
PLOS One | https://doi.org/10.1371/journal.pone.0336438  November 21, 2025 1 / 15

 

 OPEN ACCESS

Citation: Wang X, Jiang A, Li C, Liu Z (2025) 
Multi-omics analysis indicates an association 
between TAPBP and prostate cancer. PLoS One 
20(11): e0336438. https://doi.org/10.1371/
journal.pone.0336438

Editor: Yang Shi, Karmanos Cancer Institute, 
Wayne State University School of Medicine, 
UNITED STATES OF AMERICA

Received: November 20, 2024

Accepted: October 24, 2025

Published: November 21, 2025

Peer Review History: PLOS recognizes the 
benefits of transparency in the peer review 
process; therefore, we enable the publication 
of all of the content of peer review and 
author responses alongside final, published 
articles. The editorial history of this article is 
available here: https://doi.org/10.1371/journal.
pone.0336438

Copyright: © 2025 Wang et al. This is an open 
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 

RESEARCH ARTICLE

Multi-omics analysis indicates an association 
between TAPBP and prostate cancer

Xinlong Wang 1,2☯, Aimin Jiang2☯, Chao Li1*, Zhiyong Liu2*

1  Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China, 
2  Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China 

☯ These authors contributed equally.
* li4307chao@126.com (CL); medliuzy@163.com (ZL)

Abstract 

Prostate cancer is one of the most common malignant tumors among men world-

wide, and surgery remains its mainstay of treatment. It is unclear how prostate 

cancer develops and what the most effective drug targets are for treating prostate 

cancer. Therefore, we sought to identify the genes responsible for prostate cancer. 

By integrating multidimensional and high-throughput data, proteome wide associ-

ation studies (PWAS), transcriptome wide association studies (TWAS), single-cell 

sequencing, functional enrichment, Mendelian randomization (MR), and Bayesian 

co-localization analyses were used to screen for candidate genes that may contribute 

to prostate cancer and associate with clinical results of prostate cancer. Our com-

prehensive analysis showed that protein abundance of eight genes was associated 

with prostate cancer, four of which were validated at the transcriptome level. These 

8 candidate genes (MSMB, PLG, CHMP2B, ATF6B, EGF, TAPBP, GAS1 and MMP7) 

were validated. After combining single-cell sequencing, Mendelian randomization, 

and Bayesian co-localization analyses, we identified 1 gene (TAPBP) that is strongly 

associated with prostate cancer.

Introduction

Prostate cancer (PCa) is one of the most common malignancies among men 
worldwide. According to Global Cancer Statistics 2020, PCa is the leading cause 
of cancer-related death in men [1]. Numerous PCa-associated risk loci have been 
screened using the genome-wide association study (GWAS) approach [2]. GWAS 
aims to tightly link genetic loci to diseases and other genetic traits [3,4]. Over the past 
decade, the approach has involved many variant-phenotype associations [5] and has 
driven important scientific discoveries [6].

Despite the tremendous impact of GWAS, inherent difficulties continue to limit 
its success [7,8]. An improvement of these methods would be a protein-centered 
approach that considers the impact of genetic variation on gene function. Proteins 
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are the most effective biomarkers and therapeutic targets [9,10] because they repre-
sent the major functional components of cellular and biological processes as well as 
the end products of gene expression [11]. The study of risk proteins in PCa is crucial. 
Overall, studies have shown that alterations in proteomics are associated with cell 
cycle control, DNA repair, proteasome degradation and metabolic activity. In addition 
to differences in study methodology, possibly due to the heterogeneity of PCa itself, 
the results are rather inconsistent [12].

Based on the available literature, we used proteome wide association studies 
(PWAS). PWAS is based on the premise that causal variation in coding regions 
affects phenotype by altering the biochemical function of a gene’s protein product. 
To capture these effects, PWAS quantifies the extent to which proteins are impaired 
under individual genotypes.

Like other gene-based approaches, PWAS alleviates the burden of multiple test 
corrections. In addition, it provides specific functional explanations for the protein- 
coding genes it discovers. Therefore, we sought to identify new drug targets for the 
treatment of PCa by combining high-throughput proteomics in PCa with genetic 
data to determine the levels of genomic structure-associated proteins. To identify 
potential protein biomarkers, we took a six-step approach to systematically link 
protein biomarkers to PCa. First, we used findings from the Atherosclerosis Risk in 
Communities (ARIC) dataset and prostate cancer GWAs to perform PWAS and its 
FDR-corrected analysis. Next, we analyzed the expression of PWAS-identified risk 
genes by the Prostate Cancer Single Cell Database and explore the potential func-
tion of candidate genes. The we explored important genes driving PWAS signaling 
at the transcriptional level by utilizing gene expression data. Fourth we used inde-
pendent Mendelian randomization (MR) analysis to validate PWAS significant genes 
and used COLOC to integrate the GWAs data with the PCa database using Bayesian 
co-localization analysis to explore whether the two correlated signals were consis-
tent with a common dependent variable(s). Fifth, we explored the mutation and drug 
sensitivity of TAPBP. Finally, we explored the association of these potential prostate 
cancer-causing proteins with some PCa clinical features.

Method

1  Source of data

1.1  Source of GWAS data.  A large number of meta-analyses have been 
conducted on PCa GWAS, including the UK biobank (UKB) data are fully available at 
http://fastgwa.info/ukbimpbin and the GWAS Catalog. According to UKB and GWAS 
Catalog summary statistics, 7769 cases and 201039 controls were considered 
eligible. All participants for PCa included were of European descent.

1.2  Human blood proteomic and transcriptomic data.  Serum proteomic data 
were collected Atherosclerosis Risk in Communities (ARIC) study; N ~ 9,000) [13] in a 
large population-based study. The ARIC study enrolled 15,792 participants from four 
American communities. The current study ultimately included 9,084 participants with 
plasma protein data. A total of 4,657 human serum proteins were considered eligible.
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Local gene expression regulation is often shared across tissues [14,15] and combining eQTL data across multiple 
tissues can improve the power of TWAS. Thus, Genotype-Tissue Expression (GTEx) version 8 data (n = 948) was used for 
the analysis of whole blood eQTLs [16]. A paired RNA-seq (Illumina TruSeq; Illumina Inc) was used to obtain gene expres-
sion data, and whole genome sequencing was used to obtain genotype data. The GTEx website provides information on 
donor registration, consent procedures, methods for obtaining biological samples, sample attachments, and procedures 
for histopathological examinations [17].

1.3  Single cell data.  Single cell datasets of PCa were downloaded from GEO with the access number of GSE141445. 
The pre-processing standards for Seurat object were as follow: number of RNA count >= 1000, number of features >= 200, 
percent.mt <= 20, percent.rb<= 20. Double cells were removed by R package DoubletFinder with default parameters.

1.4  Ethics statement.  This study dose not involve direct research on humans or animals.

2  Statistical analysis

2.1  Proteome‑wide association studies (PWAS).  The overall design of this study is shown in Fig 1. The effect of 
SNPs on protein abundance was calculated for proteins with significant heritability (P < 0.01) using FUSION [18]. The 
common prediction models used in the analysis are top1, blup, lasso, enet and bslmmv [18]. the ARIC database was 
selected for this analysis, so only enet and top1 were selected for the analysis. [13]. To combine the genetic effects of 
PCa with protein weights for PWAS of PCa, a linear sum of Z-scores + weights of independent SNPs was calculated. To 
reduce the likelihood of false positives, a Bonferroni-corrected P-value threshold was employed. Benjamini-Hochberg (BH) 
was also used to impute the P value adjusted for false discovery rate (FDR).

2.2  Single cell analysis.  R package harmony was applied to remove batch effect of samples from different patients. 
Cell type identification was determined by known marker genes and aid of R package SingleR. Enrichment score of 
GWAS related signatures for each cell were analyzed by function AddModuleScore from R package Seurat. More 
information about scRNA sequencing library preparation and sequence strategy can be found in work from study. In 
addition, more detailed parameters and pipelines for single cell analysis could refer to our previous works [19–21]

2.3  Transcriptome-wide association studies (TWAS).  The genetic influence of PCa was integrated with mRNA 
expression weights by using FUSION [18]. The basic procedure is as follows: Firstly, TWAS expression weights (i.e., 
SNP-gene correlations) are calculated from a reference expression panel [22]. To determine the out-of-sample R2 of each 
gene prediction model, FUSION performed five-fold cross-validation [18].

2.4  Mendelian Randomization (MR) analysis.  The PWAS significant genes (from the FUSION method) were 
examined for cis-regulatory protein abundance using MR. The genome-wide significant (P < 5 × 10−6) SNPs were 
considered as inclusion and followed by linkage disequilibrium (LD) to screen for independent SNPs (R2 < 0.1). A 
harmonization of exposure (QTL) and outcome (PCa GWAS) data was then performed. Wald ratios can be used to 
estimate causality when only one independent QTL is available. In cases where multiple SNPs are available, the ratios 
of SNP exposures to SNP outcomes were estimated using the inverse variance weighting (IVW) method for random-
effects meta-analysis. In addition, when the number of SNPs exceeded three, horizontal pleiotropy was tested using 
the MR-egger method. Bonferroni correction thresholds for the number of genes analyzed were set at P < 0.05/multiple 
comparisons [23,24]. Mendelian randomization analysis was conducted using “TwoSampleMR” version 0.5.5 in R 
version 4.0.

2.5  Bayesian colocalization analysis.  The Coloc Bayesian test was used to determine the probability that the PCa 
risk locus and the pQTL share the same causal signal [25,26]. In prostate disease, p1 represents the probability that a 
specific variant correlates with a significant pQTL, p2 represents the likelihood that a particular variant will be associated 
with one in the disease. An individual variant’s p12 is the probability of it being both an outcome and a pQTL in prostate 
disease. Five mutually exclusive hypotheses were tested: H0, no relation with either GWAS or pQTL; H1, relation with 
GWAS and no relation with pQTL; H2, relation with pQTL and no relation with GWAS; H3, relation with GWAS and pQTL, 
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two independent SNPs; and H4, association with GWAS and pQTL, one common SNP. We focus on the last hypothesis, 
H4, and the posterior probability (PP) is employed to support H4 (denoted as PPH4). We define strong proof for co-
localization when PPH4 ≥ 0.75.

2.6  Enrichment analysis based on candidate genes.  Firstly, bulk sequencing datasets including ICGC-PRAD, 
TCGA-PRAD, GSE21034, GSE54460, GSE107299, GSE70768, GSE70769, GSE21034, DFZ2018 were downloaded 
from with the use of R packages TCGAbiolinks and GEOquary [27]. All transcriptome or microarray matrix were scaled 
and normalized before formal analysis. In addition, patients were excluded if missing clinical outcome information. Next, 
an enrichment score for each patient were calculated by R package GSVA with the function of ssGSEA [28]. Next, the 

Fig 1.  Overview of this study.

https://doi.org/10.1371/journal.pone.0336438.g001

https://doi.org/10.1371/journal.pone.0336438.g001
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biological annotation and hallmarks enrichment score correlated with score of discovery PWAS genes were analyzed by R 
packages clusterprofile and ggpubr, which was verified by algorithm of rank-based analysis (ORA).

2.7  Analysis of drug sensitivity analysis and mutation profile.  Three drug sensitivity datasets, GDSC, CTRR 
and PRISM, were enrolled to detect the influence of GWAS score on therapy response or resistance by R package 
pRRophetic [29,30].

All visualization were performed with the application of software including R and GraphPad. This study examined the 
clinical disparities of GSWA score using student T and Wilcoxon tests. The R package ggpubr was employed to assess 
the different GWAS score across different T, Stage, and Grade classifications through the Kruskal-Wallis test.

Result and discussion

Discovery of PWAS in PCa

The FUSION pipeline was used to integrate the PCa GWAS findings with human blood proteomes for the PWAS of PCa. 
Based on the 9084-master analyzed sample size derived from the ARIC database, the PWAS identified 16 genes (MSMB, 
PLG, CHMP2B, ATF6B, EGF, TAPBP, GAS1, MMP7, SERPINA3, AIF1, PRDX3, DKK3, PSAPL1, MINPP1, ANGPTL4, 
and CTSS), whose protein levels were associated with PCa at P < 0.05 (Fig 2). After Bonferroni correction threshold of 
P < 0.05/number, where Microseminoprotein-beta (MSMB), Plasminogen (Plg), CHMP2B, Activating transcription factor 6 
(ATF6), Epidermal Growth Factor (EGF), Tapasin Binding Protein (TAPBP), Growth Arrest Specific Gene 1 (GAS1) and 
matrix metalloproteinase 7 (MMP7) were more significantly associated with PCa.

Expression of these genes in different cell types of PCa

We investigated whether risk genes identified by PWAS are enriched in specific prostate cell types. Using human single- 
cell RNA-seq data from a cell-type database, we identified enriched causal genes expressed specifically in eight cell types 
(Fig 3). TAPBP, ATF6B, CHMP2B, MSMB were expressed in a higher proportion of malignant cells, while TAPBP was 
expressed in a higher proportion and level in various immune cells.

Fig 2.  Manhattan plot for the discovery PCa PWAS integrating the PCa GWAS (N = 7769) with the discovery ARIC proteomes (N = 15792). Each 
point represents a single association test between a gene and PCa ordered by genomic position on the x axis and the association strength on the y axis 
as the − log

10
(P) of a z-score test. The discovery PWAS identified 8 genes whose cis-regulated protein abundance was associated with PCa at an FDR 

of P < 0.05. The red horizontal line reflects the significant threshold of the FDR P < 0.05 and is set at the highest unadjusted P value that is below that 
threshold (P = 2.2 × 10−4).

https://doi.org/10.1371/journal.pone.0336438.g002

https://doi.org/10.1371/journal.pone.0336438.g002
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Enrichment analysis of the genes in PCa

In addition, we utilized the overrepresentation analysis (ORA) algorithm to decipher the role of the PWAS discovery genes 
across different PCa cohorts. The GO results illustrated that PWAS discovery genes participated in cell adhesion, response 
to stimulus and nuclear division in BP; extracellular exosome, extracellular organelle and centromeric region in CC; and 
signaling receptor binding, protein−containing complex binding, and cell adhesion molecule binding in MF (Fig 4A).  
KEGG analysis revealed that PWAS discovery genes might be involved in cell cycle, and p53 signaling pathway (Fig 4B). 
GSEA and hallmark analysis also confirmed that PWAS discovery genes mainly participated in immune response, anti-
gen processing and presentation, T cell receptor signaling pathway and Tnfa signaling via nfkb (Fig 4C, D). Through the 
above finding, we found that PWAS discovery genes were involved in the immune response and cell cycle. Integrating 

Fig 4.  Candidate genes impacted signature in PCa based on correlation analysis. A, B. GO and KEGG analyses based on ORA. C, D. GSEA-
KEGG, and GSEA-Hallmarks analysis of candidate genes in PCa.

https://doi.org/10.1371/journal.pone.0336438.g004

Fig 3.  Expression of 8 genes in PCa tissues. A. Cell types in PCa tissues. B, C. Expression profiles of 8 genes in PCa tissues.

https://doi.org/10.1371/journal.pone.0336438.g003

https://doi.org/10.1371/journal.pone.0336438.g004
https://doi.org/10.1371/journal.pone.0336438.g003
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the aforementioned results, we find that TAPBP is positive in all outcomes. Therefore, we will conduct further analysis on 
TAPBP.

TWAS identified four genes associated with PCa

We combined PCa GWAS data with the human prostate transcriptome to perform transcriptome-wide association analysis 
(TWAS) of PCa using FUSION. Expression of 4 out of 8 genes (CHMP2B, ATF6B, TAPBP, GAS1) in blood was associated 
with PCa (Table 1). This suggests that the combined evidence from PWAS and TWAS suggests a role in the pathogene-
sis of PCa.

8 genes associated with PCa were validated by MR using prostate pQTL

Most of the analyzed proteins could only be detected using a single SNP; therefore, MR estimation was mainly based on 
the Wald ratio method. We further identified the above eight proteins, and these biomarkers revealed significant evidence 
of association in PCa GWAS (Table 2). We further analyzed their odds ratios and showed that among them, ATF6B, 
CHMP2B, GAS1, and MMP7 were the risk factors for the occurrence of PCa, while EGF, MSMB, PLG, TAPBP were pro-
tective factors (Fig 5).

Co-localization between PCa risk genes and pQTL in the prostate gland

Prostate cancer PWAS associations may arise from coincidental overlap between pQTL and loci that are in linkage dis-
equilibrium with PCa GWAS loci, or from the concurrent occurrence of a variant associated with protein expression, which 
is a protein quantitative trait locus (pQTL), and PCa. Statistical co-localization analyses for each gene report the probabil-
ity of GWAS and pQTL sharing a causal variant, referred to as Hypothesis 4 (H4) and PP4/(PP3 + PP4) ≥ 0.75. Based on 
H4 ≥ 75% and PP4/(PP3 + PP4) ≥ 0.75, the analysis revealed three of the eight genes that provided evidence of genetic 
co-localization (MSMB, TAPBP, and EGF) (Table 3). This suggests that these three proteins play an important role in the 

Table 1.  TWAS identified four genes associated  
with Pca.

gene P value

CHMP2B 3.66E-04

ATF6B 1.68E-04

TAPBP 3.72E-03

GAS1 3.85E-01

https://doi.org/10.1371/journal.pone.0336438.t001

Table 2.  Candidate genes identified by Mendelian randomization.

Gene nsnps IVW MR Egger pval Weighted median pval

OR ORLower ORUpper Pval

ATF6B 11 1.2966 1.0964 1.5334 0.002397 0.630797082 0.000124905

CHMP2B 21 1.1427 1.0800 1.2091 3.63E-06 0.160124428 2.18935E-05

EGF 12 0.8494 0.7963 0.9061 7.21E-07 0.020274016 2.29141E-05

GAS1 4 1.2076 1.0588 1.3773 0.004923 0.774952735 0.096094973

MMP7 20 1.0962 1.0434 1.1517 0.000265 0.49333611 0.010928317

MSMB 7 0.7767 0.6945 0.8688 9.74E-06 0.327374195 0.000347019

PLG 23 0.8492 0.8066 0.8940 4.61E-10 0.017827813 2.70502E-07

TAPBP 24 0.8942 0.8620 0.9276 2.35E-09 0.004858965 1.9132E-07

https://doi.org/10.1371/journal.pone.0336438.t002

https://doi.org/10.1371/journal.pone.0336438.t001
https://doi.org/10.1371/journal.pone.0336438.t002
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pathophysiology of PCa. TAPBP showed positive results in all of the above analyses, so its relationship with PCa needs to 
be further explored.

Mutation landscape between subtypes

The detailed genomic landscape difference between subgroups is depicted in Fig 6A, which indicates that the low TAPBP 
led to a high mutation frequency of speckle type BTB/POZ protein, SPOP, gain of 8q24.21 and 11q13.2 chromosome, and 
loss of 19q13.2 and 19q13.2 chromosome.

Drug sensitivity analysis

We harnessed three comprehensive drug sensitivity databases, GDSC, CTRP, and PRISM, to detect the relationship 
between TAPBP expression and therapy sensitivity or resistance. As Fig 6B illustrated, high FDX1 expression displayed a 
consensus result of therapy resistance to Amuvatinib, Trichostatin, Pilaralisib, EHT − 1864, and Panobinostat in the GDSC 
database; MK − 2206, neuronal differentiation inducer III, lomeguatrib, BRD − A02303741:carboplatin (1:1 mol/mol), and 
necrostatin−7 in the CTRP database; broxaterol, albuterol, GSK1904529A, pimobendan, thiamphenicol, eprinomectin, 
etc., in the PRISM database.

Potential prostate cancer-causing proteins with clinical associations

In furtherance of the understanding of the clinical association of TAPBP, a number of specific PCa clinical indicators were 
used to correlate studies with it. As the most commonly used PCa screening indicator, PSA was first used for analysis. 
We found that the expression levels of TAPBP were not significantly associated with normal PSA (Fig 7A). Biopsy is the 
gold standard for PCa diagnosis, and Gleason score is usually used to determine the benignity or malignancy of biopsied 

Fig 5.  MR forest plot of discovered PWAS PCa-associated proteins. The results are derived from the IVW analyses.

https://doi.org/10.1371/journal.pone.0336438.g005

Table 3.  Candidate genes identified by Bayesian colocalization.

Gene nsnps PP.H3.abf PP.H4.abf

MSMB 596 0.000521504 0.99947791

TAPBP 5290 0.022416109 0.96049176

EGF 2841 0.079297104 0.88166609

CHMP2B 3177 0.99938787 0.00060374

GAS1 3039 0.063961688 0.46131011

MMP7 2986 0.39553352 0.02078762

PLG 811 0.994315549 0.00565747

https://doi.org/10.1371/journal.pone.0336438.t003

https://doi.org/10.1371/journal.pone.0336438.g005
https://doi.org/10.1371/journal.pone.0336438.t003


PLOS One | https://doi.org/10.1371/journal.pone.0336438  November 21, 2025 10 / 15



PLOS One | https://doi.org/10.1371/journal.pone.0336438  November 21, 2025 11 / 15

tissue. Our study found that as the Gleason score increased, the expression level of TAPBP decreased (Fig 7B). Corre-
spondingly TAPBP were more expressed overall in normal tissues than in tumor tissues (Fig 7C). Further analysis of the 
relationship between PCa TNM staging and the expression of TAPBP showed a negative correlation between the relative 
expression of TAPBP and TNM staging (Fig 7D, E, F), and showed lower expression in metastatic tumors (Fig 7G). Tumor 
mutational burden (TMB), as an emerging biomarker, has received increasing attention for its role in predicting the efficacy 
of tumor immunotherapy. High GWAS scores are associated with low TMB (Fig 7H).

Discussion

Identifying therapeutic targets for disease is an important goal of human genetics research and is particularly important 
for PCA. In this study, we used a series of analytical techniques to investigate the functional associations between protein 
biomarkers in the prostate and PCa. We initially identified eight potential risk genes for PCa after PWAS analysis and 
FDR correction. Subsequently, we performed single-cell analysis of these genes and showed that they were differentially 
expressed in prostate. The candidate genes were validated in all of the above analyses and further enrichment analyses 
showed that it is primarily involved in immune response and cell cycle regulation. Further transcriptome association anal-
ysis revealed that four of the eight genes (CHMP2B, ATF6B, TAPBP, GAS1) were associated with PCa. Our results were 
replicated in MR validation analyses and verified whether the genes were risk factors or protective factors in the pathogen-
esis of PCa, providing a higher level of confidence. In addition, we identified MSMB, TAPBP and EGF by co-localization. 
Interestingly TAPBP was validated in all of the above analyses.

With the increasing incidence of prostate cancer in recent years [1], research on prostate cancer has also been grow-
ing. A cross-ancestry prostate cancer GWAS meta-analysis, which included 107,247 cases and 127,006 controls, reported 
86 new genetic risk variants independently associated with prostate cancer risk [31,32]. A total of 269 SNPs associated 
with prostate cancer risk were identified in this study, including the 86 new SNPs. However, these SNPs did not include 
those associated with TAPBP. Nevertheless, through Mendelian randomization analysis based on GWAS data, our study 
found an association between TAPBP and prostate cancer. This discrepancy may be due to differences in databases and 
analytical methods.

TAPBP gene is close to the MHC and encodes a molecule that is a member of the IgSF. Its product, Tapasin, is 
required for the association of the MHC class I heterodimer with the Tap transporter protein in the endoplasmic reticulum 
(ER) [31]. It forms part of the peptide loading complex, which is essential for the stable assembly of class I molecules 
with peptides prior to transport to the cell surface.The TAPBP gene is located in the extended filamentous MHC region 
between the BING1 and RGL2 loci [33]. TAPBP has been recognized to play an important role in antigen presentation 
[34]. Our findings suggest that TAPBP is involved in the immune response and antigen presentation in prostate cancer, 
and it is negatively correlated with the occurrence of prostate cancer and adverse clinical features (such as higher PSA 
levels, higher malignancy, tumor metastasis, etc.). Based on the above results, we hypothesize that mutations or low 
expression of TAPBP may mediate immune evasion in prostate cancer, thereby promoting the development or progres-
sion of the disease. This hypothesis and the related mechanisms need to be further verified in subsequent experiments.

Our study has several strengths. First, PWAS for PCa was performed using the largest and most comprehensive 
pooled statistics from the human proteome and the most recent GWAS for PCa. Second, we performed single-cell analy-
ses as well as enrichment analyses of the genes identified by PWAS to further validate their expression in tissues and the 
molecular functions that the gene products may exercise, the cellular environments in which they reside, and the biologi-
cal processes in which they are involved. Third, we validated the risk proteins using independent MR validation analyses. 

Fig 6.  A. Mutation landscape of PCa between TAPBPhigh and TAPBPlow subtypes.  * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. B. Drug sensi-
tivity difference among different databases. Correlation of IC50 of molecular drugs and TAPBP expression levels across different databases in the GDSC 
database, CTRP database, and PRISM database.

https://doi.org/10.1371/journal.pone.0336438.g006

https://doi.org/10.1371/journal.pone.0336438.g006
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Fig 7.  The role of TAPBP in PCa patient clinical outcomes. A. Relationship between TAPBP expression and PSA level in different databases. B. 
Relationship between TAPBP expression and Gleason score in different databases. C. Relationship between TAPBP expression and tissue type in 
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Fourth, based on Bayesian co-localization used to estimate the probability of observing two correlated signals at specific 
loci with common causal variants, we confirmed the causative proteins of PCA (MSMB, TAPBP, and EGF). Finally, we 
explored the drug sensitivity and some clinical correlations of TAPBP, and the results indicated that low TAPBP is associ-
ated with worse clinical outcomes.

There are also some limitations to this study. First, the ARIC used in this study failed to incorporate the PSA protein. 
Second, including methylation data in the analysis could provide a more comprehensive picture of disease progression. 
Most of our studies were conducted in Europeans, but we should be careful to generalize these findings to other races. 
Last, the complexity of PCA biology and the molecular mechanisms behind it can only be understood through functional 
genomics approaches and biological experiments. Therefore, we will conduct more molecular biology experiments to vali-
date our database-based findings.

Conclusion

In conclusion, we have identified a number of candidate genes associated with PCa through a series of methods including 
PWAS, TWAS, MR, and Bayesian colocalization. They may be involved in the occurrence of PCa through immune regu-
lation and cell cycle participation. The integrated results provide strong evidence for the association between TAPBP and 
PCa, and suggest that TAPBP may be a protective factor for PCa.
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