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Abstract

This paper applies statistical mechanics to investigate wealth distribution in binary

interactions between two groups of agents. Using an exchange rule with non-zero

expected random variables and non-Maxwellian collision kernels, we consider the

case that wealth distribution is affected by the wealth replacement rate, trading rate,

market risk and the proportion of steady-state wealth distributions of two groups of

agents. The decrease of market risk and the increase of the wealth replacement rate

and trading rate are conducive to the equalization of wealth distribution, and high pro-

portion of steady-state wealth distributions of two groups of agents narrows dispar-

ities in group 1 but worsens them in group 2 under certain conditions. We verify our

conclusions by numerical experiments.

Introduction

The wealth distribution is not only a core indicator for evaluating the fairness of social
wealth allocation, but also a key factor influencing economic growth and social sta-
bility. Therefore, it is crucial to investigate the evolution and determinants of wealth
distributions. Combining economic theory and real data analysis, scholars conclude
that taxation [1], education [2], personal savings [3], pension insurance [4] and inher-
ited wealth [5] influence the wealth distribution. We employ the statistical mechanics
approach to discuss the evolution and influencing factors of wealth distribution.

The rarefied gas kinetic theory is one of the important components of the theoret-
ical physics. In the 19th century, using a non-negative function f (r, v, t) (r ∈ R3 and
v ∈ R3 represent the position and velocity of the gas particles at time t, respectively)
as the density function of rarefied gas particles, Maxwell [6] obtained the steady-state
distribution of gas particles. Boltzmann [7] derives the integral-differential equation
for the evolution of the distribution function of gas particles. This integral-differential
equation is named the Boltzmann equation

𝜕f(r, v, t)
𝜕t = −v[f(r + Δr, v, t) − f(r, v, t)] +Q(f, f)(r, v, t), (1)
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where Δr stands for the change of position of the gas particle, and −v[f(r + Δr, v, t)
− f(r, v, t)] measures the influence of the movement of gas particles on distribution.
Q(f, f )(r, v, t) is a collision operator that describes the impact of energy exchange
between particles on the distribution. Carleman [8] investigates the theory of spatial
homogeneity and proves the existence and uniqueness of the solution to (1) under
certain conditions. When the density variation of gas particles no longer depends on
the position r of the particles in space, but rather on the collisions between particles,
Eq (1) is simplified to

𝜕f(r, v, t)
𝜕t = −Q(f, f)(v, t).

Due to the complexity of the collision operators, in general, the Boltzmann equa-
tion cannot be solved directly. Two methods are commonly used: one is converting
the Boltzmann equation into the Fokker-Planck equation and obtaining its steady-
state solution under certain assumptions (see [9–11]), and the other is performing
numerical simulations on kinetic equations. Pareschi and Toscani [12] elaborate on
the applications of multi-agent kinetic equations across economics, social sciences
and biology, while detailing the construction of efficient simulation algorithms via the
Monte Carlo method. This method provides valuable references for the numerical
simulation of multi-agent systems.

In recent decades, scholars have applied the rarefied gas kinetic theory to multi-
ple disciplines, especially in the socioeconomic field. Pareto [13] discovers that the
wealth distribution in western countries follows a power-law distribution, that is, when
t→∞, the wealth distribution satisfies

f∞(w) ∼ w−(1+𝛾) ,

where 𝛾 ≥ 1 is the Pareto index. This finding is called Pareto’s Law. In general, when
𝛾 → 1, the distribution of social wealth is extremely unequal. Slanina [14] draws an
analogy with inelastic granular gases to propose a model for social wealth exchange,
where the dynamics is governed by a kinetic equation admitting self-similar solutions
with a power-law tail, and analytically derives a closed-form wealth distribution under
the continuous trading limit. Cordier et al. [15] present the exchange rule, discuss
the effect of collision among agents on wealth distribution, and demonstrate that the
steady-state wealth distribution has a Pareto tail. In the interaction rule, the saving
propensity could affect the wealth distribution of agents. The authors in [16] study the
situation where the two interacting parties have the same saving propensity, while
Chatterjee et al. [17] suppose that the saving propensities of the two agents are dif-
ferent. The steady-state wealth distributions derived in [16,17] follow the power-law
distribution. Düring and Toscani [18] revise the saving parameters in the interaction
rule and find that when there is a significant difference in the saving tendencies of
the two groups of agents, the distribution of the total wealth presents a bimodal fea-
ture. Bertotti [19] investigates how taxation and redistribution affect the distribution of
wealth in a discrete framework, while Bisi et al. [20] examine the same issue within
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a continuous framework. The investigations in [19,20] demonstrate that taxation and redistribution could reduce wealth
inequality. Pareschi and Toscani [21] explore the impact of knowledge on the wealth distribution and explain that the
knowledge would promote the emergence of the elite class and exacerbate the wealth inequality. Supposing that there
are three groups of agents including the susceptible, the infected and the recovered, Dimarco et al. [22] analyze the
impact of disease transmission on wealth distribution and infer that diseases lead to a reduction in the size of the middle
class and expand the wealth gap among agents. From the perspective of epidemic dynamics, Zhang et al. [23] demon-
strate that the wealth densities of both the susceptible and the infected populations conform to a unimodal inverse gamma
distribution. Bernardi et al. [24] examine the impact of large-scale vaccination campaigns on wealth distribution, and find
that these vaccination efforts significantly contribute to reducing wealth disparities among agents. Adding a control term to
the dynamic model, Wang et al. [25] achieve a result that the imbalance of decision-making capacity among agents would
deteriorate the wealth inequality. Chen et al. [26] investigate the influence of leader’s abilities on decision-making con-
sensus and conclude that the leader with high risk tolerance and control capacity could promote the team to reach con-
sensus. Assuming that there are two types of goods in the market, Sun and Wang [27] categorize agents into two groups
based on their differing trading propensities for each goods, allow agents to transfer between the groups, and find that
agents’ transitions improve the wealth inequality. Bisi [28] investigates the wealth exchange between agents of two groups
and allows agents to change their groups.

In the kinetic model of wealth distribution, the interaction among agents not only depends on the interaction rule, but
also involves the collision kernel. The collision kernel describes the interaction frequency between agents and is divided
into two types: Maxwellian collision kernels (constant collision kernels) and non-Maxwellian collision kernels. The for-
mer indicates that the interaction frequency among agents is independent of agents’ wealth, while the latter is the oppo-
site. Toscani [29] establishes a dynamic model containing a constant collision kernel to illustrate the process of opinion
formation, indicating that opinion exchange and information diffusion affect the opinion distribution of agents. Utilizing a
Maxwellian collision kernel, Albi et al. [30] discuss the role of opinion leaders in opinion formation, arguing that the opin-
ions of leaders have a guiding effect on followers. Zhong et al. [31] give the interaction rule containing a value function to
measure the investment choice behavior of agents and build the Boltzmann equation with a constant collision kernel. The
conclusion in [31] shows that the steady-state wealth distribution approaches the lognormal distribution. In the case where
the interaction frequency relies on wealth, Furioli et al. [32] demonstrate that the wealth distribution of agents in a multi-
agent system converges exponentially to its steady state. Under the premise that interaction frequency is a linear func-
tion of agents’ wealth, Zhou et al. [33] examine how the wealth substitution rate between agents affects wealth distribu-
tion, finding that high wealth substitution rates lead to a equitable wealth distribution. Meng et al. [34] construct a dynamic
model containing a non-Maxwellian collision kernel, embed the tax and redistribution operators in the model, and state
that tax and redistribution are conducive to wealth equality. Assuming that the student’s interaction frequency is deter-
mined by their GPA ( the grade point average), Hu and Chen [35] examine the effect of student interaction on GPA and
find out the reversing conditions of GPA. Wang and Lai [36] develop a kinetic model to characterize wealth distribution in
the financial market, and incorporate a wealth-dependent collision kernel to investigate the impact of varying trading fre-
quency on wealth distribution. If trading frequency and propensity depend on the wealth of agents, Liu et al. [37] demon-
strate that if trading propensity increases with wealth, the rich invest a high fraction of their capital in a single transaction,
leading to a reduction in the agent’s wealth disparity.

To sum up, among the core references of this paper, Zhou et al. [33] and Boghosian et al. [38] do not consider the
transfer behaviors of agents. Bisi [28] and Zhou et al. [33] assume that the expectation of random variables in the inter-
action rules is 0, with no consideration given to the case where the expectation of random variable relies on wealth.
Zhang et al. [23], Bisi [28] and Boghosian et al. [38] utilize the Maxwellian collision kernel in their kinetic models. Based
on the above summary, this paper employs the method of statistical physics to investigate the wealth exchange between
agents of two groups and allows agents to transfer between the two groups. The specific differences are reflected in the
following aspects.
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(i) In the interaction rule proposed by Bisi [28], the mathematical expectation of the random variable is 0, implying that
market uncertainty does not impact trading in a mean sense. Boghosian et al. [38] assume that the mathematical expec-
tations of random variables are related to the wealth gap between the two interacting agents (see (5)). In this work, we still
utilize the same assumption for random variables as that in [38].

(ii) Bisi [28] adopts a Maxwellian collision kernel, where the interaction frequency of agents is fixed. In this work, we
adopt the non-Maxwellian collision kernel used in Zhou et al. [33] to represent the interaction frequency (see (7)).

(iii) Assuming that only agents from group 1 remain in the market when t→∞, Bisi [28] derives the steady-state wealth
distribution of these agents. Inspired by the work in [23], we add an alternative case where the steady-state wealth distri-
butions of agents in two groups maintain a fixed ratio (g2,∞(w) = 𝜆g1,∞(w), 𝜆 is a positive constant), and obtain the steady-
state distributions for two groups of agents as well as the total wealth distribution of the market.

This paper proceeds as follows. In section 1, we develop a kinetic model to describe the interaction between agents
from two groups. In section 2, we present the interaction rule and construct the interaction and transition operators.
Section 3 aims at performing a Fokker–Planck transformation on the Boltzmann equation. In section 4, we find the steady-
state solutions for two special cases and discuss the effects of parameters on the wealth distribution through numerical
experiments. The conclusions are summarized in section 5.

1 The kinetic description for wealth exchange and individual transfers

We assume that the participants of wealth exchange are agents from two groups (groups 1 and 2). An agent could choose
to transact with another agent in his own group or a separate group, and the agent could also choose to change his group
after a single transaction. In this paper, the change of agent’s group is called agent transfer. In order to discuss the evo-
lutions of wealth distributions of agents in two groups, in our model, interactions between agents follow certain rules, and
the impacts of interactions and migrations of agents on wealth distribution are characterized by an interaction operator
and a transfer operator, respectively.

The wealth densities of agents in groups 1 and 2 are represented by fi(w, t) (i = 1,2), respectively. The wealth distribu-
tion fi(w, t) is uniquely characterized by the agent’s wealth w > 0 (w is dimensionless) and time t > 0. In general, there is
no debt allowed in the wealth exchange model, that is, the agent with negative wealth does not participate in the interac-
tion. When w = 0, the boundary condition fi(0, t) = 0 is given. The aggregate wealth distribution f (w,t) is a combination of
the wealth distributions of agents from both groups, that is,

f(w, t) = f1(w, t) + f2(w, t). (2)

Since f (w, t) is a probability density function, it satisfies the property that

∫
R+

f(w, t)dw = 1, t > 0.

The wealth exchanges and transfer behaviors of agents cause the wealth distribution to change over time. The evolu-
tion equation of the wealth distribution fi(w, t) becomes

𝜕fi(w, t)
𝜕t =

2

∑
j=1

Qi(fi, fj)(w) +QT
i (f1, f2)(w), i = 1,2. (3)

In (3), Qi(fi, fj)(w) is the binary interaction operator, which measures the effect of the transaction on wealth distribution.
The evolution of wealth distribution under agents’ migration is governed by the operator QT

i (f1, f2)(w).
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Next, we describe the process of wealth exchange of agents. We use (w,v) and (w∗,v∗) to represent the pre-transaction
and the post-transaction wealths of agents in a transaction, respectively. The trading rule is written as

{
w∗ = w + 𝜃(v − w) + 𝜂1w,
v∗ = v + 𝜃(w − v) + 𝜂2v,

(4)

where 𝜃 represents the trading rate of the agent, 𝜂1 and 𝜂2 are independent random variables. Different from the assump-
tion that the expectation of random variable is 0 in [28], Boghosian et al. [38] suppose that the expectations of random
variables are related to the wealth gap between the two sides of the interaction, which are expressed in the following
forms

⟨𝜂1⟩ = 𝜉 v − w
w

, ⟨𝜂2⟩ = 𝜉w − v
v

, (5)

where ⟨⋅⟩ denotes the mathematical expectation and 0 < 𝜉 < 1 is a proportional constant. Besides, the expectations of the
square of random variables satisfy ⟨𝜂21⟩ = ⟨𝜂22⟩ = 𝜎. Taking 𝜂1 as an example, in Fig 1, we randomly generate 1000 points
and display the relationship between the wealth gap |v−w| among agents and the expectation of the random variable 𝜂1. It
is seen that when the wealth gap among agents increases, the degree of deviation between the data points and the refer-
ence line ⟨𝜂1⟩ = 0 increases. This phenomenon indicates that the transaction risk for two agents with an excessive wealth
gap is higher than that for two agents with comparable wealth. The result of 𝜂2 is similar.

Fig 1. The relationship between |v− w| and ⟨𝜂1⟩.

https://doi.org/10.1371/journal.pone.0336043.g001
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Since there are random variables in trading rule (4), the binary interaction operator should be written in the form of
mathematics expectation

∫
R+

𝜑(w)Qi(fi, fj)(w)dw = ⟨∫
R2
+

Ki(w, v)[𝜑(w∗) − 𝜑(w)]fi(w)fj(v)dwdv⟩ , (6)

where 𝜑(w) is a smooth function with supported set in R2
+. According to the ideas in [33], for i = 1,2, we also assume that

the corresponding forms of collision kernels are

K1(w, v) = 𝛼w + 𝛽v, K2(w, v) = 𝛽w + 𝛼v, (7)

where 𝛼 and 𝛽 indicate the proportions of assets put into the market by agents in groups 1 and 2, respectively. Referring
to the properties of the linear utility function, Zhou et al. [33] call 𝛼/𝛽 (or 𝛽/𝛼) as the wealth replacement rate. 𝛼/𝛽 repre-
sents that if the agent with wealth w invests an additional 1 unit of wealth, the wealth contribution of agent with wealth v
decreases by 𝛼/𝛽 units. Similarly, 𝛽/𝛼 denotes that a unit increase in wealth exchange by the agent with wealth v corre-
sponds to a reduction of 𝛽/𝛼 units in wealth investment by the agent with wealth w.

We consider a transfer process in which one of the agents in an interaction chooses to change his group, including the
following four transfer types.

(a) 1 + 1→ 1 + 2, (b) 2 + 2→ 1 + 2,
(c) 1 + 2→ 1 + 1, (d) 1 + 2→ 2 + 2.

The transfer (a) refers to a transaction between two agents from group 1, after which one of the agents immigrates to
group 2. The explanations for transfers (b), (c) and (d) are similar. Supposing that the probability of an agent from group 1
immigrating to group 2 is p12 (0 ≤ p12 ≤ 1), and the probability of an agent from group 2 immigrating to group 1 is p21 (0 ≤
p21 ≤ 1). Using P(⋅) to denote the probability of the event in parentheses occurring, for the above four transfer types, we
have P(a) = P(d) = p12 and P(b) = P(c) = p21. The total transfer operator is expressed as the sum of operators of transfers
(a)–(d), that is,

QT
i (f1, f2)(w) = ∑

l∈{a,b,c,d}
QT(l)

i (f1, f2)(w), i = 1,2.

Taking transfer (a) as an example, we provide a detailed explanation of the construction process of the transfer
operator. We denote the wealth of the two agents before the transition as (w∗, v∗), and the wealth after the transi-
tion as (w,v). f (w,t)dw denotes the number of agents whose wealth falls within the interval (w,w + dw). Thus, we use
p12f1(w∗, t)f1(v∗, t)dw∗dv∗ (p12 is the probability of agents transferring from group 1 to group 2) to represent the number of
agents whose wealth changes from (w∗, v∗) to (w,v) after the transition. We refer to p12f1(w∗, t)f1(v∗, t)dw∗dv∗ as the gain
term for agents with wealth (w,v). Similarly, p12f1(w, t)f1(v, t)dwdv denotes the number of agents whose wealth is no longer
(w,v) after the transition. Thus, p12f1(w, t)f1(v, t)dwdv serves as the loss term for agents with wealth (w,v). In transfer (a),
there is a net decrease of one unit in the number of agents belonging to group 1. Thus, we have

QT(a)
1 (w)dw = p12f1(w∗, t)f1(v∗, t)dw∗dv∗ − 2p12f1(w, t)f1(v, t)dwdv.

For agents in group 2, there is a net increase of one unit, that is,

QT(a)
2 (w)dw = p12f1(w∗, t)f1(v∗, t)dw∗dv∗.
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We express operators QT(a)
1 and QT(a)

2 in their weak forms and obtain

∫
R+

𝜑(w)QT(a)
1 (w)dw = p12∫

R2
+

𝜑(w)f1(w∗, t)f1(v∗, t)dw∗dv∗

− 2p12∫
R2
+

𝜑(w)f1(w, t)f1(v, t)dwdv

and

∫
R+

𝜑(w)QT(a)
2 (w)dw = p12∫

R2
+

𝜑(w)f1(w∗, t)f1(v∗, t)dw∗dv∗.

The construction processes of operators of transfers (b) – (d) are referred to [28], we write the transfer operators in
their weak forms

∫
R+

𝜑(w)QT(b)
1 (w)dw = p21∫

R2
+

𝜑(w)f2(w∗)f2(v∗)dw∗dv∗,

∫
R+

𝜑(w)QT(b)
2 (w)dw = p21∫

R2
+

𝜑(w)f2(w∗)f2(v∗)dw∗dv∗

− 2p21∫
R2
+

𝜑(w)f2(w)f2(v)dwdv,

∫
R+

𝜑(w)QT(c)
1 (w)dw = p21∫

R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

+ p21∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

− p21∫
R2
+

𝜑(w)f1(w)f2(v)dwdv,

∫
R+

𝜑(w)QT(c)
2 (w)dw = p21∫

R2
+

𝜑(w)f2(w)f1(v)dwdv,

∫
R+

𝜑(w)QT(d)
1 (w)dw = −p12∫

R2
+

𝜑(w)f1(w)f2(v)dwdv,

∫
R+

𝜑(w)QT(d)
2 (w)dw = p12∫

R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

+ p12∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

− p12∫
R2
+

𝜑(w)f1(v)f2(w)dwdv,

where (w∗, v∗) represents the wealth of agents before the transition, and the wealth of agents after the transition is (w,v).
In transfers (c) and (d), the two parties before the transition are from different groups. Thus, swapping their positions in
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the derivation is not allowed. That is, although the wealth of both parties after the transition are (w,v), the wealth before
the transition could be (w∗, v∗) or (w∗, v∗), and (w∗, v∗) ≠ (w∗, v∗).

We write the Boltzmann Eq (3) into its weak form, that is,

d
dt
∫
R+

𝜑(w)f1(w, t)dw

=∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w)⟩ f1(w)f1(v)dwdv

+∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w)⟩ f1(w)f2(v)dwdv

+ p12∫
R2
+

𝜑(w)f1(w∗)f1(v∗)dw∗dv∗ − 2p12∫
R2
+

𝜑(w)f1(w)f1(v)dwdv (8)

+ p21∫
R2
+

𝜑(w)f2(w∗)f2(v∗)dw∗dv∗ + p21∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

+ p21∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗ − p21∫
R2
+

𝜑(w)f1(w)f2(v)dwdv

− p12∫
R2
+

𝜑(w)f1(w)f2(v)dwdv

and

d
dt
∫
R+

𝜑(w)f2(w, t)dw

=∫
R2
+

K2(w, v) ⟨𝜑(w∗)𝜑(w)⟩ f2(w)f2(v)dwdv

+∫
R2
+

K2(w, v) ⟨𝜑(w∗) − 𝜑(w)⟩ f2(w)f1(v)dwdv

+ p12∫
R2
+

𝜑(w)f1(w∗)f1(v∗)dw∗dv∗ + p21∫
R2
+

𝜑(w)f2(w∗)f2(v∗)dw∗dv∗ (9)

− 2p21∫
R2
+

𝜑(w)f2(w)f2(v)dwdv + p21∫
R2
+

𝜑(w)f2(w)f1(v)dwdv

+ p12∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗ + p12∫
R2
+

𝜑(w)f1(w∗)f2(v∗)dw∗dv∗

− p12∫
R2
+

𝜑(w)f1(v)f2(w)dwdv.

2 Properties of moments of the wealth distribution

In the dynamic model presented in the previous section, binary interactions lead to the flow of wealth between the two
groups, and individuals’ transfer behaviors cause the movement of the population between the two groups. This section
aims to derive the evolution equations for the number of people and the mean wealth in each group, and prove that the
first-order moment of the total wealth distribution function of the system is conserved.
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Define the moments of wealth distribution fi(w, t) as

mi,s(t) =∫
R+

wsfi(w, t)dw, s ≥ 0,

where s represents the order of moments. When s = 0, we have

𝜌1(t) =∫
R+

f1(w, t)dw, 𝜌2(t) =∫
R+

f2(w, t)dw.

𝜌1(t) and 𝜌2(t) vary with the agents’ transfer and denote the proportions of the number of agents in groups 1 and 2 to the
total number of agents in the market, respectively. At any time t > 0, 𝜌1(t) and 𝜌2(t) satisfy

𝜌1(t) + 𝜌2(t) = 1. (10)

By choosing 𝜑(w) = 1 in Eqs (8) and (9), we obtain

⎧
⎨
⎩

d𝜌1(t)
dt

= p21𝜌22(t) − p12𝜌21(t) + p21𝜌1(t)𝜌2(t) − p12𝜌1(t)𝜌2(t)
d𝜌2(t)
dt

= −p21𝜌22(t) + p12𝜌21(t) − p21𝜌1(t)𝜌2(t) + p12𝜌1(t)𝜌2(t).
(11)

When the following condition is satisfied, system (11) reach a steady state.

𝜌2 = k𝜌1, k = −(p21 − p12) + √(p21 − p12)2 + 4p12p21
2p21

. (12)

Therefore, combining with Eq (10), the proportions of the number of agents in the two groups to the total number of
agents in the steady state are

(𝜌1)∞ = 1
1 + k

, (𝜌2)∞ = k
1 + k

. (13)

When s = 1, m1,1(t) and m2,1(t) indicate the mean wealth of agents from groups 1 and 2, which are written as

m1,1(t) =∫
R+

wf1(w, t)dw, m2,1(t) =∫
R+

wf2(w, t)dw.

According to the exchange rule (4), we have

⟨w∗ + v∗⟩ = w + v + ⟨𝜂1⟩w + ⟨𝜂2⟩v = w + v.

By setting 𝜑(w) = w, Eq (6) becomes

∫
R+

wQ1(f1, f2)(w)dw = 1
2
∫
R2
+

K1(w, v) ⟨w∗ + v∗ − w − v⟩ f1(w)f1(v)dwdv

+ 1
2
∫
R2
+

K1(w, v) ⟨w∗ + v∗ − w − v⟩ f1(w)f2(v)dwdv

= 0.
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Similarly, we obtain ∫R+ wQ2(f1, f2)(w)dw = 0. In other words, binary interactions do not affect the evolution of the first-
order moment of the wealth distribution function. Next, we consider whether individual transfers affect the evolution of the
first-order moment. Substituting 𝜑(w) = w into the weak form of the transfer operator yields

∫
R+

wQT
1(f1, f2)(w)dw = −p12𝜌1m1,1(t) + p21𝜌2m2,1(t) + p21𝜌1m2,1(t) − p12𝜌2m1,1(t)

and

∫
R+

wQT
2(f1, f2)(w)dw = p12𝜌1m1,1(t) − p21𝜌2m2,1(t) − p21𝜌1m2,1(t) + p12𝜌2m1,1(t).

Overall, the evolution equation for the first-order moment of the total wealth distribution function is

d
dt
∫
R+

wf(w, t)dw = d
dt
∫
R+

wf1(w, t)dw + d
dt
∫
R+

wf2(w, t)dw

=∫
R+

wQ1(f1, f2)(w)dw +∫
R+

wQT
1(f1, f2)(w)dw

+∫
R+

wQ2(f1, f2)(w)dw +∫
R+

wQT
2(f1, f2)(w)dw

= 0.

This implies that the first-order moment of the total wealth distribution does not vary with time. On this basis, it is rea-
sonable to assume that

(m1,1)∞ + (m2,1)∞ =∫
R+

wf∞(w)dw = m̄1, (14)

where m̄1 is a positive constant.
Due to the complexity of the non-Maxwellian collision kernel adopted in this paper, we assume that the sum of the sec-

ond moments of f1(w, t) and f2(w, t) (the second moment of the total wealth distribution) is a constant when t→∞. Defin-
ing m1,2(t) = ∫R+ w

2f1(w, t)dw and m2,2(t) = ∫R+ w
2f2(w, t)dw, we have

(m1,2)∞ + (m2,2)∞ =∫
R+

w2f∞(w)dw = m̄2, (15)

where m̄2 is a positive constant, and m̄2 is treated as an exogenous constraint that determines the steady-state distribu-
tion function.

Main notations introduced in this paper are summarized in the Table 1.

3 Derivation of the Fokker-Planck equation

In fact, it is difficult to solve the Boltzmann Eqs (8) and (9) (see [28]). Through the approach of continuous trading lim-
its, we convert the Boltzmann equations into the Fokker-Planck equations and calculate its steady-state solutions under
certain conditions. A constant 0 < 𝜖 ≪ 1 is used to scale the parameters, the entire market is regarded as a continuous
market composing of infinite tiny transactions. The scaled parameters are as follows.

𝜃 → 𝜖𝜃, p12 → 𝜖p12, p21 → 𝜖p21, 𝜎 → 𝜖𝜎, 𝜉 → 𝜖𝜉.
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Table 1. Summary of key model parameters.

Parameter symbol Parameter meaning Range of values
𝛼 The proportion of wealth invested by the agent with wealth w. 0 < 𝛼 ≤ 1
𝛽 The proportion of wealth invested by the agent with wealth v. 0 < 𝛽 ≤ 1
𝜃 The trading rate of agents. 0 ≤ 𝜃 ≤ 1
𝜉 The proportional parameter of the expectation of random variables. 0 < 𝜉 < 1
𝜎 The expectation of the square of a random variable. 0 < 𝜎 <+∞
p12 The probability of an agent transferring from group 1 to group 2. 0 ≤ p12 ≤ 1
p21 The probability of an agent transferring from group 2 to group 1. 0 ≤ p21 ≤ 1
𝜆 The ratio of the steady-state wealth distributions of the two groups of agents. 0 < 𝜆 <+∞
𝜌i The proportion of the number of agents in group i to the total number of agents. 0 ≤ 𝜌i ≤ 1
mi,s The s-th moment of the wealth distribution of agents in group i. 0 <mi,s <+∞
https://doi.org/10.1371/journal.pone.0336043.t001

After scaling, there are ⟨𝜂1⟩ → 𝜖𝜉 v − w
w

, ⟨𝜂2⟩ → 𝜖𝜉w − v
v

and ⟨𝜂2i ⟩ → 𝜖𝜎 (i = 1,2). Performing the Taylor expansion of the
smooth function 𝜑(w∗), we obtain

𝜑(w∗) − 𝜑(w) = 𝜑′(w)(w∗ − w) + 𝜑′′(w)
2

(w∗ − w)2 + 𝜑′′′(w̃)
6

(w∗ − w)3,

where w̃ = 𝜅w∗ + (1 − 𝜅)w (0 ≤ 𝜅 ≤ 1). According to the exchange rule (4), we have

⟨w∗ − w⟩ = 𝜖(𝜃 + 𝜉)(v − w)

and

⟨(w∗ − w)2⟩ = 𝜖2(𝜃2 + 2𝜃𝜉)(v − w)2 + 𝜖𝜎w2.

The expectation of the Taylor expansion of 𝜑(w∗) is

⟨𝜑(w∗) − 𝜑(w)⟩ = 𝜖(𝜃 + 𝜉)𝜑′(w)(v − w) + 𝜖𝜎
2
𝜑′′(w)w2 + R𝜖(w, v), (16)

where R𝜖(w, v) =
𝜖2(𝜃2 + 2𝜃𝜉)

2
𝜑′′(w)(v − w)2 + ⟨𝜑

′′′(w̃)
6

(w∗ − w)3⟩. In (8), the first two terms on the right side is written as

∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w)⟩ f1(w, t)f1(v, t)dwdv

+∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w)⟩ f1(w, t)f2(v, t)dwdv

= 𝜖∫
R2
+

(𝛼w + 𝛽v) [(𝜃 + 𝜉)𝜑′(w)(v − w) + 𝜎
2
𝜑′′(w)w2] f1(w, t)f1(v, t)dwdv

+ 𝜖∫
R2
+

(𝛼w + 𝛽v) [(𝜃 + 𝜉)𝜑′(w)(v − w) + 𝜎
2
𝜑′′(w)w2] f1(w, t)f2(v, t)dwdv

+ R̃𝜖(w, v),

(17)
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where

R̃𝜖(w, v) = ∫
R2
+

(𝛼w + 𝛽v)R𝜖(w, v)f1(w, t)f1(v, t)dwdv

+∫
R2
+

(𝛼w + 𝛽v)R𝜖(w, v)f1(w, t)f2(v, t)dwdv.

When 𝜖 → 0, R̃𝜖(w, v) = 0. After scaling 𝜏 = 𝜖t, we set gi(w, 𝜏) = fi(w, t) (i = 1,2). Using integration by parts, from (17), we
derive that

∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w) ⟩g1(w, 𝜏)g1(v, 𝜏)dwdv

+∫
R2
+

K1(w, v) ⟨𝜑(w∗) − 𝜑(w) ⟩g1(w, 𝜏)g2(v, 𝜏)dwdv

= 𝜖(𝜃 + 𝜉) [(𝛽 − 𝛼)(m1,1(𝜏) +m2,1(𝜏))∫
R+

𝜑(w) 𝜕𝜕w (wg1(w, 𝜏))dw

+𝛼(𝜌1(𝜏) + 𝜌2(𝜏))∫
R+

𝜑(w) 𝜕𝜕w (w
2g1(w, 𝜏))dw

−𝛽(m1,2(𝜏) +m2,2(𝜏))∫
R+

𝜑(w) 𝜕𝜕wg1(w, 𝜏)dw]

+ 𝜖𝜎
2
[𝛼(𝜌1(𝜏) + 𝜌2(𝜏))∫

R+

𝜑(w) 𝜕
2

𝜕w2
(w3g1(w, 𝜏))dw

+𝛽(m1,1(𝜏) +m2,1(𝜏))∫
R+

𝜑(w) 𝜕
2

𝜕w2
(w2g1(w, 𝜏))dw] .

(18)

Substituting (18) into (8), we derive the Fokker-Planck equation for the wealth density of the agent in group 1.

𝜕g1(w, 𝜏)
𝜕𝜏 = (𝜃 + 𝜉)(𝛽 − 𝛼)(m1,1(𝜏) +m2,1(𝜏))

𝜕
𝜕w (wg1(w, 𝜏))

+ 𝛼(𝜃 + 𝜉)(𝜌1(𝜏) + 𝜌2(𝜏))
𝜕
𝜕w (w

2g1(w, 𝜏))

− 𝛽(𝜃 + 𝜉)(m1,2(𝜏) +m2,2(𝜏))
𝜕
𝜕wg1(w, 𝜏)

+ 𝜎𝛼(𝜌1(𝜏) + 𝜌2(𝜏))
2

𝜕2
𝜕w2

(w3g1(w, 𝜏))

+
𝜎𝛽(m1,1(𝜏) +m2,1(𝜏))

2
𝜕2
𝜕w2

(w2g1(w, 𝜏))

+ p21g2(w, 𝜏) − p12g1(w, 𝜏).

(19)
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Utilizing the same method, the Fokker-Planck equation for g2(w, 𝜏) is expressed as

𝜕g2(w, 𝜏)
𝜕𝜏 = (𝜃 + 𝜉)(𝛼 − 𝛽)(m1,1(𝜏) +m2,1(𝜏))

𝜕
𝜕w (wg2(w, 𝜏))

+ 𝛽(𝜃 + 𝜉)(𝜌1(𝜏) + 𝜌2(𝜏))
𝜕
𝜕w (w

2g2(w, 𝜏))

− 𝛼(𝜃 + 𝜉)(m1,2(𝜏) +m2,2(𝜏))
𝜕
𝜕wg2(w, 𝜏)

+ 𝜎𝛽(𝜌1(𝜏) + 𝜌2(𝜏))
2

𝜕2
𝜕w2

(w3g2(w, 𝜏))

+
𝜎𝛼(m1,1(𝜏) +m2,1(𝜏))

2
𝜕2
𝜕w2

(w2g2(w, 𝜏))

− p21g2(w, 𝜏) + p12g1(w, 𝜏).

(20)

4 The steady-state wealth distribution and numerical experiments

Combining assumptions (10)–(15), when 𝜏 →∞, we acquire the equilibrium states of Eqs (19) and (20) in the forms

𝜎
2
𝜕2
𝜕w2

[(𝛼w + 𝛽m̄1)w2g1,∞(w)] + (𝜃 + 𝜉) 𝜕𝜕w [(𝛼w
2 + (𝛽 − 𝛼)m̄1w

− 𝛽m̄2)g1,∞(w)] + p21g2,∞(w) − p12g1,∞(w) = 0
(21)

and

𝜎
2
𝜕2
𝜕w2

[(𝛽w + 𝛼m̄1)w2g2,∞(w)] + (𝜃 + 𝜉) 𝜕𝜕w [(𝛽w
2 + (𝛼 − 𝛽)m̄1w

− 𝛼m̄2)g2,∞(w)] − p21g2,∞(w) + p12g1,∞(w) = 0.
(22)

4.1 Solvable case 1

Considering a case where transition restrictions exist. Namely, we stipulate that only agents with extremely high wealth
are eligible to transfer to group 2. In this situation, p12 becomes so small that satisfies p12 =O(𝜀2) (𝜀 is an extremely small
constant, and p12 = 0 when 𝜀 → 0). According to Eq (12), we know that k = 0 when p12 = 0. Thus, we obtain

(𝜌1)∞ = 1
1 + k

= 1, (𝜌2)∞ = k
1 + k

= 0.

Correspondingly, according to conditions (10)–(15), there are (m1,1)∞ = m̄1, (m1,2)∞ = m̄2, (m2,1)∞ = 0 and (m2,2)∞ = 0.
Then, under the condition that g2,∞(w) disappears, g1,∞(w) obeys the equation

(𝜃 + 𝜉) 𝜕𝜕w [(𝛼w
2 + (𝛽 − 𝛼)m̄1w − 𝛽m̄2)g1,∞(w)]

+ 𝜎
2
𝜕2
𝜕w2

[(𝛼w + 𝛽m̄1)w2g1,∞(w)] = 0.
(23)

Solving (23), we obtain the steady-state solution

g1,∞(w) = C1wA1(B1w + B2)A2exp {−A3

w
} , (24)
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where C1 is a constant that meets the condition ∫R+ g1,∞(w)dw = 1. In (24), constants A1, A2 and A3 are given by

A1 =
2 [(𝜃 + 𝜉)(𝛼𝛽 − 1) − 𝜎] m̄2

1 − 2
𝛼
𝛽 (𝜃 + 𝜉)m̄2

𝜎m̄2
1

,

A2 =
2
𝛼
𝛽 (𝜃 + 𝜉)m̄2 − [2(𝜃 + 𝜉)(𝛼𝛽 + 2) + 𝜎] m̄2

1

𝜎m̄2
1

,

A3 =
2(𝜃 + 𝜉)m̄2

𝜎m̄2
1

,

and

B1 = 𝜎𝛼, B2 = 𝜎𝛽m̄1.

According to the ranges of the relevant parameters in Table 1, we know that B1 > 0 and B2 > 0. Therefore, for any w>0,
the steady-state wealth distribution maintains positivity. Additionally, we maintain the normalization of g1,∞(w) by solv-
ing for the constant C1 that makes the integral of g1,∞(w) equal to 1. From the steady-state solution g1,∞(w), we conclude
that when 𝛼/𝛽 = 1, the wealth replacement rate does not affect the wealth density g1,∞(w). Conversely, when 𝛼/𝛽 ≠ 1, the
wealth density g1,∞(w) is subject to the impact of wealth replacement rate. Furthermore, the wealth density g1,∞(w) is also
affected by the trading rate 𝜃 and market risk 𝜎.

4.2 Solvable case 2

Referring to the perspective in [23], we discuss another situation in which the ratio of the wealth distributions of agents in
the two groups remains stable as t→∞, that is, g2,∞(w) = 𝜆g1,∞(w) (𝜆 is a positive constant). At this time, the proportions
of the number of agents in groups 1 and 2 to the total number of agents depend on the transition probabilities p12 and p21,
that is, (𝜌1)∞ and (𝜌2)∞ satisfy Eqs (12) and (13). g1,∞(w) and g2,∞(w) are solutions of following equations

𝜎
2
𝜕2
𝜕w2

[(𝛼w + 𝛽m̄1)w2g1,∞(w)] + (𝜃 + 𝜉) 𝜕𝜕w [(𝛼w
2 + (𝛽 − 𝛼)m̄1w

− 𝛽m̄2)g1,∞(w)] + (𝜆p21 − p12)g1,∞(w) = 0,
(25)

𝜎
2
𝜕2
𝜕w2

[(𝛽w + 𝛼m̄1)w2g2,∞(w)] + (𝜃 + 𝜉) 𝜕𝜕w [(𝛽w
2 + (𝛼 − 𝛽)m̄1w

− 𝛼m̄2)g2,∞(w)] + (p12𝜆 − p21)g2,∞(w) = 0.
(26)

From (25) and (26), we acquire

g1,∞(w) = C2wA4(B1w + B2)A5exp {−A6

w
} (27)

and

g2,∞(w) = C3wA7(B3w + B4)A8exp {−A9

w
} , (28)
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where constants C2 and C3 satisfy ∫R+ g1,∞(w)dw + ∫R+ g2,∞(w)dw = 1. The constants in (27) and (28) are expressed as

A4 =
2 [(𝜃 + 𝜉)(𝛼𝛽 − 1) − 𝜎] m̄2

1 − 2
𝛼
𝛽 [(𝜃 + 𝜉)m̄2 +

p12 − 𝜆p21
𝛽 ]

𝜎m̄2
1

,

A5 =
2
𝛼
𝛽 [(𝜃 + 𝜉)m̄2 +

p12 − 𝜆p21
𝛽 ] − [2𝛼𝛽 (𝜃 + 𝜉) − 𝜎] m̄2

1

𝜎m̄2
1

,

A6 =
2 [(𝜃 + 𝜉)m̄2 +

p12 − 𝜆p21
𝛽 ]

𝜎m̄1
,

A7 =
2 [(𝜃 + 𝜉)(𝛽𝛼 − 1) − 𝜎] m̄2

1 − 2
𝛽
𝛼 [(𝜃 + 𝜉)m̄2 +

𝜆p21 − p12
𝛼𝜆 ]

𝜎m̄2
1

,

A8 =
2
𝛽
𝛼 [(𝜃 + 𝜉)m̄2 +

𝜆p21 − p12
𝛼𝜆 ] − [2𝛽𝛼 (𝜃 + 𝜉) − 𝜎]

𝜎m̄2
1

,

A9 =
2 [(𝜃 + 𝜉)m̄2 +

𝜆p21 − p12
𝛼𝜆 ]

𝜎m̄1

and

B3 = 𝜎𝛽, B4 = 𝜎𝛼m̄1.

Similarly, for any w > 0, the steady-state wealth distributions g1,∞(w) and g2,∞(w) always remain positive. We use MAT-
LAB software to solve for the constants C2 and C3 that make the sum of the integrals of g1,∞(w) and g2,∞(w) equal to 1,
ensuring that the total wealth distribution satisfies the normalization property. The solutions (27) and (28) indicate that the
wealth replacement rate 𝛼/𝛽 (𝛼/𝛽 ≠ 1), transaction rate 𝜃, and market risk 𝜎 determine the steady-state wealth distribu-
tion. It should be mentioned that the ratio of steady-state wealth distributions between agents in the two groups remains
unchanged (g2,∞(w) = 𝜆g1,∞(w), and 𝜆 is a positive constant). This fixed ratio 𝜆 influences the steady-state wealth distribu-
tion. According to (3), the total steady-state wealth distribution g∞(w) takes the form

g∞(w) = g1,∞(w) + g2,∞(w)

= C2wA4(B1w + B2)A5exp {−A6

w
}

+ C3wA7(B3w + B4)A8exp {−A9

w
} .

(29)
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4.3 Numerical experiments

4.3.1 Test 1: The effects of parameters on the steady-state solution in solvable case 1. In this section, we ana-
lyze the effects of the wealth replacement rate, trading rate and market risk on wealth distribution by drawing the graphs
of the wealth density g1,∞(w) and its corresponding Lorenz curves. The Lorenz curve is one of the key tools in economics
for measuring wealth inequality. It provides a graphical representation of how wealth is distributed among agents in a
system (see [18,22,33]). Defining G(w) = ∫w

0 g1,∞(x)dx as the cumulative distribution function (CDF) of the steady-state
distribution g1,∞(w), the Lorenz curve is expressed as

L(G(w)) =
∫w
0 g1,∞(x)xdx

∫+∞
0 g1,∞(x)xdx

.

The horizontal axis of the Lorenz curve represents the cumulative proportion of the population, ranking from those with
the lowest wealth to those with the highest wealth. The vertical axis denotes the cumulative proportion of wealth held by
corresponding population. Under the condition of absolute equality in wealth distribution, the Lorenz curve overlaps with
the 45-degree line, which is called the line of full equality. In real economies, such perfect equality rarely exists. Thus, we
utilize the degree of deviation between the Lorenz curve and the line of full equality to measure the wealth inequality. A
large degree of deviation indicates a high level of wealth inequality. According to the viewpoint of Gini [39], the Gini coef-
ficient is also a commonly used indicator for measuring the wealth distribution gap in a country or region. Its value ranges
from 0 to 1, where a small value indicates a equal distribution of wealth. The calculation formula of the Gini coefficient is

G̃ = 1 − 2∫
1

0

L(G(w))dw.

Within the parameter value range, we fix the parameter values as 𝜉 = 0.5 and m̄1 = m̄2 = 1, and depict the graphs
of the steady-state wealth distribution g1,∞(w) and the Lorenz curves under different values of wealth replacement rate
𝛼/𝛽, transaction rate 𝜃 and market risk 𝜎, respectively. In addition, we also calculate the Gini coefficients under different
parameter values to examine the changes in the wealth distribution. The results are presented in Table 2. From Fig 2, we
come to the conclusion that when the wealth replacement rate of the agents increases, the steady-state wealth distribu-
tion has a thin tail, implying that the wealth distribution tends to be equal. This finding is further substantiated by examin-
ing the Lorenz curves and Gini coefficients under different values of 𝛼/𝛽. Similarly, it is seen from Fig 3 that an increase
in the transaction rate results in a thin tail of the wealth distribution, which reduces the wealth inequality. Accordingly, the
Gini coefficient also decreases. In the interaction rule (4), the variance of random variables measures the market risk. As
illustrated in Fig 4, the high market risk induces thick-tailed characteristics of g1,∞(w), which has a negative impact on the
equality of wealth distribution. Besides, rising market risk widens the deviation between the Lorenz curve and the line of
full equality, indicating that market risk is detrimental to wealth equality. The Gini coefficient increases as market risk rises,
which verifies this conclusion.

4.3.2 Test 2: The effects of parameters on steady-state solutions in solvable case 2. The peculiarity of solvable
case 2 lies in the assumption that the wealth distributions of agents in the two groups are proportional in the steady state.

Table 2. The Gini coefficients corresponding to the wealth density at steady state under different parameter values.

𝛼/𝛽 Gini coefficients 𝜃 Gini coefficients 𝜎 Gini coefficients
0.3 0.2189 0.3 0.2206 0.8 0.2243
1.2 0.2035 0.9 0.1863 1.6 0.2997

https://doi.org/10.1371/journal.pone.0336043.t002
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Fig 2. 𝜃 = 0.5, m̄1 = m̄2 = 1, 𝜉 = 0.5 and 𝜎 = 1, (left) the graph of g1,∞(w) for different values of
𝛼
𝛽 , (right) the Lorenz curves for different values

of
𝛼
𝛽 .

https://doi.org/10.1371/journal.pone.0336043.g002

Fig 3. 𝛼 = 𝛽 = 1, m̄1 = m̄2 = 1, 𝜉 = 0.5 and 𝜎 = 1, (left) the graph of g1,∞(w) for different values of 𝜃, (right) the Lorenz curves for different
values of 𝜃.

https://doi.org/10.1371/journal.pone.0336043.g003

Namely, there is g2,∞(w) = 𝜆g1,∞(w). In Fig 5, we discuss the effects of the change in 𝜆 on the steady-state wealth distri-
butions of agents in groups 1 and 2 (𝜉 = 0.5, 𝜎 = 1, m̄1 = m̄2 = 1, 𝛼 = 𝛽 = 1 and 𝜃 = 0.5). When the proportion 𝜆 increases
(the value of g2,∞(w)/g1,∞(w) increases), the tail of the steady-state wealth distribution of agents in group 1 takes on a thin
form, meaning the wealth gap among agents in group 1 narrows. In contrast, the tail of the steady-state wealth distribu-
tion of agents in group 2 takes on a thick form, and the wealth gap among agents in group 2 widens. The Gini coefficients
presented in Table 3 serve to verify this conclusion.
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Fig 4. 𝛼 = 𝛽 = 1, m̄1 = m̄2 = 1, 𝜉 = 0.5 and 𝜃 = 0.5, (left) the graph of g1,∞(w) for different values of 𝜎, (right) the Lorenz curves for different
values of 𝜎.

https://doi.org/10.1371/journal.pone.0336043.g004

Fig 5. 𝛼 = 1, 𝛽 = 1, 𝜃 = 0.5, m̄1 = m̄2 = 1, 𝜉 = 1 and 𝜎 = 1. (left) The graph of g1,∞(w) for different values of 𝜆. (right) The graph of g2,∞(w) for
different values of 𝜆.

https://doi.org/10.1371/journal.pone.0336043.g005

Table 3. The Gini coefficients corresponding to g1,∞(w) and g2,∞(w) under different parameter values of 𝜆.
𝜆 Gini coefficients of g1,∞(w) Gini coefficients of g2,∞(w)
0.5 0.9011 0.5450
1 0.8133 0.8133
1.5 0.6615 0.8703

https://doi.org/10.1371/journal.pone.0336043.t003
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5 Conclusions

In this paper, we employ the statistical mechanics method to investigate the wealth distribution in binary interactions
between agents of two groups. We use an interaction rule with a non-zero mathematical expectation of the random vari-
able and utilize a non-Maxwellian collision kernel. According to the exchange rule, we obtain the Boltzmann equation and
transform it into the Fokker-Planck form. Under certain assumptions, we obtain the steady-state solutions in two cases.
The results illustrate that the wealth replacement rate 𝛼/𝛽, the trading rate 𝜃, the market risk 𝜎 and the proportion 𝜆 affect
the wealth distribution. Specifically, it is seen from the graphs of steady-state wealth distribution that the decrease of mar-
ket risk 𝜎, and the increases of the wealth replacement rate 𝛼/𝛽 and the trading rate 𝜃 lead to the improvement of wealth
inequality. The above results are also verified by the Lorenz curves. Besides, improving the proportion 𝜆 facilitates the
narrowing of wealth disparities in group 1, while simultaneously leads to a deterioration in wealth inequality of group 2.
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