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Abstract 

This paper proposes a current model predictive control strategy for the permanent 

magnet synchronous motor (PMSM) based on a novel sliding mode observer to 

reduce the cost of PMSM and ensure good tracking performance. A super twisting 

sliding mode observer (STSMO) is designed to address the issues of high-frequency 

chattering and noise sensitivity caused by the large positive gain of traditional SMO. 

The discontinuous effect of the traditional SMO switching function is introduced into 

the derivative of the control rate, and a smooth estimate of the back electromotive 

force (EMF) is obtained through integration. Replace the sign function with a sigmoid 

function with smooth continuity to further reduce the chattering effect. To enhance the 

dynamic performance of the PMSM current loop, a finite control set model predictive 

control (FCS-MPC) strategy is employed in place of the conventional PI controller. 

Within each sampling period, all possible switching states are evaluated, and the 

optimal one is selected and directly applied to the inverter. Additionally, a dual-vector 

model predictive current control (DVMPCC) method is adopted to reduce current 

ripple. This approach synthesizes a voltage vector with arbitrary magnitude and 

direction by combining two voltage vectors within each sampling period. Numerical 

results demonstrate that the proposed sensorless PMSM predictive current control 

method achieves high accuracy in speed estimation and excellent dynamic response 

performance.

Introduction

The rapid advancement of industrial technology has heightened the importance of 
high-performance motor systems. PMSM are widely used in electric vehicles and 
robotics due to their high efficiency, power density, and controllability [1,2]. However, 
PMSM control system design poses significant challenges from nonlinear dynamics, 
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parameter variations, and external disturbances, demanding sophisticated control 
strategies for effective mitigation [3].

The high-performance drive control strategy for permanent magnet synchronous 
motors (PMSMs) relies fundamentally on precise rotor position feedback. In pursuit 
of cost reduction and space savings, numerous industrial enterprises and research 
institutions have dedicated significant efforts to developing sensorless control tech-
nologies, particularly focusing on model reference adaptive systems [4,5], Kalman 
filtering method [6,7], and sliding mode observer [8]. SMO has proven to be a robust 
state estimation method that can effectively determine motor state variables. How-
ever, due to its discontinuous control law, traditional SMO implementations exhibit 
inherent chattering that adversely affects speed estimation accuracy. In Reference 
[9], the authors introduced continuous functions to replace switching functions and 
designed a fuzzy sliding mode observer that adjusts the parameters of these continu-
ous functions in real-time through fuzzy rules, thereby achieving smoother extraction 
of back EMF signals. To address the issues of chattering and significant observation 
errors in traditional SMO-based sensorless control of PMSM, [10] proposed a com-
posite reaching law algorithm combining exponential reaching law and sinusoidal 
saturation function approaches. This improved sliding mode observer achieved an 
80% reduction in speed estimation error. In Reference [11], a novel sliding mode con-
trol (SMC) strategy was developed for PMSM. This strategy incorporates an adaptive 
super-twisting algorithm to effectively mitigate the chattering phenomenon while 
enhancing the capability to suppress external disturbances. Initially, a sliding surface 
is constructed based on the dynamic model of the PMSM and real-time feedback. 
The super-twisting algorithm is then adaptively applied to dynamically adjust the 
control effort required to maintain the sliding mode. This ensures precise and timely 
intervention, thereby guaranteeing system stability and improving response speed. In 
[12], a new adaptive hybrid exponential convergence law was proposed to enhance 
the sliding mode control SMC system of PMSM. This method combines adaptive 
exponential components to achieve fast convergence with minimal overshoot, and is 
supplemented by a high gain interference observer for effective interference compen-
sation. Regarding the reduction of sliding mode buffeting, [13] designed an adaptive 
fractional order sliding mode controller based on a fractional order sliding mode 
disturbance observer, which uses a new sliding mode approximation law instead of 
the traditional exponential approximation law to reduce system jitter and improve the 
control accuracy of the system. It should be noted that processing high-frequency 
discontinuous switching signals with low-pass filters introduces both amplitude atten-
uation and phase lag into the extended back EMF estimates. However, compensation 
for these effects is necessary when using either arctangent functions or a phase-
locked loop (PLL) for speed and rotor position estimation [14–16].

Meanwhile, model predictive control (MPC) has garnered significant attention for its 
explicit capability to handle system constraints and predict future states, leading to its 
widespread application in current, speed, and position control of PMSMs [17–19]. In 
PMSM applications, MPC can directly incorporate control objectives into the cost func-
tion according to different control requirements. Based on whether PWM modulation 
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is required – that is, depending on the discrete characteristics of the converter – MPC can be categorized into continuous 
control set MPC (CCS-MPC) and finite control set MPC (FCS-MPC). CCS-MPC [20,21] employs mathematical tools to 
optimize the constructed cost function, obtaining optimal control variables that are then applied to the control object through 
PWM. This approach features fixed switching frequency but requires substantial computational effort. In contrast, FCS-
MPC [22,23] explicitly considers the discrete switching characteristics of the converter in its prediction model. It evaluates 
all possible switching combinations to predict the system state at the next time instant, and selects the voltage vector that 
minimizes the cost function as the optimal control action to be directly applied. This method offers fast dynamic response 
but faces challenges in multi-step prediction. Early research by [24,25] investigated the application of MPC in AC drive sys-
tems using FCS-MPC, establishing the foundation for widespread adoption of finite-set predictive control in AC motor drive 
systems with various converter topologies, including two-level inverters, multilevel inverters, and matrix converters.

A comparative study in Reference [26] implemented both FCS-MPC and CCS-MPC schemes for predictive torque 
control in PMSMs. The FCS-MPC approach was designed to select the optimal modulation intervals and output voltage 
vectors directly. In contrast, the CCS-MPC strategy formulated a predictive control structure for current and torque, inte-
grated with a predictive current controller. Experimental comparisons revealed that both methods deliver satisfactory per-
formance, with CCS-MPC achieving lower torque and current ripple, while FCS-MPC provided a faster torque response. 
Motivated by these findings, subsequent research has focused on numerous enhancements to further improve MPC 
performance [18,27,28].

This paper proposes a model predictive current control (MPCC) strategy for PMSM, utilizing a super-twisting sliding 
mode observer. The approach synergistically integrates the strengths of sliding mode observation and model predictive 
control to enhance the overall performance of PMSM drive systems. As an advanced form of SMO, the STSMO provides 
improved estimation accuracy and faster convergence, making it well-suited for the demands of PMSM control. Mean-
while, the MPCC scheme achieves optimal performance under system constraints by predicting and optimizing future cur-
rent behavior. The paper is structured as follows: Section 2 introduces the mathematical model of the PMSM drive system. 
The design of the super-twisting sliding mode observer and the model predictive current controller are detailed in Sections 
3 and 4, respectively. Section 5 presents a comparative analysis of simulation results under various operating conditions. 
Finally, Section 6 concludes the paper with key findings and implications.

Design principles and processes

PMSM mathematical model.  Due to its complex structure, even when neglecting minor nonlinear effects, the 
mathematical model of a PMSM still exhibits high-order, multivariable, time-varying, and strongly coupled characteristics, 
making it difficult to directly solve its differential equations. By employing coordinate transformations (Clarke transform and 
Park transform), the complex physical model of the PMSM in the three-phase stationary coordinate system 

{
ABC

}
 can be 

equivalently converted into a DC motor-like model in the synchronous rotating two-phase coordinate system 
{
dq

}
. This 

achieves linear decoupling of the model and enables vector control, as illustrated in Fig 1.
By transforming into the synchronous reference frame 

{
dq

}
, the dynamic model of the PMSM can be derived. In 

this coordinate system, the voltage equations and flux linkage equations of the PMSM are expressed as (1) and (2), 
respectively:

	

{
ud =

dψd
dt – ωeψq + Rid

uq =
dψq

dt + ωeψd + Riq	 (1)

	

{
ψd = Ldid + ψf

ψq = Lqiq 	 (2)
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where ud  and uq  represent the d axis and q axis voltages, respectively; id  and iq denote the d axis and q axis currents; ψd  
and ψq  stand for the d axis and q axis flux linkages; R is the equivalent stator resistance; Ld  and Lq  are the d axis and q 
axis inductances of the stator windings; ψf  represents the permanent magnet flux linkage.

Generally, (1) is used for PMSM vector control. Currently, most SMO algorithms are designed based on the mathe-
matical model in the stationary reference frame 

{
αβ

}
, because angular velocity and position information can be easily 

extracted in this reference frame. The model can then be expressed as follows:

	

[
uα
uβ

]
=

[
R+ d

dt Ld ωe(Ld – Lq)
–ωe(Ld – Lq) R+ d

dtLd

] [
iα
iβ

]
+

[
eα
eβ

]

	 (3)

where uα, uβ, iα, iβ and eα, eβ represent the stator voltages, stator currents, and extended back EMF (electromotive force) 
in the two-phase stationary coordinate system, respectively, which satisfy:

	

[
eα
eβ

]
=

[
(Ld – Lq)(ωeid –

diq
dt

) + ωeψf

] [
– sin θe
cos θe

]

	 (4)

From (4), it can be observed that the back-EMF signal contains information about both rotor speed and position. There-
fore, after estimating the back EMF signal using an observer, the rotor speed and position can be obtained. To facilitate 
the application of a SMO for estimating the extended back-EMF, equation (3) can be rewritten in the form of a current 
state equation as follows:

	

d
dt

[
iα
iβ

]
= A

[
iα
iβ

]
+

1
Ld

[
uα
uβ

]
–
1
Ld

[
eα
eβ

]

	 (5)

Fig 1.  Vector transformation coordinate systems of PMSM. 

https://doi.org/10.1371/journal.pone.0336702.g001
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where A = 1
Ld

[
–R –ωe (Ld – Lq)

ωe (Ld – Lq) –R

]
, iα and iβ are measurable (calculated) current output values, uα and uβ 

are he motor input voltages, ωe and θe denote the unmeasurable rotor electrical angular velocity and electrical angle, 
respectively.

Traditional sliding mode observer.  (5) shows that both eα and eβ can be theoretically calculated directly from the 
current equations. However, in practical applications, analytical methods often yield inaccurate results due to motor 
parameter variations, measurement errors, and disturbances. The SMO can effectively overcome these issues. To 
estimate the back EMF, the traditional SMO is typically designed as follows:

	

d
dt

[
îα
îβ

]
= A

[
îα
îβ

]
+

1
Ld

[
uα
uβ

]
–
1
Ld

[
êα
êβ

]

	 (6)

where superscript (∘) indicates an observed value.
Subtracting (5) from (6) yields the equation for current observation error:

	

d
dt

[
īα
īβ

]
= A

[
īα
īβ

]
+

1
Ld

[
eα – êα
eβ – êβ

]

	 (7)

where īα = îα – iα and īβ = îβ – iβ are current observation errors; êα and êβ are the observed back EMF, which can be 
represented by (8):

	

[
êα
êβ

]
=

[
h · sign(̂iα – iα)
h · sign(̂iβ – iβ)

]

	 (8)

where h represents the sliding mode gain coefficient. To ensure observer convergence, h must satisfy (9):

	
h > max

{
–R

∣∣̄iα
∣∣+ eα · sign

(̄
iα
)
– ωe (Ld – Lq) īβ · sign(̄iα)

–R
∣∣̄iβ

∣∣+ eβ · sign
(̄
iβ
)
– ωe (Ld – Lq) īα · sign(̄iβ)

}

	 (9)

When the observer’s state variables reach the sliding surfaces īα = 0 and īβ = 0, the observer states will remain on these 
surfaces thereafter. The sign function (signum), which outputs +1 for positive inputs and −1 for negative values, induces 
high-frequency switching in the actual control signal. To obtain continuous estimates of the extended back EMF, a low-
pass filter (LPF) must be incorporated. However, the LPF introduces both amplitude attenuation and phase delay in the 
back EMF estimates, necessitating compensation for the rotor position estimation. The electrical position can be extracted 
from the estimated back EMF components using either an arctangent function or a phase-locked loop (PLL) circuit. This 
study employs the former approach, while PLL design methodologies can be found in references [29,30]:

	
θ̂e = θ̂LPF + arctan

ω̂e
ωc	 (10)

where θ̂LPF = –arctan (êα_LPF/êβ_LPF), ωc represents the cutoff frequency of the low-pass filter.
By performing differentiation on 10, speed information can be obtained. Specifically, for surface-mounted permanent 

magnet synchronous motors, the speed estimate can be calculated as:

	
ω̂e =

(
1 +

ω̂2
e

ω2
c

) 1
2

√
e2α_LPF + e2β_LPF

ψf 	 (11)
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The speed estimation method presented in (11) explicitly compensates for the amplitude attenuation of the back EMF 
induced by the low-pass filter, which is often overlooked in other common studies. The implementation framework of sen-
sorless vector control for permanent magnet synchronous motor and the structure of traditional SMO algorithm are shown 
in Fig 2.

Super twisting sliding mode observer.  The SMO-based sensorless control algorithm offers simplicity and strong 
robustness, but cannot eliminate the chattering problem caused by high-frequency switching near the sliding surface, 
necessitating the introduction of a LPF for filtering and compensation. To mitigate chattering effects, this paper proposes 
incorporating the super twisting algorithm (STA) to design a super twisting sliding mode observer (STSMO). The stability 
and finite-time convergence of this approach have been proven in reference [31]. The basic form of the STA with 
perturbation is designed as:

	

{
ẋ1 = –k1

∣∣x̄1
∣∣1/2sign (x̄1) + x2 + ρ1 (x1, t)

ẋ2 = –k2sign(x̄1) + ρ2 (x1, t) 	 (12)

where xi represents the system state variable, ki denotes the sliding mode coefficient, x̄i corresponds to the error between 
estimated and actual state values, and ρi signifies the disturbance term.

It has been proved in [24] that if the perturbation terms in(12) are globally bounded by

	
∣∣ρ1

∣∣ ≤ δ1
∣∣x1

∣∣1/2, ρ2 = 0	 (13)

Fig 2.  A block diagram of sensorless field oriented control with SMO.

https://doi.org/10.1371/journal.pone.0336702.g002

https://doi.org/10.1371/journal.pone.0336702.g002
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and the gains k1, k2 satisfy:

	
k1 > 2δ1, k2 > k1

5δ1k1 + 4δ21
2 (k1 – 2δ1) 	 (14)

then the system will converge in finite time to sliding surface, where δ1 is any positive constant. x = 0 is a globally asymp-
totically stable equilibrium point, and the system will converge to this equilibrium in finite time from any initial state.

To estimate the rotor position using the α and β current estimate as the state variables, this paper proposes an 
STSMO-based stator current observer for sensorless control of surface-mounted PMSM (Ld = Lq = Ls), constructed as 
follows:

	

d
dt

[
îα
îβ

]
=




1
Ls

(
–k1

∣∣̄iα
∣∣1/2sign (̄iα

)
–
∫
k2sign(̄iα)dt

)
+ ρ1

(̂
iα, t

)

1
Ls

(
–k1

∣∣̄iβ
∣∣1/2sign (̄iβ

)
–
∫
k2sign(̄iβ)dt

)
+ ρ2

(̂
iβ , t

)


	 (15)

Comparing (12) and (6), perturbation terms ρ1
(̂
iα, t

)
 and ρ2

(̂
iβ , t

)
 can be designed as:

	




ρ1

(̂
iα, t

)
= – R

Ls
îα + 1

Ls
uα

ρ2

(̂
iβ , t

)
= – R

Ls
îβ + 1

Ls
uβ 	 (16)

Obtained from (13):

	




– R
Ls
îα + 1

Ls
uα – δ1

∣∣∣̂iα
∣∣∣
1/2

≤ 0

– R
Ls
îβ + 1

Ls
uβ – δ1

∣∣∣̂iβ
∣∣∣
1/2

≤ 0
	 (17)

After selecting an appropriate δ1 > 0 from (17), the observer gains k1 and k2 must satisfy the constraints in (14) to ensure 
convergence performance.

The α and β axis current error state equations are obtained by subtracting (5) from (15):

	

d
dt

[
īα
īβ

]
= –

R
Ls

[
īα
īβ

]
+

1
Ls

[
eα
eβ

]
–
1
Ls

[
k1
∣∣̄iα

∣∣1/2sign (̄iα
)
+
∫
k2sign(̄iα)dt

k1
∣∣̄iβ

∣∣1/2sign (̄iβ
)
+

∫
k2sign(̄iβ)dt

]

	 (18)

When the observer’s state variables reach the sliding surface īα = īβ = 0, the observer states will remain on the sliding 
surface thereafter. Based on the equivalent control principle, the observed back EMF can be expressed as:

	

[
êα
êβ

]
=

[
eα
eβ

]

eq
=

[
k1
∣∣̄iα

∣∣1/2sign (̄iα
)
+
∫
k2sign(̄iα)dt

k1
∣∣̄iβ

∣∣1/2sign (̄iβ
)
+

∫
k2sign(̄iβ)dt

]

	 (19)

Switching function.  In traditional sliding mode observer design, the sign function is commonly used as the switching 
function. Due to the discontinuity of the sign function itself, it is easy to cause oscillations in the system during operation. 
In order to further reduce the effect of system chattering on control performance, the paper adopts a continuous function 
instead of the sign function sign, where the continuous function is represented as:

	
F(s) =

eks – 1

eks + 1	 (20)
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k  is a positive constant that determines the convergence characteristics of the function. When k  takes different values, 
F (s) is shown in Fig 3. It can be seen that as k  decreases, the curve changes more smoothly, and the system’s chat-
tering effect decreases, but it will also reduce the speed at which the system approaches the sliding surface; The larger 
the value of k , the faster the convergence speed of the function, and the closer the effect is to the sign function, which 
can cause significant jitter. This article selects k = 10 to balance the convergence speed of the system and suppress 
chattering.

At this point, the back EMF can be expressed as:

	

[
êα
êβ

]
=

[
k1
∣∣̄iα

∣∣1/2F (̄
iα
)
+
∫
k2F(̄iα)dt

k1
∣∣̄iβ

∣∣1/2F (̄
iβ
)
+

∫
k2F(̄iβ)dt

]

	 (21)

Model Predictive Control of PMSM Current

Single vector model predictive current control.  Traditional MPC consists of three key components: prediction 
model, receding horizon optimization, and feedback correction. At each sampling instant, the system predicts future 
outputs based on the established prediction model and given input information. These predicted outputs provide prior 
knowledge for the control system to evaluate a cost function over a defined time horizon, solving an optimization 
problem to determine the optimal control input through this continuous rolling optimization process. Finally, the actual 
system output is fed back to the controller for online error correction. For PMSM current control, FCS-MPC leverages 
the inherent discrete switching characteristics of inverters. It predicts future system states based on the controlled 
object’s mathematical model and a finite set of voltage vectors. FCS-MPC evaluates all possible switch states based on 
a predefined objective function and outputs the optimal voltage vector. This method has gained widespread attention in 
the field of motor control due to its fast dynamic response, non-linear, multi-objective, and multi constraint processing 
capabilities. For surface mounted PMSM, the prediction model is usually based on the current balance equation of dq 
rotating coordinate system:

	

d
dt

[
id
iq

]
=

[
– R
Ls
id + ωeiq + 1

Ls
ud

– R
Ls
iq – ωe

Ls
ψf – ωeid + 1

Ls
uq

]

	 (22)

Fig 3.  Convergence characteristics of the continuous function.

https://doi.org/10.1371/journal.pone.0336702.g003

https://doi.org/10.1371/journal.pone.0336702.g003
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Discretize the continuous current equation using the forward Euler method:

	

di
dt

=
ik+1 – ik
Ts 	 (23)

where Ts is the current loop control period, representing the interval between two discrete moments.
When the current control cycle is sufficiently small, it can be assumed that parameters such as speed, inductance, and 

resistance remain essentially constant within this short period. Under these conditions, the dq -axis current values at the 
next time instant k+ 1 can be predicted using the current measurements of current, electrical angular velocity, and candi-
date voltage vectors. By combining (22) and (23), the discrete-time current prediction equations are obtained as follows:

	

[
ik+1
d
ik+1
q

]
=

[
ikd +

Ts
Ls

(
ukd – Ri

k
d + ωk

eLsi
k
q

)
ikq +

Ts
Ls

(
ukq – Ri

k
q – ωk

eψf – ωk
eLsi

k
q

)
]

	 (24)

In model predictive control, the optimization is primarily achieved by constructing a cost function for online optimization, 
with the optimal voltage vector selected by this function being applied in the next sampling period. This study employs the 
differences between the predicted values ( id , iq) and their respective reference values as evaluation metrics. The opti-
mal solution is obtained by comparing the cost functions generated under different voltage vectors’ effects on id  and iq 
feedback.

The candidate voltage vectors are input into the current prediction model to obtain their corresponding predicted current 
values. These values are then systematically evaluated through the objective cost function. For model predictive current 
control using dq axis currents as system variables, the cost function is constructed with squared error terms as follows:

	
J =

(
irefd – ik+1

d

)2

+
(
irefq – ik+1

q

)2

	 (25)

In the above equation, irefd  and irefq  represent the reference values for the stator currents. The closer the predicted values 
are to their reference values, the smaller the corresponding cost functionJ  becomes. In MPCC, the d axis and q axis 
currents share the same physical dimensions and are assigned equal priority. Therefore, no weighting coefficients are 
applied between them in the cost function.

The study employs a three-phase two-level voltage source inverter to power the PMSM, with its topological structure 
shown in Fig 4. Here, s

1
, s

2
, and s

3
 represent the switching signals for the upper-arm IGBT of the three phases in the two-

level inverter, while s
4
, s

5
, and s

6
 correspond to the lower-arm IGBT switching signals. 1 indicates the IGBT is in the on 

state, and 0 denotes the off state.
Due to the complementary switching states of the upper and lower IGBT arms in the inverter, there exist a total of 8 

possible switching combinations. Among these, 6 combinations are active switching states that establish electrical con-
nection between the DC bus and the motor terminals. When these 6 active switching combinations are converted into 
space vector form, they yield 6 voltage space vectors with fixed magnitudes and spatial orientations, known as active 
voltage vectors. Additionally, there are 2 switching states that disconnect the DC bus from the motor side, occurring when 
either all upper-arm or all lower-arm IGBT are simultaneously turned on or off. These 2 switching combinations corre-
spond to zero voltage vectors in space vector representation. This results in 7 distinct voltage vectors (6 active vectors 
and 2 zero vectors), as illustrated in Fig 5.

Based on coordinate transformation theory, the current equations for the d axis and q axis in the 
{
dq

}
 reference frame 

can be derived, enabling the implementation of model predictive current control. The model predictive control algorithm 
selects the optimal control input exclusively from the 6 active vectors and 2 zero vectors, it is termed finite control set 
model predictive control (FCS-MPC).
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Dual-vector model predictive current control.  The conventional FCS-MPCC strategy for PMSM applies only 
one basic voltage vector per control cycle. Typically, the predicted current values after applying the selected voltage 
vector will either be lower or higher than the reference values, making it impossible to achieve deadbeat control of 
d  and q  axis currents. This results in significant ripple in the controlled variables id  and iq, leading to poor steady-
state performance of the control system. To address the unsatisfactory steady-state characteristics of FCS-MPCC for 
PMSM, some researchers have attempted to introduce duty cycle modulation into traditional MPCC. This approach 
adjusts the ratio between active vectors and zero vectors’ application time within one control cycle, thereby enabling 
the model predictive current control to regulate the output vector magnitude and consequently suppress undesirable 
current fluctuations.

Through the deadbeat control method for q axis current, the duty cycle calculation for the sampling period is realized. 
Specifically, this ensures that the iq value at k+ 1 moment equals irefq , expressed as:

	 ik+1
q = ikq + soptTsγopt + s0 (Ts – Tsγopt) = irefq 	 (26)

Fig 4.  Three-phase two-level inverter.

https://doi.org/10.1371/journal.pone.0336702.g004

Fig 5.  Basic voltage vectors of a three-phase two-level inverter.

https://doi.org/10.1371/journal.pone.0336702.g005

https://doi.org/10.1371/journal.pone.0336702.g004
https://doi.org/10.1371/journal.pone.0336702.g005
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It is obtained:

	
γopt =

irefq – ikq – s0Ts
Ts (sopt – s0) 	 (27)

where Ts represents the sampling period, sopt and γopt denote the slope and duty cycle of iq when the optimal voltage 
vector is applied, s0 is the slope of iq under zero voltage vector application. From (22):

	

s0 =
diq
dt

∣∣∣
uq=0

= – 1
Ls
(Riq + ωeLsid + ωeψf)

sopt =
diq
dt

∣∣∣
uq=uq_opt

= s0 +
uq_opt
Ls 	 (28)

where uq_opt is the q axis component of the optimal voltage vector.
By synthesizing a new voltage vector from active vectors and zero vectors, the system can achieve more precise 

tracking of the reference voltage, thereby improving steady-state performance. Since the zero vector is excluded 
from the candidate set for optimal voltage selection in this strategy, the selection is confined to the 6 active voltage 
vectors. Building upon the duty cycle MPCC approach, the dual vector MPCC (DVMPCC) strategy extends the selec-
tion range of the second vector from just zero vectors to all available inverter voltage vectors. This advanced strat-
egy enables the selection of two distinct voltage vectors within a single sampling period. By optimally allocating their 
respective application times, a new synthesized voltage vector is generated that more closely approximates the target 
vector. Unlike conventional single vector MPCC, where output vectors are limited to fixed directions and magnitudes, 
this method offers infinite possible time-based combinations. Consequently, the synthesized voltage vectors are no 
longer constrained to a few discrete orientations and amplitudes. This enhanced flexibility minimizes the discrep-
ancy between predicted and reference current values, significantly improving the system’s steady-state performance. 
To determine the optimal vector combination, a rational time allocation between the two selected vectors must be 
implemented. The specific allocation method follows the q  axis current deadbeat principle used in duty cycle control, 
expressed as:

	 ik+1
q = ikq + sopt1topt1 + si (Ts – topt1) = irefq 	 (29)

where sopt1 and si are the slopes of iq when the first and second optimal voltage vectors are applied, respectively. The first 
optimal voltage vector action time:

	
topt1 =

irefq – ikq – siTs
sopt1 – si 	 (30)

sopt1 and si can be represented as:

	

sopt1 =
diq
dt

∣∣∣
uq=uq_opt1

= s0 +
uq_opt1
Ls

si =
diq
dt

∣∣∣
uq=uq_i

= s0 +
uq_i
Ls 	 (31)

where uq_i is the q axis component of the second optimal voltage vector.
Numerical calculation.  The PMSM current finite set model predictive control based on the super twisting sliding mode 

observer proposed in this article is shown in Fig 6.
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On the basis of selecting the optimal voltage vector in the traditional MPCC strategy, another voltage vector selection 
is carried out, and then the action time is calculated and allocated to combine the two voltage vectors into a new voltage 
vector. Finally, the value function is compared one by one to obtain the optimal second voltage vector and the allocation 
scheme of action time, thereby improving the steady-state performance of the control system. Among them, the two volt-
age vectors before and after are selected from the 8 basic voltage vectors of the inverter. Figs 6(a), 6(b), and 6(c) show 
the voltage vector selection ranges for three control methods: traditional MPC, duty cycle MPC, and DVMPC. Traditional 
MPC can only select the optimal vector from seven voltage vectors, with a fixed direction and size; The duty cycle MPC 
voltage vector has adjustable magnitude and fixed direction, which is the synthesis of the optimal voltage vector and zero 
vector; Dual vector MPC combines the optimal voltage vector with any voltage vector, and the direction and amplitude of 
the output voltage vector can be adjusted. To verify the effectiveness of the designed scheme, numerical calculations and 
result analysis will be conducted in this section.

STSMO performance analysis

To study the effect of PMSM using STSMO, a reference speed of 1000r/min is given, and a sudden load of 1Nm is applied 
at t = 0.1s. The control effects of STSMO and traditional SMO (without phase and amplitude compensation) are shown 
in Fig 7. As shown in the Fig, both sliding mode observers can quickly track the reference speed. The traditional SMO 
observer has a peak speed of 1092r/min during the dynamic response phase, with an overshoot of 9.2% and a peak time 

Fig 6.  DVMPCC block diagram.

https://doi.org/10.1371/journal.pone.0336702.g006

https://doi.org/10.1371/journal.pone.0336702.g006
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of 0.007s. After entering the steady-state response phase, the maximum speed error is 7r/min, and the speed oscillates 
between 996r/min and 1007r/min; The STSMO observer has a peak speed of 1100r/min during the dynamic response 
phase, with an overshoot of 10% and a peak time of 0.0063s. After entering the steady-state response phase, the max-
imum speed error is 3r/min, and the speed oscillates between 997r/min and 1003r/min. After a sudden increase in load, 
both methods are able to quickly track the actual speed again. The SMO and STSMO speeds dropped sharply to 891r/min 

Fig 7.  Response of SMO and STSMO. (a) Speed response of SMO and STSMO. (b) Speed error. (c) Observed rotational speed.

https://doi.org/10.1371/journal.pone.0336702.g007

https://doi.org/10.1371/journal.pone.0336702.g007
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and 890r/min, respectively, and quickly returned to the reference speed under controller adjustment. As shown in Fig 7 (c), 
the observed speed fluctuation of the STSMO observer is smaller than that of the SMO observer.

Fig 8 illustrates the position tracking performance of the two control methods. It can be observed that due to the lack of 
phase and amplitude compensation, the traditional SMO, although generally consistent with the actual angle, introduces a 
noticeable phase delay when low-pass filtering is applied to the equivalent control signal. After compensation, the STSMO 
provides highly accurate rotor position observation. The predicted angle closely aligns with the actual angle, with the error 
maintained within 0.02 rad. Compared to the traditional SMO, the STSMO exhibits a smaller position error and continues 
to accurately and rapidly track the position even after a sudden load is applied.

In summary, the calculation results demonstrate that the optimized STSMO achieves more accurate rotor position 
estimation compared to the traditional SMO. It provides smoother speed response, effectively reduces system chattering, 
minimizes speed fluctuations, enhances system stability, and delivers superior speed tracking performance under load 
conditions.

Fig 8.  Position tracking curve. (a) SMO rotor position. (b) STSMO rotor position.

https://doi.org/10.1371/journal.pone.0336702.g008

https://doi.org/10.1371/journal.pone.0336702.g008
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STSMO-DVMPCC performance analysis

The dual vector model predictive current control improves the motor’s dynamic performance and steady-state accuracy 
by optimizing the selection of voltage vectors and the allocation of their application time. Fig 9 shows the speed tracking 
performance of PMSM with the optimized STSMO-based DVMPCC. As can be seen from the Fig, when responding to a 
step reference speed (1000 r/min), the STSMO-DVMPCC reaches a peak speed of 1102 r/min, indicating an overshoot 
of 10.2%, with a peak time of 0.007 s. During steady-state operation, the maximum speed error is 1 r/min, with speed 
oscillations between 1000–1001 r/min. When a sudden load is applied, the speed drops to 895 r/min but quickly recovers 
to track the reference value.

As Fig 10 shows, compared with STSMO-MPCC control, the three-phase stator current waveforms under STSMO- 
DVMPCC control exhibit smoother profiles and reduced current ripple. Under steady-state operating conditions, the total 
harmonic distortion (THD) of phase A current decreases from 12.69% to 11.17%, indicating a more stable motor response 
process.

Fig 9.  Speed response of STSMO-DVMPCC. (a) Speed response curve of STSMO-DVMPCC. (b) Speed error curve.

https://doi.org/10.1371/journal.pone.0336702.g009

https://doi.org/10.1371/journal.pone.0336702.g009
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Conclusion

To enhance the sensorless control performance of PMSM, this study improves upon the traditional SMO by introducing 
an optimized STSMO, effectively mitigating system chattering. The accuracy of rotor position estimation is enhanced 
via comprehensive phase and amplitude compensation of the observed signals. Furthermore, chattering is further sup-
pressed by substituting the sign function with a continuous sigmoid function. The optimized STSMO exhibits superior 
tracking performance and contributes to smoother motor operation. For current loop regulation, a DVMPC strategy is 
employed in place of conventional PI control, significantly improving dynamic response. This method effectively over-
comes the inherent trade-off in PI control between dynamic and steady-state performance over wide speed ranges. 
In comparison with standard MPC, the proposed approach notably reduces current harmonics. Simulation and experi-
mental results confirm that the combined STSMO-DVMPCC strategy offers an effective sensorless control solution for 
PMSM applications.

Fig 10.  PMSM stator current. (a) Stator current under STSMO-MPCC control. (b) Stator current under STSMO-DVMPCC control.

https://doi.org/10.1371/journal.pone.0336702.g010

https://doi.org/10.1371/journal.pone.0336702.g010
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