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Abstract 

An improved framework for measurement noise reduction of nonlinear PMDC motor 

using variants of extended Kalman filter (EKF) is presented in this paper. Simula-

tory as well as experimental testing and validation of presented developments has 

also been performed. The nonlinearities like hard dead zone and friction have been 

incorporated in the PMDC motor model. Position as well as velocity measurement 

scenarios have been considered. Firstly, the noise corrupted measurement is invoked 

in standard EKF that perform prediction and correction to generate the best possi-

ble reduced noise estimate of the true measurement. One drawback standard EKF 

is that it ignores the effect of noise in the physical system and setting process and 

measurement covariance values in a vague manner that cause inaccurate estimates. 

In order to remedy this problem, an adaptive variant of EKF is introduced that utilizes 

the weighting coefficients and forgetting factor in order to set covariance parame-

ters accurately and hence measurement noise reduction and estimation results get 

relatively accurate. The propositions are tested for angular position and velocity 

applications through simulation as well as practical experimentation. The results indi-

cate that the adaptive AEKF provides quantitative improvements over the traditional 

EKF significantly by adaptively adjusting noise covariance matrices. In addition, it is 

observed that AEKF produce smaller root mean square errors in state estimation, 

enhance convergence speed, and demonstrate higher tolerance to unforeseen distur-

bances. These improvements make AEKF particularly valuable in applications such 

as PMDC machines, navigation systems, robotics, and sensor fusion, where precise 

and reliable state estimation is critical.
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1.  Introduction

In real-world applications, modeling, controller design, noise cancellation, and distur-
bance rejection are crucial steps in electromechanical systems. A nonlinear approach 
to modeling and identification is required for controlling systems that must function 
under variable conditions or with a high degree of precision. The majority of electro-
mechanical systems found in industrial settings consist of masses that move while 
being affected by forces that are dependent on both location and velocity. In some 
operating regions, these forces behave in a nonlinear manner. When the direction of 
rotation changes in a multi-mass rotating system, nonlinearities such as dead zone 
and Coulomb friction have a major impact on the system’s performance. Real-time 
experiments and nonlinear modeling of a DC motor rotating in two directions are 
presented in the study in [1]. For the goal of identification, the system’s linear and 
nonlinear models are obtained. The important nonlinearities, such as dead zone 
and Coulomb friction, are then examined and incorporated into the nonlinear model. 
The nonlinear system model is identified using the Hammerstein nonlinear system 
technique. Recursive least square is the method used to identify the linear and 
nonlinear system models online. The benefits of the nonlinear identification strategy 
are demonstrated through the graphical and numerical presentation of the real-time 
experiment results. Similar research is discussed in [2], where real-time data is used 
to identify and validate the non-linear model of a permanent magnet DC motor. The 
non-linearities of the so-called dead zone and Coulomb plus viscous friction, which 
have a substantial impact on electric motors as position actuators, are included in 
the model. The “hard dead zone” modeling approach, which is thought to provide 
an accurate representation of the phenomenon, is used to simulate the dead zone. 
The nonlinear model that is produced is validated and compared with the Maxon 
DC motor responses of the Quanser DC motor control trainer system using Matlab®/
Simulink.

Regarding nonlinear modeling of PMDC motor, [3] presented a technique that 
consider nonlinear analytic model of a PMDC motors with friction and cogging. An 
automated identification mechanism is inferred for this detailed model in addition to 
the theoretical modeling. The electromechanical and electromagnetic effects of the 
direct current machine, such as motor torque or voltage induction, as well as other 
nonlinear phenomena, are included in the final model. Cogging torque, eddy current, 
hysteresis losses, and tribological features are some of these nonlinearities. The 
torque curve exhibits a periodic oscillation that is attributed to a fluctuation in the 
magnetic flux density, causing the cogging torque. Furthermore, hysteresis losses 
and eddy currents caused by the armature’s magnetic field commuting are also 
included in the motor model. The elastoplastic friction model is used to model the 
tribological features of all friction regimes. Both the velocity-dependent friction behav-
ior of the plastic friction domain and the linear spring damper behavior of the elastic 
friction domain can be represented by this model. Through particular experiments 
that make reference to their physical equivalents, the parameters are independently 
determined.
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Nonlinear Kalman filtering techniques are thought to be appropriate solutions to estimate problems where uncertainty 
and noise exist in real-world scenarios containing noise and disturbances. Cubature Kalman filtering (CKF), Unscented 
(UKF), and Extended (EKF) are the three main and fundamental algorithms. The use of these techniques for rotor angular 
position estimate is discussed in [4], with a focus on low speed states. An experimental setup is used to compare perfor-
mance measures. The setup uses a standard 3-phase low voltage BLDC motor in order to reduce the possibility of system 
noise lowering the quality of the Back-EMF signal when it is operating in low speed mode. Measurable improvements in 
performance and outcomes over EKF are demonstrated by UKF [5–7] and CKF approaches. Unscented and Cubature 
types perform better in terms of accuracy and convergence, according to estimated model states diagrams. Furthermore, 
the control algorithm for the motor in non-linear BLDC motor systems has been designed using the Extended Kalman 
Filter (EKF) in [8]. The stator line voltage and current measurements alone are used in the proposed study to estimate the 
motor state variables using an Extended Kalman Filter. The simulation findings have been confirmed, and the estimated 
rotor speed has been used for the BLDC motor’s closed loop speed control.

The rotor position and speed of BLDC motors are estimated by Ensemble Kalman Filter in [9] using only the stator line 
voltage and current measurement in order to minimize sensor costs and related measurement noise. A recursive filter 
appropriate for non-linear systems is the Ensemble Kalman Filter. The BLDC motor’s closed loop speed control and motor 
driving have been implemented using the estimated rotor speed and position rotor. Real-time simulation is used to show 
how well the suggested technique performs. A new neuro-adaptive control strategy is presented in [10] for tracking angu-
lar velocity in a permanent magnet DC motor system controlled by a DC–DC buck converter. To assure nominal tracking 
performance and counteract the unknown non-linear time-varying load torque, the controller leverages on the concept of 
back stepping and consists of a fast single hidden layer Hermite neural network (HNN) module with on-board (adaptive) 
learning. In addition to being computationally efficient, the HNN’s straightforward design shows promise for speed and 
accuracy in estimating dynamic fluctuations in the unknown load torque. Under parametric and non- 
parametric uncertainty, the suggested approach in [10] ensures a quick return of nominal angular velocity tracking. The 
transient reaction behavior is measured using performance indicators like peak undershoot/overshoot and settling time. 
The findings unequivocally validate theoretical claims and show improved dynamic speed tracking across a broad working 
range, supporting the applicability of the suggested approach for quick industrial applications.

A well-developed study using the Extended Kalman Filter (EKF) as a nonlinear speed and position observer in PMSM 
drivers was published in [11]. The PMSM drive system’s poor low speed performance, which produced the best estima-
tion performance in the high speed range (≫5 Hz), was a major issue, though. In the work [11], a novel approach for low 
speed EKF sensorless control of permanent magnet synchronous motor (PMSM) drives was proposed: adjustable DC 
bus voltage. Also given were the experiment’s results, which showed that modifying the DC Bus voltage in accordance 
with the system reference speed improved performance at low speeds (≫2 Hz). A novel finite-time nonlinear extended 
state observer (NLESO) was proposed and used in active disturbance rejection control (ADRC) to stabilize a nonlinear 
system against system uncertainties and discontinuous disturbances using output feedback based control [12] with 
regard to noise and disturbance rejection in PMDC motors. The first step involved combining all of the system’s uncer-
tainties, disturbances, and other undesirable nonlinearities into a single term known as the generalized disturbance. 
As a result, the NLESO assesses the generalized disturbance and uses an online approach to cancel it from the input 
channel. The suggested nonlinear ESO (NLESO) greatly reduces a peaking phenomenon that was present in linear ESO 
(LESO) by using a saturation-like nonlinear function. Finite-time Lyapunov theory is used to study the stability analysis of 
the NLEO, and comparisons with simulations on permanent magnet DC (PMDC) motors are shown to validate the effi-
cacy of the suggested observer with respect to LESO. The real-world industrial issue of seat positioning motors utilized 
in higher category cars was the focus of the research in [13]. Initially, the manufacturer’s end-control noise evaluation 
method is examined and contrasted with lab results. In the second section, a sophisticated model of vibration and noise 
generation is established, potential pathways for vibration and noise transfer are examined, and the dominant channel 
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is determined. The last section describes some changes made to sets of motors and how they reduced noise. The most 
successful adjustments were applied cumulatively, resulting in an average noise level reduction of 6–8 dB(A). Additional 
research is available in [14–19,20].

One thing to keep in mind when evaluating the limitations of EKF is that, in contrast to its linear counterpart, the 
extended Kalman filter is not, in general, an optimal estimator (it is, however, optimal in cases where the state transi-
tion model and the measurement are both linear, in which case the extended Kalman filter is the same as the regular 
one). Furthermore, because of its linearization, the filter may rapidly diverge if the initial estimate of the state is off or if 
the process is poorly described. An additional issue with the extended Kalman filter is to its tendency for the estimated 
covariance matrix to underestimate the true covariance matrix, hence increasing the danger of statistical inconsistency in 
the absence of “stabilizing noise” [21]. Notably, even for extremely basic one-dimensional systems like the cubic sensor—
where the ideal filter may be bimodal [13] and cannot be adequately represented by a single mean and variance esti-
mator, possessing a rich structure—the extended Kalman filter may yield subpar results. The quadratic sensor may also 
exhibit poor performance in this regard. In order to cater for the technical constraints of EKF for accurate position estima-
tion of nonlinear PMDC motor model, this paper consider the implementation of adaptive EKF with weighting function and 
forgetting factor that exhibit low error covariance characteristics as compared to traditional EKF version. This study is very 
essential to correctly judge the angular position and velocity of the PMDC motor in noisy environments.

Adaptive Extended Kalman Filter (AEKF) used in current paper demonstrate better performance for estimation com-
pared to the traditional EKF, mainly through dynamically adapting noise covariance matrices to enhance estimation per-
formance. In contrast to the traditional EKF, which depends on pre-specified and frequently erroneous noise parameters, 
AEKF adapts these values constantly based on real-time observations, resulting in accurate and stable state estimations. 
This flexibility improves the filter’s performance against system uncertainties, non-stationary noise, and modeling errors, 
making it more resilient to real-world implementation. AEKF also enhances convergence rate and decreases estimation 
errors, especially in extremely dynamic or volatile environments. All these advantages make AEKF superior for use in 
applications like autonomous navigation, robotics, and sensor fusion, where accurate and trustworthy state tracking is 
critical. Therefore, accurate estimates are produced by employing this filter to adaptively rectify the statistical features of 
measurement noise through the use of a forgetting factor. The structure of the paper is as follows. The PMDC motor mod-
eling and controller design challenge is formulated and described in Section 2, and the framework for noise reduction and 
output estimation is presented in Section 3. The simulation and real-world results for PMDC motor position and velocity 
control are shown in Section 4, after which the paper is finished.

2.  Modeling and control design for PMDC motor

The presence of process and measurement noise in physical systems pose a challenge to extract true measurement 
values when sensor is deployed to measure a certain physical parameter in practical applications. In this regard, in this 
section, improved technique for true value approximation are presented. The section starts with development of nonlinear 
mathematical model of the PMDC motor as discussed next.

2.1.  Nonlinear model of PMDC motor

As PMDC motor is an electromechanical system, its modeling is done with two perspectives, i.e., modeling of electric 
circuit and mechanical forces and torques. The generic electromechanical model of PMDC motor is shown in Fig 1.

As depicted in Fig 1, as initial step, the PMDC motor can be modeled using two linear equations for the electrical and 
mechanical subsystems.

	
v(t) = Ri(t) + L

di(t)
dt

+ Ea
	 (1)
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Tm = Kmi(t) + J

d2θ(t)
dt2

+ b
dθ(t)
dt 	 (2)

The electrical subsystem is represented by equation (1) above, where L and R stand for the resistance and inductance 
of the armature winding, respectively, and v(t) for the applied armature voltage, i(t) for the armature current, and Ea for the 
counter electromotive force. The mechanical subsystem is represented by the second expression (2), where the rotor’s 
angular position (θ), the friction coefficient (B), the motor constant (Km), the magnetic torque (Tm), and the motor’s rotor 
equivalent moment of inertia (J ). It is assumed in this model that the counter electromotive force in the motor is very small. 
Since the counter electromotive force is negligible at low speeds, the electrical subsystem’s transfer function Ge(s) ignores 
it, leading to:

	
Ge(s) =

I(s)
V(s)

=
1
R

( LRs+ 1)
=

Ke
(τes+ 1)	 (3)

where 1/R gives the electrical subsystem’s steady state gain Ke and τe = L/R gives the time constant. If we take the 
rotor velocity to be ω(t) = θ, then expression (4) is the transfer function for the mechanical subsystem.

	
Gm(s) =

ω(s)
Tm(s)

=
1
b

( Jbs+ 1)
; Tm(s) = kmI(s)

	 (4)

Thus, the following is the transfer function that links the rotor’s velocity, ω(t), to the input voltage, v(t):

	

ω(s)
V(s)

=
km
Rb

( Jbs+ 1)( LRs+ 1)	 (5)

Pole dominance allows for the simplification of transfer function (5) because the electrical mode is quicker than the 
mechanical mode [10,17]. As a result, the PMDC motor transfer function becomes:

	

ω(s)
V(s)

=

km
Rb

( Jbs+ 1)
=

Kmot
τmots+ 1 	 (6)

Fig 1.  Electromechanical model of PMDC motor. 

https://doi.org/10.1371/journal.pone.0336377.g001

https://doi.org/10.1371/journal.pone.0336377.g001
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where τmot = J/b is the time constant and km/Rb is the steady state gain of the PMDC motor Kmot  It is evident from (3) 
and (4) that the analysis of step responses can be used to determine the transfer functions of mechanical and electrical 
subsystems.

As the consideration of nonlinear anomalies present in physical system into mathematical model helps to make system 
analysis and design process more optimal and accurate, therefore PMDC model with dead zone and frictional anomalies 
has been built in present work to obtain accurate results as discussed in next subsections.

2.1.1.  Modeling of dead zone in PMDC motor characteristic curve.  The “smooth” dead zone depicted in Fig 2 
represents the non-linear dead zone behavior of the PMDC motor where the input and output are denoted by u(t) and 
v(t), respectively, and the left and right break points are bl  and br , and the dead zone’s slopes are ml and mr. ml= mr and 
bl = br  when the dead zone is symmetric [18,19]. When it comes to electric motors, however, this approximation may not 
always correctly reflect the actual physical reality. Because of this, the dead zone is represented as the “hard dead zone” 
in Fig 3 [21], which is thought to be a accurate portrayal of the non-linear phenomenon that happened in the PMDC motor 
of all. In (7), the symmetric “hard dead zone” is provided.

	
v(t) =

{
sin n (u(t))

[
k
∣∣u(t)∣∣+ k̂

]
;
∣∣u(t)∣∣ ≥ δr

0 ;
∣∣u(t)∣∣ < δr 	 (7)

where k̂  denotes the system’s abrupt offset caused by breaking inertias, k  is the dead zone’s slope, δr  denotes the dead 
zone’s break point, and u(t) is the system’s input and v(t) is its output.

2.1.2.  Friction modeling of PMDC motor.  The most widely used model of friction is the Coulomb plus viscous friction 
model, as illustrated in Fig 4, as friction is defined as the tangential reaction force between two surfaces in contact  
[22–24]. (8) gives a description of this model.

	
Fb =

{
bc. sin n(ω) + bv ω ; ω ̸= 0

Fap ; ω = 0 and Fap < bc	 (8)

Fig 2.  Smooth Dead Zone region of motors’ characteristic curve.

https://doi.org/10.1371/journal.pone.0336377.g002

https://doi.org/10.1371/journal.pone.0336377.g002
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where ω is the speed, bv  is the viscous coefficient, Fap is the applied force, and Fb, bc, and bv  are the friction forces and 
Coulomb friction forces, respectively [25–29].

2.1.3.  Linearization of PMDC motor model.  As the second validation stage of extended Kalman filter uses the 
linearized model of a nonlinear plant, therefore linearization framework and its implementation on PMDC motor is 
performed in this subsection. The generic nonlinear model is represented as in (9).

Fig 3.  Hard Dead zone of PMDC motor characteristics.

https://doi.org/10.1371/journal.pone.0336377.g003

Fig 4.  Characteristic curve for Coulomb and viscous friction.

https://doi.org/10.1371/journal.pone.0336377.g004

https://doi.org/10.1371/journal.pone.0336377.g003
https://doi.org/10.1371/journal.pone.0336377.g004
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	 xt = f (xt–1, ut–1,wt–1)	

	 yt = h(xt, vt)	 (9)

and corresponding linearized state space form is represented by (10).

	 ẋt = Axt + But + wt 	

	 yt = Hxt + vt 	 (10)

where x  is the system state matrix of order n x 1, F  is the state coefficient matrix of order n x n, xt is the previous state 
matrix of order n x 1, B is the input coefficients matrix of order n x m, ut  is the input matrix of order m x 1, wt is the process 
noise matrix of order n x 1, zt is the outputs matrix of order m x 1, H is the output coefficient matrix of order m x n, vt  
is the output noise matrix of order m x 1. Where m denote the number of inputs and n denote the order of the system. 
The linearized form (10) is obtained from (9) by computing Jacobeans of the state(s)-input(s) map f (xt–1, ut–1,wt–1) and 
state(s)-output(s) map h(xt, vt) as below:

	
A[i,j] =

∂f[i]
(
xˆt–1, ut–1, 0

)
∂x[j]

, B[i,j] =
∂f

(
xˆt–1, ut–1, 0

)
∂u[j]

, H[i,j] =
∂h[i]

(
xˆt, 0

)
∂x[j] 	

These matrices are evaluated at Linearization point (xt, ut)=(0,0) to get the linear form of nonlinear model. The linear-
ized model of PMDC motor becomes as follows:

	



ẋ1
ẋ2
ẋ3


 =



0 1 0
0 – b

J
KT
J

0 –Ke
L –R

L





x1
x2
x3


+



0
0
1
L


 u+



0
–1
J
0


 d

	

	

y =
[
0 1 1

]


x1
x2
x3



	 (11)

During simulatory and experimental validation step, especially for velocity control scenario, it was observed that the 
open loop system given in (9) and (11) didn’t follow the reference input. Therefore, in order to make PMDC motor model 
follow the desired reference, PID controller is designed using the optimal auto-tuning method. The framework of this linear 
PID controller is discussed next.

2.2.  Linear control of PMDC motor model

In order to achieve model output that follow the reference input, a PID controller is designed. PID controller produces 
a closed loop PMDC motor system that obeys its reference input or inputs. In contrast to two mode controllers like PI 
and PD Controller, the primary purpose of a PID controller is to offer reliable performance for all operating situations 
and complex processes in order to precisely produce the intended output. As seen in Fig 5 below, a PID controller 
determines a “error” value as the difference between a measured process variable (PV) and a desired set point.

With the integral action on error and the derivative action on error with regard to the process’s fixed point, the PID 
controller removes steady state error in any process. Equation (12) relates the error input e(t) and output y(t) in the PID 
Controller algorithm.
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y(t) = Kpe(t) + Ki e

∫
e(t)dt+ Kd

(de(t))
dt 	 (12)

where, Ki = 1
Ti

and Kd = Td and in transfer function form the PID controller equation is given by:

	
GPID = Kp +

Ki
s

+ Kds =
Kds2 + Kps+ Ki

s 	

There are several methods available for tuning the three mode controller parameters (Proportional gain, Integral gain, 
Derivative gain) and we utilize the auto-tuner block of Matlab to optimally tune the PID parameters in our work.

3.  Improved noise reduction using variants of extended Kalman filter

This section provides the framework for reduction of measurement noise using two variants of EKF. Standard EKF method 
is described first and thereafter problems of noise estimation using this filter are highlighted. In last part of the section, an 
improved adaptive EKF version that better approximate noise statistics and provide relatively accurate estimation results 
is presented.

3.1.  Development of standard extended Kalman filter algorithm

The role of EKF is to produce the best possible state/output estimate from noise corrupted outputs and inputs data. For esti-
mation extended Kalman filter requires nonlinear/linearized system model, noise corrupted measurements, noise covariance 
of state’s error and outputs. Once these are known, Kalman filter recursively average the output corresponding to required 
unknown state. Process noise covariance (Q) and measurement noise covariance (R) are set based on user experience/
plant’s dynamical behaviour and are mathematically stated by Q = E[wtwT

t ] and R = E[vtvTt ] respectively. As EKF is a recur-
sive algorithm, we need to initialize state and error covariance matrix. The state error covariance is given by Pt = E

[
eteTt

]
, 

where Pt is the error covariance,et = xt – xˆt  is the difference between actual and estimated states, xt represent actual state 
matrix and xˆt represent estimated states matrix. The complete EKF algorithm for easy understanding is divided in two stages 
as discussed below:

1) Prior Estimation (Prediction Stage): After x̂t–1 and Pt–1 is initialized, Kalman filter compute x–̂t (i.e., state estimate prior 
to the occurrence of output) and P–t (i.e., error covariance prior to the occurrence of output) using relations:

	 xt = f (xt–1, ut–1,wt–1)	

	 P–t = APt–1AT +Q	

Fig 5.  Structure for deployment of PID controller.

https://doi.org/10.1371/journal.pone.0336377.g005

https://doi.org/10.1371/journal.pone.0336377.g005
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As this computation is performed before actual measurement time has arrived therefore we call this stage as “Predic-
tion stage”.

2) Correction Stage: Now as actual output (zt) arrives, the xˆ
–

tand P–t  are validated with available measured output, nec-
essary scaling of error is done by multiplying ‘Kt ’ (Kalman Gain) and is added with reference offsetxˆ

–

t  as below:

	 xt̂ = xt̂
– + Kt(yt – Hxt̂

–)	

In above relation, Kt must be known to finalize the estimate, which is derived in four steps, i.e., Put xˆt in (i) and then 
put et in Pt = E[eteTt ] and solve forPt . Now choose Kt so that terms containing Kt are zero and finally solve for Kt to finally 
arrive at:

	 Kt = P–t H
T(HP–t H

T + R)
–1

	

Once Kt is computed, putting it in (i) gives the required state estimate of immeasurable state.
The state error covariance matrix is also updated in correction stage by using relation:

	 Pt = (I – KtH)P–t 	

Finally, state vector and error covariance index is updated for next iteration.
Remark: One drawback of using standard version of EKF is that it ignores the effect of noise in the physical system 

and setting process and measurement covariance values in a vague manner cause inaccurate estimates. In order to rem-
edy this problem, an adaptive variant of EKF is introduced in next section that produce accurate estimation results.

One reason why adaptive EKF was used is that unlike the conventional EKF, which makes the assumption of constant 
process and measurement noise covariances, AEKF adapts these covariances in real-time, achieving accurate results in 
non-linear and time-varying systems when the characteristics of noise are unknown or vary with time. In comparison to 
UKF, which employs a sigma-point method for accuracy in highly non-linear systems, AEKF maintains computational effi-
ciency while achieving better robustness under modeling uncertainties. As such, while Particle Filters [30–32] have better 
performance in highly non-Gaussian and multi-modal cases, they are too costly computationally and need many particles 
for accurate estimation. AEKF brings a realistic compromise by retaining the efficiency of the Kalman filter structure but 
offering considerable improvement in terms of adaptability, thus making it suited for real-world applications such as auton-
omous navigation, robots, sensor fusion, and aerospace systems where the statistics of the noise are not always known 
or change consistently. Its self-tuning capability improves robustness to environmental variations and sensor errors, pro-
viding more stable and consistent performance than other filters that are either non-adaptive or require significant compu-
tational power.

3.2.  Development of adaptive extended Kalman filter algorithm

The adaptive extended Kalman filtering algorithm [33] estimates and corrects the process and measurement noise of the 
system by comparing the final estimates with the predictions. This reduces the error caused by the extended Kalman filter-
ing algorithm ignoring the influence of noise in the actual process [34,35]. The significant enhancement comes from incor-
porating a forgetting factor. The forgetting factor in an adaptive Extended Kalman Filter (EKF) has a vital impact on noise 
cancellation by adaptively controlling the sensitivity of the filter to new data while suppressing the effect of older data. The 
process and measurement noise covariances in adaptive EKF are usually updated online to address non-stationarity in 
the noise statistics. The forgetting factor, usually a number between 0 and 1, determines how rapidly previous information 
is “forgotten” to make room for newer observations. A low forgetting factor assigns more importance to new measure-
ments, making the filter very sensitive to abrupt changes in noise characteristics but at the cost of instability. Alternatively, 
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a larger forgetting factor provides smoother updates by keeping the past data, preventing overfitting to temporal varia-
tions in noise. Such a balance is needed especially in dynamic scenarios, e.g., speech enhancement, biomedical signal 
processing, and radar tracking, where the characteristics of noise vary with time. By adjusting the forgetting factor appro-
priately, the adaptive EKF is able to suppress the noise while preserving strong state estimation and thus produce better 
real-world applications.

Aside from forgetting factor, other important parameters like process noise covariance Q and measurement noise 
covariance R have a direct impact on the filter’s capability to distinguish between system dynamics and noise. These 
parameters need to be well-tuned to ensure that the EKF is able to respond to changing levels of noise without losing 
estimation accuracy. If Q is too big, the filter can be too sensitive to noise and result in unstable estimates, while a small 
Q will make the filter insensitive to major changes in the system. Also, an unreasonably high R value will make the EKF 
over-dependent on the model and less responsive to actual observations, while a very low R will make it too sensitive to 
noisy measurements. Adaptive EKFs adapt these parameters dynamically with methods like innovation-based adaptation, 
maximum likelihood estimation, or machine learning-based approaches [36–38], thus enhancing noise robustness and 
improving filtering performance in real-time. Ideally tuned parameters guarantee that the EKF is stable in a wide range of 
different noise environments, resulting in optimal signal reconstruction and better noise cancellation.

In order to minimize the effect of noise on state-of-charge estimation and increase the accuracy of the state-of-charge 
estimation results, process noise and measurement noise of the system are evaluated and corrected at the same time. 
Average estimation and covariance are also modified. This work use weighting coefficients [39,40] to lessen the weight of 
noise at time k in order to more properly represent the influence of noise due to an inadvertent measurement error. The 
calculation formula for this is provided in Eq. (13).

	
dt–1 =

1 – b
1 – bt 	 (13)

where the element of forgetting is located in b. The influence of the preceding moment is less in real-world applications 
the lower the value of b. The anticipated noise will, however, change with a tiny value of b. The preceding moment’s 
impact will be excessive if b has an excessively high value. The value can therefore be determined based on the particu-
lar circumstances. Equation (14), following the necessary adjustments, displays the noise matrix approximation/computa-
tion formula.

	 qt = (1 – dt–1) qt–1 + dt–1G(x̂t – Ax̂t–1 – But–1)	

	
Qt = (1 – dt–1)Qt–1 + dt–1G

(
KtytyTt K

T
t + P̃ t–1 – AP̃ t–1AT

)
GT

	

	 rt = (1 – dt–1) rt–1 + dt–1(yt – Cx̂t – Dut)	

	 Rt = (1 – dt–1)Rt–1 + dt–1(ytyTt – CP̃ t–1CT)	 (14)

where qt–1is the system state noise, x̂t is the state of the system at timet, A is the system state transition matrix, and B is 
the control matrix. Qt is the covariance matrix of system state noise, yt is the state observation measurement, and G is 
the noise driven matrix. Pt–1 is the error covariance matrix of initial prediction. rt  is the system observation noise, and H  
is the system measurement matrix. Rt  is the covariance matrix of system observation noise. Once the noise correction is 
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applied, rest of the estimation process is quiet similar to standard EKF consisting of prediction and correction stages as 
re-iterated as described in section 3.1. However, at final step in adaptive EKF, apart from updating state and state error 
covariance values, in adaptive EKF values of qt, rt, Qt and Rt  matrices are also updated as given in Eq. (14).

It should be noted that adaptive EKF functions under some essential assumptions in order to properly tune noise cova-
riance matrices and improve state estimation precision. It initially considers that the system takes a non-linear state-space 
model like the conventional Extended Kalman Filter (EKF), with process and measurement noises being represented by 
Gaussian distributions. But in contrast to traditional EKF, AEKF postulates that such noise covariances are not stationary 
and may vary over time. It also banks on the premise that statistical methods based on innovation, e.g., maximum likeli-
hood estimation or covariance matching, can yield useful updates for such noise parameters. AEKF further assumes that 
real-time measurements are rich in information that will enable estimation and adaptation of the noise properties without 
causing instability. Though these assumptions render AEKF extremely flexible and robust, its performance may be com-
promised if noise distributions vastly depart from Gaussianity or if system dynamics are not sufficiently observable to 
accurately tune covariances.

Forgetting factor adjustment within an adaptive EKF is essential to achieve responsiveness and stability. A lower 
forgetting factor (nearer 0) enables the filter to quickly respond to changes in system dynamics or noise patterns but can 
cause instability or amplify transient noise. A higher forgetting factor (nearer 1) prefers stability and smoothness but can 
make the filter slow in responding to abrupt changes. It is advisable to start with a moderate value (say, 0.95–0.99) and 
then vary according to system behavior through empirical testing or through performance metrics such as RMSE. Further, 
application of a variable forgetting factor strategy—where the factor varies according to residuals or error in estimation—
can improve performance in dynamic regimes as well.

Regarding the practical guidelines for setting parameter values for an adaptive EKF, first consideration requires a 
balance of accuracy, stability, and adaptability to varying noise conditions. A practical approach begins with an initial 
estimation of process noise covariance Q and measurement noise covariance R, which can be derived from system 
characteristics, empirical data, or domain expertise. Typically, Q should reflect the level of uncertainty in the system 
dynamics—higher values make the filter more responsive to changes but may introduce instability, whereas lower values 
result in smoother estimates at the risk of lagging behind real changes. Similarly, RR should correspond to sensor noise 
characteristics, where an overly high R value will cause the filter to rely too much on the model, while a very low value can 
lead to overfitting to noisy observations. To adapt these parameters dynamically, innovation-based methods (e.g., cova-
riance matching) or machine learning techniques can be employed, ensuring real-time adjustments based on observed 
system behavior. Regular performance evaluation using metrics like root mean square error (RMSE) and residual analysis 
can guide further fine-tuning. Additionally, practical implementations often benefit from a bounded adaptation approach, 
where Q and R are allowed to vary within predefined limits to prevent instability. Testing under different noise conditions 
and applying domain-specific knowledge are essential for achieving robust and reliable filtering performance.

The input-output dataset of the PMDC motor inclusion criteria in noise estimation with an adaptive Extended Kalman 
Filter (EKF) aim at recording representative behavior of the motor under different operating conditions. Such datasets 
involve varying load torques, input voltage, and speeds to provide strong resistance towards noise modeling. Signals 
should be sampled at a high enough frequency to maintain system dynamics and both voltage and current as inputs and 
angular velocity or position as output. Exclusion criteria include the removal of data that have missing values, sensor 
failures, or anomalous transients not typical of normal operation since they will bias the EKF’s adaptability to noise and 
diminish filter performance.

4.  Results and discussions

The propositions of above sections have been tested through simulations as well as through experimental setup. The 
sequence of simulatory and experimental setup is shown in Fig 6.
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Regarding the simulatory setup, the nonlinear model of PMDC motor presented in section 2 is supplied with a step 
input representing a constant DC voltage. The PID controller parameters are tuned by using the Ziegler Nicholas method. 
The reference DC input and controller effort signals have been shown in Fig 7. Out of the four possible outputs, the angu-
lar position output of the model is selected. This output gets contaminated after interaction with process and measurement 
noise. The true and noisy outputs have been shown in Fig 8. Note in Fig 8 that the angular position increases as DC input 

has been continuously applied. The state and output error covariance has been taken as Q =

[
10–6 0
0 10–2

]
, R = 10–4.

The standard EKF algorithm is applied to the model by invoking input and noise corrupted output data to it. The cova-
riance’s are again set as detailed above and the estimate of the angular position obtained as filtered signals generated 
from standard EKF version are depicted in upper portion of Fig 9. The red line shows that the EKF is very comprehen-
sively cancelling the noise in measurement and directing user to the true value. The lower portion of Fig 9 shows the state 
error covariance for standard EKF estimator. The graph shows that the error covariance is decreasing as time progresses, 
which validate the successful implementation of the filter as state estimator.

Furthermore, the novel adaptive EKF algorithm that takes care of noise estimation is applied to the model by invok-
ing plant input and noise corrupted output. The forgetting factor tuning is performed to obtain the closest possible output 
estimate to the true reading. The results after tuning are being shown in Fig 10. The upper portion of Fig 10 shows that 
the estimator results (in red) are promising and estimator is comprehensively rejecting the measurement noise. The state 
error covariance plot for the adaptive EKF implementation is shown in lower part of Fig 10. The covariance decay as time 
progresses that again validate the successful implementation of the adaptive EKF algorithm.

Finally, the comparison of standard and adaptive EKF performances has been shown in Figs 11 and 12. Upper part 
of Fig 11 shows the actual, noisy and estimated outputs generated by standard and adaptive EKFs. To clarify the graph, 
lower portion of Fig 11 present zoomed version of the responses. Note that the adaptive EKF produce better position 
estimates that are more close to true value as compared to standard EKF. Furthermore, Fig 12 depicts the comparison of 
state error covariance’s for both estimators. This Fig once again validates the successful implementation of both filters as 
well as superiority of adaptive filter over traditional standard version of estimator.

Fig 6.  Procedure for simulation and experimentation.

https://doi.org/10.1371/journal.pone.0336377.g006

https://doi.org/10.1371/journal.pone.0336377.g006
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Fig 7.  Reference input and Actuator Output.

https://doi.org/10.1371/journal.pone.0336377.g007

Fig 8.  Actual and Noisy angular position outputs.

https://doi.org/10.1371/journal.pone.0336377.g008

https://doi.org/10.1371/journal.pone.0336377.g007
https://doi.org/10.1371/journal.pone.0336377.g008
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Fig 9.  Output estimation using Standard EKF.

https://doi.org/10.1371/journal.pone.0336377.g009

Fig 10.  Output estimation using Adaptive EKF.

https://doi.org/10.1371/journal.pone.0336377.g010

https://doi.org/10.1371/journal.pone.0336377.g009
https://doi.org/10.1371/journal.pone.0336377.g010
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Fig 11.  Comparison of estimation results for standard and adaptive EKFs.

https://doi.org/10.1371/journal.pone.0336377.g011

Fig 12.  Comparison of state error covariance for standard and adaptive EKFs.

https://doi.org/10.1371/journal.pone.0336377.g012

https://doi.org/10.1371/journal.pone.0336377.g011
https://doi.org/10.1371/journal.pone.0336377.g012
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The experimental results for position as well as velocity control for Quanser QNET DC motor activated and inter-
faced to LabVIEW through NI Elvis II kit are validated for standard and adaptive extended Kalman filter versions. The 
experimental setup has been shown in Fig 13. Auto-tuning for optimized performance of PID controller for both position 
and velocity scenarios is performed. Firstly, position control and estimation scenario is presented. The driving reference 
position signal with switching polarity square wave is applied to the motor through the tuned PID closed loop in order to 
rigorously assess the validity of our designed controller and estimator. The noise corrupted position output signal was 
acquired in LabVIEW and the reference signal, respective controller effort and noise corrupted measured position signals 
have been shown in Fig 14.

error covariance plots for standard and adaptive EKFs have been depicted in Fig 16 that again confirms that the error 
covariance of adaptive EKF is less that the standard version.

For velocity measurement, control and estimation case the motor was driven with the reference velocity switching from 
75 rads/sec to 125 rads/sec forming a square waveform. The PID controller was auto-tuned and noise corrupted velocity 
signal was measured at the output. The reference signal, respective controller effort and noise corrupted measured posi-
tion signals have been shown in Fig 17.

In a similar way to position measurement scenario, when noisy output and reference input is applied to the standard 
and adaptive variants of Kalman filter, respective estimation results are obtained that are shown in Fig 18. Fig 18 again 
shows that the proposed adaptive EKF more comprehensively estimate the true reference velocity value in both directions 
as well as provide less overshoot at reversal points. Thus the relatively better performance of proposed EKF variant is 
validated for velocity scenario as well. Furthermore, the state error covariance plots for velocity measurement scenario for 
standard and adaptive EKFs have been depicted in Fig 19 that again confirms that the error covariance of adaptive EKF is 
less that the standard version.

Results presented in this section confirm that the adaptive AEKF provides substantial quantitative enhancements to 
the traditional EKF by adaptively adjusting noise covariance matrices, resulting in improved estimation accuracy and 
robustness. In contrast to the traditional EKF, which uses fixed process and measurement noise covariances, AEKF 
adapts these parameters in real-time using system dynamics and innovation statistics. This adaptation minimizes esti-
mation errors, especially in non-linear and time-varying systems, where model uncertainties and measurement noise 
vary. Research has demonstrated that AEKF can provide lower root mean square errors in state estimation, faster con-
vergence speed, and higher robustness to unforeseen disturbances. These advantages make AEKF especially useful in 

Fig 13.  Experimental Setup for noise reduction in position and velocity scenarios. Note in third part of Fig 14 that an overshoot is noted due to 
inertia when motor reach its reference angle when it is reversed. Also the controller output/effort change its polarity as motor reverses its direction. Fur-
thermore, when noisy output and reference input is applied to the nonlinear variants of Kalman estimators, estimation results from standard and adaptive 
EKF are obtained that are shown in Fig 15. Fig 15 shows that the proposed adaptive EKF more comprehensively estimate the true reference value as 
well as provide less overshoot at reversal points. Thus the relatively better performance of proposed EKF variant is validated. The state.

https://doi.org/10.1371/journal.pone.0336377.g013

https://doi.org/10.1371/journal.pone.0336377.g013
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Fig 15.  Noise reduction performance of Standard and Adaptive EKFs for position output.

https://doi.org/10.1371/journal.pone.0336377.g015

Fig 14.  Reference input, controller effort and noise corrupted measured position signals.

https://doi.org/10.1371/journal.pone.0336377.g014

https://doi.org/10.1371/journal.pone.0336377.g015
https://doi.org/10.1371/journal.pone.0336377.g014
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Fig 16.  Comparison of State error covariance of Standard and Adaptive EKFs for position.

https://doi.org/10.1371/journal.pone.0336377.g016

Fig 17.  Reference input, controller effort and noise corrupted measured Velocity signals.

https://doi.org/10.1371/journal.pone.0336377.g017

https://doi.org/10.1371/journal.pone.0336377.g016
https://doi.org/10.1371/journal.pone.0336377.g017
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Fig 18.  Performance comparison of Standard and Adaptive EKFs for velocity output.

https://doi.org/10.1371/journal.pone.0336377.g018

Fig 19.  Comparison of State error covariance of Standard and Adaptive EKFs for velocity.

https://doi.org/10.1371/journal.pone.0336377.g019

https://doi.org/10.1371/journal.pone.0336377.g018
https://doi.org/10.1371/journal.pone.0336377.g019
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applications like navigation, robotics, and sensor fusion, where accurate and reliable state estimation is essential. The 
table presenting the statistical analysis regarding comparison of Kalman filter, EKF and AEKF variants deployed for noise 
estimation of PMDC motor is given below Table 1:

5.  Conclusions and future directions

This paper presents an improved framework for measurement noise reduction of nonlinear PMDC motor using standard 
and adaptive variants of extended Kalman filter (EKF). One of the contributions presented is the consideration of nonlin-
earities like hard dead zone and friction in the PMDC motor model. The noise estimation process becomes complicated 
for these nonlinearities, therefore adaptive EKF variant with best possible choice of forgetting factor has been invoked 
theoretically and experimentally. The performance superiority of proposed tuning structure for noise cancellation adds 
another contribution to the literature. Position as well as velocity measurement scenarios have been considered. At first, 
the noise corrupted measurement is invoked in standard EKF that perform prediction and correction to generate the 
best possible reduced noise estimate of the true measurement. One drawback standard EKF is that it ignores the effect 
of noise in the physical system and setting process and measurement covariance values in a vague manner that cause 
inaccurate estimates. In order to remedy this problem, an adaptive variant of EKF is introduced that produce relatively 
accurate results. The propositions are tested for angular position and velocity applications through simulation as well as  
practical experimentation. The presented developments of AEKF in this paper are valuable in applications of PMDC 
machines, navigation systems, robotics, and sensor fusion, where precise and reliable state estimation is critical. Con-
versely, future work on Adaptive EKF can be directed towards enhancing its adaptability to strongly non-Gaussian noise, 
increasing computational efficiency for real-time processing, and incorporating machine learning methods for dynamic 
noise estimation. Hybrid methods that combine AEKF with other filtering algorithms, like Unscented Kalman Filter or Parti-
cle Filter, can also be explored to further improve robustness. Moreover, a systematic method to tune the forgetting factor 
need also be devised in the future so that optimal noise cancellation can be achieved.

Table 1.  Statistical performance analysis KF variants for noise estimation and rejection.

Metric KF EKF Adaptive EKF Remarks

Mean Absolute 
Error

0.072 rad/s 0.059 
rad/s

0.038 rad/s Adaptive EKF can better handle time-varying 
noise and nonlinearities in the model.

Root Mean 
Square Error

0.093 rad/s 0.076 
rad/s

0.045 rad/s The improvement in RMSE shows better pre-
cision in the estimation of dynamic states.

Steady-State Bias 0.018 rad/s 0.012 
rad/s

0.005 rad/s Lower bias means closer tracking of the real 
motor states.

Standard Devia-
tion of Error

0.031 0.024 0.015 It depicts narrower spread of error with the 
adaptive EKF.

Convergence 
Time (ms)

220 180 130 Adaptive EKF very quickly adapts to system 
dynamics.

Noise Covariance 
Adaptation

Fixed Fixed Online adap-
tive (Q, R)

The adaptive EKF is the only one that learns 
and updates noise models in real-time.

Model Complexity Low Medium High Adaptive EKF needs more computation time 
(due to Q/R estimation logic).

Robustness to 
Noise Variance

Poor (Fixed 
Q/R)

Moder-
ate

High (Dynamic 
Q/R tuning)

Adaptive EKF handles time-varying or uncer-
tain noise better.

Computational 
Time per Step

0.52 ms 0.73 ms 1.25 ms Additional time to update noise models is paid, 
but it’s within real-time control constraints.

Suitability for Non-
linear Systems

Poor Good Excellent Kalman filter linearizes; adaptive EKF adapts 
both linearization and noise covariances.

https://doi.org/10.1371/journal.pone.0336377.t001

https://doi.org/10.1371/journal.pone.0336377.t001
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