𝜎𝜎4I

nΔBn]
1 + h(𝛿𝛿 𝛿𝛿𝛿𝛿   𝛿𝛿𝛿 ,

	 (32)

	
Rn+1 = Rn + h [𝛿𝛿In + 𝜎𝜎5R

nΔBn]
1 + h(𝜙𝜙 𝜙 𝜙𝜙𝜙 ,

	 (33)

where, n = 0, 1, 2, … and ΔBn = ΔBtn+1
– ΔBtn is a general normal distribution, i.e., ΔBn ∼ N(0, 1).

7.2  Convergence analysis

The following theorems are stated concerning the convergence analysis.
Theorem 8: There is only one positive solution (S,F, E, I, R) ∈ ℝ5

+, ∀ n > 0 for any initial value 

(S(0),F(0), E(0), I(0), R(0)) ∈ ℝ5
+ for equations (29) through (33).

Proof: The evidence is verifiable since the non-positive property of the biological problems’ constraint facilitates ease in 
demonstration.

Theorem 9: For the region 

ℳ = {(Sn,Fn,En, In,Rn) ∈ ℝ5
+ ∶ Sn + Fn + En + In + Rn = N ≤ Λ

𝜇𝜇 , Sn ≥ 0,Fn ≥ 0,En ≥ 0, In ≥ 0,Rn ≥ 0}. For every n ≥ 0 
is an area of equations that is feasible and positively invariant (29) to (33).
Proof: The system (29) to (33) can be deconstructed and considered ΔBn = 0, as follows:

	
Sn+1 – Sn

h
= Λ – 𝛽𝛽Sn+1Ine–𝜇𝜇𝜇𝜇 + 𝜀𝜀Fn + 𝜙𝜙Rn – (𝜃𝜃 𝜃 𝜃𝜃𝜃Sn+1,

	

	
Fn+1 – Fn

h
= 𝜃𝜃Sn – (1 – 𝛾𝛾𝛾𝛾𝛾Fn+1Ine–𝜇𝜇𝜇𝜇 – (𝜀𝜀 𝜀 𝜀𝜀𝜀Fn+1,

	

	
En+1 – En

h
= 𝛽𝛽SnIne–𝜇𝜇𝜇𝜇 + (1 – 𝛾𝛾𝛾𝛾𝛾FnIne–𝜇𝜇𝜇𝜇 – (𝛼𝛼 𝛼 𝛼𝛼𝛼En+1,

	

	
In+1 – In

h
= 𝛼𝛼En – (𝛿𝛿 𝛿 𝛿𝛿 𝛿 𝛿𝛿𝛿In+1,

	

	
Rn+1 – Rn

h
= 𝛿𝛿In – (𝜙𝜙 𝜙 𝜙𝜙𝜙Rn+1.
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Next, we get

	
(Sn+1 + Fn+1 + En+1 + In+1 + Rn+1) – (Sn + Fn + En + In + Rn)

h
≤ Λ – 𝜇𝜇𝜇Sn + Fn + En + In + Rn),

	

	 (Sn+1 + Fn+1 + En+1 + In+1 + Rn+1) – (Sn + Fn + En + In + Rn) ≤ hΛ – h𝜇𝜇𝜇Sn + Fn + En + In + Rn),	

	 (Sn+1 + Fn+1 + En+1 + In+1 + Rn+1) – (Sn + Fn + En + In + Rn) ≤ hΛ – h𝜇𝜇𝜇Sn + Fn + En + In + Rn),	

(Sn+1 + Fn+1 + En+1 + In+1 + Rn+1) ≤ Λ
𝜇𝜇, as desired.

Theorem 10: The suggested computational method is stable for any n > 0 if the eigenvalue is located in the unit circle.
Proof: Let the function Y, G, H, P, and Q, which are the right-hand sides of the equations (29–33). Consider ΔBn = 0.
Here,
Y = S+h[Λ+𝜀𝜀F+𝜙𝜙R]

1+h(𝛽𝛽Ie–𝜇𝜇𝜇𝜇+(𝜃𝜃𝜃𝜃𝜃𝜃𝜃, G = F+h[𝜃𝜃S]
1+h((1–𝛾𝛾𝛾𝛾𝛾Ie–𝜇𝜇𝜇𝜇+(𝜀𝜀𝜀𝜀𝜀𝜀𝜀, H = E+h[𝛽𝛽SIe–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾FIe–𝜇𝜇𝜇𝜇]

1+h(𝛼𝛼𝛼𝛼𝛼𝛼 ,

P = I+h[𝛼𝛼E]
1+h(𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿, Q = R+h[𝛿𝛿I]

1+h(𝜙𝜙𝜙𝜙𝜙𝜙.

It is well known that a system of the forms (29–33) converges to the optimal state of the model if and only if the spectral 
radius of the Jacobian, (J),

	

Ј =
⎡
⎢
⎢
⎢
⎣

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⎤
⎥
⎥
⎥
⎦

.

	 (34)

For the stability of the model. It follows the conditions:
When 𝜌𝜌𝜌J) < 1, the model’s equilibrium is stable. The stability of the model’s equilibria depends on whether 𝜌𝜌𝜌J) > 1. 

The model’s equilibria are naturally stable when 𝜌𝜌𝜌J) = 1.
The components of the method-related Jacobian can be expressed as follows: maize streak-free equilibrium, 

M0 = (S0,F0,E0, I0,R0).

	

Ј (M0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
1+h(𝜃𝜃𝜃𝜃𝜃𝜃 0 0 – (S0+h[Λ+𝜀𝜀F0+𝜙𝜙R])(h𝛽𝛽e–𝜇𝜇𝜇𝜇)

(1+h(𝜃𝜃𝜃𝜃𝜃𝜃𝜃2
h[𝜙𝜙𝜙

1+h(𝜃𝜃𝜃𝜃𝜃𝜃
h[𝜃𝜃S0]

1+h(𝜀𝜀𝜀𝜀𝜀𝜀
1–h[𝜀𝜀𝜀𝜀h[𝜃𝜃S0])
1+h(𝜀𝜀𝜀𝜀𝜀𝜀 0 – (F0+h[𝜃𝜃S0])((1–𝛾𝛾𝛾h𝛽𝛽e–𝜇𝜇𝜇𝜇)

(1+h(𝜀𝜀𝜀𝜀𝜀𝜀𝜀2 0
0 0 1

1+h(𝛼𝛼𝛼𝛼𝛼𝛼
h[𝛽𝛽S0e

–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾F0e
–𝜇𝜇𝜇𝜇]

1+h(𝛼𝛼𝛼𝛼𝛼𝛼 0
0 0 h[𝛼𝛼𝛼

1+h(𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
1

1+h(𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 0
0 0 0 h[𝛿𝛿𝛿

1+h(𝜙𝜙𝜙𝜙𝜙𝜙
1

1+h(𝜙𝜙𝜙𝜙𝜙𝜙

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

	

So, the eigenvalues of the Jacobian at M0 as follows:

	
𝜆𝜆1 = 1 – h[𝜀𝜀𝜀 𝜀h [𝜃𝜃S0])

1 + h(𝜀𝜀 𝜀 𝜀𝜀𝜀 < 1, 𝜆𝜆2 = 1
1 + h(𝜃𝜃 𝜃𝜃𝜃𝜃  < 1, 𝜆𝜆3 = 1

1 + h(𝜙𝜙 𝜙𝜙𝜙𝜙  .	

	
∣

1
1+ℎ(𝛼𝛼𝛼𝛼𝛼𝛼

ℎ[𝛽𝛽𝛽𝛽0𝑒𝑒–𝜇𝜇𝜇𝜇+(1–𝛾𝛾𝛾𝛾𝛾𝛾𝛾0𝑒𝑒–𝜇𝜇𝜇𝜇]
1+ℎ(𝛼𝛼𝛼𝛼𝛼𝛼

ℎ[𝛼𝛼𝛼
1+ℎ(𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

ℎ[𝛿𝛿𝛿
1+ℎ(𝜙𝜙𝜙𝜙𝜙𝜙

∣ = 0.
	

	
A1 = Trce of Ј (M0) = 1

1 + h(𝛼𝛼 𝛼 𝛼𝛼𝛼 + h[𝛿𝛿𝛿
1 + h(𝜙𝜙 𝜙𝜙𝜙𝜙  ,

	



PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 19 / 28

	
𝐴𝐴2 =Determinent of Ј (𝑀𝑀0)=(( 1

1+ℎ(𝛼𝛼𝛼𝛼𝛼𝛼) ( ℎ[𝛿𝛿𝛿
1+ℎ(𝜙𝜙 𝜙𝜙𝜙𝜙 )) + ((ℎ [𝛽𝛽𝛽𝛽0𝑒𝑒–𝜇𝜇𝜇𝜇 +(1–𝛾𝛾𝛾𝛾𝛾𝛾𝛾0𝑒𝑒–𝜇𝜇𝜇𝜇 ]

1+ℎ(𝛼𝛼𝛼𝛼𝛼𝛼 ) ( ℎ[𝛼𝛼𝛼
1+ℎ(𝛿𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 )) .

	

Lemma. For the quadratic equation 𝜆𝜆2 – A1𝜆𝜆 𝜆 A2 = 0, |𝜆𝜆i | < 1, i = 1, 2 if and only if the following conditions are 
satisfied:

	 i.	  1 + A1 + A2 > 0.

	 ii.	  1 – A1 + A2 > 0.

	 iii.	 A2 < 1.

Proof. The proof is straightforward.

8  Computational results

In this section, we compare conventional numerical methods with a non-conventional computational technique to evaluate 
their efficiency, precision, and computational cost in solving the proposed model. This consideration highlights the advantages 
and potential drawbacks of using nonstandard numerical methods in advanced epidemiological models. Parameter estimates 
used in this work were drawn in great part directly from the literature, making proper consistency with earlier validated MSV 
transmission models. A few parameters (e.g., recruitment rate Λ, natural mortality rate μ, and noise intensity σ) were assumed 
to be in biologically reasonable ranges since there is no special experimental data. All parameters are displayed in Table 2. All 
simulations were conducted using identical parameter sets (Table 2) and a fixed time horizon t = 500. The deterministic solution 
was used as the benchmark reference. The stochastic NSFD method demonstrates the best overall performance, achieving 
lower error and faster computation while maintaining numerical stability independent of step size (see Table 3).

8.1  Discussion

This section covered the discussion of graphical representations of the behavior of infected plants for different time 
step sizes (h) with time delay (𝜏𝜏 𝜏 1). Fig 2 shows the infected plants over time at the endemic equilibrium point with a 
step size of h = 0.01. The model uses the Euler-Maruyama method, the stochastic NSFD method, and a deterministic 
approach. The small step size allows for more precise modeling of infection dynamics, capturing subtle changes in infec-
tion rates. In Fig 2, the stochastic nature leads to small fluctuations around the deterministic trajectory, which stabilizes 
as time progresses. Maize Streak Disease has a regular pattern with minimal variability, suggesting that for instances 

Table 2.  Parameter values used in the model.

Parameter Description Value Source/ Assumption

Λ Recruitment rate of susceptible plants 0.5 Assumed within biological range

β Transmission rate 0.018 Literature [1]

θ Insecticide application rate 0.1 Literature [1]

μ Natural mortality rate of plants 0.5 Assumed

ε Rate of loss of insecticide protection 0.001 Literature [1]

δ Recovery rate of infected plants 0.03 Literature [1]

γ Efficacy of insecticide treatment 0.9998 Literature [1]

α Progression rate from exposed to infectious class 0.1 Literature [1]

ϕ Rate of loss of immunity 0.015 Literature [1]

σ Noise intensity in stochastic model 0.02 Assumed

https://doi.org/10.1371/journal.pone.0337556.t002

https://doi.org/10.1371/journal.pone.0337556.t002
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with minimal environmental or vector behavior variation, the infection is quite under control. By boosting the step size to 
h = 1, Fig 3 creates larger stochastic fluctuations. With bigger steps, the infection graph appears to be more unpredict-
able, particularly during the initial stage of the epidemic. The stochastic Euler-Maruyama and stochastic NSFD methods 
are the ones that have more variability than the deterministic model. This conveys that with less time resolution (larger 
delays or less frequent observations), the disease spread is less predictable with more chance of larger outbreaks. The 
step size increment shows the stochastic effects amplification, that is, environmental noise (for instance, abrupt tem-
perature changes or vector activity) can cause fluctuations in the infection rate that are more than the normal by a large 
margin. Likewise, Fig 4 presents the same with a step size of h = 0.01 but it emphasizes the Euler method of stochastic 
modeling. The rate of infection is rather stable at endemic equilibrium and very little variability occurs. The Maize Streak 
Disease secures a uniform pattern, and the stochastic methods’ variability is undetectable, which means that the disease 
is kept under control in very strict and well-monitored conditions. In Fig 5 the step size is set to h = 1 and the variability 
of infection is significantly increased. The infected plant populations are showing larger fluctuations, with the stochas-
tic methods (stochastic Euler and stochastic NSFD) straying quite a bit from the deterministic trajectory. This infers that 

Table 3.  Quantitative comparison of stochastic numerical methods.

Numerical Method CPU 
Time (s)

Mean Squared 
Error (MSE)

Maximum Stable 
Step Size (hmax)

Remarks

Stochastic Euler–Maruyama 4.82 2.41 × 10 − 3 0.5 Stable only for small h; exhibits oscillations for large delays

Stochastic Runge–Kutta 5.37 1.86 × 10 − 3 0.6 Moderate accuracy; partial loss of positivity for h > 0.6

Stochastic NSFD (proposed) 3.15 0.97 × 10 − 3 Step-size 
independent

Preserves positivity and stability for all tested h values

https://doi.org/10.1371/journal.pone.0337556.t003

Fig 2.  Infected plants at EE when ℎ = 0.01.

https://doi.org/10.1371/journal.pone.0337556.g002

https://doi.org/10.1371/journal.pone.0337556.t003
https://doi.org/10.1371/journal.pone.0337556.g002
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Fig 3.  Infected plants at EE when ℎ = 1.

https://doi.org/10.1371/journal.pone.0337556.g003

Fig 4.  Infected plants at EE when ℎ = 0.01.

https://doi.org/10.1371/journal.pone.0337556.g004

https://doi.org/10.1371/journal.pone.0337556.g003
https://doi.org/10.1371/journal.pone.0337556.g004
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in situations where there are delayed responses or more coarse time scales, the disease can fluctuate more severely, 
thereby making the control more challenging. The increase in step size illustrates how delay or inaccurate monitoring can 
result in ever more random outcomes. The stochastic Runge-Kutta method is being used in Fig 6 with a small step size 

Fig 5.  Infected plants at EE when ℎ = 1.

https://doi.org/10.1371/journal.pone.0337556.g005

Fig 6.  Infected plants at EE when ℎ = 0.01.

https://doi.org/10.1371/journal.pone.0337556.g006

https://doi.org/10.1371/journal.pone.0337556.g005
https://doi.org/10.1371/journal.pone.0337556.g006
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(h = 0.01). The infection curve is unchanged with slight variations, just like in the other figures with smaller step sizes. The 
dissemination of Maize Streak Disease is under control, and there is no considerable stochastic impact. The stochastic 
Runge-Kutta method, like the Euler-Maruyama method, shows very low variability at this step size, which gives further 
evidence that the disease can be controlled fairly well if closely monitored. In Fig 7, where the step size is larger, h = 1, 
more variability is seen in the infection rate. The infection curve becomes less smooth, showing that the progress of the 
disease is more difficult to predict for larger steps. Delays in observation or in intervention might lead to greater outbreaks. 
Fig 8 illustrates how different delays affect the number of susceptible plants over time. Four different delays are shown: 

𝜏𝜏 𝜏 0.1, 0.3, 0.5, and 0.7. As the delay increases, the number of susceptible plants drops more slowly, indicating that 
larger delays in implementing control measures allow more plants to remain vulnerable to infection. This explains that 
effective interventions happen to be those at appropriate times for the prevention of the disease by Maize Streak Disease. 
In Fig 9 infected plant population in a function of time with different time delays. Different values of time delay between 
𝜏𝜏 𝜏 0.1 and 𝜏𝜏 𝜏 0.7. As the delay increases, the rate of acceleration of infected plants increases and keeps increasing 
with time. This would be interpreted as the longer duration held in the interventions of the disease reveals more severe 
outbreaks of Maize Streak Disease. Shorter delays translated to quicker recovery of the disease (𝜏𝜏 𝜏 0.1), however, the 
longer delays showed constant outbreaks and higher infection rates. The illustration above stresses how timely interven-
tions are essential to control the transmission of the disease. Fig 10 shows how the delay (𝜏𝜏𝜏 affects the basic reproduc-
tion number (R0). We can observe that as (𝜏𝜏𝜏 increases, so does R0. An increase in R0 certainly tells one that the disease 
becomes more transmissible as the delay increases. After introducing the delays into the control measures of Maize 
Streak Disease, therefore, it can infect more plants and make the disease generally more transmissible. Without delays 
(𝜏𝜏 𝜏 0), R0 is relatively low, which means that this disease is more easily controlled. Increasing (𝜏𝜏𝜏 causes R0 to rise thus, 
the disease starts to be uncontrollable.

Fig 7.  Infected plants at EE when ℎ = 2.

https://doi.org/10.1371/journal.pone.0337556.g007

https://doi.org/10.1371/journal.pone.0337556.g007
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Fig 8.  Effect of delay on susceptible plants.

https://doi.org/10.1371/journal.pone.0337556.g008

Fig 9.  Effect of delay on infected plants.

https://doi.org/10.1371/journal.pone.0337556.g009

https://doi.org/10.1371/journal.pone.0337556.g008
https://doi.org/10.1371/journal.pone.0337556.g009
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9  Conclusion

This paper formulates a computational and mathematical study of the MSV disease transmission model of time-delay 
dynamics. Maize plants were divided into five compartments: susceptible, insecticide-treated, recovered, infected, and 
exposed. Dynamical analysis considered key epidemiological features such as the basic reproduction number, equilibria, 
boundedness, and positivity conditions. Both the local and global stability of the endemic and maize streak–free equilib-
rium points were investigated, establishing the asymptotic behavior of the system under various parameter conditions. 
The stochastic generalizations of the model, such as positivity, extinction, and persistence of the disease under stochastic 
perturbation, were also studied. Among the computational methods attempted, the stochastic Nonstandard Finite Differ-
ence (NSFD) scheme offered improved accuracy, stability, and biological consistency performance. In particular, stability 
is crucial in stochastic epidemic modeling to prevent spurious oscillations and numerical instability. Compared to other 
conventional numerical methods such as the stochastic Runge–Kutta, stochastic Euler, and Euler–Maruyama schemes, 
the stochastic NSFD method-maintained robustness and consistency even at large simulation times. Overall, the results 
confirm that the stochastic NSFD method provides a reliable, efficient, and biologically sound model for describing com-
plex plant viral epidemics like MSV, with implications for future research and disease management practices.

Author contributions

Conceptualization: Ali Raza, Nauman Ahmed.

Data curation: Ali Raza, Marek Lampart, Nauman Ahmed.

Formal analysis: Naveed Shahid, Ali Raza.

Funding acquisition: Ali Raza, Hala H. Taha.

Investigation: Sana Iqbal, Naveed Shahid, Ali Raza.

Methodology: Ali Raza, Marek Lampart, Dumitru Baleanu.

Project administration: Ali Raza, Marek Lampart, Nauman Ahmed.

Fig 10.  Effect of 𝜏𝜏  on R0 of the delayed model.

https://doi.org/10.1371/journal.pone.0337556.g010

https://doi.org/10.1371/journal.pone.0337556.g010


PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 26 / 28

Resources: Ali Raza, Nauman Ahmed.

Software: Ali Raza, Nauman Ahmed.

Supervision: Ali Raza, Marek Lampart, Nauman Ahmed, Dumitru Baleanu.

Validation: Ali Raza, Dumitru Baleanu.

Visualization: Ali Raza, Hala H. Taha.

Writing – original draft: Sana Iqbal, Ali Raza.

Writing – review & editing: Ali Raza, Nauman Ahmed.

References
	 1.	 Mrope F, Kigodi OJ. Mathematical modeling of insecticide impact on transmission dynamics of maize streak disease. 2023. https://ssrn.com/

abstract=4882941

	 2.	 Seidu B. Mathematical analysis of the role of host-to-host transmission of Maize Streak Virus Disease with Atangana-Baleanu derivative. Arab 
Journal of Basic and Applied Sciences. 2024;31(1):213–24. https://doi.org/10.1080/25765299.2024.2327168

	 3.	 Liu Q. Dynamical analysis of a stochastic maize streak virus epidemic model with logarithmic Ornstein-Uhlenbeck process. J Math Biol. 
2024;89(3):30. https://doi.org/10.1007/s00285-024-02127-3 PMID: 39017723

	 4.	 Mrope F, Kigodi O. Modeling the Transmission Dynamics of Maize Foliar Disease in Maize Plants. J Math Anal Model. 2024;5(2):114–35. https://
doi.org/10.48185/jmam.v5i2.1198

	 5.	 O’Halloran T, Obaido G, Otegbade B, Mienye ID. A deep learning approach for Maize Lethal Necrosis and Maize Streak Virus disease detection. 
Machine Learning with Applications. 2024;16:100556. https://doi.org/10.1016/j.mlwa.2024.100556

	 6.	 Ackora-Prah J, Seidu B, Okyere E, Asamoah JKK. Fractal-Fractional Caputo Maize Streak Virus Disease Model. Fractal Fract. 2023;7(2):189. 
https://doi.org/10.3390/fractalfract7020189

	 7.	 Ramanathan M, Kalirajan V. Implementation of Adomian Decomposition Method for Maize Streak Virus Disease Model to Reduce the Contamina-
tion Rate in Maize Plant. MJS. 2023;22(2). https://doi.org/10.12723/mjs.65.5

	 8.	 Facchi SP, Souza PR, de Almeida DA, Madruga LYC, Rosseto P, de Carvalho Nunes WM, et al. Surface coatings based on chitosan and tannins 
applied in the in vivo prevention of corn streak disease. Chemical Engineering Journal. 2023;477:147003. https://doi.org/10.1016/j.cej.2023.147003

	 9.	 Ali HM, Ameen IG. Stability and optimal control analysis for studying the transmission dynamics of a fractional-order MSV epidemic model. Journal 
of Computational and Applied Mathematics. 2023;434:115352. https://doi.org/10.1016/j.cam.2023.115352

	10.	 Dash A, Sethy PK. Maize diseases diagnosis based on computer intelligence: A systematic review. Modern Computational Techniques for Engi-
neering Applications. 2023;133–70.

	11.	 Kalyango MF, Ntanda KM. Interpretable deep learning for diagnosis of maize streak disease. In: Proceedings of the 2023 First International Confer-
ence on the Advancements of Artificial Intelligence in African Context (AAIAC), 2023. 1–6.

	12.	 Suriani S, Patandjengi B, Muis A, Junaid M, Mirsam H, Azrai M. Morpho-physiological and molecular characteristics of bacteria causing stalk rot 
disease on corn in Gorontalo, Indonesia. Biodiversitas. 2023;24(3). https://doi.org/10.13057/biodiv/d240349

	13.	 Malar MC, Gayathri M, Manickam A. A novel study on the maize streak virus epidemic model using Caputo–Fabrizio fractional derivative. Contem-
porary Mathematics. 2023;435–52.

	14.	 Mrope F, Kigodi OJ. Mathematical modeling of insecticide impact on transmission dynamics of maize streak disease. In: 2023. https://ssrn.com/
abstract=4882941

	15.	 Ayembillah A-FO, Seidu B, Bornaa CS. Mathematical modeling of the dynamics of maize streak virus disease (MSVD). MMC. 2022;2(4):153–64. 
https://doi.org/10.3934/mmc.2022016

	16.	 Kumar P, Erturk VS, Vellappandi M, Trinh H, Govindaraj V. A study on the maize streak virus epidemic model by using optimized 
linearization-based predictor-corrector method in Caputo sense. Chaos, Solitons & Fractals. 2022;158:112067. https://doi.org/10.1016/j.
chaos.2022.112067

	17.	 Collins OC, Duffy KJ. A stochastic epidemic model for the dynamics and control of maize streak disease. Acta Agriculturae Scandinavica, Section 
B—Soil & Plant Science. 2022;72(1):635–47. https://doi.org/10.1080/09064710.2021.2012587

	18.	 Robaina RR, Longhi TV, Zeffa DM, Gonçalves LSA, Leite RP. Development of a protocol and a diagrammatic scale for quantification of bacterial 
leaf streak disease on young plants of maize. Plant Disease. 2020;104(11):2921–7.

	19.	 Tembo M, Adediji AO, Bouvaine S, Chikoti PC, Seal SE, Silva G. A quick and sensitive diagnostic tool for detection of Maize streak virus. Sci Rep. 
2020;10(1):19633. https://doi.org/10.1038/s41598-020-76612-2 PMID: 33184360

https://ssrn.com/abstract=4882941
https://ssrn.com/abstract=4882941
https://doi.org/10.1080/25765299.2024.2327168
https://doi.org/10.1007/s00285-024-02127-3
http://www.ncbi.nlm.nih.gov/pubmed/39017723
https://doi.org/10.48185/jmam.v5i2.1198
https://doi.org/10.48185/jmam.v5i2.1198
https://doi.org/10.1016/j.mlwa.2024.100556
https://doi.org/10.3390/fractalfract7020189
https://doi.org/10.12723/mjs.65.5
https://doi.org/10.1016/j.cej.2023.147003
https://doi.org/10.1016/j.cam.2023.115352
https://doi.org/10.13057/biodiv/d240349
https://ssrn.com/abstract=4882941
https://ssrn.com/abstract=4882941
https://doi.org/10.3934/mmc.2022016
https://doi.org/10.1016/j.chaos.2022.112067
https://doi.org/10.1016/j.chaos.2022.112067
https://doi.org/10.1080/09064710.2021.2012587
https://doi.org/10.1038/s41598-020-76612-2
http://www.ncbi.nlm.nih.gov/pubmed/33184360


PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 27 / 28

	20.	 Ketsela D, Oyeniran KA, Feyissa B, Fontenele RS, Kraberger S, Varsani A. Molecular identification and phylogenetic characterization of A-strain 
isolates of maize streak virus from western Ethiopia. Arch Virol. 2022;167(12):2753–9. https://doi.org/10.1007/s00705-022-05614-4 PMID: 
36169719

	21.	 Wang R-H, Jin Z, Liu Q-X, van de Koppel J, Alonso D. A simple stochastic model with environmental transmission explains multi-year periodicity in 
outbreaks of avian flu. PLoS One. 2012;7(2):e28873. https://doi.org/10.1371/journal.pone.0028873 PMID: 22363397

	22.	 Fadhal E, Raza A, Rocha EM, Alfwzan WF, Rafiq M, Ahmed N, et al. Dynamical analysis of scabies delayed epidemic model with second-order 
global stability. PLoS One. 2025;20(4):e0319095. https://doi.org/10.1371/journal.pone.0319095 PMID: 40258081

	23.	 Raza A, Al-Shamiri MMA, Alfwzan WF, Rafiq M, Fadhal E, Ahmed N. Stochastic Analysis of Pine Wilt Epidemic Model With Dynamically Consistent 
Approximation. Complexity. 2025;2025(1). https://doi.org/10.1155/cplx/4099469

	24.	 Mohammad KM, Akhi AA, Kamrujjaman M. Bifurcation analysis of an influenza A (H1N1) model with treatment and vaccination. PLoS One. 
2025;20(1):e0315280. https://doi.org/10.1371/journal.pone.0315280 PMID: 39761238

	25.	 Mohammad KM, Kamrujjaman Md. Stochastic differential equations to model influenza transmission with continuous and discrete-time Markov 
chains. Alexandria Engineering Journal. 2025;110:329–45. https://doi.org/10.1016/j.aej.2024.10.012

	26.	 Kamrujjaman M, Mohammad KM. Modeling influenza transmission and control: epidemic theory insights across Mexico, Italy, and South Africa. 
Theory in Biosciences. 2025;1–30.

	27.	 Mohammad KM, Tisha MS, Kamrujjaman Md. Wiener and Lévy processes to prevent disease outbreaks: Predictable vs stochastic analysis. Partial 
Differential Equations in Applied Mathematics. 2024;10:100712. https://doi.org/10.1016/j.padiff.2024.100712

	28.	 Sawangtong P, Najafi A. Collocation method with Morgan-Voyce polynomials to solve the time fractional long memory Black-Scholes model with 
jump process. J Appl Math Comput. 2025;71(6):8123–61. https://doi.org/10.1007/s12190-025-02604-y

	29.	 Sawangtong P, Taghipour M, Najafi A. Enhanced numerical solution for time fractional Kuramoto–Sivashinsky dynamics via shifted companion 
Morgan–Voyce polynomials. Comp Appl Math. 2025;44(5). https://doi.org/10.1007/s40314-025-03160-8

	30.	 Rivu NNK, Kamrujjaman M, Iqbal A. HIV/AIDS suppression in North America: Intervention plans and cost-effectiveness of UNAIDS 90-90-90 and 
95-95-95 targets. arXiv preprint. 2025;arXiv:2503.07613.

	31.	 Rivu NNK, Kamrujjaman M, Ahmed S. Comparative analysis of stochastic and predictable models in the HIV epidemic across genders. 2025. 
https://arxiv.org/abs/2501.17259

	32.	 Khan NN, Begum SA, Afeef R, Kamrujjaman M. Vaccine efficacy of COVID-19 in Bangladesh: Does vaccination prevent the pandemic?. GANIT: J 
Bangladesh Math Soc. 2023;43(1):045–62. https://doi.org/10.3329/ganit.v43i1.67858

https://doi.org/10.1007/s00705-022-05614-4
http://www.ncbi.nlm.nih.gov/pubmed/36169719
https://doi.org/10.1371/journal.pone.0028873
http://www.ncbi.nlm.nih.gov/pubmed/22363397
https://doi.org/10.1371/journal.pone.0319095
http://www.ncbi.nlm.nih.gov/pubmed/40258081
https://doi.org/10.1155/cplx/4099469
https://doi.org/10.1371/journal.pone.0315280
http://www.ncbi.nlm.nih.gov/pubmed/39761238
https://doi.org/10.1016/j.aej.2024.10.012
https://doi.org/10.1016/j.padiff.2024.100712
https://doi.org/10.1007/s12190-025-02604-y
https://doi.org/10.1007/s40314-025-03160-8
https://arxiv.org/abs/2501.17259
https://doi.org/10.3329/ganit.v43i1.67858


PLOS One | https://doi.org/10.1371/journal.pone.0337556  December 12, 2025 28 / 28


