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Abstract

Complex network concepts have become the foundation of many real-world studies,
encompassing topics like the dynamics of spreading processes or the evaluation of
the resilience of complex systems. One of their major enablers is the availability of
real data sets, on which to test and validate models and algorithms. We here present
a data set containing 1,708 network representations of daily interactions between air-
craft over a vast area of the European airspace, for 854 days spanning between 2015
and 2021. It has been obtained by processing trajectories, both planned and exe-
cuted, and comparing aircraft positions in a pairwise fashion. This is further comple-
mented by metadata about the status of the airspace, in a multi-scale structure. This
database may act as the data source of any study willing to use these interactions to
develop new tools for understanding air traffic dynamics; and more generally, to test
complex networks algorithms and models on large-scale real graphs.

Introduction

Spreading phenomena in networks are a pervasive topic, with applications in many
natural, social and technological contexts [1-5]. Sometimes the aim is to disrupt the
propagation, for instance of contagious diseases in a social network; sometimes we
want to enhance it, e.g. to facilitate the distribution of information or resources among
the participants in a market; or we may just intend to understand the propagation pro-
cess and the mechanisms supporting it, as is the case of understanding gene-cellular
networks. In all cases, two elements are essential: algorithms and methods for mod-
elling the dynamics and designing interventions; and real data sets on which to test
and validate these methods. Since the inception of complex networks theory [6,7], it
has been realised that the topology of the network has a major impact on the spread-
ing dynamics [8—12]; hence, while synthetic models are still useful to test specific
hypotheses, reliable analyses can only be supported by real data sets.

We here contribute a curated data set representing interactions between aircraft
through complex network structures. Starting from a large collection of planned and
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executed (radar) trajectories, we here model these as networks, in which nodes
represent individual aircraft, pairwise connected when their distance fell below a
threshold. Links therefore represent instances in which aircraft interacted, as e.g.
their trajectories had to be changed to avoid possible safety issues, or more in gen-
eral, when they attracted the attention of air traffic controllers. Two networks are
provided per day, i.e. one for planned and one for executed flights; including four
months per year, from 2015 to 2021. This data set has previously been used to
understand the structure created by interactions throughout the whole European
airspace through different complex network metrics [13—15], with the aim of unveiling
the factors affecting the complexity of air traffic. The daily evolution of the structure
was found to be dependent on the traffic volume, especially under strong perturba-
tions - e.g. during the COVID-19 pandemic [14]. The topology was also found to have
a multi-scale structure, reflecting the internal organisation of the airspace [15].

Compared to other real-world networks available for research purposes [16—-18],
the ones here shared present several characteristics that are both opportunities and
challenges. Their topology is highly non-trivial, evolving according to weekly and
yearly seasonalities; is highly modular; and with the node degrees partially following
a power-law (see also results below). Networks are embedded in a three-dimensional
space: links (i.e. interactions) take place at specific locations, and the corresponding
nodes (i.e. flights) move across the airspace. They also have a multiscale tempo-
ral nature: while individual interactions take place in a scale of seconds, chains of
interactions (i.e. paths in the network) can span hours; consequently, they can natu-
rally be interpreted as time-evolving networks. Interactions are associated to different
intensities, representing the minimum horizontal separation recorded between two
aircraft. Finally, as separated networks are provided for each day, the full data set
comprises 1,708 instances with similar, albeit not equal, structure, thus providing a
natural source of variability. Note that this represents a size comparable to some of
the largest available network repositories [16—18].

The contributed data set also represents a major shift in the context of air traffic
management. To the best of our knowledge, the only other publicly-accessible data
set providing similar information was presented in Ref [19], and covers approximately
11 months of 2022 and flights crossing the Air Control Center of Bordeaux (LFBBDX),
France. In contrast, the data set here presented is the first instance spanning a full
continent and multiple years; this supports an analysis of the system from a macro-
scale level and capturing its wide variance, including the yearly and seasonal varia-
tions, and the differences between control regions.

The contributed networks find a natural application in many problems within the
context of air traffic management and control. Firstly, this data set can be used to
validate existing methodologies, as e.g. the one presented in Ref [20], whose core
idea is to reconstruct temporal interaction networks and study the propagation pro-
cess between flights using a SIS epidemiological model [21]. Secondly, our networks
include a wide range of topologies, i.e. interaction scenarios, which can be used to
understand factors contributing to Air Traffic Control Officers (ATCOs) workload [22,
23]; and to assess Conflict Detection and Resolution (CD&R) algorithms [24]. Finally,
these networks can be used to describe the air traffic dynamics through time
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and space, and at different levels of granularity [13—15]. At the same time, this data set can be used in many additional
network-related topics. Networks can be seen as the structure supporting a real propagation process, and as such can be
used to test algorithms to disrupt (or enhance) such dynamics; for instance, researchers can use them to test the effec-
tiveness of network dismantling algorithms [25,26], with the advantage of providing a large number (1,708 networks) of
individually large (an average of 22 thousand nodes and 49 thousand links) instances. These networks can also be used
as test-bed for other related problems, as for instance link prediction [27—-29], community identification [30,31], representa-
tion of higher-order interactions [32,33], or testing Graph Neural Network models [34,35].

Materials and methods
Raw trajectory data pre-processing

Original data of aircraft operations were obtained from the EUROCONTROL’s R&D Data Archive, a public repository of
historical flights made available for research purposes and freely accessible for the academic community, subject to users
agreeing the terms and conditions [36]. The data set includes information on all commercial and general aviation flights
(i.e. excluding sensitive, state, and military flights) operating within and over Europe, incorporating flight plans, radar
data, and the associated airspace structure. Data availability is constrained at the source to four months - March, June,
September, and December. We further consider seven years available at the time of accessing the data set, from 2015

to 2021 (both included). For each day, the executed and planned trajectories were extracted for each flight landing in that
specific day. The planned trajectories are reconstructed using the flight plans submitted by airlines and other aircraft oper-
ators to EUROCONTROL’s Network Manager (NM), and further updated with data from EUROCONTROL’s Central Route
Charges Office (CRCO). As such, planned trajectories are not necessarily reflecting the initial intentions of airlines, which
may have been modified according to capacity restrictions and other operational limitations. On the other hand, executed
trajectories are reconstructed according to radar observations of the flight's path. The average temporal resolution, mea-
sured for June 1%, 2019 as the time between consecutive position reports, is of 278.4 s for planned trajectories (standard
deviation of 236.5 s), and of 282.6 s for executed ones (standard deviation of 230.9 s).

Several pre-processing steps are performed on these trajectories - see the top part of Fig 1 for a graphical represen-
tation. First, trajectories described by four or less points are discarded. A manual inspection revealed that these mainly
corresponded to helicopter movements - note that, while helicopters are not the main scope of this data set, their tra-
jectories are included when they involve the use of controlled airspace, and may therefore interact with other flights.

Interpolation process. Performed for each trajectory

Trajectories with Trajectories are Points outside the Interpolated trajectories
less than 4 points [®| interpolated with1 [~ analysedspatial [~| with less than 3 points
are eliminated second resolution area are eliminated are eliminated
Trajectories are Points that don’t Points above the Distances are Interacting
checked for [ overlap temporally || Vverticalseparation || calculated between [+ .
spatial overlap are eliminated threshold are the remaining points points are kept
eliminated

Interaction tracking process. Performed for each pair of interpolated trajectories

Fig 1. Flowchart of the trajectory pre-processing and interaction extraction. The main steps are summarised, with the chronological sequencing
represented by arrows. The top part includes the processes associated to the interpolation, while the bottom one those associated to the extraction of
interactions. Each set of processes has been performed for each day and each type of trajectory presented in the dataset.

https://doi.org/10.1371/journal.pone.0336909.g001
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We additionally identified a small set of very short flights, e.g. functional check flights, performed following maintenance
actions on the aircraft to confirm its airworthiness; short flights between secondary airports; and flights for which no tra-
jectory was reported. In most of these cases, the information available in the planned and executed trajectories was
similar, confirming that these are genuine examples of short or technical flights, and not the result of data processing
errors. In total, these instances represented a minimum share of the whole data set - e.g. approximately 0.28% of all flights
for June 28", 2019.

Next, in order to homogenise the temporal resolution of trajectories, a linear interpolation is performed on the three
spatial dimensions between each available position report, to reach a resolution of one point per second. No additional
smoothing or noise reduction technique has been applied. After this interpolation, only those points falling within a sim-
plified European airspace are retained, defined by the geographical rectangle included between —15° and 30° in longi-
tude, and between 35° and 70° in latitude. Any trajectory left with less than three points within this region is discarded.
These corresponded to a 4.7% of the total flights for June 28, 2019; and in all cases, corresponded to flights crossing the
European airspace outside the rectangular boundaries previously defined.

Finally, all trajectory points whose altitude was below 100FL (Flight Levels, or 10,000 feet) were removed; as have
been all flights not reaching such altitude. This latter filter only affects general aviation flights and very short trajecto-
ries. Note that the use of this altitude threshold is motivated by two operational considerations. Firstly, the quality of the
trajectory data is higher while en route, as aircraft have a more constant and predictable dynamics. Secondly, operations
near airports may comprise heterogeneous complex route structures, in which a reduction of the distance between two
aircraft is part of the intended departure or arrival procedure - one may think, for instance, of the simultaneous landing of
two aircraft in parallel runways.

For the sake of completeness, Table 1 reports an overview of the number of flights removed in each step for June 28",
2019, i.e. the day with most flights in the data set, for both executed and planned operations. Note that these trajectories,
due to their short length, did not participate in a substantial number of interactions; to illustrate, when they are not deleted,
the number of detected daily interactions only increases, on average, by 0.871 for planned trajectories (standard deviation
of 1.49, maximum of 14), and by 0.166 for executed ones (standard deviation of 0.550, maximum of 6).

Extraction of interactions

In the context of this work, an interaction between two flights represents an instance in which their reciprocal horizon-
tal distance falls below a threshold of 10NM, while the vertical one simultaneously falls below 2,000ft. Note that such sit-
uations do not necessarily imply a safety-critical condition. On the one hand, intersections of planned trajectories are
accepted, as those trajectories may only be modified to comply with capacity limitations of airspaces and airports. On
the other hand, 10NM is well above the minimum distance for maintaining a safe separation. On the contrary, these
interactions can be understood as situations in which air traffic controllers have to start paying attention to the pair, and
eventually take resolutory actions. At the same time, these interactions can be seen as a propagation process: solving
an interaction by changing the trajectory of one (or both) aircraft can result in the creation of a later interaction with a third
flight - something known as a downstream effect [37].

For each pair of aircraft in the same day and in the same data set (i.e. either planned or executed), interactions are
calculated by checking the minimum horizontal and vertical distance they achieve, across the full duration of both flights.

Table 1. Information about number of flights deleted during the pre-processing of the trajectory data, for June 28, 2019.

Trajectory # pre-interpolation # post-interpolation # sub FL100
type # flights deleted flights deleted flights flights
Executed 34421 98 1618 499

Planned 34421 117 1610 443

https://doi.org/10.1371/journal.pone.0336909.t001
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Whenever both separations are below the corresponding thresholds, an event is recorded. In case of multiple interactions
between the same couple of aircraft, only the one corresponding to the minimum horizontal separation is retained. Addi-
tional information that is stored for each interaction include its time stamp, the geographical position, and the minimum
horizontal distance.

A synthetic example of the reconstruction process is depicted in Fig 2, for four temporal snapshots (from left to right,
and top to bottom). For the sake of simplicity, in this example aircraft are assumed to fly at the same altitude; the vertical
position of aircraft, and hence the vertical separation, are thus neglected. Two aircraft, 1 and 2, with intersecting trajecto-
ries have an initial horizontal separation above the threshold (green line, top left), and enter the interaction range in the
second snapshot (orange line). Note that a link is yet not created between the corresponding nodes in the network, as this
is added only when the minimum horizontal distance is achieved (red line, bottom left panel). Due to the possibility of an
unsafe event, the air traffic controller has to change the original trajectories (see the red dashed lines), leading to a new
interaction between aircraft 1 and 3 in the bottom right panel - which would not have happened, had the trajectory of air-
craft 1 not been changed. The final result is the network represented below the fourth panel, with three nodes and two
links, in addition to the time stamp of the moment in which the minimal separation is achieved.

The interaction extraction process, also depicted in the bottom part of Fig 1, is repeated for all pairs of trajectories, i.e.
approximately 8.88 x 10'? pairs across all days. A total of 8.37 x 108 interactions were detected across the 854 analysed
days, with an average of 4.9 x 10* and a standard deviation of 2.8 x 10* per day. Note that the large standard deviation

V7
\
ID:Z»_____\\___ ID:Zaz\\/_\\\_____
\ \
20 NM \ 9.5NM 8
\ ID: 1

ID: 1

o 10:26 ° ° 10:26 10:29

Fig 2. Temporal snapshots of a simulated interaction network reconstruction. The four panels, from left to right and top to bottom, represent four
different moments in time - see the hour in the top right corner. Black and red dashed lines respectively represent the original and modified trajectories;
and solid lines depict the distance between pairs of aircraft. The reconstructed network is reported underneath each panel. See main text for details.

https://doi.org/10.1371/journal.pone.0336909.9g002
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is mainly due to the inclusion of flights in years 2020 and 2021, i.e. when air transport was impacted by the COVID-19
pandemic [38].

Results
Data records

All data described below are accessible at https://doi.org/10.5281/zenodo.15017762.

Interaction data are provided in two Comma Separated Values (CSV) files for each day, respectively corresponding to
planned and executed trajectories. File names encode the type and date, following the structure
interactions_yyyymmdd_type.csv, with type being either “executed” or “planned”. Information in each file is organised in
six columns, with each row corresponding to an individual interaction; rows are further sorted in increasing order of the
time at which the interaction took place. The first two columns encode an ID of the interacting flights; note that this number
is randomised each day (i.e. flight a of one day is not the same flight on another day), but the identity of a flight between
planned and executed files is maintained. Interactions are encoded per flight, and not per aircraft; in other words, one
same aircraft may operate multiple flights throughout one day, but these are considered as separate entities (i.e. separate
nodes). Next, the third column encodes the time at which the interaction occurred, in seconds starting from the time of
the first interaction of that day. Fourth, we include the minimum horizontal separation achieved by the two interacting air-
craft, in nautical miles; this metric contributes to the severity of the event and can thus support the creation of a weighted
network. The last two columns report the location where the event took place, including the barometric standard altitude
(in tens of Flight Levels, or multiples of thousand feet, fifth column) and the associated FIR (Flight Information Region,
i.e. one basic level of division of the airspace, sixth column). The latter is also randomly codified, but the coding is main-
tained constant across days, to support comparisons through time. For the sake of clarity, Table 2 reports a synthesis of
the meaning of columns; Table 3 an example of the data contained in the file 2019-06-28 for executed trajectories; finally,
Fig 3 reports a graphical representation of the sub-network corresponding to a FIR for that day.

We complement the above information with statistics about the overall traffic situation for each day. These are pro-
vided in two additional CSV files for each of the 854 days, i.e. one for each type of trajectory analysed; and contain a set
of macroscale variables describing both the entire European airspace under consideration and each considered FIR. File
names follow the previous format, i.e. metadata_yyyymmdd_type.csv. Six different metrics are included. The first column
defines the area or FIR for which the metadata are given; note that the anonymised ID of the FIR is used, that is, the

Table 2. Structure of the CSV files with information about interactions.

Column # Column name Information Format
1 flld1 Identifier of the first involved flight. Integer
2 flld2 Identifier of the second involved flight. Integer
3 time Time since the first interaction, in seconds. Integer
4 distance Minimum horizontal separation, in Nautical Miles. Real

5 altitude Barometric standard altitude of the event, in tens of Flight Levels. Integer
6 firld Identifier of the FIR in which the interaction took place. Integer

https://doi.org/10.1371/journal.pone.0336909.t002

Table 3. Initial five rows from the interaction CSV file for executed trajectories of 2019-06-28. Distances are rounded to 1073,

flld1 flild2 time distance altitude firld
13206 517 0 6.025 340 43
26020 31530 1322 9.177 320 33
28941 19011 4050 4.764 330 3
10908 7270 5288 7.379 340 85
4255 13088 7211 9.208 300 85

https://doi.org/10.1371/journal.pone.0336909.t003
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Fig 3. Graphical representation of the main components of the network of interactions in a single FIR for June 28%, 2019. The size of nodes
is proportional to their degree; the colour of links to the altitude at which the interaction took place, from yellow (FL100) to dark blue (FL400), and their
thickness to the minimum horizontal distance reached.

https://doi.org/10.1371/journal.pone.0336909.9g003

same as in the interactions’ files, with an additional value “-1” representing the total considered European airspace. The
second, third and fourth columns respectively report the total number of flights that have flown over the corresponding
section of airspace; the total flown distance, in nautical miles; and the total flown time, in seconds. The two last columns
contain a measure of the spatial entropy of the trajectories, i.e. of how heterogeneously they are spread in the airspace,
thus representing the complexity of the traffic from a control viewpoint [15]. Qualitatively, this entropy is calculated by
dividing the sector in a grid of cells, and computing the amount of times throughout the day each cell is crossed by a flight.
This result is translated into a probability distribution, and the entropy is obtained by applying Shannon’s entropy formula
[39] over such distribution. The second entropy value corresponds to a normalisation by area, according to the maxi-
mum entropy such airspace can have (details about these two metrics are available in Ref [15]). As for the other set of
data files, Table 4 reports a synthesis of the meaning of columns; and Table 5 an example of the data contained in the file
2019-06-28 for executed trajectories.

Table 4. Structure of the metadata CSV files.

Column # | Column name | Information Format
1 firld Identifier of the FIR, i.e. of the section of airspace; “-1” represents the aggregated considered European Integer
airspace.
2 numFlights Number of flights over the area. Integer
3 distance Distance flown over the area, in Nautical Miles. Real
4 time Time flown over the area, in seconds. Integer
5 entropy Entropy of the trajectories over the area. Real
6 normEntropy Entropy of the trajectories, normalised by the area of the section. Real

https://doi.org/10.1371/journal.pone.0336909.t004

Table 5. Initial five rows from the metadata CSV file for executed trajectories of 2019-06-28. Distances and entropies are rounded to 1073,

firld numFlights distance time entropy normEntropy
-1 32206 11967204.887 155645278 14.557 0.878
0 2799 153258.751 2937931 10.017 0.825
1 1727 310195.641 4166942 11.845 0.847
2 711 96238.745 880762 9.754 0.835
3 1573 241443.334 1814991 11.216 0.829

https://doi.org/10.1371/journal.pone.0336909.t005
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As a final note, for the sake of easy access and download, all files related to a type of trajectory and a given month,
alongside the corresponding metadata, are stored in a single ZIP file. Additional information about individual events can
be requested to the authors, prior proof of registration to the EUROCONTROL’s R&D Data Archive.

Technical validation

The validation of the interactions reported in this data set is a challenging task, mainly due to the lack of similar data sets
that could be used for comparison; even statistics about the appearance of aircraft interactions are scant, due to their
sensitive nature. Quality assurance has thus been performed by resorting to a three-fold approach.

Firstly, all steps in the preparation of the data (e.g. trajectory filtering, interpolation, and interaction detection) has been
independently developed by one of the authors (R.L.-M.) and tested by the other (M.Z.). Such tests have been conducted
using a Unit Testing approach. The most salient outputs have manually been inspected, including the flights that have
been deleted in the pre-processing phase due to lack of data (see Table 1).

Secondly, we have compared the number of detected interactions in executed trajectories, with the number of sep-
aration losses (or Separation Minima Infringements, SMI) officially reported each year. This latter number includes all
events with a safety implication in which two aircraft came too close. Note that the concept of interaction here considered
is wider in scope, due to the larger distance thresholds that have been used, and therefore include both safety critical and
non-safety critical events. The number of SMIs has been extracted for each Functional Air Block (FAB) in the European
airspace between years 2015 and 2019, from the corresponding Annual Monitoring Report prepared by the European
Aviation Safety Agency (EASA) in support to the Performance Review Body (PRB) of the Single European Sky (SES) -
available at hitps://eu-single-sky.transport.ec.europa.eu. We finally calculated a linear correlation between the evolution
of both sets of values, obtaining R? of 0.959 (p-value of 4 - 10~2%). It can then be concluded that, while our definition of
interaction is wider by design, and includes on average 2,400 events for each SMI, both concepts are correlated and no
anomalous trend is present.

Thirdly, the output of the analysis, including the CSV files here provided, has been tested for coherence by calculating
some basic statistics. Specifically, Fig 4 depicts the spatial and temporal distributions of interactions for June 1%, 2019. It
can be appreciated that interactions most frequently appear at the intersection of airways and in busy airspaces, and at
hours of the day with most traffic, as is to be expected. Additionally, most interactions appear in the enroute phase (with
altitudes above FL350, i.e. where aircraft spend most of the time).

Moving to the network structure, Fig 5 depicts the evolution through time of six classical topological metrics [40], cal-
culated for all days in March and June 2019, and including: the average degree, number of links and nodes, fraction of
isolated nodes, modularity (estimated using the Louvain algorithm [41]), and weak giant cluster size. On the other hand,
Fig 6 reports the complementary cumulative distribution functions (CCDF) of the number of links, horizontal separation,
and harmonic centrality [42]. The final panel of the same figure finally reports the evolution of the network’s efficiency
under a pruning process, in which a random link connected to the node with the highest degree is iteratively removed. In
the two latter figures, the evolution of the network structure reflects known periodicity and trends in traffic volumes.

Analysis of daily interaction networks

To show an example of a potential application of this data set in an air traffic management context, we here present an
analysis of the structure of interaction networks by day. This extends what initially presented in Ref [14], by focusing on
the dependence of the structure on the total distance flown. Fig 7 presents the values of four different topological met-
rics for each available day between years 2015 and 2019, i.e. before the COVID-19 pandemic, as a function of the total
distance flown over Europe by all aircraft in the corresponding day. On the one hand, the first thing that can be seen are
clear and different tendencies for each metric. The degree entropy, weak giant cluster size and efficiency increase with
the total distance flown; meaning that the network becomes both more heterogeneous and better connected. Note that
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Fig 4. Spatial and temporal distribution of interactions. Panels (a) and (b) respectively show the spatial locations of planned trajectories, and (b)
of the corresponding interactions. Darker shades indicate higher densities of trajectories and interactions. Panels (c) and (d) depict histograms of the
altitude and time of the day at which interactions took place. In all cases, data correspond to June 15, 2019.

https://doi.org/10.1371/journal.pone.0336909.9g004

this is a negative feature from the controllers’ perspective, as it implies both that more aircraft interact, and that some

of them are involved in potentially many conflicts. This tendency is further confirmed by a decrease on the ratio of iso-
lated nodes as the distance increases, implying that a larger percentage of aircraft takes part in interaction events. On the
other hand, a more surprising result is obtained when considering differences across days of the week - see the colour of
points, and the figure’s legend. While most of the weekdays strongly overlap, Saturdays and (to a less degree) Sundays
suffer a change in the offset. We hypothesise that this may be the consequence of a shift in the main source-destination
pairs during weekends, during which traffic is changed by the higher demand for touristic destinations. In short, this anal-
ysis shows how the influence of the day of the week on air traffic dynamics, and hence on the interactions appearing
between aircraft, can be illustrated and quantified through the structure of the corresponding network representation. The
interested reader can find extended discussions in Refs. [14,15].

Computational cost

One important aspect of the analysis of these networks is the corresponding computational cost, as, due both to their size
and their temporal nature, such cost can become significant.

The left panel of Fig 8 firstly report the time required to create the described networks, as a function of the number of
aircraft to be tracked. These values have been obtained by starting with the planned trajectories for June 28, 2019, i.e.
the day with the highest number of inflights; and artificially deleting aircraft at random, to simulate smaller data sets. It can
be appreciated that the cost scales almost linearly with the number of aircraft; this is due to the fact that, while the number
of interactions scales quadratically, most pairs of aircraft cannot physically interact (e.g. they operate at different hours),
and are thus not checked.
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Fig 5. Time series of complex networks measurements extracted from interactions for planned trajectories over the whole European airspace.
These include: (a) the daily average degree; (b) the number of interactions, i.e. of links; (c) the number of flights, i.e. of nodes; (d) the ratio of isolated
nodes; (e) the modularity; and (f) the weak giant cluster size. Data correspond to March 2019 (solid lines) and June 2019 (dashed lines).

https://doi.org/10.1371/journal.pone.0336909.g005

Next, the central and right panels of Fig 8 report the time required to calculate two classical topological metrics on the
resulting networks, namely the modularity (estimated using the Louvain algorithm [41]) and the global efficiency, as a
function of the number of interactions in the network.

Usage notes

While the use of this data set will strongly depend on the specific application being tackled, we include a set of files
designed to illustrate how to load and perform some basic operations on the data. Each program is coded in Python,
using only standard libraries, and includes a basic set of comments to explain its behaviour. The six provided examples
include: plotting the daily average degree of nodes, number of interactions, number of flights, and size of the weak giant
cluster; the full degree distribution of nodes; and the histogram of the minimum horizontal separation between interacting
aircraft. These programs thus allow to reproduce the main topological analyses presented in this contribution, and can be
downloaded alongside the data at https://doi.org/10.5281/zenodo.15017762.

Update

Data for additional years will be included whenever the corresponding trajectory data are made available in the
EUROCONTROL's R&D Data Archive, and will appear as linked data sets.
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of the network’s efficiency under a pruning process. Dashed and solid lines respectively correspond to planned trajectories of March 5, 2019, and June
29 2019.

https://doi.org/10.1371/journal.pone.0336909.g006

Discussion and conclusions

In this contribution we presented a data set comprising 1,708 temporal, spatially-embedded, and multi-level networks rep-
resenting aircraft interactions over Europe for 854 days between 2015 and 2021. This collection is freely accessible at
https://doi.org/10.5281/zenodo.15017762; and includes additional information about individual events and the global sta-
tus of each FIR. While similar data sets already exist (see for instance Ref [19]), to the best of our knowledge this is the
first instance covering extensive spatial and temporal scales. This can represent a paradigm shift in air traffic research,
allowing to capturing the nuances of air traffic dynamics throughout broader time and space scales. Complex networks
practitioners at large can also benefit from it, as these networks display a non-trivial, multi-scale and temporally evolv-
ing topology. They can thus support the validation of new algorithms and methods, especially in the context of spreading
processes.

In spite of many advantages, the interested user should also be aware of the limitations that this data set entails. The
reliability of the detected interactions is necessarily a direct function of the quality of the original data, i.e. of the raw tra-
jectories, as provided by EUROCONTROL. While steps have been taken to enhance the quality of the results, as e.g. the
trajectory interpolation procedure and the deletion of flights with an unreliably low amount of points, the presence of false
positives and false negatives cannot be excluded.

Future improvements of this data set will be directed in two main directions. Firstly, new networks will be added, con-
ditioned to the publication of new raw data in the EUROCONTROL's R&D Data Archive. Secondly, complementary data
sources will be used to extract additional factors associated to the interactions, especially related to the workload these
cause for air traffic controllers.
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Code availability

Data processing and visualisation were performed using Python 3.9 and standard libraries. Additional Python scripts are
further provided alongside the data set to recover the main results of Figs 5 and 6.
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