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Abstract

Background

The Framingham Steatosis Index (FSI) is a diagnostic indicator of hepatic steatosis.
Although prior studies have established associations between hepatic steatosis and
chronic kidney disease (CKD) and between FSI and CKD, the association between
FSI and proteinuria remains unexplored. This study investigated the association
between FSI and albuminuria, addressing this research gap.

Patients and methods

Data were obtained from the National Health and Nutrition Examination Survey
(NHANES) database. The association between FSI and albuminuria was examined using
multivariable logistic regression and stratified analyses. Nonlinearity was assessed using
smoothing curves, and inflection points were located with a recursive algorithm. Sub-
group analyses were conducted to evaluate the consistency of the association between
FSI and albuminuria across different strata. Finally, propensity score matching (PSM)
was applied to reduce potential confounding and enhance the robustness of the findings.

Results

In model 3, which adjusted for all covariates, the odds ratio (OR) for the association
between FSI and albuminuria was 1.13 (95% CI: 1.09-1.18). Smooth curve fitting
demonstrated a U-shaped relationship between FSI and albuminuria. Threshold analysis
identified an inflection point at an FSI value of —3.22 to further characterize this relation-
ship. Subgroup analyses showed directionally consistent associations across strata. The
U-shaped relationship between FSI and albuminuria remained robust after applying PSM.

Conclusion

Our study identified a U-shaped relationship between FSI and albuminuria.
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Introduction

Albuminuria, typically defined as an elevated urinary albumin-to-creatinine ratio
(ACR), is a sensitive early indicator of kidney injury. As an early marker of kidney
injury, albuminuria often precedes a decline in glomerular filtration rate and indicates
the onset of glomerular endothelial dysfunction [1]. Clinically, even mild elevations

in urinary albumin are associated with accelerated progression of chronic kidney
disease (CKD) and increased risk of adverse cardiovascular outcomes [2,3]. In public
health, albuminuria is widely used for screening and surveillance, as it identifies
subclinical kidney disease and correlates with increased morbidity and mortality [4,5].
Given its prognostic and epidemiological significance, albuminuria is a key marker for
assessing early-stage kidney disease at the population level.

The Framingham Steatosis Index (FSI) is a noninvasive scoring system that
estimates hepatic fat content using routinely collected clinical and biochemical
parameters, including age, sex, body mass index (BMI), triglyceride levels, presence
of hypertension and diabetes, and the alanine aminotransferase (ALT) to aspartate
aminotransferase (AST) ratio [6]. Since its development, the FSI has demonstrated
reliability as a surrogate marker of hepatic steatosis [6,7]. It has attracted growing
interest for its potential applications beyond liver disease, particularly in metabolic
and cardiovascular risk assessment [8,9]. Concurrently, the link between fatty liver
and kidney injury has garnered increasing research interest. This association may
reflect shared pathophysiological mechanisms involving the liver and the kidney, such
as inflammation and endothelial dysfunction. Meta-analyses have demonstrated that
non-alcoholic fatty liver disease (NAFLD) significantly increases the risk of CKD [10],
independent of traditional risk factors. Moreover, an association between FSI and
CKD has also been reported [11].

Despite accumulating evidence linking hepatic steatosis and FSI to CKD, no study
has directly examined the association between FSI and albuminuria. Clarifying this
association is essential to determine whether a simple, noninvasive hepatic steatosis
score can be a marker for early kidney injury in the general population. The National
Health and Nutrition Examination Survey (NHANES) provides a large, nationally
representative, and well-characterized dataset. Using NHANES data, we investigated
the association between FSI and albuminuria to provide new epidemiological evi-
dence supporting this line of inquiry.

Methods
Data and study participants

The NHANES is a population-based program that collects health and nutrition data
from a representative sample of the U.S. civilian population. Data were collected with
a multistage probability sampling design that incorporated structured household inter-
views, mobile examination center assessments, and laboratory testing. This study
utilized de-identified data from NHANES, a publicly available database maintained

by the National Center for Health Statistics (NCHS), part of the Centers for Disease
Control and Prevention (CDC). The NHANES data collection protocol received
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approval from the NCHS Research Ethics Review Board (ERB). As this study involved secondary analysis of anonymized,
publicly available data, further Institutional Review Board (IRB) approval was not required. NCHS obtained informed
consent from all participants during initial data collection; no additional consent was necessary for this analysis. 101,316
participants were initially identified from the 1999-2018 NHANES dataset. We excluded 71,994 participants with missing
data on variables required to compute the FSI, including sex, age, hypertension status, diabetes status, triglycerides (TG),
AST, ALT, and BMI. Additionally, 327 participants missing ACR data were excluded. Finally, 5,116 pregnant women and
participants younger than 18 years were excluded, resulting in a final analytic sample of 23,879 participants, as illustrated
in Figure 1. All data used in this study were publicly available (https://www.cdc.gov/nchs/nhanes/).

Definition of FSI

The FSI developed by Long et al. in 2016 was used in our analysis. The formula is as follows:
FSI=-7.981+0.011 xage (years) — 0.146 x sex (female=1, male=0) + 0.173 x BMI (kg/m?) + 0.007 x TG (mg/dL) +
0.593 x hypertension (yes=1, no=0) + 0.789 xdiabetes (yes=1, no=0) + 1.1 xALT:AST ratio>1.33 (yes=1, no=0).
AST, ALT, and TG levels were assessed by trained specialists following standardized protocols established by the
NCHS and guided by CDC procedures. Lipid levels were measured from peripheral blood samples collected in the

Participants from
NHANES 1999-2018
N=101,316

Excluded missing
data for FSI
N=71,994

N=29,322

Excluded missing
data for ACR data
N=327

N=28,995

Excluding pregnant
women and those
under 18 years of age
N=5,116

N=23,879

Fig 1. Flowchart of sample selection 1999-2018.

https://doi.org/10.1371/journal.pone.0337104.9001
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morning after an overnight fast of at least 8 hours. Serum triglyceride and AST levels were measured enzymatically.
Serum or plasma ALT levels were determined using kinetic rate assays.

Outcome ascertainment

The primary outcome of this study was albuminuria, defined as an ACR>30 mg/g[12]. ACR was calculated by dividing
urinary albumin (mg) by urinary creatinine (g). Blood and urine samples were collected from NHANES participants at stan-
dardized mobile examination centers. Urinary albumin and creatinine levels were measured in spot urine samples using a
solid-phase fluorescence immunoassay and a modified Jaffe kinetic method. These measurements were obtained directly
from the NHANES dataset, which utilized automated biochemical analyzers including the Roche Cobas 6000 and Roche
Modular P Chemistry Analyzer.

Assessment of covariates

Covariates included age, sex, race/ethnicity, educational attainment, marital status, poverty-to-income ratio (PIR), BMI,
physical activity level, smoking status, alcohol use, diabetes, serum albumin (ALB), estimated glomerular filtration rate
(eGFR), uric acid (UA), hypertension, and hyperlipidemia. Physical activity was classified as vigorous or moderate, each
coded as yes or no. Current smokers were defined as participants who had smoked at least 100 cigarettes in their lifetime
and continued smoking at the time of the survey. Former smokers were those who had smoked at least 100 cigarettes in
their lifetime but had quit before the study. Participants who had smoked fewer than 100 cigarettes in their lifetime were
considered non-smokers. Non-drinkers were defined as participants who had consumed fewer than 12 alcoholic bev-
erages in their lifetime or any given year. Former drinkers were those who had consumed 212 alcoholic drinks in their
lifetime or any year but had not consumed alcohol in the past 12 months. Current drinkers were those who had consumed
>12 alcoholic beverages in their lifetime or any one year and at least one alcoholic drink in the past 12 months. Diabetes
was defined as self-reported physician diagnosis, fasting blood glucose 27.0 mmol/L, glycosylated hemoglobin (HbA1c)
26.5%, or a 2-hour plasma glucose 211.1 mmol/L after a 75-g oral glucose tolerance test. Hypertension was defined

as self-reported diagnosis, use of antihypertensive medication, systolic blood pressure 2130 mmHg, or diastolic blood
pressure 280 mmHg. Hyperlipidemia, as determined by the National Cholesterol Education Program, included TG = 150
mg/dL, total cholesterol 2200 mg/dL, low-density lipoprotein cholesterol (LDL-C) 2130 mg/dL, or high-density lipoprotein
cholesterol (HDL-C) <50 mg/dL (<40 mg/dL for men).

Statistical analysis

Analyses were conducted with full consideration of NHANES’s multistage probability design. The design strata
(SDMVSTRA), primary sampling units (SDMVPSU), and the fasting subsample weights were specified. Because the key
biomarkers were obtained in the morning fasting subsample, WTSAF4YR was used for 1999-2002 and WTSAF2YR for
2003-2018. When pooling ten 2-year cycles (1999-2018), multi-cycle weights were constructed as (2/10) xXWTSAF4YR
for 1999-2002 and (1/10) xWTSAF2YR for each subsequent 2-year cycle. In the baseline characteristics table, contin-
uous variables were presented as means with standard deviation (SD), and categorical variables as proportions. Differ-
ences between albuminuria and non-albuminuria groups were assessed using the Kruskal-Wallis test for continuous
variables and the chi-square test for categorical variables. Multivariable logistic regression was applied to evaluate the
association between FSI and the prevalence of albuminuria. Participants were divided into three FSI tertiles (T1-T3).
Three models were constructed: Model 1 (unadjusted); Model 2 (adjusted for age, sex, and ethnicity); and Model 3 (fur-
ther adjusted for BMI, education, marital status, PIR, albumin, UA, hyperlipidemia, diabetes, alcohol consumption, hyper-
tension, vigorous activity, moderate activity, smoking, and eGFR). Smoothed curve fitting and threshold analysis were
used to assess the nonlinearity between FSI and albuminuria. A segmented (two-piecewise) linear regression model was
fitted when nonlinear relationships were observed to evaluate threshold effects across intervals. Subgroup analyses were

PLOS One | https://doi.org/10.137 1/journal.pone.0337104 November 20, 2025 4/13




PLO\Sﬁ\\.- One

performed to examine the consistency of the association between FSI and albuminuria across strata. Finally, propensity
score matching (PSM) was conducted using the nearest-neighbor method to match albuminuria and non-albuminuria
participants in a 1:1 ratio. Covariates from Model 3 were used to estimate the propensity score for matching. In addition,
sensitivity analyses were performed by further adjusting for hepatitis status and medication use (lipid-lowering drugs, anti-
hypertensives, and antidiabetics), as well as by re-estimating the associations after excluding covariates overlapping with
components of the FSI formula. All statistical analyses were performed using EmpowerStats (X&Y Solutions, Inc., http://
www.empowerstats.com) and R software (The R Foundation, http://www.R-project.org). A two-sided P value <0.05 was
considered statistically significant.

Language editing

The manuscript was edited for readability, style, and grammatical accuracy using Grammarly, an artificial intelligence—
based tool for non-generative copyediting.

Results
Association between FSI and albuminuria

As presented in Table 1, the study included 23,879 participants aged 218 years, among whom 2,975 (12.46%) had
albuminuria. Participants with albuminuria had higher prevalence of hypertension, diabetes, and reduced eGFR (<60 mL/
min/1.73 m?) compared to those without albuminuria (P <0.05). Albuminuria participants also exhibited higher FSI values
than their non-albuminuria counterparts. Detailed baseline characteristics for both groups are summarized in Table 1.

Association between FSI and albuminuria

As shown in Table 2, higher FSI levels were associated with increased odds of albuminuria in Model 1 (OR = 1.24; 95%
Cl: 1.21-1.26). This association remained statistically significant after adjustment in Model 2 (OR = 1.19; 95% CI: 1.16—
1.21) and Model 3 (OR = 1.13; 95% CI: 1.09—-1.18). Participants in the highest FSI tertile had 10% higher odds of albumin-
uria than those in the lowest tertile (OR = 1.10; 95% CI: 0.92—-1.30); however, the dose—response trend across tertiles was
not statistically significant (P for trend=0.108).

After full adjustment in Model 3 and application of smoothed curve fitting, a U-shaped association between FSI and the
prevalence of albuminuria was observed (Fig 2). Threshold effect analysis (Table 3) revealed that when FSI was below
-3.22, each 1-unit increase in FSI| was associated with a 74% decrease in the odds of albuminuria (OR = 0.26; 95%

Cl: 0.19-0.34; P<0.001), whereas when FSI exceeded -3.22, each 1-unit increase in FSI was associated with a 15%
increase in the odds of albuminuria (OR = 1.15; 95% CI: 1.10-1.20; P<0.001).

Subgroup analysis

Subgroup analyses were conducted to explore potential interactions between FSI and albuminuria prevalence across

demographic and clinical strata, including sex, age, BMI, PIR, hypertension, diabetes, hyperlipidemia, physical activity,
education, marital status, smoking, and alcohol consumption. The association between FSI and albuminuria remained
directionally consistent across all subgroups (Table 4).

PSM analysis

After PSM, 5,762 participants were included, comprising 2,881 individuals in both the albuminuria and non-albuminuria
groups. Descriptive analyses of the matched population indicated no significant differences between groups for most
covariates, except for race and eGFR (S1 Table). Multivariable logistic regression was conducted on the matched sample,
and the results are presented in S2 Table. Across all three models, FSI remained significantly associated with increased
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Table 1. Baseline characteristics of participants.

Characteristics Non-albuminuria albuminuria P-value

N 20904 2975

UA, mg/ml 5.44+1.38 5.86+1.68 <0.001

ALB, g/L 42.54+3.31 41.31+3.79 <0.001

ALT, U/L 25.40+£27.76 24.49+19.19 <0.001

AST 25.26+22.49 26.19+18.38 0.130

FSI -1.37+£1.69 -0.64+1.98 <0.001

Gender, n (%) 0.065

Male 10496 (50.21%) 1440 (48.40%)

Female 10408 (49.79%) 1535 (51.60%)

Age, n (%) <0.001

<60 14865 (71.11%) 1297 (43.60%)

>=60 6039 (28.89%) 1678 (56.40%)

Race, n (%) <0.001

Mexican American 3804 (18.20%) 613 (20.61%)

Other Hispanic 1777 (8.50%) 229 (7.70%)

Non-Hispanic White 9189 (43.96%) 1191 (40.03%)

Non-Hispanic Black 4220 (20.19%) 695 (23.36%)

Other Race 1914 (9.16%) 247 (8.30%)

Education, n (%) <0.001

Under high school 4961 (23.73%) 1076 (36.17%)

High school or equivalent 4425 (21.17%) 674 (22.66%)

College graduate or above 11518 (55.10%) 1225 (41.18%)

Marital Status, n (%) <0.001

Married or living with partner 12797 (61.22%) 1646 (55.33%)

Living alone 8107 (38.78%) 1329 (44.67%)

PIR <0.001

<13 5845 (27.96%) 995 (33.45%)

>=13,<3.5 9008 (43.09%) 1410 (47.39%)

>=3.5 6051 (28.95%) 570 (19.16%)

eGFR, n (%) <0.001

<60 1161 (5.55%) 688 (23.13%)

>=60 19743 (94.45%) 2287 (76.87%)

Smoke, n (%) <0.001

Current smokers 4112 (19.67%) 576 (19.36%)

Nonsmokers 12035 (57.57%) 1522 (51.16%)

Former smokers 4757 (22.76%) 877 (29.48%)

Diabetes, n (%) <0.001

No 17882 (85.54%) 1666 (56.00%)

Yes 3022 (14.46%) 1309 (44.00%)

Vigorous activity, n (%) <0.001

No 13166 (62.98%) 2334 (78.45%)

Yes 7738 (37.02%) 641 (21.55%)

Moderate activity, n (%) <0.001

No 11857 (56.72%) 1941 (65.24%)

Yes 9047 (43.28%) 1034 (34.76%)

Drink, n (%) <0.001
(Continued)
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Table 1. (Continued)

Characteristics Non-albuminuria albuminuria P-value
Current drinkers 15082 (72.15%) 1757 (59.06%)

Nondrinkers 2531 (12.11%) 456 (15.33%)

Former drinkers 3291 (15.74%) 762 (25.61%)

Hypertension, n (%) <0.001
No 10727 (51.32%) 739 (24.84%)

Yes 10177 (48.68%) 2236 (75.16%)

Hyperlipidemia, n (%) <0.001
No 8774 (41.97%) 1053 (35.39%)

Yes 12130 (58.03%) 1922 (64.61%)

BMI, n (%) <0.001
<30 13837 (66.19%) 1702 (57.21%)

>=30 7067 (33.81%) 1273 (42.79%)

UA uric acid, FSI framingham steatosis index, PIR poverty-to-income ratio, BMI body mass index,
eGFR estimating glomerular filtration rate.

https://doi.org/10.1371/journal.pone.0337104.t001

Table 2. Association of FSI with albuminuria in the population.

Model 1 OR (95% Cl)

Model 2 OR (5% Cl)

Model 3 OR (95% Cl)

Albuminuria

1.24 (1.21, 1.26)

1.19 (1.16, 1.21)

1.13 (1.09, 1.18)

FSI tertiles

T1 Ref Ref Ref

T2 1.80 (1.62,2.00) 1.11 (0.99, 1.25) 0.90 (0.79, 1.03)
T3 2.74 (2.47, 3.03) 1.77 (1.59, 1.97) 1.10 (0.92, 1.30)
P for trend <0.001 <0.001 0.108

OR: odds ratio; 95% ClI: 95% confidence interval; Model 1: No covariates were adjusted; Model 2:
Adjusted for age, gender, and race; Model 3: Adjusted for age, gender, race, BMI, education, marital
status, PIR, albumin, uric acid, hyperlipidemia, diabetes, alcohol consumption, hypertension, vigorous
activity, moderate activity, smoking, and eGFR.

https://doi.org/10.1371/journal.pone.0337104.t002

odds of albuminuria (Model 1: OR = 1.05; 95% CI: 1.02—1.08; Model 2: OR = 1.05; 95% CI: 1.02—-1.08; Model 3: OR =
1.14; 95% CI: 1.07-1.21). Smoothed curve fitting and threshold effect analysis conducted in the matched population (S3
Table and S1 Fig) confirmed that the U-shaped relationship between FSI and albuminuria persisted.

Sensitivity analyses

In sensitivity analyses, the U-shaped association between FSI and albuminuria remained significant after further adjust-
ment for hepatitis status and medication use (S4 Table and S2 Fig). A similar pattern was observed after excluding covari-
ates that overlapped with components of the FSI formula (S5 Table and S3 Fig).

Discussion

This extensive NHANES-based cross-sectional study identified a statistically significant association between the FSI and
albuminuria [12]. In fully adjusted models, higher FSI values were associated with increased odds of albuminuria (adjusted
OR =1.13; 95% CI: 1.09—-1.18). Notably, dose-response analysis revealed a U-shaped relationship, with an inflection
point at FSI= -3.22, indicating increased prevalence of albuminuria at both low and high FSI levels. This nonlinear
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Fig 2. Smooth curve fitting of FSI and albuminuria.

https://doi.org/10.1371/journal.pone.0337104.9002

Table 3. Threshold effects of FSI on albuminuria analyzed using linear regression models.

Adjusted OR (95% Cl), P-value
FSI vs Albuminuria
Fitting by the standard linear model 1.13 (1.09, 1.18) <0.001
Fitting by the two-piecewise linear model
FSI
Inflection point -3.22
FSI < -3.22 0.26 (0.19, 0.34) <0.001
FSI > -3.22 1.15(1.10, 1.20) <0.001
Log likelihood ratio <0.001

https://doi.org/10.1371/journal.pone.0337104.t003

association remained consistent after propensity score matching to control for potential confounders. These findings sug-
gest a complex relationship between FSI and early renal injury.

Our findings are broadly consistent with previous evidence linking NAFLD to kidney injury. For example, in the
Multi-Ethnic Study of Atherosclerosis (MESA), greater liver fat accumulation on computed tomography (CT) was asso-
ciated with an elevated risk of albuminuria. Among individuals without diabetes or hypertension, a 10-unit decrease in
liver CT attenuation, indicating increased hepatic fat, was linked to higher prevalence and incidence of albuminuria [13].
Similarly, a population-based study in China using the fatty liver index (FLI) observed a stepwise increase in albuminuria
across FLI quartiles. Participants in the highest quartile had a significantly greater risk of elevated albumin excretion than
those in the lowest quartile (OR = 2.30; 95% CI: 1.36-3.90) [14]. In both diabetic and non-diabetic populations, NAFLD
has been associated with an increased risk of albuminuria. For instance, among Korean patients with type 2 diabetes,
those with ultrasound-detected hepatic steatosis had a substantially higher prevalence of albuminuria (32.1% vs. 6.8%).
Moreover, steatosis was independently associated with albuminuria (adjusted OR = 1.88) [15]. Even among non-diabetic
men, NAFLD (defined as FLI>60) was associated with approximately twice the odds of low-grade albuminuria (OR = 2.3)
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Table 4. Subgroup analysis for the association between FSI and albuminuria.

Character OR (95% CI) P-value P for interaction
BMI 0.004
<30 1.04 (0.99, 1.10) 0.119

>= 30 1.15 (1.10, 1.20) <0.001

PIR 0.076
Below 1.3 1.09 (1.05, 1.15) <0.001

1.3-3.5 1.09 (1.05, 1.14) 0.000

Over 3.5 1.16 (1.10, 1.23) <0.001

Drink 0.204
Current drinkers 1.12 (1.08, 1.16) <0.001

Nondrinkers 1.06 (0.99, 1.13) 0.101

Former drinkers 1.10 (1.04,1.16) <0.001

Hypertension 0.001
Yes 1.05 (1.00, 1.10) 0.074

No 1.14 (1.10, 1.18) <0.001

Diabetes 0.123
Yes 1.08 (1.04, 1.13) <0.001

No 1.13 (1.08, 1.18) <0.001

Vigorous activity 0.892
Yes 1.10 (1.06, 1.15) <0.001

No 1.11 (1.06, 1.16) <0.001

Moderate activity 0.081
Yes 1.09 (1.05,1.13) <0.001

No 1.13 (1.09,1.19) <0.001

Gender 0.002
Male 1.17 (1.12, 1.22) <0.001

Female 1.05 (0.99, 1.10) 0.094

Smoke 0.448
Current smokers 1.13 (1.07, 1.18) <0.001

Nonsmokers 1.09 (1.05, 1.14) <0.001

Former smokers 1.12 (1.06,1.18) <0.001

Age 0.274
<60 1.04 (0.92, 1.17) 0.523

>=60 1.11 (1.07, 1.15) <0.001

Marital status 0.152
Married or living with partner 1.12 (1.08, 1.17) <0.001

Living alone 1.08 (1.04, 1.13) <0.001

Hyperlipidemia <0.001
Yes 1.02 (0.96, 1.08) 0.524

No 1.13 (1.09, 1.17) <0.001

OR: odds ratio; 95% Cl: 95% confidence interval; Age, gender, race, BMI, education, marital
status, PIR, albumin, UA, hyperlipidemia, diabetes, alcohol consumption, hypertension, vigorous

activity, moderate activity, smoking, and eGFR were adjusted.

https://doi.org/10.1371/journal.pone.0337104.t004
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[16]. Accordingly, our findings of a positive association between FSI and albuminuria in a nationally representative US
population complement and extend prior research.

The pattern of our findings—particularly the U-shaped association—echoes those from recent analyses examining
FSl in relation to renal outcomes. In an extensive NHANES-based study, Jiang et al. reported a curvilinear relationship
between FSI and CKD, with a similar inflection point (FSI=-3.21) [11]. Below this threshold, FSI was inversely associ-
ated with CKD risk (OR = 0.25), whereas a positive association was observed (OR = 1.19). The near-identical inflection
point (FSI=-3.22) suggests a potentially reproducible threshold in the relationship between steatosis and albuminuria.
This U-shaped pattern may partly explain the inconsistent findings in the literature regarding NAFLD and kidney disease.
For instance, a recent U.S. study reported that MAFLD alone was not significantly associated with albuminuria, whereas
elevated risk (OR = 1.73) was observed only in those with evidence of hepatic fibrosis [17]. In that study, advanced liver
disease—rather than simple steatosis—was the primary driver of renal risk; this aligns with our finding that the positive
association intensifies at higher FSI values.

The U-shaped association between FSI and albuminuria suggests the existence of two distinct risk phenotypes at the
lower and upper extremes of the FSI spectrum. FSl is calculated using age, sex, BMI, triglyceride levels, hypertension,
diabetes status, and the ALT to aspartate aminotransferase AST ratio. Accordingly, low FSI values (e.g., below —3.22) are
typically observed in lean (low BMI), non-hypertensive, non-diabetic, and often older or female. This phenotype does not
necessarily reflect good health. Instead, it may represent an “atypical low metabolic” state, such as sarcopenia, malnu-
trition, or frailty in older adults. Sarcopenia and malnutrition have been independently associated with an elevated risk of
albuminuria [18]. Glomerular barrier integrity may be compromised in such frail individuals, and microvascular regulation
may be impaired. For instance, impaired blood pressure regulation, such as orthostatic hypotension, is associated with
a 1.7-fold increased risk of albuminuria [19], and chronic reductions in renal perfusion or autoregulatory capacity may
contribute to glomerular injury [20]. Thus, individuals with low FSl—often frail or malnourished—may exhibit impaired
nephron integrity, hypotension, and diminished capillary support [21], all of which may contribute to albuminuria even in
the absence of traditional metabolic disorders [22].

In contrast, higher FSI values (i.e.,>-3.22) reflect the presence of multiple metabolic risk factors. These include ele-
vated BMI (overweight or obesity), high triglyceride levels, hypertension, diabetes, and increased ALT/AST ratios, which
reflect hepatic steatosis and insulin resistance. Collectively, these features characterize metabolic syndrome, a condition
well recognized to impair renal function [23]. Obesity and insulin resistance contribute to glomerular hyperfiltration and
intraglomerular hypertension, whereas chronic hypertension further elevates glomerular pressure and imposes mechan-
ical strain on the basement membrane [24]. Dyslipidemia (e.g., hypertriglyceridemia) and hepatic steatosis promote
systemic inflammation and endothelial dysfunction, whereas insulin resistance exacerbates oxidative stress. Insulin resis-
tance, particularly, is associated with chronic low-grade inflammation and contributes to hypertension, endothelial injury,
and dyslipidemia [25]. These pathophysiological processes compromise glomerular barrier function, leading to increased
permeability. In summary, at higher FSI levels, the cumulative burden of obesity, dyslipidemia, hypertension, and diabetes,
together with the pro-inflammatory state reflected by elevated ALT/AST ratios [26], synergistically contributes to glomeru-
lar injury and increased albuminuria.

Taken together, these considerations may help explain the U-shaped pattern: very low FSI identifies a low-BMlI/frail
subgroup prone to perfusion-related glomerular vulnerability, whereas very high FSI reflects classic metabolic syndrome
with its own injurious effects on the kidney. Both extremes, via different pathways, can ultimately increase albuminuria risk.

Our study has several strengths, including a large, nationally representative NHANES sample and multiple robustness
checks (multivariable adjustment and propensity score matching). Nonetheless, important limitations merit emphasis.
First, the cross-sectional design precludes causal inference; the observed association between FSI and albuminuria may
reflect reverse causation or shared determinants rather than a directional effect. Second, albuminuria was assessed from
a single spot urine sample and can be influenced by short-term factors (e.g., recent exercise, fever/infection, hydration),
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so persistence could not be confirmed. Third, despite extensive adjustment, residual confounding is likely, particularly from
unmeasured or imprecisely measured lifestyle and inflammatory factors (e.g., dietary patterns and low-grade systemic
inflammation). Finally, because some covariates considered for adjustment may overlap with components used to con-
struct FSI, partial overadjustment and collinearity are possible; such bias would generally attenuate the estimated associ-
ations. These caveats should be considered when interpreting our findings.

Our findings suggest that FSI, calculated from routine clinical variables, might help identify individuals at elevated risk
of kidney injury. Albuminuria is a recognized early marker of renal and cardiovascular disease, so FSl is a readily available
score that may aid risk stratification and early identification. Since FSI is computed from standard metrics (age, BMI, TG,
ALT, AST, diabetes, and hypertension status), it could be integrated into clinical practice without additional testing. In the
future, prospective studies should examine whether baseline FSI predicts incident albuminuria. Moreover, mechanistic
research is needed to clarify how steatosis-related factors contribute to glomerular damage. For example, whether inter-
ventions that control FSI (through weight loss, lipid control, or glycemic management) also reduce albuminuria risk would
be a valuable question.

Conclusions

Our study highlights the complex relationship between FSI and albuminuria in the general US population. Nonlinear anal-
yses further revealed that this relationship is U-shaped, revealing that controlling FSI to a specific range may help reduce
the risk of early kidney damage and provide valuable insights for future interventions.
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