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Abstract

Overexpression of phosphodiesterase 5 (PDE-5) presents a compelling target for
the therapy of erectile dysfunction. Sildenafil and other conventional PDE-5 inhibitors
may lead to adverse effects, including visual disturbances and migraines. There-
fore, the investigation of novel inhibitors with enhanced safety profiles is imperative.
This research employed a computational drug repurposing approach to assess
US-FDA-approved xanthine derivatives (XDs) for their efficacy in targeting PDE-5.
XDs exhibit a favorable affinity for the active site of the PDE-5 receptor, with binding
scores between -10.0 kcal/mol and -6.3 kcal/mol for linagliptin and theobromine,
respectively. The top-ranked docked Xds then underwent 300-nanosecond molecular
dynamics simulations. Linagliptin demonstrated greater stability in the binding pocket
(RMSD=1.60+0.34) compared to the typical inhibitor sildenafil (RMSD=1.70+0.27).
The findings were corroborated by MM-PBSA calculation, which showed that lina-
gliptin’s binding free energy of —45.6 +4.3 kcal/mol comparable with sildenafil’s
—-49.0+ 3.1 kcal/mol. This value is notably higher than that of the deprotonated form
of sildenafil, which is present at a 37.06% ratio at physiological pH 7.4. Additionally,
we used per-residue energy decomposition to identify crucial residues for PDE-5
activity and thoroughly investigated hydrogen bond occupancy. This study points out-
the potential of linagliptin as a PDE-5 inhibitor, paving the way for the development of
a safe treatment for erectile dysfunction.

1. Introduction

The degradation of the intracellular second messengers cyclic guanosine monophos-
phate and cyclic adenosine monophosphate is one of the numerous physiological
functions performed by the eleven nucleotide families that constitute the superfamily
referred to as phosphodiesterases (PDEs) [1,2]. PDEs serve as potential therapeutic
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targets for a variety of conditions, such as heart failure, cardiac hypertrophy, depres-
sion, asthma, inflammation [1,3,4]. They are also pivotal in the treatment of erectile
dysfunction (ED) and pulmonary hypertension [5—7].

Among these, phosphodiesterase 5 PDE-5 is present in various human tissues,
such as muscles, lungs, brain, heart, kidney, urethra, and penis [8—13]. PDE-5 regu-
lates cellular levels of cyclic guanosine monophosphate, a crucial signaling molecule
involved in various physiological processes [1,11]. Dysregulation of cGMP leads to a
decrease in intracellular calcium levels, which in turn causes the relaxation of vascu-
lar smooth muscle [1]. Consequently, PDE-5 inhibitors have become the cornerstone
for treating ED. Beyond ED, PDE-5 inhibitors are also administered to patients with
pulmonary hypertension due to their ability to lower blood pressure and increase
blood flow to the lungs. Furthermore, accumulating evidence suggests that PDE-5
inhibitors may offer therapeutic benefits for several cancer types, including papillary
thyroid, lung, prostate, esophageal adenocarcinoma, and cell carcinoma [14—16].
They also show promise in conditions like glioblastoma multiforme, Alzheimer-like
pathology, heart disease, diabetes, and cognitive disorders such as dementia
[6,17,18].

In 1998, sildenafil, marketed as Viagra, became the first oral PDE-5 inhibitor
prescribed for ED. Tadalafil, vardenafil, and avanafil subsequently followed as
approved PDE-5 inhibitors [10,12,13]. Nonetheless, current PDE-5 inhibitors exhibit
specific physiological adverse effects, including visual disturbances and headaches,
primarily attributed to non-specific interactions with PDE-6 or PDE-11 [10,12,13].
Consequently, identifying new PDE-5 inhibitors with an improved safety profile is
paramount.

Sildenafil possesses a xanthine-like moiety that contributes to its chemical struc-
tures. Consequently, medicines containing xanthine may have bioactivity comparable
to that of sildenafil (Scheme 1). On the other hand, traditional medicine has long
made use of xanthines, which are all-natural compounds [19]. Their high hydrophilic-
ity facilitates rapid elimination from the body, a feature improves its potential as a
favored binding substance for the zinc and magnesium minerals present in the active
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Scheme 1. Sildenafil and xanthine chemicals structure.

https://doi.org/10.1371/journal.pone.0336267.s001
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pocket of PDE-5, along with particular residues that increase its affinity for polar molecules [20]. This study investigates
the potential use of xanthine derivatives as PDE-5 inhibitors utilizing computational drug repurposing approach.

2. Materials and methods
2.1. Building up target ligands

The mol2 files of the investigated ligands have been built up in UCSF Chimera. The process involved retrieving the
SMILES strings of xanthines and the reference inhibitor sildenafil from the PubChem database online. The Molecular
Modeling Toolkit has been used to minimize the energy of ligand conformation. The steepest descent and conjugate gra-
dient are configured to 16000 steps at 0.02 A. Subsequently, the AutoDock Tools from the Molecular Graphics Laboratory
(MGL) transformed the ligands into pdbqt files after adding Gasteiger charge [19-25].

The protonation states of the ligands under investigation were determined at a physiological pH of 7.4 to ensure accu-
rate representation. The accomplishment was achieved through the application of the Henderson-Hasselbalch equation,
utilizing experimentally reported pKa values sourced from DrugBank.

According to the calculations, linagliptin exists predominantly in its protonated (NH3+) form, accounting for 99.65% of
its state.Theophylline and bromotheophylline were identified in their deprotonated forms at the acidic imidazole groups,
with respective ratios of 27.55% and 98.51%. The elevated deprotonation rate of bromotheophylline can be attributed to
the inductive effect of the bromine substituent. Sildenafil exhibits a more intricate scenario involving two ionizable sites.
The acidic pyrimidone NH group contributes to a deprotonated population of 37.06%, whereas the basic site accounts
for a protonated population of 3.66%. Thus, the neutral and deprotonated states of sildenafil have been investigated. The
remaining xanthine derivatives were found to be predominantly neutral at pH 7.4 and were modeled as such. Fig 1 pres-
ents the prepared structures for all ligands evaluated in this study.

2.2. Molecular docking

The crystal form complex of sildenafil and PDE-5 was retrieved from the Protein Data Bank website (PDB ID: 2h42). Silde-
nafil and water molecules were eliminated by means of Autodock Tools. Then the polar hydrogens and Kollman charge
were added to the PDE-5 receptor and saved in a pdbqt file format. Molecular docking was performed with MGL AutoDock
Vina, with an energy range and exhaustiveness parameters of 4 and 100, respectively. The grid box size was set to 52.0,
42.0, and 36.0 A in the 3D of the receptor, centered at coordinates 27.799, 122.752, and 9.715 A. The [26,27]. UCSF Chi-
mera and Discovery Studio Visualizer have been utilized for image processing and bond interactions.

2.3. Preparation of coordinate and topological files

The preparation of coordinate and topological files involved several steps. First, the docked ligands were separated from PDE-5
receptor using the Vina Split tool. Hydrogen atoms were then added to the ligands and saved as PDB files using MGL Autodock
Tools. The inhibitors were charged and parameterized with Antechamber and Parmchk2, yielding prep and frcmod files for sub-
sequent processing by tleap. The GAFF2 and ff14SB Amber force fields were applied to the inhibitors and the PDE-5 receptor,
respectively [28,29]. System solvation and neutralization were achieved by incorporating TIP3P water molecules and sodium
chloride [30]. The final coordinate and topological files for the complexes were generated using the LEaP program, a compo-
nent of AmberTools 22. Before starting the simulations, a hydrogen mass repartitioning (HMR) was applied to the topology files
using Parmed, in order to allows the use of a 4-fs time step without compromising the accuracy of the trajectory [31].

2.4, Molecular dynamics simulations

MD simulations were performed using pmemd.cuda plugin Amber 24 software [32]. The steepest descent algorithms were
employed to minimize the systems for 25000 steps, followed by 25,000 steps of the more efficient conjugate gradient
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Fig 1. 3D structures of prepared ligands: (a) deprotonated sildenafil, (b) neutral sildenafil, (c) protonated linagliptin, (d) deprotonated theoph-
ylline, (e) neutral theophylline, (f) deprotonated bromotheophylline, (g) caffeine, (h) dyphylline, (i) istradefylline, (j) paraxanthine, (k) paraxan-
thine N-propyl, (I) pentoxifylline, and (m) theobromine.

https://doi.org/10.1371/journal.pone.0336267.9001

algorithm to achieve a refined energy minimum. Then the system was gradually heated from 0K to 310K over a 100-ps
period within the canonical (NVT) ensemble using a Langevin thermostat. Following the heating phase, the system was
equilibrated for 10 ns in the isothermal-isobaric (NPT) ensemble at a constant temperature of 310K and a pressure of

1 bar. The pressure was maintained using a Monte Carlo barostat [33]. Finally, a 300-ns production MD simulation was
conducted at 310K with a 4-fs time step to collect trajectory data for analysis. All simulations were performed with periodic
boundary conditions and the Particle Mesh Ewald (PME) method to handle long-range electrostatic interactions [34,35].
The trajectories were then analyzed using the VMD 1.9.4 and CPPTRAJ programs to calculate properties such as root-
mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) [31,36,37].

2.5. Binding free energy calculation and decomposition analysis

To quantitatively assess the binding affinity of the ligands, the Molecular Mechanics/Poisson-Boltzmann Surface Area
(MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods were employed using the
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gmx_MMPBSA package [37]. The production trajectory was processed with cpptraj. This step involved stripping all water
molecules and ions, correcting for periodic boundary conditions, and saved in the GROMACS format. Concurrently, the
AMBER topology of the stripped complex was converted into GROMACS format using parmed. The coordinate informa-
tion provided by saving the first frame in PDB format, which used to generate index file using gmx make_ndx. The MM/
GBSA analysis were conducted at the implicit solvent model, while the MM/PBSA was performed using a physiological
salt concentration of 0.15 M. To provide a more complete energetic profile, the Interaction Entropy (IE) method was
applied. Finally, a per-residue energy decomposition analysis was conducted to identify the specific amino acid residues
that provide the most significant energetic contributions to the binding with the ligands. The binding interaction’s free
energy between inhibitors and PDE-5 receptor can be derived using the subsequent equations:

AG = AH + TAS (1)
AH = AGgas + AGgy (2)
AGgas = Evaw + Eelec (3)
AGsol = Epy/gp + Enp (4)

where AH denotes the change in enthalpy, TAS signifies the contribution from entropy, E , refers to the energy associ-
ated with van der Waals interactions, E__ indicates the energy from electrostatic interactions, AG_ represents the energy
related to polar solvation, and Enp pertains to the energy concerning nonpolar solvation.

3. Results and discussion
3.1 Molecular docking

PDES5 is a multidomain protein composed of a preserved C-terminal metal-binding catalytic site and an N-terminal domain.
These domains regulate the catalytic activity and dimerization of protein [6,12]. Both the neutral and deprotonated forms
of sildenafil were redocked to the phosphodiesterase-5 (PDE-5) active site to assess the reliability of the docking protocol.
Fig 2 illustrates the superposition of the docked and crystal conformations of sildenafil within the PDE-5 active site. The
root-mean-square deviation (RMSD) for neutral sildenafil from the crystal pose was measured at 0.46+0.02 A, accom-
panied by a docking score of =9.7 +0.0 kcal/mol. The RMSD of the protonated form was 0.5+0.01 A, accompanied by a
docking score of -9.8 £0.1 kcal/mol. The results collectively demonstrate the suitability and reproducibility of the docking
protocol.

It is noteworthy that, although the deprotonated form exhibits a slightly higher binding score than the corresponding
neutral form, the latter demonstrates better hydrogen bonding capability to Gln 817. In contrast, the deprotonated form
shows unfavorable acceptor-acceptor interactions, as illustrated in Fig 3. The hydrophobic surface surrounding sildenafil
situates its position between the hydrophobic region (Met 816, Lue 804, Phe 820, etc.) and the hydrophilic region (His
613, Glu 672), characterized by various types of interactions. Both forms show Pi-Pi Stacked interactions with Phe 820
and Pi-Sulfur interactions with Met 816 and stabilized by numerous van der Waals forces (Fig 3).

Table 1 shows a comprehensive molecular interaction of the xanthine derivatives with the active site of the PDE-5
receptor. Linagliptin shows the best score binding energy among the investigated candidates, which is higher than that of
sildenafil. This is followed by istradefylline, pentoxifylline, and dyphylline, which shown hydrogen bonds and van der Waals
interactions with the hydrophobic and hydrophilic regions of the PDE-5 receptor. Notably, these hits showed a tendency
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Fig 2. Superposition of the crystal structure and docked poses of sildenafil forms within the PDE-5 active site. The crystal ligand is depicted
with its carbon skeleton in cyan. The pink docked conformer of the protonated form exhibits an RMSD of 0.45 A, whereas the yellow docked conformer
of the deprotonated form presents an RMSD of 0.47 A.

https://doi.org/10.1371/journal.pone.0336267.9002

to overlap with the catalytic metals of magnesium and zinc (Fig 4). In general, all xanthines and their derivatives reveal
a high tendency toward the hydrophilic active pocket of the PDE-5 receptor. These include the residues of TYR 612, HIS
613, and MG 502.

3.2. Molecular dynamic simulation

3.2.1 Structural stability and compactness. RMSDs were computed for backbone atoms with respect to the initial
coordinate as a reference. The mean RMSD values of the PDE-5 complexes for the last 100 ns of the simulation are
presented in Table 1, using a block-averaging approach. Sildenafil and xanthine derivatives reached the equilibration
states of PDE-5 at approximately 60 ns and maintained lower RMSDs along the production runs, confirming their stability
(Fig 5). Istradefylline emerged as the most effective stabilizing agent, yielding the lowest mean RMSD of 1.31+0.15 A. In
contrast, pentoxifylline showed the highest mean RMSD of 2.20+0.35 A, even though it showed a stable plateau after 50
ns. Interestingly, the deprotonated form of Sildenafil showed a higher mean RMSD with a larger standard deviation of 0.41
A, implying greater structural fluctuation and a less stable binding mode. This was not unexpected due to an unfavorable
acceptor-acceptor interaction, as shown in the docking section.

The overall compactness of the protein structure was measured using the Radius of Gyration (Rg). As shown in Table
2, the mean Rg values are tightly clustered within a narrow range, from 19.55 A for the caffeine-bound PDE-5 to 19.74
A for the pentoxifylline-bound PDE-5. This consistency indicates that the protein remains stably packed and compact,
regardless of whether it is in the apo state or bound to an inhibitor (Fig 6).

3.2.2 Flexibility and fluctuations. The RMSF values revealed the significance of the residues of H-loop located
between 660 and 686, demonstrating greater flexibility compared to the other regions of the enzyme, as illustrated in
Fig 7. Several xanthine ligands under investigation demonstrated a significant reduction in the oscillations of this loop
when compared to the apo state. Linagliptin, istradefylline, and Caffeine were effective, showing markedly lower RMSF
peaks and thus inducing a more rigid and stable conformational change (Fig 8). The reference inhibitor, sildenafil, also
reduced these fluctuations, but to a lesser extent than the xanthine derivatives. Whereas, the deprotonated sildenafil had
the opposite effect, dramatically increasing the flexibility of this region beyond even that of the apo protein. This suggests
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Fig 3. Interactions of neutral and deprotonated sildenafil within the PDE-5 active site. Panels (a) and (b) depict the neutral form in 2D and 3D,
respectively. Panels (c) and (d) show the corresponding views for the deprotonated form.

https://doi.org/10.1371/journal.pone.0336267.9003

that the deprotonated ligand induces the instability of the PDE-5, which consistent with unfavorable acceptor-acceptor
interaction, as verified by molecular docking analysis.

3.2.3 Hydrogen bonds analysis. Hydrogen bond occupancy for xanthine derivative-phosphodiesterase 5 (PDE-
5) complexes during 300 ns production runs is presented in Table 3. Among the PDE-5 active site residues, GIn817
demonstrated the highest tendency to form hydrogen bonds with all the investigated compounds. It played a dual role
as both a hydrogen bond donor and acceptor. This was followed by the hydrogen bond donor Phe786 and the hydrogen
bond acceptors 1813, Val782, and Ser663. Ser663 also acted as a donor with linagliptin. Asn662 was highly significant
in stabilizing the linagliptin ligand, showing a hydrogen bond occupancy of 42% throughout the simulation. Furthermore,
istradefylline exhibited a higher hydrogen bond occupancy with GIn817, which was comparable to the hydrogen bond
formed between GIn817 and the reference inhibitor, sildenafil.
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Table 1. Binding affinity and interaction analysis of xanthine derivatives docked to phosphodiesterase 5.

Xanthine ID Score energy kcal/mol | Hydrogen Bonds | van der Waal overlaps

Sildenafil -9.7+0.00 GLN 817 TYR 612, HIS 613, ILE 665, ASN 662, SER 663, ASN 661, LEU 725, ALA
767, VAL 782, PHE 786, ILE 824, LEU 804, ILE 813, GLN 817, PHE 820

Deprotonated Sildenafil | -9.77+0.06 - TYR 612, ASN 661, LEU 725, ALA 767, PHE 786, LEU 804, ILE 813, GLN
817, PHE 820

Protonated Linagliptin -10.0+0.00 ARG 667 MG 502, TYR 612, HIS 613, ASP 654, HIS 657, VAL 660, ASN 661, ASN 662,
SER 663, ARG 667, MET 681, GLU 682, THR 723, ASP 724, LEU 725, ASP
764, LEU 765, VAL 782, PHE 786, LEU 804, MET 805, ASP 724, PHE 820

Deprotonated -6.9+0.00 ASN 662 HIS 613, HIS 657, VAL 660, ASN 661, ASN 662, MET 681, GLU 682, LEU

Bromotheophylline 725

Deprotonated -6.53+0.06 ASN 662 HIS 613, VAL 660, ASN 661, ASN 662, ASP 654, HIS 657, MET 681, GLU

Theophylline 682, HIS 685

Theophylline -6.4+0.00 HIS 657 HIS 613, HIS 657, VAL 660, ASN 661, ASN 662, MET 681, GLU 682

Caffeine -6.4+0.00 ASN 662 HIS 613, HIS 657, VAL 660, ASN 661, ASN 662, MET 681, THR 723, LEU
725, ASP 764

Theobromine -6.3+0.00 - MG 502, HIS 613, HIS 657, ASN 661, ASN 662, MET 681, GLU 682

Dyphilline -6.67+0.06 GLU 682 HIS 613, VAL 660, ASN 661, ASN 662, HIS 657, MET 681, GLU 682, HIS 685

Paraxanthine -6.4+0.00 - HIS 613, HIS 657, ASN 661, ASN 662, MET 681, GLU 682, HIS 685

Paraxanthine, N-propyl -6.5+0.00 ASN 662 MG 502, HIS 613, HIS 657, VAL 660, ASN 661, ASN 662, MET 681, LEU 725

Derivative

Istradefylline -8.9+0.00 - TYR 612, HIS 657, ARG 667, GLU 682, LEU 725, ASP 764, LEU 765, ALA
767, ILE 768, GLN 775, ILE 778, ALA 779, VAL 782, PHE 786, GLN 817,
PHE 820

Pentoxifylline -6.97+0.06 - TYR 612, HIS 613, LEU 725, LEU 765, ALA 767, ILE 768, GLN 775, VAL 782,
GLN 817, PHE 820

https://doi.org/10.1371/journal.pone.0336267.t001

3.3. The binding free energies and per-residue energy decomposition

Table 4 presents the binding free energies (AG) along with the individual energy components for the xanthine derivatives,
sildenafil, and its deprotonated form bound to the PDE-5 receptor. To provide a comprehensive estimation of free binding
energy, we employed both the MMGBSA and MMPBSA methods. For the majority of the PDE-5 complexes, the MMPBSA
method—uwhich is typically thought to be more accurate—predicted more advantageous binding energies than MMGBSA.
The study identifies van der Waals interactions as the primary factor mechanisms behind the interactions, ranging from
-25 to -59 kcal/mol. The electrostatic component (AE__) is also favorable, but it is largely offset by unfavorable polar
solvation energy (AE_ ).

Overall, the results reveal that linagliptin is the most potent inhibitor among the xanthine derivatives studied, with a
binding energy comparable to that of the reference inhibitor sildenafil and surpassing its deprotonated form. The protona-
tion state of sildenafil is crucial, as its deprotonated form accounts for 37.06% of the total molecules at a physiological pH
of 7.4. Furthermore, istradefylline showed strong binding affinity, while pentoxifylline and caffeine were the slightly exhib-
ited higher binding free energy compared to linagliptin and sildenafil (Table 3).

A per-residue binding free energy decomposition analysis was performed to identify the critical residues involved in
ligand binding. The data presented in Table 5 and Table 6 illustrate distinct interactions for linagliptin with BDE-5 residues,
which is aligned in parallel with the reference inhibitor sildenafil. The sildenafil exhibited a greater affinity for interaction
with the residues Phe 820, GIn 818, Val 782, and PHE 786, while demonstrating a relatively lower affinity for the residues
LEU 804, LEU 765, and LEU 725. Linagliptin demonstrated a favorable interaction with the residues ASP 764, ASN 661,
and ASN 662, while exhibiting diminished affinity for the residues GLU 682, Tyr 664, Lys 770, and Ser 815. Furthermore,

elec
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Fig 5. Root-mean-square deviation (RMSD) for the backbone carbon atoms of the simulated xanthine derivatives-phosphodiesterase 5 com-
plexes based on the starting frame as a reference.

https://doi.org/10.1371/journal.pone.0336267.9005
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Table 2. RMSD. Rg and RMSF values for the simulated xanthine derivative-phosphodiesterase 5 complexes during 300 ns production runs.

PDE-1 complex ID Statistic Apo Sildenafil Deprotonated Sildenafil Linagliptin Istradefylline Petoxifylline Caffeine

RMSD* mean 1.83 1.70 1.79 1.60 1.31 2.20 1.46
SD 0.21 0.27 0.41 0.34 0.15 0.35 0.18

Rg mean 19.65 19.66 19.66 19.61 19.60 19.74 19.55
SD 0.08 0.08 0.08 0.10 0.07 0.08 0.07

RMSF mean 1.01 0.94 0.98 0.95 0.79 1.00 0.83
SD 0.78 0.71 0.82 0.65 0.54 0.63 0.54

* The initial coordinate used a reference for RMSD calculation.

https://doi.org/10.1371/journal.pone.0336267.t002
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Fig 6. Radius of Gyration (Rg) for the simulated Xanthine Derivatives-Phosphodiesterase 5 Complexes. The compound title is located at the top.
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linagliptin was also shown to have unstable interactions with catalytic metals, specifically zinc and magnesium. These
interactions are significant and may effectively block their accessibility.

3.4. Convergence and reproducibility

The reliability of our findings was confirmed using two independents, duplicate 300 ns MD simulations to the sildenafil and
linagliptin complexes. Each replicate was initiated from the same minimized and equilibrated. The convergence and repro-
ducibility of the simulations were assessed by comparing the RMSD data across the two trajectories for each system. Fig
9 shows RMSD for the backbone carbon atoms of the replicate simulations for both systems, based on the starting frame
as a reference.

The overall results of the independent simulations were presented in Table 7. This strong agreement confirms that the MD
protocol provides a reproducible description of the system’s dynamics, and that the simulations have robustly sampled the
dominant conformational state of each complex.

The primary challenge in identifying PDE-5 inhibitors is to ensure efficacy while minimizing side effects. Consequently, the
prevailing attention among several researchers is focused on finding inhibitors derived from natural products [11,38]. Of
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Fig 7. Root-mean-square fluctuation for the simulated xanthine derivatives-phosphodiesterase 5 complexes along the 300 ns trajectory.
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Fig 8. Embellished representation of the Root-mean-square fluctuation for the simulated xanthine derivatives-phosphodiesterase 5 com-
plexes over the 100 ns trajectory.

https://doi.org/10.1371/journal.pone.0336267.9008

these, nutraceutical lunamarine from watermelon [39], verbascoside and hesperidin [40], phenanthrene derivatives [41],
total flavonoids of epimedium [42], citrulline derived from citrullus lanatus [43], and isoflavones and biflavones [44]. In
addition to the synthetic compounds, exhibited PDE-5 inhibitory activity, such as monocyclic pyrimidinones [45], pyrazol-
opyrimidinone [46], thienopyrimidines [47], furyl/thineyl pyrroloquinolones based on natural alkaloid perlolyrine [48], diami-
noquinazoline and N2, N6-diaminopurine scaffolds [49], pyrazolo [3, 4-d] pyrimidinone derivatives [50], thiazolopyrimidine
derivatives [51], pyrazolopyrimidinone [52], multifunctional isosteric pyridine analogs-based 2-aminothiazole [53], pyrido-
indole derivatives [54], furoxan coupled spiro-isoquinolino piperidine derivatives [55]. In addition to synthetic compounds
based on natural products, such as evodiamine derivatives [56]. Xanthine derivatives have a broad spectrum of bioactivity,
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Table 3. Hydrogen bond occupancy for xanthine derivative-phosphodiesterase 5 complexes during 300 ns production runs.

Acceptor Donor Occupancy (%) Average Distance Average Angle
Apo

ILE_813@O GLN_817@N 69 2.86 158
VAL_782@0O PHE_786@N 17 2.91 158
Sildenafil

GLN_817@0O LIG_503@N 90 2.80 159
ILE_813@O GLN_817@N 73 2.86 157
LIG_503@0O GLN_817@N 41 2.89 161
SER_663@0O ILE_665@N 19 2.87 146
VAL_782@0O PHE_786@N 15 2.92 157
Deprotonated sildenafil

ILE_813@O GLN_817@N 68 2.85 157
VAL_782@0O PHE_786@N 22 2.92 156
HID_613@N ASN_661@N 18 2.93 153
LIG_503@N GLN_817@N 11 2.90 152
LIG_503@0O GLN_817@N 8 2.85 157
LIG_503@0 GLN_817@N 5 2.87 51
Linagliptin

ILE_813@0 GLN_817@N 66 2.86 157
LIG_503@0 ASN_662@N 42 2.88 161
VAL_782@0O PHE_786@N 27 2.90 156
ASN_662@0 SER_663@N 23 2.85 144
HID_613@N ASN_661@N 13 2.91 154
Istradefylline

LIG_503@0 GLN_817@N 74 2.85 161
ILE_813@O GLN_817@N 73 2.85 157
VAL_782@0 PHE_786@N 23 2.92 158
SER_663@0O ILE_665@N 18 2.86 143
HID_613@N ASN_661@N 10 2.94 157
LIG_503@0 TYR_612@O0OH 8 2.75 164
Petoxifylline

ILE_813@0O GLN_817@N 67 2.87 159
VAL_782@0O PHE_786@N 22 2.91 154
SER_663@0O ILE_665@N 12 2.87 144
Caffeine

ILE_813@O GLN_817@N 76 2.85 157
VAL_782@0O PHE_786@N 25 2.91 159
SER_663@0 ILE_665@N 23 2.88 147
HID_613@N ASN_661@N 18 2.93 157
LIG_503@0O LEU_725@N 7 2.92 162

https://doi.org/10.1371/journal.pone.0336267.t003

encompassing anticancer, antibacterial, antiviral, and antileishmanial effects [19,20,57-62]. Interestingly, a synthesized
compound-based xanthine scaffold has been studied as PDE-5 inhibitors [63].

The present study examines the potential of xanthine derivatives as a PDE-5 inhibitor. All xanthine derivatives exhibited
a high tendency to form hydrogen bonds with the residues placed in the active range indicated by dynamic simulations of
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Table 4. The MMPBSA and MMGBSA terms for the binding energy for xanthine derivative- phosphodiesterase 5 complexes.

PDE-5 complex type Calculation Method E i elec E., AH TAS AG (kcal/mol)
Sildenafil MMGBSA -55.92 -17.89 24.65 -49.1 10.85 -38.3+5.2
MMPBSA -55.92 -4.47 4.39 -56.01 6.97 -49.0+3.1
Deprotonated Sildenafil MMGBSA -55.32 -47.35 67.11 -35.55 26.06 -9.5+3.9
MMPBSA -55.32 -11.84 15.37 -51.78 12.02 -39.8+3.0
Linagliptin MMGBSA -59.03 -46.56 65.92 -39.68 4.25 -354+2.38
MMPBSA -59.03 -11.64 20.64 -50.03 1.89 -48.1+2.4
Istradefylline MMGBSA -53.83 -14.42 33.33 -34.92 10.70 -24.2+3.6
MMPBSA -53.83 -3.61 9.36 -48.08 3.66 -44.4+2.9
Petoxifylline MMGBSA -28.67 -46.67 32.45 -42.89 9.68 -33.2+3.6
MMPBSA -28.67 -11.67 9.55 -30.79 6.77 -24.0+£3.0
Caffeine MMGBSA -24.99 -42.64 34.85 -32.78 13.86 -18.9+4.5
MMPBSA -24.99 -10.66 10.61 -25.04 9.08 -16.0£3.4

https://doi.org/10.1371/journal.pone.0336267.t004

Table 5. The per-residue contributions to the binding effective energy decomposition (kcal/mol) of

PDE-5-sildenafil complex.

Residue MMGBSA MMPBSA
TYR 612 -0.9+6.3 -1.1+6.2
HID 613 -0.0+6.2 -0.2+6.0
ASN 661 -0.8+7.7 -0.8+6.9
ASN 662 0.2+8.9 -0.3+7.9
SER 663 -0.7+6.3 -1.0+£5.8
ILE 665 -1.1+6.5 -0.8+6.3
ARG 667 -0.1+£20.7 0.1£17.4
LEU 725 -1.1+£5.3 -0.8+5.2
LEU 765 -1.4+£5.6 -1.5+£5.6
ALA 767 -0.1+£4.0 0.0+£4.0
ILE 768 -0.9+5.5 -0.8+5.5
GLN 775 -0.2+6.0 0.3+5.9
ILE 778 -0.4+5.3 -0.4+5.3
ALA 779 -0.6+4.0 -1.0+£3.9
VAL 782 -2.6+5.0 -2.4+5.0
ALA 783 -0.4+3.8 -0.4+3.7
PHE 786 -1.9+5.7 -2.5+5.7
LEU 804 -1.7+£5.7 -1.8+5.6
ILE 813 -0.8+5.9 -0.8+5.8
MET 817 -0.7+£5.2 -0.3£5.1
GLN 818 -3.3+5.6 -5.7+5.5
PHE 820 -4.0+5.3 -4.4+53
Ligand -25.4+£10.3 -32.0£10.1

https://doi.org/10.1371/journal.pone.0336267.t005

sildenafil and PDE-5 complex. However, some xanthine derivatives, such as istradefylline and pentoxifylline, do not lower
the fluctuations of the active residues, even though they showed good binding scores with the PDE-5 receptor. These
observations suggested that the xanthine small molecular weight could act as an agonist or a PDE-5 simulator. However,
Linagliptin exhibits significant efficacy as a PDE-5 inhibitor, presenting a promising opportunity for the treatment of ED and
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Table 6. The per-residue contributions to the binding effective energy decomposition (kcal/mol) of

PDE-5-linagliptin complex.

Residue MMGBSA MMPBSA
TYR 612 -0.9+£6.8 -0.1£6.6
HID 613 -0.3+7.5 1.1+7.4
HID 617 -0.6+6.8 -0.7+6.7
ASP 654 -5.1+£8.6 -13.1x7.7
HIE 657 -0.6+6.9 0.6+6.7
ARG 658 0.1£14.8 8.6+11.8
VAL 660 -0.8+£5.2 -0.9+4.9
ASN 661 -2.6+5.7 -4.6+5.3
ASN 662 -3.2+5.7 -5.3+55
SER 663 0.0+4.6 0.2+3.9
MET 681 -1.8+3.9 -1.9+3.7
GLU 682 -2.9+9.9 -3.9+9.3
HIE 684 0.1+5.0 0.1+4.6
HID 685 -1.6+5.4 0.1+54
THR 723 -0.6£5.2 -2.4+£5.0
ASP 724 -0.8+8.2 -9.9+6.8
LEU 725 -2.3+x53 -1.5+53
ASP 764 -2.8+£12.2 -18.4+11.4
LEU 765 -0.7+5.5 -0.9+5.5
VAL 782 -1.1£4.1 -1.0£4.0
PHE 786 -1.7+5.0 -1.2+4.9
GLN 789 -0.2+10.6 -0.1+£10.3
LEU 804 -0.2+£43 -0.4+4.1
MET 805 -0.0+5.2 -0.2+5.1
PHE 820 -0.6+5.9 -0.6+5.9
ZN 501 7.1+14.6 34.8+11.6
MG 502 15.5+14.7 6.1+£11.6
Ligand -30.4£13.5 -43.0£13.2

https://doi.org/10.1371/journal.pone.0336267.t006
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Fig 9. Root-mean-square deviation (RMSD) for the backbone carbon atoms of the replicate simulation of linagliptin and sildenafil-

phosphodiesterase 5 complexes.

https://doi.org/10.1371/journal.pone.0336267.9009
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Table 7. Post MD analysis of the replicates of the replicate simulation of linagliptin and sildenafil-phosphodiesterase 5 complexes during 300

ns production runs.

Analysis Sildenafil (Run 1) Sildenafil (Run 2) Linagliptin (Run 1) Linagliptin (Run 2)
RMSD* 1.7+0.3 2.1+0.3 1.6+0.3 1.5+£0.2

RMSF 0.9+0.7 1.0+0.7 1.0+0.7 0.9+0.6

Rd 19.7+£0.1 19.5+0.1 19.6+0.1 19.7+0.1
MMPBSA -49.0+3.1 -46.4+3.0 -45.6+4.3 -44.3+52
MMGBSA -38.3+£5.2 -32.2+34 -23.6+5.9 -13.6+£7.0

* The initial coordinate used a reference for RMSD calculation.

https://doi.org/10.1371/journal.pone.0336267.t007

pulmonary hypertension. Furthermore, the current literature signifies this finding, as indicated by the fact that the PDES
inhibitors are effective against melanoma and lung cancer. It is also having anti-diabetic, anti-inflammatory, antioxidant,
and immunomodulatory effects as well as benefits for Alzheimer’s disease [64—70]. Linagliptin is a dipeptidyl peptidase 4
inhibitor used in the treatment of type 2 diabetes, recognized for its safety profile. Recent studies suggest that it is advan-
tageous to enhance cardiac function [67] and inhibit human fibroblast activation protein [71]. Previous in vivo investiga-
tions have also demonstrated its anti-inflammatory and antioxidative effects.

Conclusion

To sum up, the significance of xanthine derivatives as phosphodiesterase 5 (PDE-5) inhibitors was evaluated using
different computational methods, including molecular docking, molecular dynamics, binding free energy, and per-residue
energy decomposition. The comprehensive findings indicate that linagliptin stands out as the most effective inhibitor
among the xanthine derivatives assessed as PDE-5 inhibitors. It reduces the flexibility of the important H-loop in PDE-5
and binds more closely to the catalytic zinc and magnesium metal ions. In addition, linagliptin was shown to be a better
stabilizing agent of PDE-5 with one predominant protonated state, unlike sildenafil, which showed an unstable deproton-
ated state due to unfavorable acceptor-acceptor interactions. Thus, it is recommended that additional research be con-
ducted on the potential repurposing of linagliptin as a PDE-5 inhibitor to alleviate the identified adverse effects linked to
current PDE-5 inhibitors [72—-74].
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