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Abstract

This study proposes a “wave-particle duality” model for corporate financial indicators,
which jointly characterizes the continuous fluctuations and discrete jumps of ROE
(Return on Equity) and ROA (Return on Assets) in China’s A-share manufacturing
firms. Using a panel of 805 listed manufacturers from 2009 to 2024, we document
pronounced heavy tails and jump activity in both indicators; Kolmogorov—Smirnov
tests strongly reject the null hypothesis of normality. Discrete-time difference-equation
specifications for ROE and ROA further show that linear models relying only on tradi-
tional moments (means and standard deviations) together with jump rates are inade-
quate to capture extreme variation. When we augment the model with the Euclidean
norm of each firm’s financial-indicator vector over the preceding five years, the norm
is significantly negatively associated with next-year ROE, and the multivariate linear
regression yields an adjusted R? of 0.430. This implies that historical extremes, vol-
atility, and means of first differences carry meaningful explanatory power for subse-
quent corporate performance. Case-based subgroup analyses indicate that jumps

in ROE are largely tied to strategic realignment and industry cycles, whereas ROA

is more susceptible to one-off gains and losses and to shifts in accounting policy.
Overall, the results provide a unified theoretical framework and empirical evidence to
support risk identification and the pursuit of high-quality corporate development.

1. Introduction

The dynamic evolution of corporate financial metrics lies at the heart of financial and
accounting research, driving performance evaluation, risk early warning, and cap-
ital market decision-making [1,2] Traditional approaches, reliant on static ratios or
linear time series models [3], are inadequate for capturing the extreme fluctuations
and abrupt jumps in Chinese A-share manufacturing firms triggered by policy inter-
ventions—such as supply-side reforms and environmental regulations—or industry
cycles [4]. To bridge this gap, scholars have developed advanced tools, including
GARCH and jump diffusion models [5,6]. Yet, these models, often premised on
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continuity, fail to unify the continuous fluctuations and discrete jumps inherent in
financial metrics. Machine learning techniques, while enhancing anomaly detection,
remain limited in elucidating policy-driven extreme risks [7].

To address this theoretical limitation, this study introduces the wave-particle duality
paradigm as a conceptual and empirical bridge between continuous and discon-
tinuous financial phenomena. We explicitly interpret ROA as capturing continuous
operational efficiency and ROE as capturing leverage and valuation-sensitive dis-
continuities, thereby motivating the joint analysis of ROA and ROE within a unified
theoretical and empirical framework. This approach posits that corporate financial
indicators, particularly ROA and ROE behave like dual entities—exhibiting both
“wave-like” smooth fluctuations and “particle-like” abrupt transitions in response to
policy shocks or strategic realignments.

Inspired by the “wave-particle duality” paradigm in quantum physics [8] and
informed by quantum finance methodologies [9], this study pioneers a “wave-particle
duality” framework for financial metrics, seamlessly integrating the continuous fluctu-
ations and policy-driven jumps of Return on Equity (ROE). Analyzing a sample of Chi-
nese A-share manufacturing firms from 2009 to 2024, this research combines jump
diffusion models with local scale detection to rigorously explore the complex dynam-
ics of financial metrics and their risk drivers. This work expands the scope to 805
Chinese A-share listed manufacturing companies, covering multiple industries and 15
years of transitions, providing a broader test of the wave-particle duality model.

To strengthen theoretical grounding, we also integrate recent findings, such as
Alharbr et al [10], which examine climate policy uncertainty and nonlinear finan-
cial dynamics, and Ait-Sahalia & Jacod (2012) jump and volatility components
in-frequency data [11,12]. These works support the necessity of incorporating both
continuity and discontinuity in financial modeling frameworks.

These findings establish a robust theoretical and empirical foundation for sus-
tainable corporate development and evidence-based policy formulation. The study
addresses the following questions:

* Do ROE and ROA in Chinese A-share manufacturing firms exhibit both continuous
fluctuations and policy-driven jumps?

* How can a theoretical model unify the dynamics of ROE and ROA?
» Are ROE fluctuations aligned with macroeconomic cycles, such as GDP growth?

* How can the wave-particle duality framework predict ROE and ROA to inform risk
management?

Based on these questions, we proposed two hypotheses:

H1: Corporate financial performance exhibits both wave-like (continuous) and
particle-like (discrete) dynamics that jointly explain variations in profitability (ROA
and ROE).

H2: A combined model incorporating both ROA and ROE achieves higher explanatory
power than models using a single performance indicator alone.
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These hypotheses operationalize the theoretical bridge between quantum-inspired dualism and firm-level financial
modeling. They also establish the foundation for exploring how firms oscillate between long-term continuity and short-term
disruption—how waves of stability are periodically interrupted by the particles of change (see Fig 1).

Contributions: (1) Pioneering the “wave-particle duality” theory to integrate continuous fluctuations and jumps; (2)
Developing a predictive model leveraging the Euclidean norm; (3) Providing innovative theoretical and practical insights
for corporate risk monitoring and policy design.

2. Literature review
2.1. Mainstream theories and methods for dynamic financial indicator modeling

Adjusted Return on Equity (ROE), defined as net profit excluding non-recurring items divided by average equity, is a
pivotal metric for evaluating corporate profitability and capital efficiency. Early studies employed static financial ratios and
discriminant models, such as Altman’s (1968) Z-score, to assess financial health but struggled to capture ROE’s temporal
dynamics [13]. The advent of time series analysis marked a paradigm shift: Engle’s (1982) ARCH model and Bollerslev’s
(1986) [14] GARCH extension provided robust frameworks for modeling financial indicator volatility, widely applied in Chi-
na’s A-share market [12]. Vector autoregression (VAR) and cointegration models further elucidated the dynamic interplay
between ROE and macroeconomic variables, such as GDP growth and interest rates [15]. In Chinese A-share manufac-
turing firms, ROE fluctuations are shaped by industry cycles and policy interventions, including government subsidies and
supply-side reforms. Multivariate GARCH models effectively capture cross-indicator and cross-industry dependencies
[16,17]. Rahman and Zhu (2024) [15] demonstrated the scalability of high-dimensional dynamic modeling for financial
distress prediction in Chinese listed firms from 2014 to 2022, integrating machine learning techniques—random forests,
bagging, and AdaBoost—with 27 financial indicators. However, these models often assume stationarity and linearity, lim-
iting their ability to capture nonlinear dynamics and abrupt jumps in financial data. Empirical evidence from 2010 to 2024
indicates an average ROA jump frequency of approximately 7% in Chinese manufacturing firms, driven by policy shocks
and major asset restructurings. While nonlinear models, such as threshold GARCH, offer incremental improvements, they
remain inadequate for addressing the multi-scale nonstationarity and extreme events inherent in ROE dynamics [18].

In addition, recent post-2020 literature provides new evidence that policy and environmental uncertainty induce non-
linear responses and jump-like dynamics in corporate financial indicators (e.g., Alharbi et al., 2025; Ait-Sahalia & Jacod,
2012), which supports extending analysis beyond purely continuous models.

2.2. Theoretical advances in jump dynamics and anomalous events

Jump diffusion models, integrating Brownian motion with Poisson jump processes, have markedly improved the modeling
of abrupt changes in financial metrics [19,20]. Nonparametric jump detection methods have validated the role of jumps in

Wave Dynamics (ROA)
-Continuous operational efficiency (flow)

Firm Performance

T

Particle Dynamics (ROE)
-Discrete strategic or market-induced shocks
operational efficiency (flow)

Fig 1. Hypothetical framework illustrating the wave—particle duality of corporate financial metrics.

https://doi.org/10.1371/journal.pone.0336976.9001
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risk transmission, particularly within highly interconnected supply chains [21,22]. Against this backdrop, Cao et al. (2024)
[23] proposed combining Al with alternative data for anomaly detection and jump identification, offering a novel approach
to capturing policy-driven ROE anomalies. In Chinese A-share manufacturing firms, jumps are frequently triggered by
mergers, policy interventions, or major asset restructurings, with impairment provisions serving as a key driver of ROE
jumps. For instance, in 2015, firm 600724.SH experienced a precipitous ROE decline due to substantial impairment pro-
visions amid a real estate market downturn (see its 2015 annual report). Conversely, in 2016, firm 000813.SZ achieved
a dramatic ROE surge by divesting its textile and mining operations and acquiring 100% of Jialin Pharmaceutical, transi-
tioning to the pharmaceutical sector (see its 2016 annual report). Supply-side reforms and early environmental policies
(e.g., “dual carbon” goals) in 2015-2016 amplified ROE jumps, with policy support boosting profitability in restructured
firms while constraining high-energy industries. However, existing jump diffusion studies primarily focus on high-frequency
financial data, offering limited insights into jumps driven by restructurings or policy factors. Models integrating micro-level
governance and macro-level policy remain scarce, underscoring the need for hybrid frameworks.

Accordingly, we interpret jump diffusion as representing the “particle” channel of financial motion—capturing discrete
restructuring and policy shocks—and later integrate it with a continuous “wave” channel that tracks operational stability,
forming the foundation of the wave—particle duality framework. We also note that, although prior literature establishes cor-
relations between macroeconomic events and jump intensity, formal causal testing using instrumental-variable or event-
study approaches remains rare and is identified as a direction for future work.

2.3. Interdisciplinary and complex systems approaches in financial analysis

Complex systems theory provides a novel lens for modeling ROE dynamics. Barabasi and Albert’s (1999) [24] complex
network theory highlights the interconnectedness of ROE with upstream and downstream firms, industry policies, and
macroeconomic conditions [25]. Arthur”’s (1999) [26] complex economics framework emphasizes the nonlinearity of
economic systems, inspiring analyses of emergent ROE behaviors. Du and Zhang (2022) [27] empirically demonstrated
that digital transformation and supply chain repositioning significantly enhance the performance of Chinese manufacturing
firms, underscoring the impact of structural factors on ROE fluctuations. The quantum physics concept of “wave-particle
duality” offers a theoretical foundation for unifying ROE’s continuous fluctuations and jumps [28]. This study defines the
ROE vector norm, constructed from the mean, standard deviation, and change rate of ROE over a five-year window,
expressed as a Euclidean norm, to predict the subsequent year’s ROE range. This aligns with Baaquie’s (2010) propo-
sition that vector norms can quantify multidimensional financial metrics and echoes Haven and Khrennikov’s (2016) [29]
emphasis on the utility of Euclidean norms for integrating multidimensional features. However, empirical validation of fifth-
year ROE range prediction remains an unexplored frontier.

To strengthen the cross-disciplinary grounding, we connect quantum-inspired duality with complex adaptive systems:
ROA operationalizes the continuous “learning and optimization” process (wave), whereas ROE operationalizes discrete
“strategic reconfiguration” events under shocks (particle), providing a coherent mapping from physical duality to firm-level
dynamics.

2.4. Advances and challenges in machine learning for financial modeling

Machine learning has advanced financial modeling by addressing high-dimensional, nonlinear data. Random forests and
gradient boosting machines excel in predicting financial distress and multidimensional financial metrics, including jumps
triggered by restructurings, in Chinese A-share manufacturing firms [30]. Long Short-Term Memory (LSTM) networks
adeptly capture temporal dependencies in financial time series [31]. Quantum Support Vector Machines (QSVM) show
promise for range prediction based on financial metric vector norms [32]. However, the heterogeneous nature of ROE
jumps, particularly those driven by policy or restructuring, poses significant predictive challenges. Machine learning mod-
els prioritize predictive accuracy but often lack interpretability regarding jump mechanisms [33]. Interpretable methods,
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such as SHAP and attention mechanisms, have made strides [34,35], yet their application to restructuring-driven jumps
remains limited. Nayebi et al. (2022) [36] introduced the WindowSHAP framework, which generates Shapley values
through time-window segmentation, enabling precise localization and interpretation of jump behaviors in time series,

with potential applications in financial indicator anomaly analysis. Developing models that balance predictive power and
interpretability, particularly for range prediction using five-year ROE vector norms, remains a critical challenge. In line with
reviewer recommendations on practical relevance, we highlight that interpretable machine-learning models—when inte-
grated with the wave—particle mapping (ROA as wave; ROE/jumps as particle)}—can enhance early-warning systems and
policy monitoring for listed firms, thus linking methodological innovation to regulatory application.

2.5. Research gaps and significance

Existing literature exhibits several limitations that hinder a comprehensive understanding of the dynamic evolution of cor-
porate financial metrics:

(1) Limitations in Dynamic Modeling: Traditional models (e.g., GARCH, VAR) struggle to unify the continuous fluctua-
tions and anomalous volatility of ROE or ROA. Data from Chinese A-share manufacturing firms (2010-2024) indicate
that approximately 7% of ROA anomalies (e.g., firm 600518.SH’s sharp ROE fluctuations in 2018 due to asset restruc-
turing) cannot be adequately captured by linear models, particularly under multi-scale nonstationarity and extreme
event scenarios.

(2) Insufficient Explanation of Jump Mechanisms: Jump diffusion studies primarily focus on high-frequency financial
market data, lacking systematic analyses of ROE anomalies in Chinese manufacturing firms, especially those integrat-
ing micro-level governance and macro-level policy factors.

(3) Empirical Gaps in Interdisciplinary Applications: While quantum-inspired “wave-particle duality” and Euclidean norm
approaches hold theoretical promise, empirical validation for Chinese manufacturing ROE or ROA remains absent.

Significance:

(1) Theoretical Innovation: Proposing a “wave-particle duality” framework that integrates jump diffusion models with
local scale detection to unify the continuous fluctuations and anomalous volatility of ROE.

(2) Empirical Significance: Leveraging data from 805 Chinese A-share manufacturing firms (2009-2024), this study
develops a predictive model based on the Euclidean norm of five-year ROE mean, standard deviation, and change
rate (adjusted R2=0.430), validating the driving mechanisms of policy shocks (e.g., 2015 deleveraging) and core busi-
ness transformations on ROE anomalies.

(3) Practical Implications: Offering data-driven tools for corporate risk management, revealing a negative correlation
between ROE anomalies and macroeconomic cycles, and proposing dynamic monitoring of jump signals and capital
structure optimization to provide regulators with new perspectives for industry risk early warning.

3. Theoretical model derivation

Traditional financial theory models asset prices as continuous diffusion processes, such as geometric Brownian motion [36]:
th = ,U,tdt + Jtth,
where 1, denotes the instantaneous drift rate, o the volatility, and W; a standard Brownian motion. Cont (2001) high-

lighted that financial data exhibit fat-tail distributions and jumps, which traditional models struggle to capture. To address
this, jump diffusion models (Merton, 1976) incorporate a Poisson jump process:
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ARt = (e — AE [v4]) dt + o dW; + vidNy, (1)

where v; represents the jump magnitude, dN; the Poisson process, A the jump intensity, and E [v¢] the expected jump
magnitude, compensating for the jump’s contribution to drift to ensure model unbiasedness. This study proposes a “wave-
particle duality” framework, extending Merton’s (1976) model by capturing fat-tail characteristics through a Student’s
t-distribution and identifying policy-driven jumps via local scale detection (z-score), tailored to the annual financial data of
Chinese A-share manufacturing firms.

To adapt to discrete annual data, we integrate over the time interval [t—1, f], defining:

ARt = Rt— R,

yielding:

AN

t t
ARy = / (ur=AE [v/]) dr+ / o dW, + Z Vr,
1 1 pa (2)

where A denotes the number of jumps in [t— 1, ] and v, the magnitude of the r-th jump. Assuming p, =~ ', or = o1, and
E[v,] ~ E[v4] as approximately constant over the interval, with a time step At = 1 (year), we approximate:

ARt ~ (‘Ltlt bl )\E [V[]) + Ot€t + I[Vt, (3)

where:

* ¢ represents the standardized random disturbance from ftt_l dW,, modeled with a Student’s t-distribution (f(v)) to capture
the prevalent fat-fail characteristics in financial data.

* It is a jump indicator, equaling 1 if a jump is detected in the interval and 0 otherwise.
* v; denotes the actual jump magnitude when a jump occurs.

In practice, only the average change over [t—1, {] can be estimated, so we define:
Uy = ,LL,t - )\E [Vt]

as the “net drift” parameter, absorbing the jump expectation’s effect on the continuous drift. Thus, Eq (3) simplifies to:

ARt = us+opes + vy, t=1,2,...,15. 4)

where:
 u; represents the average change in R (net drift, adjusted for jump expectation) over [t-1, {].
g denotes the local volatility (standard deviation) from continuous random fluctuations.
V= m%, the jump magnitude or change rate at time .

Compared to traditional diffusion models:

ARy = Ut + ogeq, € ~ N(0,1). (5)
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Which overlook jumps and fat-tail characteristics, the proposed wave-particle duality model incorporates the discrete
jump term /vy and employs a Student’s t-distribution for continuous disturbances. This enables the model to capture both
the continuous small-scale fluctuations of normal operations and the abrupt jumps induced by external shocks or internal
transformations (see Section 4 for empirical analysis). This approach mirrors the wave-particle duality in physics, where a
system exhibits both continuous wave-like behavior and discrete particle-like effects, jointly shaping its dynamics [37].
From theory to empirics, reconstructing parameters by absorbing the jump expectation into u; is a standard and mathe-
matically consistent approach, facilitating direct fitting and estimation for annual discrete data. Moreover, Lee and Mykland
(2008) provided robust evidence of pervasive jumps and fat tails in financial data, supporting the inclusion of the /;v; term.
In summary, the discrete-time model proposed in this study:

ARt = Ut + orer + vy, €t ~ H(v). (6)

Eq (6) is a rigorous derivation from continuous-time theory and its discretization. By incorporating jump components and
fat-tail random disturbances, it effectively captures the “wave-particle duality” of financial metrics, accurately reflecting
both continuous fluctuations and anomalous jumps in a discrete data environment.

This discrete-time specification inherently operates at the annual frequency of accounting data. While this temporal res-
olution constrains the capture of intra-year shocks, it remains suitable for evaluating long-horizon policy and restructuring
restructuring-driven jump dynamics.

4. Empirical analysis
4.1. Data sources and descriptive statistics

This study uses a sample of 805 manufacturing firms listed on the Shanghai and Shenzhen A-share markets before
December 31, 2009, covering the period from 2009 to 2024. Firms classified as ST, *ST, or delisted were excluded.

Raw ROE data were sourced from the WIND database. To address outliers, we applied Winsorization, truncating values
beyond the 1st and 99th percentiles to their respective thresholds, preserving all records. Cross-sectional descriptive sta-
tistics for key variables are presented in Table 1.

Table 1 reveals that all variables exhibit Shapiro-Wilk p-values of 0, strongly rejecting the normality assumption. Nota-
bly, I;v; is predominantly zero but includes extreme outliers, resulting in pronounced skewness and kurtosis. The variable
us displays negative values and fat tails, reflecting extreme performance disparities among a subset of firms. The high
variability of oy underscores significant heterogeneity in firm performance within the industry. Similarly, ARy, representing
actual return changes, shows fat tails and a slight right skew, indicating frequent extreme events. Based on the overall
description in Table 1, we further perform the KS test of the two in the process of fitting model (6): for /;v¢, the KS statistic
(D) is 0.678 with a p-value of 0.0; for ARy, the KS statistic is 0.346 with a p-value of 2.57 x 107'%, Both variables decisively
reject normality, with /;v; exhibiting the most significant deviation.

For visual clarity, Q-Q plots of /;v; are presented in Fig 2.

The Q-Q plot for AR; is presented in Fig 3.

Table 1. Descriptive Statistics of Key Variables in Eq (6).

Variable Mean Median Std. Dev. Skewness Kurtosis Min Max Shapiro-Wilk p
Ut 2.66 4.52 16.57 -3.11 17.48 -153.66 53.43 0

ot 3.87 1.50 7.76 5.51 40.98 0.00045 104.63 0

Iy -0.91 0 31.51 -64.79 5507 -2821.05 685.09 0

ARy -0.3 -0.20 17.33 1.1 33.34 -201.95 209.25 0
https://doi.org/10.1371/journal.pone.0336976.t001
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Fig 2. Q-Q Plot of /;v;. Note: The Q-Q plot of the jump term /;v;in Fig 2 reveal that most values cluster around zero, with rare extreme outliers highlight-

ing the pronounced non-normality and heavy-tailed characteristics of ROE sequences in firms. This pattern underscores the rarity but substantial impact
of jump shocks, consistent with real-world financial market dynamics.

https://doi.org/10.1371/journal.pone.0336976.9002

AR: Q-Q Plot
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Theoretical Quantiles
Fig 3. Q-Q Plot of AR;. Note: Fig 3 illustrates a significant deviation of the empirical distribution of AR (the annual change in ROE over the interval
[t—1, ]) from normality, particularly exhibiting pronounced heavy-tailed characteristics at both ends of the distribution. While most observations cluster
within the central range, substantial extreme outliers appear at the head and tail. This pattern underscores frequent sharp fluctuations and extreme
events in the annual ROE changes of manufacturing firms, challenging the traditional normality assumption and providing direct evidence for adopting a
model with heavy-tailed distributions and jump components.

https://doi.org/10.1371/journal.pone.0336976.9003

4.2. Goodness-of-fit testing

Using 2009 (t=0) as the base year and 2024 (t=15) as the end year, we calculate the ROE mean uy, volatility oy, and jump
magnitude v; for each firm over the interval [t—1, f] (t=1,2,...,15). The following multi-step procedure is employed to fit and

test Eq (6):

» Compute the change rate v; for each period (t=1, 2, ..., 15).
 Calculate us and oy for each firm over the interval [t-1, {].

* ldentify anomalous changes to determine the jump indicator I, set to 1 when the z-score (using local scale over [0, f])
exceeds the threshold (2.0 or 2.5) and 0 otherwise.

+ Estimate the model, specifying the heavy-tailed distribution (e.g., Student’s t-distribution) for the disturbance term ¢, and
fit the final model.
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Based on the calculations from the first three steps, Eq (6) is reformulated as follows:

Using the fitted value:

Et
Ot

APt = Us + hv;

. ARt — Ut — ItVt

where the noise term is omitted, relying solely on theoretical components for prediction. The goodness-of-fit test results for

Eq (6) are presented in Table 2.

The results in Table 2 indicate the following:

(1) Negative R? values and high MSE suggest poor model fit. Increasing the threshold to z=2.5 slightly improves perfor-

mance, but the model still fails to capture extreme fluctuations.

(2) Residuals exhibit severe deviations from normality, with substantial skewness and kurtosis, indicating frequent

extreme errors.

(3) The KS p-values for the t-distribution of the disturbance term &; are extremely low, with degrees of freedom slightly
above 1 (but below 2), confirming heavy-tailed residuals. While the t-distribution fit is reasonable, it cannot fully

account for extreme values.

(4) The Laplace distribution KS p-values are near zero, rendering it unsuitable for capturing heavy-tailed residuals. Even
at a threshold of z=2.5, the degrees of freedom for the {-distribution increase by only 0.03, indicating that Eq (6) strug-
gles to adequately fit the actual AR, changes.

This poor fit likely stems from the extreme heterogeneity and unpredictability of ROE changes, where linear theoreti-
cal components uy, oy, and lyv; fail to capture most extreme fluctuations. The model’s limitations are exacerbated by the
irregular, policy-driven nature of ROE dynamics (e.g., the 2015 supply-side reforms), which exceeds the capacity of linear
models. This suggests the need for nonlinear methods or additional variables in the modeling process. To address this,

Table 2. Goodness-of-Fit Test Results for Eq (6) on ROE.

Metric z=2.0 z=2.5

R? -4.11 -1.71
MSE 1535.72 813.93
Residual Mean -2.05 -2.40
Residual Median -5.20 -5.30
Residual Standard Deviation 39.13 28.43
Residual Skewness 33.89 (Extreme Right Skew) 10.81
Residual Kurtosis 2232.65 (Extreme Heavy Tail) 266.71
Residual Minimum -669.58 -121.55
Residual Maximum 2791.98 966.67
Residual Normality KS p 0.00 0.00

¢t t Distribution KS p 1.06x10-° 9.07x10-7
¢ t Distribution Degrees of Freedom 1.52 1.55
Laplace Distribution KS p 4.92x10-™ 1.08x10-¢8

https://doi.org/10.1371/journal.pone.0336976.t002
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we propose an alternative approach: incorporating the ROE difference term as a factor in a predictive model and exploring
the feasibility of constructing a model based on the Euclidean norm of other ROE-related factors over the prior five years.

4.3. Forecasting the distribution and target value of next-period financial metrics

To predict the distribution characteristics of ROE in year t, based on the triple sources of ROE differences in Eq (6), we
calculate the mean u, standard deviation o, and the mean of the ROE change rate v over the prior five years (t-5 to t—1)
for each firm. This yields the matrix R’, for the i-th firm in year t-th, as defined in Eq (7).

Uss 0ts Vis
; Uy 0ty Vig
R = U 0p3 Via ,i=1,2,...,805
Uy 01y Vip
Uq Oiq Vi (7)

The norm of the matrix R} is defined as:

i —2 —2 ]
IR = @7+ @)+ D= 1,2,.... 805 o

where Uf ;f, and ?, represent the means of the respective columns of the matrix Rf in Eq (7). Given the large magnitude
of || R; l, we apply a logarithmic transformation for ease of interpretation. For t=2024, we compute the logarithm of the
norm, Log(|| Rbg24 ||), based on the prior five years (2019-2023) for each firm and analyze whether the distribution of
these logarithmic norms across all firms exhibits any pattern. The firms are sorted in ascending order by Log(]|| R"2024 )}
and grouped into quartiles (lower quartile, median, upper quartile, and top quarter) using a data-driven rule. The results
are presented in Table 3.

Table 3 shows that, after sorting the logarithmic norms of the 805 firms’ matrices (2019-2023) into four ascending
groups, the median and mean actual ROE values for 2024 decrease monotonically across the groups. This suggests
that a larger norm of financial metrics over the prior five years is associated with greater risk concentration (likely due to
increased volatility and jumpiness), leading to a decline in the subsequent year’s firm performance, as reflected by lower
ROE. These findings indicate that incorporating the norm of financial metrics into predictive models may hold statistical
significance. Furthermore, for investment practice, selecting firms with norms below the median over the prior five years
appears to be a prudent strategy.

To predict 2024 ROE, based on Eq (6) and the analysis in Table 3, this study constructs a multiple linear regression
model using the mean, standard deviation, and mean change rate of ROE over the prior five years as independent vari-
ables, with the actual 2024 ROE as the dependent variable. The variables are detailed in Table 4.

To construct the regression model

Table 3. Predicted ROE Distribution Characteristics for 2024.

Group Sample Size Log( || Rag24 ||) Range Median/Mean Actual ROE in 2024
1 207 [0.01, 1.24] 5.59/5.04

2 199 [1.25, 1.65] 3.61/3.61

3 199 [1.66, 2.19] 1.92/-3.85

4 200 [2.20, 4.29] 0.58/-9.16

https://doi.org/10.1371/journal.pone.0336976.t003
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Table 4. Variable Names and Descriptions.

Variable Description Variable Description Variable Description

Name Name Name

R u Mean ROE over the prior Vu Mean of ROE change rate V over AR u Mean of ROE differences over
5 years the prior 5 years the prior 5 years

Ro Standard deviation of ROE V_o Standard deviation of ROE change AR o Standard deviation of ROE dif-
over the prior 5 years rate V over the prior 5 years ferences over the prior 5 years

R_max Maximum ROE over the V _max Maximum of ROE change rate V AR_ Maximum of ROE differences
prior 5 years over the prior 5 years max over the prior 5 years

R_min Minimum ROE over the V _min Minimum of ROE change rate V AR_ min Minimum of ROE differences
prior 5 years over the prior 5 years over the prior 5 years

R_norm Euclidean norm of R_u, R_o, and V_u over the prior 5 years

https://doi.org/10.1371/journal.pone.0336976.t004

ROE/ROA =00+ P1 xR U+ pPox R _max+ s x R_min+ B4 xR o+ s x V_u+ e xV_o
+ B7 x V_max + g x V_min + Bg x AR, + P10 X AR, + B11 x AR_max + 12 x AR_min
+ B13 x Norm 9)

Using stepwise regression to eliminate collinear variables, the resulting model is:

ROE =0.118 4+ 0.650 x R_max—1.024 x R_o—0.001 x R_norm + 1.348 x AR_u (10)

The statistical significance of the regression coefficients in Eq (10) is presented in Table 5. All primary independent vari-
ables have p<0.05, indicating strong model significance. The adjusted R? is 0.430, suggesting a moderately high good-
ness of fit.

Table 5 indicates that the regression coefficients for the maximum ROE over the prior five years (R_max) and the mean
of ROE differences (AR_u) are positive at 0.650 and 1.348, respectively, suggesting that higher historical ROE extremes
and average differences contribute to an elevated ROE in 2024. Conversely, the coefficients for the standard deviation of
ROE R_o) and the Euclidean norm (R_norm) are negative at —1.024 and —0.001, respectively, indicating that increased
profitability volatility and norm magnitude lead to a decline in 2024 ROE.

The coefficient of determination for Eq (10) is R?=0.433, with an adjusted R?=0.430, implying that the model explains
approximately 43% of the variance in 2024 ROE, demonstrating strong statistical explanatory power. The 95% confi-
dence intervals for all regression coefficients exclude zero, further confirming the significance of the four independent
variables. Although the adjusted R? (0.43) is moderate, it is consistent with prior studies on financial indicator dynamics
under policy—induced uncertainty and reflects the intrinsic complexity of ROE/ROA co-movements. Overall, these regres-
sion results suggest that historical profitability extremes, volatility, and structural characteristics have predictive power for
next-period ROE.

Table 5. ROE Regression Results.

Variable Description Coef. Std. Err. t p 95% Confidence Interval
Intercept 0.118 0.854 0.138 0.89 [-1.56, 1.79]

R_max Maximum ROE over the prior 5 years 0.650 0.047 13.71 <0.0001 [0.56, 0.74]

Ro Standard deviation of ROE over the prior 5 years -1.024 0.057 -17.90 <0.0001 [-1.14, -0.91]

R_norm Euclidean norm of R_u, R_o, and V_u over the prior 5 years -0.001 0.00043 -2.32 0.021 [-0.00186, -0.00015]

AR u Mean of ROE differences over the prior 5 years 1.348 0.098 13.76 <0.0001 [1.16, 1.54]

https://doi.org/10.1371/journal.pone.0336976.t005
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Additionally, multicollinearity diagnostics using the Variance Inflation Factor (VIF) show values of 1.37, 1.50, 1.09, and

1.03 for R_max, R_o, R_norm, and AR _u, respectively. All VIF values are well below 10, indicating no multicollinearity

issues. The Shapiro-Wilk test yields a statistic of 0.714 with a p-value of 6.66 x 1072 (far below 0.05), confirming that the

residual distribution significantly deviates from normality. The Q-Q plot of residuals for Eq (10) is presented in Fig 4.

4.4. Robustness checks

Replicating the same analysis for ROA, the results show a slightly inferior goodness of fit compared to the ROE model,
with R? remaining negative, as presented in Table 6.
Table 2 and Table 6 reveal that the residual distributions of both models exhibit pronounced heavy-tailed characteristics
and poor normality. The ROE model displays particularly pronounced positive skewness, while the ROA model shows
extreme negative outliers. The t-distribution degrees of freedom for both models are below 2, indicating extreme heavy

tails, and the Laplace distribution fits poorly, suggesting that extreme events are prevalent in corporate financial data,
rendering traditional linear models inadequate for modeling extreme risks.

Q-Q Plot of Residuals
100

75
50
251

—25}

Ordered Values

_50 -
_75 -
—100} *.

=3 -2 -1 o 1 2
Theoretical quantiles

Fig 4. Q-Q Plot of Residuals for Eq (6). Note: In Fig 4, the residual distribution exhibits significant deviations from the diagonal line at both ends, char-
acterized by pronounced curvature and divergence. This pattern indicates a heavy-tailed and skewed residual distribution, confirming non-normality.

https://doi.org/10.1371/journal.pone.0336976.9004

Table 6. Goodness-of-Fit Test Results for Eq (6) on ROA.

Metric z=2.0 z=25

R? -2.82 -2.13
MSE 154.96 127.29
Residual Mean -22.64 -22.67
Residual Median -3.52 -3.51
Residual Standard Deviation 263.40 263.39
Residual Skewness -40.50 -40.50
Residual Kurtosis 2052.17 2052.30
Residual Minimum -16549.14 -16549.14
Residual Maximum 947.92 947.92
Residual Normality KS p 0.00 0.00

¢ t Distribution KS p 6.27 x10-24 3.59x10-2%
¢ t Distribution Degrees of Freedom 0.92 0.92
Laplace Distribution KS p 0.00 0.00

https://doi.org/10.1371/journal.pone.0336976.t006
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Subsequently, using the same variables as in Table 4 and Eq (9), with collinear variables removed, the regression
results are:

ROA =-0.436+0.703 x R_u+0.952 x AR _u (11)

The statistical results for the regression coefficients in Eq (11) are presented in Table 6. All primary independent variables
have p<0.05, indicating strong significance. The adjusted R? is 0.431, suggesting a moderately high goodness of fit. The
Durbin-Watson statistic is 2.040, confirming no residual autocorrelation, as shown in Table 7.

Multicollinearity diagnostics using the Variance Inflation Factor (VIF) indicate values of 1.00 for both R_u and AR_u,
confirming no multicollinearity. The Shapiro-Wilk test yields a statistic of 0.907 with a p-value of 9.94 x 10-%2, far below
0.05, indicating that the residual distribution significantly deviates from normality, exhibiting skewness and heavy-tailed
characteristics, consistent with the ROE model results.

Overall, the goodness of fit for the ROE and ROA models is comparable, though the ROE model is structurally more
complex. Both models’ residuals significantly deviate from normality, with extremely small Shapiro-Wilk p-values, confirm-
ing prevalent heavy tails and extreme risks. Consequently, ROA volatility can be modeled more readily using core vari-
ables, whereas ROE volatility, influenced by multiple complex factors, requires more flexible risk management strategies.

4.5. Jump heterogeneity analysis of ROE and ROA at the same threshold

For both ROE and ROA, when the threshold increases from 2.0 to 2.5, the change in goodness of fit for Eq (6) shows no
significant variation, with notable differences only between predictive Egs (10) and (11), where the number of independent
variables decreases from four to two. This suggests that forecasting ROE requires more characteristic variables.

To further explore this, we take the threshold of 2.0 as a baseline and analyze the jump heterogeneity of ROE and
ROA, supplemented by a comparative analysis of several ROE case studies at the same threshold. Table 8 presents the
jump statistics for ROE and ROA at the same threshold.

Table 8 shows that, from 2010 to 2024, across 805 firms, ROA exhibits 130 more jumps than ROE, primarily due to
differences in their calculation formulas. Specifically:

(1) ROE: The numerator is net profit after excluding non-recurring gains and losses, with jumps often driven by business
model shifts, industry cycles, or abrupt changes in capital structure. The denominator, net assets, is sensitive to lever-
age, leading to extreme positive or negative values. Jumps manifest as large magnitudes in extreme years but with
relatively lower frequency.

(2) ROA: The numerator includes total net profit, susceptible to one-off gains and losses. Jumps are typically triggered
by non-recurring events, changes in accounting policies, or external sporadic factors. The denominator, average total
assets, is larger and more stable, resulting in smaller jump magnitudes but higher frequency and pronounced heavy-
tailed behavior.

To elucidate the jump heterogeneity of ROE and ROA at the same threshold, we select the three firms with the highest
jump counts (five for ROE and four for ROA among 805 firms from 2010 to 2024) and analyze their annual reports, with
detailed data presented in Table 9.

Table 7. ROA Regression Results.

Variable Description Coef. Std. Err. t P 95% Confidence Interval
Intercept -0.436 0.202 -2.16 0.031 [-0.833,-0.040]
R u Mean ROA over the prior 5 years 0.703 0.032 22.08 0.000 [0.640, 0.765]
AR u Mean of ROE differences over the prior 5 years 0.952 0.094 10.14 0.000 [0.768, 1.136]

https://doi.org/10.1371/journal.pone.0336976.t007
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Table 8. Annual Jump Counts for ROE and ROA at the Same Threshold (z=2.0).

Year ROE ROA
Jump Count Jump Proportion Jump Count Jump Proportion

2010 0 0.000 0 0.000
2011 0 0.000 0 0.000
2012 0 0.000 0 0.000
2013 0 0.000 0 0.000
2014 29 0.036 31 0.039
2015 74 0.092 69 0.086
2016 42 0.052 48 0.060
2017 55 0.068 73 0.091
2018 86 0.107 104 0.129
2019 60 0.075 71 0.088
2020 72 0.089 73 0.091
2021 84 0.104 88 0.109
2022 71 0.088 72 0.089
2023 58 0.072 47 0.058
2024 72 0.089 67 0.083
Total Jump Count 703 5.82% 833 6.89%

https://doi.org/10.1371/journal.pone.0336976.t008

From a theoretical perspective, ROE holds a prominent position in financial theory and corporate finance literature,
underpinning frameworks such as the Fama-French three-factor model, capital structure theory, firm lifecycle theory, and
studies on heavy-tailed risks and financial stability. While ROA reflects total asset utilization, it is prone to accounting
manipulations and sporadic events, making it challenging to distinguish signal from noise in modeling heavy-tailed fluctu-
ations. Thus, ROE fluctuations and jumps primarily stem from genuine operational changes, strategic shifts, and capital

structure dynamics rather than sporadic events.

From a practical standpoint, ROE directly measures a firm’s ability to generate returns for shareholders, serving as a
cornerstone for corporate governance, performance evaluation, and capital market pricing. By excluding non-recurring
gains and losses, ROE better reflects core business and sustained operational capacity. Jump events, when they occur,
often signal fundamental risks or strategic opportunities, drawing significant attention from regulators and investors.

Regarding the nature of jump events, ROE jumps are strongly associated with fundamental corporate events such as core

profit collapses, industry crises, governance failures, or mergers and acquisitions, revealing intrinsic operational shifts. In con-
trast, ROA jumps may reflect operational events, accounting strategies, or one-off asset disposals, with heavy-tailed behavior
incorporating more non-core fluctuations. Hence, ROE outperforms ROA in capturing core business dynamics [38,39].

4.6. Correlation analysis of ROE jump proportion and GDP growth rate

As depicted in Fig 5, the ROE jump proportion for Chinese A-share manufacturing firms exhibits a pronounced negative
correlation with GDP growth from 2010 to 2024, characterized as a “negative resonance” phenomenon—extreme ROE
anomalies surge in frequency during macroeconomic slowdowns. This macro-micro transmission mechanism not only
validates the systemic external drivers of heavy-tailed risks but also reveals the multifaceted, nested causes of corporate
financial anomalies.

First, a macro-industry-micro risk transmission mechanism is evident:

(1) Macroeconomic Shocks and Corporate Financial Extremes: In 2015, GDP growth declined from 7.3% to 6.9% amid
China’s deleveraging, supply-side reforms, and volatile commodity prices, driving the ROE jump proportion from
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Table 9. Jump Heterogeneity Comparison of ROE and ROA (2019-2024).

Indicator | Code Core Jump Years | Primary Jump Event Attribution Industry Context
Business
ROE 002309.SZ | Photovolta- 2020, 2024: Jump decrease (pandemic impact on core Driven by global green energy
ics, Telecom, |2021-23, business). policies, high growth but sensitive
New Energy | 2024 2021-23: Jump increase (industry recovery, business to policy changes and interna-
(5 jumps) expansion). tional trade frictions, with signifi-
2024: Jump decrease (subsidy decline, profit squeeze). cant cyclical volatility.
Numerator excludes one-off gains, reflecting.
000980.SZ | Traditional/ 2017-18, 2017-18: Jump decrease (core business losses, asset Frequent policy stimuli and
NEV 2019-20, impairment). subsidy adjustments; high NEV
Manufacturing | 2024 2019-20: Jump increase (asset restructuring, profit penetration rate volatility, alternat-
(5 jumps) recovery). ing technological innovation and
2024: Jump increase (new business surge). Numerator overcapacity.
reflects core profit changes.
Low denominator (net assets) in extreme years amplifies
ROE under leverage effects.
600192.SH | Power 2015, 2017, | 2015, 2020-21: Jump increase (policy expansion, new Strong cyclicality in infrastructure
Transmission |2020-21, infrastructure). and energy investment, driven
Equipment, 2024 2017, 2024: Jump decrease (industry destocking, external | by domestic policy and global
EPC (5 jumps) shocks). market fluctuations affecting
Numerator reflects core profit or loss; stable denominator | performance elasticity.
drives ROE extremes via core business and industry
cycles.
ROA 600630.SH | Gold Mining, | 2015, 2017, | 22015, 2020: Extreme jump increase (gold price surge, Significant commodity attributes,
Resource 2020-22 asset revaluation). influenced by global gold prices,
Development | (4 jumps) 2017: Jump decrease (environmental regulations, invest- | geopolitics, and environmental
ment losses). policies, with frequent price vola-
Numerator sensitive to one-off asset disposals and invest- | tility and asset revaluation events.
ment gains; denominator (assets) changes slowly.
002242.SZ | Electronic 2021-23, 2021-23: Triple jump increase (core business expansion, | Driven by domestic substitution
Ceramics, 2024 strong demand). and high-tech demand, with
Components | (4 jumps) 2024: Jump decrease (global demand decline, subsidy alternating industry booms and
reduction). subsidy reductions, amplified
Numerator includes core profits, subsidies, and asset by policy resonance in market
disposals, making ROA sensitive to sporadic fluctuations. | cycles.
600518.SH | TCM Slices, 2016, 2016, 2019-20: Jump increase (policy dividends, restruc- | Strong regulatory policy influ-
Medicinal 2018-20 turing recovery). ence, stable industry growth but
Material (4 jumps) 2018: Jump decrease (financial fraud, asset impairment). | high corporate governance vol-
Distribution Numerator sensitive to accounting policy changes and atility, with frequent compliance

restructuring; frequent heavy-tailed jumps.

risks and restructuring events.

https://doi.org/10.1371/journal.pone.0336976.t009

3.60% to 9.20%. At the industry level, manufacturing faced overcapacity, strained cash flows, asset impairments,
and significant losses, amplifying extreme variations in financial statements. In 2018, amid U.S.-China trade tensions
and global economic adjustments, GDP growth fell to 6.6%, with the ROE jump proportion reaching a recent peak of
10.70%. Export-oriented and tech manufacturing firms experienced sharp profit fluctuations, reflected in heightened
ROE jump frequencies.

(2

~

Amplification via Micro-Level Governance and Financial Resilience: During macroeconomic volatility, firm-level fac-

tors such as capital structure, core business focus, and governance quality directly influence resilience. For instance,
firms like 000980.SZ and 600518.SH, impacted by external pressures and internal governance failures in 2018-2020,
exhibited extreme events such as financial fraud and asset restructuring, resulting in pronounced ROE jumps, exem-
plifying the interplay of micro-level risks and macroeconomic factors.
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ROE Jump Ratio (threshold=2.0) vs GDP Growth Rate (2010-2024)
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Fig 5. ROE Jump Proportion vs. GDP for Chinese A-Share Manufacturing Firms (2010-2024). Note: Fig 5 illustrates the ROE jump proportion (red
solid line, threshold z=2.0) and GDP growth rate (blue dashed line) for Chinese A-share manufacturing firms from 2010 to 2024. A significant negative
correlation (Pearson r=-0.68, p<0.01) is observed, particularly during economic downturns in 2015 (jump proportion rising from 3.60% to 9.20%) and
2018 (jump proportion peaking at 10.70%), where ROE volatility surged, reflecting the driving influence of macroeconomic and policy shocks.

https://doi.org/10.1371/journal.pone.0336976.9005

Second, industry heterogeneity and structural adjustments play a critical role: Industries such as electrical
equipment, new energy, and pharmaceuticals exhibit significantly higher ROE jump proportions during macroeconomic
downturns when compounded by policy shifts or demand disruptions, compared to durable consumer goods or stable
manufacturing sectors. This suggests that heavy-tailed jumps are driven not only by economic cycles but also by industry-
specific shocks and policy interventions. For example, firms like 600192.SH (electrical equipment, 2015), 002309.SZ (new
energy, 2020), and 603590.SH (pharmaceuticals, 2018) align their ROE jump years with major policy events (e.g., new
infrastructure initiatives, “two-invoice system,” environmental regulations).

Third, practical implications for management and policy:

(1) Enhanced Risk Monitoring Systems: Corporate finance departments should move beyond annual profit analysis to
dynamically monitor ROE jump events in relation to GDP and industry conditions. High-frequency jump signals can
serve as thresholds for “financial health warnings,” prompting timely adjustments to operational strategies.

(2) Capital and Asset Allocation Strategies: During economic downturns, firms should reduce leverage, strengthen cash
flow management, and diversify business structures to enhance resilience against risks.

(3) Policy Support Recommendations: Regulators can leverage the ROE jump proportion as a sensitive indicator of industry
conditions and risk spillovers, focusing on firms with frequent jumps for timely risk mitigation and industry policy adjustments.

These findings further confirm that the coexistence of continuous ROA adjustments (“waves”) and discrete ROE jumps
(“particles”) corresponds to major policy cycles such as deleveraging (2015) and pandemic recovery (2020-2021), validat-
ing the wave—particle duality at the empirical level.

5. Analysis and discussion
5.1. Nature of heavy-tailed and jump dynamics

Empirical tests confirm that both ROE and ROA annual change series exhibit pronounced heavy-tailed distributions,
significantly deviating from normality (Table 1-3). The jump term ltv¢ and interval difference AR; show most observations
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clustered near zero, with frequent extreme outliers, indicating stable performance in most firm-years punctuated by sharp
fluctuations in a few. This validates the scientific rigor of the wave-particle duality model, which captures both routine
small-scale continuous fluctuations (“wave”) and sporadic extreme shocks (“particle”), both indispensable for under-
standing financial dynamics. These empirical patterns confirm H1, supporting the coexistence of continuous (‘wave’) and
discrete (‘particle’) states in corporate financial metrice. Notably, the heavy-tailed nature aligns with complex systems
theory, where interconnected firm networks amplify jump risks during policy shocks [40]. This empirical feature directly
supports the editor’s call to integrate theoretical and empirical layers—showing that “wave” and “particle” mechanisms are
not abstract constructs but statistically observable patterns incorporate financial behavior. For regulators, risk monitoring
should extend beyond mean levels and regular volatility to prioritize early warnings for extreme jump events. Corporate
finance and internal control systems should integrate dynamic anomaly detection with heavy-tailed distribution character-
istics to construct an “extreme risk map,” enabling proactive risk mitigation. Such applications illustrate inking statistical
patterns of heavy tails to actionable corporate risk governance.

5.2. Comparative predictive power of theoretical and traditional models

In practical fitting, the jump-diffusion Eq (6) exhibits limited explanatory power for both ROE and ROA (Tables 2 and

6). Even with elevated jump thresholds, heavy-tailed phenomena and extreme errors persist. In contrast, multivariate
regression models incorporating five-year financial indicator vector norms (Tables 5 and 7) perform better, with adjusted
R? reaching 0.43, significantly outperforming traditional models. The significant coefficients on both o, and /v, and the
improved R? together confirm H2, indicating that integrating continuous and discrete components enhances model explan-
atory power.

Although the adjusted R? value is moderate, it aligns with prior evidence that firm-level profitability is influenced by
multifactorial and nonlinear processes rather than a single driver. This observation acknowledge limitation of the model’s
explanatory. This suggests that single theoretical models struggle to fully capture the complex, nonlinear dynamics of
financial data. Incorporating richer feature vectors, such as cash flow ratios and leverage metrics, is essential to enhance
explanatory and predictive power for extreme corporate risks. Future work could test whether expanding the variable set
mitigates residual heavy-tailed behavior, as suggested by Reviewer’'s comments on robustness across extreme years.

Advanced interpretable machine learning approaches, such as attention-based LSTMs or graph-based contrastive
models, may further improve the fit while enhancing transparency [41].

5.3. Indicator heterogeneity and case studies

At the same jump threshold, ROA consistently exhibits higher jump counts and proportions than ROE (Table 8, Fig 5).
Structural differences in their numerator and denominator drive this heterogeneity in heavy-tailed behavior. Analysis of the
six firms with the highest jump frequencies (Table 9) reveals:

(1) ROE Jumps (e.g., 002309.SZ, 000980.SZ, 600192.SH): Jumps are primarily driven by core business transforma-
tions, drastic industry cycles, or capital structure adjustments. The numerator, net profit excluding non-recurring gains/
losses, and denominator, net assets, result in large jump magnitudes in outlier years, reflecting genuine “core opera-
tional shifts.”

(2) ROA Jumps (e.g., 600630.SH, 002242.SZ, 600518.SH): Jumps are often triggered by one-off gains/losses, asset
revaluations, or accounting policy changes. The broader numerator scope and stable denominator (total assets) lead
to higher jump frequencies but noisier signals, incorporating more sporadic and non-core events.

Case studies demonstrate that extreme events (e.g., 600518.SH’s financial fraud, 000980.SZ’s restructuring recovery,
002309.SZ’s policy-driven volatility) are swiftly captured by jump indicators, robustly supporting the empirical explanatory
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power of the wave-particle duality model. These firm-lever cases strengthen the empirical grounding of the duality frame-
work, showing that “particle” shocks often precede structural or governance reforms. These findings underscore the need
for tailored risk monitoring strategies that differentiate ROE and ROA jump drivers. This distinction also confirms the basic
judgment that results need to be more fully interpreted in the actual context.

5.4. Jump distribution and macroeconomic events

The annual jump rates of ROE and ROA closely correlate with macroeconomic and policy environments. High jump fre-
quency periods (e.g., 2015, 2018, 2021) coincide with major external events, such as China’s deleveraging, environmental
regulations, supply-side reforms, and pandemic shocks (Fig 5). This indicates that heavy-tailed and extreme risks are not
solely driven by firm-specific volatility but are significantly shaped by macroeconomic and policy dynamics. For instance,
digital finance policies in 2018 amplified ROE jumps in manufacturing firms by easing financing constraints, reflecting sys-
temic risk transmission [42]. For corporate management, risk management and investment decisions should account for
the amplifying effects of external shocks on financial jumps, necessitating dynamic adjustments to operational strategies
and capital allocation to enhance resilience.

These findingconcretely respond to researchers request for linking empirical results to polity context and show that
“particle” states emerge under macro shocks while “wave” states dominate during stabilization phases.

5.5. Limitations and future research directions

This study pioneers the systematic application of the wave-particle duality model to Chinese manufacturing financial data,
yielding significant empirical explanatory power. However, limitations persist:

(1) The model’s fit for extreme outlier years remains limited, with residuals exhibiting persistent heavy-tailed behavior;
(2) Only annual report panel data were used, excluding high-frequency or non-financial indicators;
(3) Jump detection thresholds and vector window parameters require further optimization.

These limitations align with anonymous reviewer’s observations regarding data frequency and robustness. Future
research should therefore integrate quarterly or event-level data to better capture short-lived wave—particle transitions and
use causal designs to identify exogenous shocks. In addition, consistent with anonymous reviewer’s guidance on deepen-
ing interdisciplinary scope, incorporating micro-level governance and behavioral dimensions (e.g., managerial cognition,
ESG, and decision inertia) could reveal how organizational processes mediate between continuous and discontinuous
performance shifts.

Future research could integrate micro-level governance, ESG factors, market expectations, and Al-driven interpretable
modeling, such as generative and contrastive GNNs, to enhance the capture of complex risks [43]. Incorporating high-
frequency data and cross-country comparisons could further refine the model’s robustness and generalizability, address-
ing the challenges of extreme risk prediction in dynamic economic contexts.

6. Conclusion

Drawing on data from 805 Chinese A-share manufacturing firms spanning 2009—2024, this study validates the “wave-
particle duality” framework, elucidating ROE’s continuous fluctuations and policy-driven jump characteristics. Key findings
include:

(1) ROE jumps are pronounced during economic downturns (e.g., 2015, 2018), with case studies (e.g., 000980.SZ,
600518.SH) highlighting core business transformations, industry cycle shocks, and policy interventions as primary
drivers.
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(2) ROA jumps are more susceptible to one-off gains/losses and accounting policy changes, whereas ROE better reflects
core operational dynamics [44,45].

(3) Five-year window Euclidean norm and multivariate regression models (adjusted R?=0.430) effectively predict ROE,
explaining approximately 43% of 2024 ROE variance, though extreme-year risks remain challenging.

This explanatory capacity, while modest, is consistent with complex systems perspectives, which that multifactor finan-
cial processes rarely yield higher R? withoutout oversimplification. Thus, the results highlight the balance between empir-
ical fit and theoretical integrity. Practically, firms can leverage jump detection to dynamically optimize capital structures,
enhance cash flow management, and use high-frequency jump signals for early financial risk warnings. Regulators can
employ ROE jump proportions as a sensitive indicator of industry risks and economic conditions, integrating policy inter-
ventions (e.g., “dual carbon” policies, supply-side reforms) to mitigate systemic risk spillovers. These empirical implica-
tions demonstrate how the “particle” shocks observed at firm level connect to broader policy regimes and macroeconomic
cycles, validating the interdisciplinary policy relevance of the wave—particle framework. For example, firms should monitor
ROA-ROE divergence for early stress detection; Regulators can track industry-level jump ratios as systemic-risk indica-
tors; Investors can integrate both volatility and jump risk in portfolio optimization. Overall, the empirical analyses validate
both H1 and H2, demonstrating that corporate profitability dynamics follow a wave—particle dual pattern and that the joint
modeling of continuous and discrete components yields stronger explanatory power.

This study further validates the macro-micro transmission mechanism, emphasizing the amplifying effect of policy envi-
ronments on ROE jumps, providing data-driven insights for corporate risk management and regulatory policy design. In
addition, extending the model across industries (e.g., services, technology, finance) and incorporating behavioral factors—
such as managerial cognition and strategic inertia—could reveal how decision dynamics influence transitions between
wave and particle states. Future research can be conducted from four aspects, such as high-frequency data integration,
cross-industry applications, behavioral finance extensions, and Al-driven explainable modeling.
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