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Abstract 

This paper investigates a multi-channel access strategy for cognitive radio networks 

(CRNs) under bursty traffic conditions, with a focus on congestion control. The pro-

posed approach integrates cross-layer factors including channel fading, user activity, 

and finite cache capacity and models heterogeneous burst service arrivals using a 

two-state Markov-modulated Bernoulli process (MMBP-2). A dual-threshold mech-

anism is implemented in the node buffer to effectively manage congestion. System 

states are mapped onto a two-dimensional discrete Markov chain, where state transi-

tions are characterized by a high-dimensional transition matrix. Through steady-state 

analysis, key performance metrics such as average queue length, throughput, delay, 

and packet loss rate are derived. Simulation results confirm that the model achieves 

stable operational performance. Building upon this framework, this paper proposes a 

multi-channel access strategy that maximizes average throughput while minimizing 

packet loss rate by employing a genetic algorithm. The results show that, in compar-

ison with traditional strategies, the burst flow control model developed in this study 

effectively meets data access requirements in highly bursty environments. Further-

more, simulation experiments explore how system performance varies with changes 

in the number of channels and cognitive users, and the key operational threshold is 

determined. These findings offer valuable guidance for channel access design and 

capacity planning in burst communication scenarios.

1.  Introduction

Smart city initiatives have increased demand for wireless communication services 
[1]. Conventional spectrum allocation system struggles to satisfy user demands, 
resulting in the growing scarcity of spectrum resources [2]. As a pivotal technology for 
enhancing the accessibility and reliability of 5G communication services [3–5], cog-
nitive radio (CR) significantly improves spectrum utilization by enabling opportunistic 
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spectrum access while ensuring no interference with primary users (PUs) [6]. As 
a transformative solution for wireless communications, CR technology has been 
extended to B5G/6G networks and Reconfigurable Intelligence Surface (RIS)-based 
communications. Key innovations, including channel hopping [7,8], user localization, 
and spectrum access, play a critical role in driving the development of Cognitive 
Radio Networks (CRNs), with channel access control garnering significant research 
interest.

However, the spectrum access strategy, which relies solely on spectrum sensing, 
has certain limitations. Providing a stable access environment for CRs represents 
a highly challenging task [9]. Literature [10] emphasized that the sensing results of 
CRs are influenced by factors such as path loss and channel fading in wireless links, 
while system configurations like link mechanisms and cache capabilities signifi-
cantly impact the quality of service (QoS) for CRs [11]. In other words, the optimal 
access strategy can be obtained by evaluating the impact of environmental condi-
tions and system configurations on spectrum resources, thereby facilitating resource 
integration.

Cross-layer resource integration enables flexible configuration of cognitive radio 
networks (CRNs), which is essential for optimizing the QoS in CRNs [12]. To achieve 
this, Literature [13] proposed a multi-channel access strategy that integrates fac-
tors such as path loss, channel fading, Automatic Repeat Request (ARQ), and finite 
buffer. Inspired by [13], Literature [14] further developed a QoS evaluation model by 
considering the access mode of multi-type burst services and multiple factors such as 
channel fading, user activities and buffer capacity.

Quantitative assessment of user service quality constitutes an indispensable 
approach for evaluating and ensuring network service performance [15]. However, 
user-centric wireless communication services, such as B5G/6G, typically encompass 
a variety of data services. Service data packets are transmitted in the form of service 
flows, which inherently exhibit burst characteristics. These bursts often lack distinct 
patterns and are challenging to capture accurately, while limited buffering capacity 
can cause network congestion or deadlock. Therefore, realistic traffic models should 
account for both burstiness and potential congestion issues.

Traditional channel access modeling frequently employs the Poisson distribution 
to characterize the arrival process of aggregated flows in an attempt to capture their 
batch arrival features [16]. However, the smooth Poisson process fails to adequately 
capture burstiness and correlation, resulting in substantial prediction inaccuracies. 
Meanwhile, traffic simulation using the Poisson model tends to result in overly 
idealized models, thereby placing the network in an excessively conservative state. 
Traffic modeling and analysis using queuing theory demand deeper investigation into 
service arrival distributions. Literature [17] suggested that establishing correlations 
among the burst sources can effectively simulate the arrival process of burst traffic 
flows, thereby advancing research on burst traffic modeling. Literature [18] proposed 
using MMBP to construct a martingale model for characterizing traffic arrival behav-
ior, thus demonstrating the effectiveness of MMBP in addressing the challenge of 
heterogeneous service deployment.
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The bursty nature of aggregated traffic frequently leads to network congestion issues. The implementation of threshold 
control in the buffer not only mitigates congestion but also implicitly reflects the arrival behavior of traffic, thereby contrib-
uting to predictive control. Literature [19] developed a discrete time Markov chain (DTMC) model to simulate the arrival 
behavior using a two-state MMBP. By setting threshold within the buffer and integrating closed-loop feedback control, the 
study demonstrated the effectiveness of threshold control in managing system performance. Literature [20] employed the 
MMBP model to analyze the burstiness and correlation in aggregated traffic, highlighting the interaction between conges-
tion and bursty characteristics of traffic. Literature [21] demonstrates that, compared with traditional single-threshold set-
ting, applying dual thresholds in the buffer can predict network congestion in advance and implement differentiated control 
based on service levels, thereby significantly enhancing the flexibility and stability of the system.

The presence of burst traffic undoubtedly brings unpredictability to the network. Although it has been demonstrated 
that addressing the channel access problem using the Markov model in an unknown environment is effective [22], as the 
intensity of data traffic bursts increases, the overall performance of the secondary network may exhibit a downward trend. 
Therefore, addressing the access issue of secondary users without ensuring system stability is considered impractical. 
This study addresses the dual challenges of burst traffic simulation and network congestion control, and by integrating 
multiple cross-layer parameters, ensures that the constructed model is more consistent with actual network character-
istics. Furthermore, on the basis of evaluating the stability of the system, the optimal multi-channel access strategy is 
proposed. The main contributions are outlined as follows:

•	 Integrated Multi-Layer Modeling for Burst Traffic Access and Congestion Control. We investigate the access behavior of 
CRs under bursty traffic conditions, explicitly addressing network congestion through the integration of key cross-layer 
factors—channel fading, user activity, and finite buffer capacity. The proposed model is aligned with contemporary com-
munication paradigms and provides a realistic characterization of CRNs operations in burst environments.

•	 Mathematical Reformulation and Performance Analysis via Markov Modeling. The bursty traffic control problem in CRNs 
is mathematically reformulated using a two-state Markov- Modulated Bernoulli Process (MMBP-2) to model the arrival 
process of heterogeneous burst services. System states are mapped onto a two-dimensional discrete Markov chain, 
and under dual-threshold congestion control, state transitions are represented through high-dimensional matrices. This 
analytical framework enables the derivation of key steady-state performance metrics for secondary systems such as 
average queue length, throughput, delay, and packet loss rate, thereby providing a practical foundation for designing 
multi-channel access strategies tailored to burst environments.

•	 Genetic Algorithm-Optimized Multi-Channel Access Strategy. We propose a novel multi- channel access strategy based 
on the analyzed access process. Simulations confirm stable performance of the proposed model, which incorporates 
key influencing factors. Leveraging this stability, we formulate a multi-objective optimization problem aimed at maximiz-
ing throughput and minimizing packet loss, and use a genetic algorithm (GA) to find optimal access solutions across 
diverse burst environments. This approach outperforms conventional strategies, especially under high burst intensity, 
with flexible objective function tuning to meet practical communication requirements.

2.  System model

In Fig 1, CRNs comprise M primary users (PUs) and N cognitive users (CRs), forming a single-cluster propagation link 
with time slots. Each cluster includes a control node for centralized data scheduling. PUs can only communicate via their 
designated licensed channel, assuming all channels have equal bandwidth. CRs periodically perform spectrum sensing 
within a time slot and can establish a connection only when the PU is not detected as using the channel. The control node 
can systematically manage multiple types of CRs traffic, assuming that CRs exhibit heterogeneity and are independently 
and identically distributed (i.i.d).
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In time-slotted CRNs, each time slot (TS) is divided into two phases: the perception phase and the transmission 
phase. At the beginning of each TS, spectrum sensing is performed periodically, and the resulting perceptual information 
is broadcast to all cluster members via a dedicated channel. On this basis, the control node evaluates the probability of 
accessing each available channel and determines whether to utilize it for communication. Subsequently, data packets 
are transmitted during the remaining portion of the time slot. As depicted in Fig 1, the set of inter-cluster propagation links 
includes both propagation links and interference links, L =

{
LPU, LCR, ILPU, ILCR

}
. Specifically, LPU and ILPU represent 

propagation links and interference links of PUs, while LCR and ILCR denote propagation links and interference links of CRs. 
This paper focuses exclusively on the uplink scenario, with analogous considerations applicable to the downlink.

3.  Access process with burst traffic control

This section aims to develop a mathematical model for the access behavior of burst traffic in the secondary system. 
During this process, we will perform a thorough analysis of the characteristics of burst traffic and its implications for 
system performance, while also taking into account potential network congestion problems that may arise. To effectively 
tackle congestion issues, we will incorporate congestion control mechanisms into the node buffer, thereby ensuring the 
stability and efficient operation of the system.

Firstly, compared with regular stable traffic, burst traffic exhibits higher levels of unpredictability and volatility, thereby 
imposing a more intense demand on network resources. Secondly, burst traffic may cause network congestion, thereby 
significantly degrading system performance. Therefore, these potential risks must be taken into consideration when 
designing the access model. This section introduces a congestion control mechanism into the node buffer during the 
construction of the access model. Accordingly, the cognitive radio access process based on burst traffic consists of two 
components: access process of CRs and burst traffic control process.

3.1.  Access process of CRs

Fig 2 illustrates the access process of CRs. During this process, CRs are not required to determine which PU owns the 
channel. In certain situations, CRs may opportunistically access the channel concurrently with the PU due to detection fail-
ure (for example, PUs and CRs on channel 1). If successful, they can exclusively utilize the channel for data transmission 

Fig 1.  System model and propagation links. 

https://doi.org/10.1371/journal.pone.0337319.g001

https://doi.org/10.1371/journal.pone.0337319.g001
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(such as CRs accessing channel 2). According to the sensing results obtained by CRs, we define the detection probability, 
Pd, is that CRs correctly identify the occupancy behavior of PUs. The false alarm probability, Pf, refers to the likelihood 
that CRs erroneously perceive a channel as occupied when, in fact, the PUs are not utilizing it. It is assumed that even in 
the event of a detection failure, CRs will be capable of maintaining communication without causing interference with PUs’ 
transmission. Based on this, two scenarios are considered:

•	 Case 1: Successful detection of CRs.

In this case, PUs do not transmit on the channel. Assuming that the radio link between any pair of nodes is considered 
to be affected by an independent random Nakagami flat fading channel, with the received channel envelope denoted as 

rLCR . Based on the relationship between the Nakagami-m distribution and the Gamma distribution [14], the successful 
acceptance probability, P{

CRsucc
∣∣CR }, can be determined by the SNR threshold in this cases where only CRs are present. 

It can be obtained that:

	
P{

CRsucc
∣∣CR} = Pr

{∣∣rLCR(t)
∣∣2 > CCRRLCR

PCR

}
=

Γ(mLCR ,
mLCR

CCRRLCR
PCR

)

Γ(mLCR) 	 (1)

Where RLCR is the path loss of link LCR, mLCR  is the Nakagami fading parameter of link LCR, CCR and PCR are the receiv-
ing SNR and transmission power of CRs respectively. The calculation of the gamma function can be obtained by the 
Γ(n) = (n – 1)!, Γ(n, x) = (n – 1)!e–x

∑n–1
j=0

xj

j! .
However, in the case of successful detection, denoted as σCR for pre-channel acceptance, the probability depends not 

only on link propagation characteristics but also on the dynamic activities of PUs. The analysis of CRs assumes that all 
virtual packets are generated from the PUs and that PUs possess their own physical queue in each channel, denoted 
asKPU. Consequently, σCR can be determined by both the queue length distribution of PUs and successful acceptance 
probability of CRs.

	
σCR = Pr

{
KPU

}
· P{

CRsucc
∣∣CR} · (1 – Pf)	 (2)

Fig 2.  Access process of CRs.

https://doi.org/10.1371/journal.pone.0337319.g002

https://doi.org/10.1371/journal.pone.0337319.g002
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Where Pr
{
KPU

}
 is the queue length distribution of PUs. According to the spectrum resource sharing mode, the physical 

queue length of the PU (KPU) is zero when there only CRs exist. Therefore, it can be concluded that,

	 Pr
{
KPU

}
= Pr

{
KPU = 0

}
= 1	 (3)

Formula (3) represents that when only CRs exist in the channel, the probability of 
{
KPU = 0

}
 is 1. In this case, the 

pre-channel acceptance probability of CRs before it enters the channel is,

	
σCR = P{

CRsucc
∣∣CR} · (1 – Pf)	 (4)

•	  Case 2: Failed detection of CRs

When the detection of CRs is failed, PUs and CRs will coexist in the channel. Let P{
CRsucc

∣∣PU, CR} denote the successful 
acceptance probability, the probabilities can be formed as Pr

{
X > A+ BY

}
, and the following results can be obtained [13].

	
P{

CRsucc
∣∣PU, CR} = Pr

{∣∣rLCR(t)
∣∣2 > CCRRLCR

PCR
+
CCRPPURLCR

PCRRILPU
·
∣∣rILPU(t)

∣∣2
}

= Φ(
CCRRLCR

PCR
,
CCRPPURLCR

PCRRILPU
)
	 (5)

Let A =
CCRRLCR
PCR

, B =
CCRPPURLCR
PCRRILPU

, the following relationship can be derived from the gamma function.

	
Φ(A, B) = (

mY

mXB+mY
)
mY

e–mXA
mX–1∑
n=0

n∑
k=0

mn
XB

kAn–kΓ(mY + k)

k!(n – k)!(mXB+mY)
k
Γ(mY)	 (6)

Where mX  can be any positive integer, mY  can be any real number. RILPU is the path loss of link ILPU, PPU  is the transmis-
sion power of the PU.

In this case, the pre-channel acceptance probability of CRs can be determined as follows.

	
σCR = Pr

{
KPU ̸= 0

}
· P{

CRsucc
∣∣PU, CR} · (1 – Pd)	 (7)

The principle of random advantage [23] states that terminals lacking packets in the buffer are able to transmit hypothetical 
virtual packets. It is easy to know that the physical queue length of the PUs is non-zero, that is Pr

{
KPU = 0

}
= 0.  

According to Pr
{
KPU ̸= 0

}
= 1 – Pr

{
KPU = 0

}
, the pre-channel acceptance probability of CRs can be simplified as follows.

	
σCR = P{

CRsucc
∣∣PU, CR} · (1 – Pd)	 (8)

Due to the impact of burst traffic, CRs are queued in the corresponding buffer prior to channel transmission, as illustrated 
by nodes 1 and 2 in Fig 2. Assume that the packet arrivals follow a Bernoulli distribution, and the sensing results will not 
affect the arrival rate of CRs. The probability of CR accessing channel i (i = 1, 2, ..., M) is denoted as eCR–Ni

. Given its 
capability to access any allocated channel, we can deduce that 

∑M
i=0 eCR–Ni = 1. In the node buffer, burst traffic congestion 

control model will be implemented using a dual-threshold mechanism.

3.2.  Burst traffic control process

Due to the diversity of signal sources, burst traffic entering the buffer exhibits varying arrival intensities. A two-state 
Markov-modulated Bernoulli process (MMBP-2) is employed to simulate the arrival process of two service types with dis-
tinct burst characteristics, including voice/video services and data/image services, and their correlations are established. 
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The control process is shown in Fig 3. When data packets are queued in the buffer, congestion control is implemented 
using dual thresholds. Influenced by the access probability, the pre-channel acceptance probability of CRs (σCR) differs 
from the departure rate after receiving the channel service (denoted as σ̃CR). Therefore, the burst traffic control process in 
the buffer consists of two parts: arrival of burst traffic and congestion control.

3.2.1.  Arrival process of burst traffic.  Fig 3 simulates the arrival process of two types of service using MMBP-2, 
where state S1 indicates data/image services, while state S2 is voice/video services. The arrival rate is varies with the state 
transitions of a two-state Markov chain. In each state, packets arrive according to the Bernoulli distribution, where α1 and 

β1 represent the arrival rates of states S1 and S2 respectively. There is a time-varying rate correlation between the two 
types of services. The transition probability p is utilized to establish this association when there is a burst in the data flow 
of a specific type of service.

	
P =

[
p 1 – p

1 – q q

]
, Λ1 =

[
α1 0
0 β1

]

	 (9)

By configuring the four statistical parameters (ρ, c2,φ,Φ(x)) of MMBP-2, diverse sets of quad-tuple parameters 
(α1, β1, p, q) can be determined to describe the correlation between two types of burst services with different arrival 
intensities. The statistical parameters of MMBP can be calculated by the following formulas [14].

•	 The average packet arrival rate of the two states ρ is:

	
ρ =

qα1 + pβ1
p+ q

, where p = 1 – p, q = 1 – q
	 (10)

•	 The inter-arrival time’s squared coefficient of variation, denoted as c2, characterizes the level of burstiness in the traffic 
generated by SUs.

	
c2 =

2ρ[(p+ q)2 + (pα1 + qβ1)(p+ q – 1)]
(p+ q)[qα1 + pβ1 + α1β1(p+ q – 1)]

– ρ – 1
	 (11)

Fig 3.  Burst traffic control process in node buffer.

https://doi.org/10.1371/journal.pone.0337319.g003

https://doi.org/10.1371/journal.pone.0337319.g003
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•	 The first-order autocorrelation coefficient of the interarrival time, φ(1), while the x-th order auto-correlation coefficient 
of the number of SU’s arrivals based on MMBP-2, Φ(x). The two variables capture the correlation between SUs traffic 
arrivals.

	
φ(1) =

α1β1(α1 – β1)
2pq(p+ q – 1)2

c2(p+ q)2[qα1 + pβ1 + α1β1(p+ q – 1)]2 	 (12)

	
Φ(x) =

(α1 – β1)
2pq(p+ q – 1)x

(qα1 + pβ1)[q(1 – α1) + p(1 – β1)]	 (13)

3.2.2.  Congestion control of burst traffic.  The congestion control of burst traffic is illustrated in Fig 3. In this 
approach, the minimum threshold L1 and the maximum threshold L2 are set in the buffer (0 < L1 < L2 < K, while K 
represents the upper limit of the buffer capacity). Upon the arrival of a data packet,

•	 Case 1: If the current queue length is less than L1, the data packet will be stored in the cache;

•	 Case 2: If the queue length is between L1 and L2, and the arrival process is in state S1, the packet will be dropped with 
probability 1 – α2 to prevent possible congestion; if it is in state S2, the packet will be dropped with probability 1 – β2.

•	 Case 3: If the queue length exceeds L2, and the arrival process is in state S1, the packet will be dropped with probability 
1 – α3; if it is in state S2, the packet will be dropped with probability 1 – β3.

In fact, the arrival rate of MMBP-2 can be effectively reduced through threshold control, which contributes to a greater 
mitigation of network congestion. In other words, the control model for burst traffic adjusts the arrival rate by employing 
dual thresholds. Let α3 < α1, β3 < β1, then the packet sending rates αm, βm (m = 1, 2, 3) of state S1 and S2 can be deter-
mined by the arrival rates in both states and the thresholds set in the buffer.

	

αm =




α1, 0 ≤ j < L1
α2, L1 ≤ j < L2
α3, L2 ≤ j ≤ K 	 (14)

	

βm =




β1, 0 ≤ j < L1
β2, L1 ≤ j < L2
β3, L2 ≤ j ≤ K 	 (15)

Where α2 = α1 +
(α3–α1)(j–L1+1)

L2–L1+1 , β2 = β1 +
(β3–β1)(j–L1+1)

L2–L1+1 .

3.3.  Modeling and analysis of burst traffic control

According to queuing theory, the data packets stored in the buffer are regulated by the arrival process and the predefined 
threshold. Therefore, the data packet control process in the node buffer prior to channel access can be modeled as a two-
dimensional discrete Markov chain, wherein the MMBP-2 serves as the traffic arrival model and the dual-threshold RED con-
trol as the traffic management mechanism. Suppose state (Sn, j) represents the current state of the packet within the time slot; 
the system state can then be characterized using this Markov chain along with the buffer queue length as follows:

	
{
(Sn, j), n = 1, 2; j = 0, 1, 2, ..., L1, ..., L2, ..., K

}
	 (16)
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As illustrated in Fig 4, we use state (S1, L1) as an example to present all possible transition scenarios in a given state 
of the Markov chain, in order to analyze the transition probability. It is assumed that at most one data packet can arrive 
per time slot. From the perspective of buffer queue length, data packets may remain at the current level, L1, in the next 
time slot if no new packets arrive. Alternatively, they may transition to the next queue length level, L1 + 1, due to the arrival 
of new packets, or to the previous level, L1 – 1, as packets are dequeued for channel service. Furthermore, as a binary 
relationship has been defined for identical queue length levels based on the burst traffic characteristics of MMBP-2, a one-
step transition between S1 and S2 is evident.

Therefore, when the data packet is in state (S1, L1), there are two scenarios for its one-step transition probability of 
the packet remaining in the current queue length state in the next time slot, PRS →L. let PRS1, L1 →S1, L1 denote the probability 
of remaining in the state (S1, L1), and Let PRS1, L1 →S2, L1 denote the probability that the packet transmission rate changes 
in the next time slot while the queue length remains constant. Correspondingly, we assume that the probabilities of the 
packet transitioning to L1 + 1 and L1 – 1 in the next time slot are PAS →L and PDS →L, respectively. There are also four associ-
ated cases (in Fig 4): PAS1, L1 →S1, L1 +1, P

A
S1, L1 →S2, L1 +1, P

D
S1, L1 →S1, L1 –1 and PDS1, L1 →S2, L1 –1.

Based on the queue length state, combined with the arrival rate matrix Λm =

[
αm 0
0 βm

]
, m = (1, 2, 3) and transition 

probability matrix P =

[
p 1 – p

1 – q q

]
, it can be deduced by transferring the situation that:

	




PRS1, L1 →S1, L1 = [α2σCR + (1 – α2)(1 – σCR)]p
PRS1, L1 →S2, L1 = [α2σCR + (1 – α2)(1 – σCR)](1 – p)

PAS1, L1 →S1, L1 +1 = α2p(1 – σCR)

PAS1, L1 →S2, L1 +1 = α2(1 – p)(1 – σCR)

PDS1, L1 →S1, L1 –1 = (1 – α2)σCRp
PDS1, L1 →S2, L1 –1 = (1 – α2)σCR(1 – p) 	

Thus, the transition matrix can be derived as follows:

Fig 4.  All possible transition scenarios in a given state.

https://doi.org/10.1371/journal.pone.0337319.g004

https://doi.org/10.1371/journal.pone.0337319.g004
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Q2(K+1)×2(K+1) =




E′
1 F′

1
D1 E1 F1

· · · · · · · · ·
D1 E1 F1

D2 E2 F2
D2 E2 F2

· · · · · · · · ·
D2 E2 F2

D3 E3 F3
D3 E3 F3

· · · · · · · · ·
D3 E3 F3

D3 E′
3




0
1
· · ·

L1 – 1
L1

L1 + 1
· · ·

L2 – 1
L2

L2 + 1
· · ·
K – 1
K 	 (17)

Where F′
1 = Λ1P, E

′
1 = (I – Λ1)P, Dm = σCR(I – Λm)P, Em = ΛmσCRP+ (I – Λm)(1 – σCR)P, Fm = (1 – σCR)ΛmP, E

′
3 = Λ3P+ (I – Λ3)(1 – σCR)P,  

while I is an identity matrix.
Due to the limited buffer capacity, Q is a layer-dependent finite-state quasi-birth-and- death matrix of size 

2(K+ 1)× 2(K+ 1), with each element being a square matrix of dimension 2× 2. The transfer matrix Q indicates that 
each state can receive two types of burst traffic.

3.4.  Steady state and performance metrics

In CRNs, the research on access strategy without considering system stability lacks practical significance. Consequently, 
this section analyzes the stability of the system model and evaluates the performance metrics of the secondary system 
under steady-state conditions, thereby providing a basis for subsequent research.

The steady-state of the secondary system at any queue length state j, is determined by two types of tuples with distinct 
burst levels.

	 πj = π(1, j) + π(2, j)	

Combining the steady-state equation, πQ = π , and the normalization condition, πe = 1, the steady-state solu-
tion vector −→π = (π0, π1, π2, ..., πK) can be obtained. Briefly speaking, since the state space of the Q-matrix is two-
dimensional, computing the steady-state probability vector becomes a high-dimensional problem that lacks an explicit 
analytical solution. However, it can be observed that the level structure of the Q-matrix depends on the configured buf-
fer capacity K. Consequently, by specifying the value of K, the exact form of Q can be determined, allowing the steady-
state solution to be computed in Matlab using level reduction algorithms [14] based on numerical analysis. Therefore, 
based on the steady-state distribution, −→π , the performance metrics for the secondary system can be obtained as 
follows.

•	 The average queue length of the secondary system, denoted by E(L), reflects the long-term average number of CRs in 
the system’s queuing state. This value is determined by the established model and typically fluctuates around the buffer 
capacity.

	
E(L) =

K∑
j=0

jπj =
K∑
j=0

j[π(1, j) + π(2, j)]
	 (18)

•	 The average throughput of the secondary system, denoted by E(S), represents the average number of data packets 
that are successfully delivery from the secondary system to the channel per unit time. This value is primarily determined 
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by the specific scenario, system design, and resource flexibility. Due to potential congestion caused by burst traffic, the 
throughput is typically reduced to 30% ~ 70% of the theoretical bandwidth under the effects of packet loss and retrans-
mission. In this study, the results are expressed as a percentage directly related to the pre-channel acceptance probabil-
ity during calculation.

	 E(S) = σCR(1 – π0) = σCR[1 – π(1, 0) – π(2, 0)]	 (19)

•	 The average delay of the secondary system, E(W), refers to the average duration from the arrival of a CR at the buffer 
to its departure from it, which is primarily determined by the average queue length and the average throughput. In a 
bursty environment, the delay may abruptly increase to 10–100 times the steady-state value, and packets may even be 
discarded due to queue overflow. In an elastic system with dynamic resource allocation, the steady-state delay typically 
ranges from 10 to 100 ms, while the burst delay falls within 100–500 ms.

	
E(W) =

E(L)
E(S)

=

K∑
j=0

jπj

σCR(1 – π0)	 (20)

•	 The packet loss rate of the secondary system, Dpl, denotes the probability that an arriving packet is rejected or dis-
carded under steady-state conditions, which is determined by the proportion of packets that are not successfully served. 
Since the RED algorithm relies on the dynamic adjustment of the threshold, under normal scenarios, there exists 

0 ≤ Dpl ≤ Dmax
pl  (here it is usually assumed that Dmax

pl = 30%). As network congestion approaches, this value may rapidly 
increase to Dmax

pl , and in extreme scenarios, it can reach 100%.

	 Dpl = πK(1 – σCR) = [π(1, K) + π(2, K)] · (1 – σCR)	 (21)

4.  Multi-channel access strategy

In CRNs, it is impractical to study access scenarios in isolation from system stability. The performance of secondary 
system depends not only to the activities of PUs but also on the detection results of CRs. This section focuses on ana-
lyzing the impact of PU activities on the performance of CRNs when CRs succeed or fail in detection, and proposes a 
multi-channel access strategy on the basis of verifying system stability. The general parameters involved in this study are 
set as follows in Table 1 to obtain more reasonable simulation results.

Table 1.  The general parameter setting.

Parameter Value Parameter Value

mLCR 1 Pf 0.05

CCR 6 Pd 0.8

RLCR 5 PPU 24

RILPU 18 PCR 20

L1 4 L2 11

K 15 NP 5

https://doi.org/10.1371/journal.pone.0337319.t001

https://doi.org/10.1371/journal.pone.0337319.t001
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4.1.  Impact of PUs’ activity on the performance of secondary system

The stability of the secondary system is validated in this section, establishing a foundational basis for access strategy 
research. The burst scenarios are simulated by adjusting the four statistical parameters of MMBP-2, (ρ, c2,φ,Φ(x)), and 
their settings follow general rules (see literature [14]). Five traffic flows (Traffic 1 to Traffic 5) with different burst intensities 
are simulated by setting the statistical parameters. The arrival rates of the two states can be calculated according to For-
mulas (10)-(13), as shown in Table 2. It can be observed from the arrival rate that the burst intensity gradually decreases 
from Traffic 1 to Traffic 5.

If CRs successfully detect the PU, there will be no PUs in the system; if the detection fails, they will coexist with the 
PUs on the same channel. As can be seen from the previous analysis, the pre-channel acceptance probability of CRs, σCR,  
in these two scenarios is different. In Fig 5, we present a comparison of the performance metrics of the CRs in the two 
scenarios. According to the comparison with the benchmark of performance indicators (in section 3.4), although there is 
a significant difference in performance results between the two scenarios, both remain within an acceptable error range. 
Moreover, under different arrival rates (i.e., different burst intensities), the curves are relatively stable, which proves that 
the research model established in this study can ensure the stable operation performance of the secondary network 
regardless of whether PUs are present.

4.2.  Multi-channel access strategy based on burst traffic control

Under the premise of system stability, this section investigates the multi-channel access strategy of CRs based on genetic 
algorithm (GA). GA relies on a population-based search mechanism and can effectively escape local optima while pro-
actively selecting conservative access strategies through mutation operations, thereby avoiding interference to PUs. 
Meanwhile, this algorithm inherently supports multi-objective optimization, enabling it to provide highly adaptive access 
strategies according to different scenarios and flexibly balance various conflicting requirements. Considering the through-
put limitation caused by burst traffic and the packet loss problem induced by congestion control, this paper takes average 
throughput and packet loss rate as the main optimization objectives.

•	 Objective 1: Optimization of E(S), noted as vs(e). When CRs access a specific channel, the average throughput based 
on the access probability can be determined using formula (19):

	 vs(e) = σCR(1 – π0) · eCR–Ni	 (22)

•	 Objective 2: Optimization of Dpl, noted as vd(e). After accessing to a specific channel, the packet loss rate based on the 
access probability is obtained using formula (21):

	 vd(e) = πK(1 – σCR) · eCR–Ni 	 (23)

Table 2.  Five traffic flows with different burst intensities.

Traffic ρ c2 φ Φ α1 β1

Traffic 1 0.5 50 0.1 0.8 0.90671 0.001824

Traffic 2 0.5 100 0.2 0.7 0.852653 0.001665

Traffic 3 0.5 150 0.3 0.6 0.80139 0.00151

Traffic 4 0.5 200 0.4 0.5 0.750796 0.00134

Traffic 5 0.5 250 0.5 0.4 0.700459 0.001147

https://doi.org/10.1371/journal.pone.0337319.t002

https://doi.org/10.1371/journal.pone.0337319.t002
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The optimal channel access strategy should maximize E(S) while minimizing Dpl. The model is:

	
P – 1 : v∗s(e) = arg max vs(e); s.t. : 0 ≤ eCR–Ni ≤ 1 and

∑
i

eCR–Ni = 1
	 (24)

	
P – 2 : v∗d(e) = arg min vd(e); s.t. : 0 ≤ eCR–Ni ≤ 1 and

∑
i

eCR–Ni = 1
	 (25)

The procedural flow for implementing the multi-channel access strategy of CRs based on GA is as follows.

Multi-channel Access Strategy of CRs Based on Genetic Algorithm

• Given

√ M = 10 % Population size

√ G = 12 % maximum generation

√ Pc  = 0.9 % crossover probability

√ Pm  = 0.09 % mutation probability

Fig 5.  Performance comparison of CRs.

https://doi.org/10.1371/journal.pone.0337319.g005

https://doi.org/10.1371/journal.pone.0337319.g005
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Multi-channel Access Strategy of CRs Based on Genetic Algorithm

√ R=[0,1] % variation range

√ A = 0.00000001 % searching precision

√ V s (e), V d (e) % fitness function

• Algorithms:

1: Procedure()

2: // Population Initialization

3: To ensure the non-negativity of the fitness function, the objective func-
tions of P-1, P-2 in Equations (21), (22) is transformed as follows.

Vs(e)=Vs*(e)+Cmin Vd(e)=-Vd*(e)+Cmax

Cmin - denotes a predetermined smaller value.

Cmax - denotes a predetermined larger value.

4: Calculating the fitness function Vs(e), Vd(e)

5: Individuals are selected from population by proportional selection algo-
rithm according to fitness value

6: if (random (0, 1) < Pc)

do crossover operation according to Pc

if (random (0, 1) < Pm)

do mutation operation according to Pm

7: Get a new population

8: Recording the best chromosomes

9: Until:
Fitness value of any chromosome ≥ fitness function

10: or G > 12

11: End Procedure()

Eight traffic flows with different burst intensities are simulated, and their binary arrival rates are determined by the four 
statistical parameters of MMBP-2, (ρ, c2,φ,Φ(x)), as shown in Table 3.

We use two metrics, E(S) and Dpl, which are set as the objective functions, to verify the access strategies under 
different burst intensities (Traffic 1 to Traffic 8). Figs 6 and 7 illustrate the advantages of our GA-optimized multi-channel 
access strategy over three conventional approaches: the equal probability (EP) method, inverse proportion (IP) strategy, 
and random selection (Random) strategy. The EP strategy means that the probability of accessing each channel is equal, 
denoted as 1Np

. The IP strategy sets the access probability of each channel as α1∑
Np

α1
.

In general, as the burst intensity decreases, regardless of the access strategy adopted, both metrics decrease with 
the arrival rate. We can see that the GA strategy performs significantly better than the other three strategies in terms of 
average data transmission. Notably, its packet loss rate and throughput exhibit superior performance under conditions of 
high burst intensity. Moreover, under different burst intensities, the performance metrics of the IP strategy are very close 
to those of the GA strategy. This is because the time complexity of the GA strategy is higher than that of the IP strategy, 
resulting in more accurate outcomes. Consequently, the IP strategy can be considered an approximate solution for the 

Table 3.  Arrival rates of eight traffic flows with different burst intensities.

Traffic (α1,β1) Traffic (α1,β1)

Traffic 1 (0.9067097119, 0.0018239742) Traffic 5 (0.7004590849, 0.0011466865)

Traffic 2 (0.8526533347, 0.0016654833) Traffic 6 (0.6502478001, 0.0009256213)

Traffic 3 (0.8013900590, 0.0015098426) Traffic 7 (0.6001108086, 0.0006682983)

Traffic 4 (0.7507958849, 0.0013392691) Traffic 8 (0.5500289350, 0.0003644730)

https://doi.org/10.1371/journal.pone.0337319.t003

https://doi.org/10.1371/journal.pone.0337319.t003
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Fig 6.  Comparison of E(S) under different strategies.

https://doi.org/10.1371/journal.pone.0337319.g006

Fig 7.  Comparison of Dpl under different strategies.

https://doi.org/10.1371/journal.pone.0337319.g007

https://doi.org/10.1371/journal.pone.0337319.g006
https://doi.org/10.1371/journal.pone.0337319.g007
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online scheduling using the GA strategy, whereas for offline scenarios such as that addressed in this paper, the GA strat-
egy can be appropriately applied to improve accuracy.

Next, we will analyze the optimal strategy of the GA under multiple iterations. According to the objective function we set, 
the multi-channel access strategy can achieve optimal system performance when E(S) is maximized and Dpl is minimized. 
As shown in Fig 8, this occurs when burstiness is Traffic 3. At this time, there exists max

∣∣E(S) – Dpl

∣∣, and the burstiness 
statistical parameters are ρ = 0.5, c2 = 150, φ(1) = 0.3 and Φ(x) = 0.6, which enables an optimal solution for system 
performance under this strategy.

The aforementioned research thoroughly investigates the access mechanism in scenarios involving burst traffic man-
agement, innovatively proposes a multi-channel access strategy, and derives the optimal solution for heterogeneous burst 
environments using genetic algorithms. This study provides significant theoretical basis for developing multi-channel access 
strategies within the proposed access framework. In practical applications, the objective function can be flexibly configured 
according to specific communication requirements, highlighting the adaptability of the established burst traffic control model.

4.3.  System performance analysis

In this section, we analyze the variation of system performance under changes in the number of channels (or the number 
of PUs) and the number of users (or the number of CRs).

First, we conduct a parameter sensitivity analysis. In the burst scenario of Traffic 1, the number of channels (M) ranges 
from 5 to 15 in steps of 1, and the number of users (N) ranges from 10 to 30 in steps of 2. We illustrate the variations of 
the three metrics (E(S), E(W) and Dpl) under different user counts for varying channel counts (Fig 9). It can be observed 
from the figure that all three metrics fall within their respective benchmark ranges. In burst scenarios, the throughput 

Fig 8.  Multi-channel access strategy based on GA.

https://doi.org/10.1371/journal.pone.0337319.g008

https://doi.org/10.1371/journal.pone.0337319.g008
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(referring to the number of packets served per unit time) increases with more of the number of channels; in contrast, both 
the packet loss rate and delay decrease as the number of channels increases. Moreover, system performance improves 
when there are more channels and fewer users.

Next, we analyze the network bottleneck under system scale expansion. As shown in Fig 10, when the number of chan-
nels is fixed at 10, variations in the number of users have a nonlinear impact on system performance. N = 20is identified 
as the critical load threshold: before this point, throughput increases linearly; beyond it, performance deteriorates sharply. 
Specifically, when N exceeds 20, the packet loss rate surges above 20% and continues to rise, while delay increasingly 
violates QoS requirements. QoS analysis reveals that the system enters an overload state when the number of users 
exceeds 22, suggesting that the optimal user capacity should be maintained within the range of 18–22.

As shown in Fig 11, when the number of users is fixed at 20, increasing the number of channels significantly enhances 
system performance. Throughput increases monotonically with the number of channels, showing a clear inflection point 
at M = 10: before this point, each additional channel contributes approximately a 15% increase in throughput, whereas the 
improvement rate declines to 5% afterward, indicating that system capacity is nearing saturation. The packet loss rate 
reaches as high as 32% when M = 5 but decreases rapidly with more channels, exhibiting another inflection point at M = 8, 
where the rate of decline is halved. At M = 10, the packet loss rate drops to 9.8%, satisfying the QoS requirement of 10%. 
The delay characteristic follows an exponential decay pattern, with the rate of reduction slowing notably after M = 12.

Furthermore, the experiment finds that the packet loss rate grows quadratically with the number of users. A comprehen-
sive analysis demonstrates that for N = 20 users, M = 10 represents the optimal channel configuration, as it simultaneously 

Fig 9.  The variations under different user counts.

https://doi.org/10.1371/journal.pone.0337319.g009

https://doi.org/10.1371/journal.pone.0337319.g009
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Fig 10.  The variations when fixed N = 20.

https://doi.org/10.1371/journal.pone.0337319.g010

Fig 11.  The variations when fixed M = 10.

https://doi.org/10.1371/journal.pone.0337319.g011

https://doi.org/10.1371/journal.pone.0337319.g010
https://doi.org/10.1371/journal.pone.0337319.g011
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meets the QoS thresholds for both packet loss rate and delay. The above research findings provide valuable guidance for 
capacity planning in bursty environments.

5.  Conclusions

This paper focuses on a series of modeling studies regarding cognitive radio access issues in emergency environments, 
integrated with network congestion control. We established a burst flow control access model by incorporating multi-
ple cross-layer factors and adopted the MMBP-2 as the input. Based on the two-dimensional discrete Markov process, 
the state transition matrix of the secondary system was constructed to derive the corresponding performance metrics. 
The calculation methods and statistical significance of these performance metrics are presented, and the stability of the 
proposed system is verified accordingly. On this premise, we discuss a multi-objective channel access strategy based 
on genetic algorithms with respect to throughput and packet loss rate, and elaborate on its implementation procedures. 
By comparing this algorithm with three other basic algorithms, its superiority is validated, and the optimal channel access 
scheme is proposed. In addition, we designed parameter sensitivity analysis experiments to investigate variations in 
system performance under different numbers of channels and users and determined the key operation thresholds. Simu-
lation results demonstrate that the burst flow control model proposed in this paper enables adaptive multi-channel access 
strategies in bursty environments. Furthermore, our findings indicate that when the number of users is N = 20, setting the 
number of channels to M = 10 achieves optimal performance, as it satisfies the QoS requirements for both packet loss 
rate and delay. These research outcomes offer meaningful insights for capacity planning in dynamic and high-variability 
communication scenarios.
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