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Abstract

The global spread of Aedes albopictus raises growing public health concerns due

to its role in transmitting dengue, chikungunya, and Zika. In southern France, the
increase in imported dengue cases and local transmission underlines the urgent
need for effective vector control. While efforts primarily target private breeding sites,
public spaces also contribute notably to larvae presence. Understanding the impact
of urban landscapes on the distribution of breeding sites is crucial for optimizing vec-
tor control strategies, identifying high-risk areas, and reducing mosquito populations.
This study aims to investigate how urban landscapes impact the distribution of Ae.
albopictus larvae in public spaces, with a focus on storm drains and telecom cable
chambers in Montpellier, France. Very high-resolution satellite imagery was used to
characterize urban landscapes through textural analyses of spectral indices. Envi-
ronmental bias was assessed by analyzing the representativity of sampled breeding
sites within the diverse urban landscapes. Species distribution models (SDMs) were
built, their predictive accuracy was evaluated, and an ensemble model was created
to predict larval presence across the study area. SDMs predicted a high probability of
larval presence in the western and northeastern parts of Montpellier, with low uncer-
tainty. The most influential variables for predicting larval presence were the mean

of Normalized Difference Vegetation Index (NDVI), texture indices from both NDVI,
brightness index (Bl), and the panchromatic image. Urban vegetation significantly
influences larval presence, although higher vegetation index values correlate with

a decreased probability of larval occurrence. Additionally, the combination of vege-
tation and urban structures plays a crucial role in determining the presence of Ae.
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albopictus larvae in public spaces, where small, organized urban objects and large
patches of vegetation increase the likelihood of larval presence. This study highlights
the potential of very high-resolution remote sensing and species distribution modeling
for enhancing urban mosquito control strategies, ultimately contributing to improved
public health policies outcomes in the face of vector-borne disease threats.

1. Introduction

The global expansion of the Ae. Albopictus (commonly known as the Asian tiger mos-
quito), fueled by climate change, brings new public health issues in many regions,
especially in Asia and Europe, due to its role as a primary vector for diseases such
as dengue, chikungunya, and Zika. Dengue fever has alone accounted for 6.5 million
cases in 2023, with 7,300 deaths recorded, affecting 80 countries where the disease
is endemic [1,2]. Originally native from Southeast Asia, Ae. albopictus has over the
past few decades expanded its geographic range in response to international trade,
benefiting from ideal breeding conditions during maritime and air transport of goods
such as tires or ornamental plants [3,4]. In Europe, Ae. albopictus was first detected
in Albania in 1979 and has since spread across most northern Mediterranean coun-
tries (e.g., from Spain to Greece), including Italy in 1990 and France in 2004 [5], and
keeps moving northward. Its geographical expansion is also due to the capacity of its
eggs to survive in temperate climates by entering diapause, a state of dormancy that
allows them to survive cold winters [6,7].

In the absence of an effective vaccine against those viruses, the reduction of
breeding sites is one of the most effective control strategies for Ae. albopictus [8]. Ae.
albopictus breeding sites — i.e., sites where mosquitoes deposit their eggs and where
larvae develop — are commonly found in various type of artificial containers [9], such
as flower pots, barrels, and tires. The urban type, such as residential areas or dense
informal zones, was shown to influence the availability, suitability, and abundance
of these breeding sites [10]. Rajarethinam et al. (2020) have also shown a seasonal
fluctuation of Aedes-positive containers in urban environments [11]. The reduction
of breeding sites requires cooperation from the population, especially in private
spaces [12]. While the majority of breeding sites are found on private property (e.g.,
gardens), public spaces also host numerous containers that can serve as breeding
sites for Ae. albopictus [13]. Targeted interventions by vector control actors could
effectively eliminate some of these breeding sites, more easily accessible than those
located in private properties, potentially resulting in a significant reduction of mos-
quito populations.

Despite the presence of Ae. albopictus in mainland France for the past two
decades, regular dengue outbreaks have not occurred there, unlike in French tropical
overseas regions, such as Martinique, French Guiana, and Reunion Island [14-16].
The increasing reports of autochthonous dengue cases in southern France highlight
the growing risk of local outbreaks, particularly during the summer when environmen-
tal conditions favor mosquito proliferation. Considering the rising number of imported
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dengue cases and the expansion of Ae. albopictus to all French regions [17,18], there is a need to better understand the
distribution of larval breeding sites in public spaces to enhance control efforts and reduce the risk of local transmission.

Identifying breeding sites at the scale of a city can be time-consuming and resource-intensive due to the large amount
of fieldwork required [19]. To address these challenges, risk maps and models based on remote sensing can be employed
to help understand the relationship between urban areas and breeding site distribution, facilitate the spatial analysis of
such sites across large territories, and help target actions that could mitigate the development of Ae. Albopictus [20].
Remote sensing allows for extracting large-scale proxies related to climate, socio-economic, and environmental factors
that can help monitor and predict mosquito breeding sites or adult density distribution or abundance [21-23]. If the influ-
ence of climate factors, such as air temperature and precipitation, on positive breeding sites is well known [11], the
influence of urban landscape configuration and composition remains poorly understood [24]. Urban areas where Ae.
albopictus can thrive can include a complex mosaic of private and public spaces, presenting challenges for mosquito
control. Those areas can include diverse landscapes where the form and density of vegetation and buildings vary. Stud-
ies have shown the direct or indirect influence of land cover or land use types on the distribution or abundance of larval
breeding sites [3,25-27]. Beyond the use of spectral indices in satellite image classification, some studies have also used
them directly to study relationships between the environment and Ae. albopictus larval breeding sites [26,28,29]. Although
a few studies have examined the fine-scale impact of urban landscape characteristics on Aedes breeding sites, more
research is needed to understand how the distribution, density, fragmentation, and size of urban objects (e.qg., buildings,
roads, and green areas defining the urban texture) influence these sites [24,30]. For example, Teillet et al. (2024) [24]
provided insights into the links between potential breeding sites’ presence and urban landscapes that can help improve
the design of field protocols in territories (targeting priority areas, optimization of resources). These previous studies pre-
dominantly focused on data collected in private areas, though some research also considers specific public areas such as
cemeteries, and urban parks [11,31]. Data on breeding sites are most often collected on private properties because they
typically represent the majority of known breeding sites [32,33]. However, it is known that public spaces also contribute to
breeding sites abundance, partly due to their design and more uneven maintenance [13,34].

Additional research on the influence of urban public spaces on breeding sites and better integration of these data into
control strategies are essential to improve the effectiveness of vector control programs and reduce the risk of local trans-
mission of dengue. To address these data gaps and optimize resources, analysis of the spatial distribution of breeding sites
through modeling offers a valuable approach for vector control. Species Distribution Models (SDMs) that combine pres-
ence/absence data and georeferenced environmental data can help understand the relationship between species and their
environment, and predict where a species might potentially be found [35,36]. Beyond mapping potential distributions, these
models are used to better explain relationships between the species and their environment [37]. Currently, a wide range of
methods are available for distribution modeling, each varying in performance and features, and presence-only records are
the most commonly used data for SDM [38,39]. To address these challenges and improve spatial accuracy, robustness,
and reliability of predictions, combining individual models into an ensemble approach can help mitigate these issues and
improve overall accuracy [40,41]. To fill the gap in understanding the distribution of larval Ae. albopictus in public spaces,
SDMs can help identify high-risk areas for larval presence, thereby facilitating targeted interventions in urban environments.
This study places particular emphasis on urban landscape factors derived from very-high resolution imagery, as these
variables are not only interesting inputs for the species distribution model, but also offer an opportunity to explore and better
understand the complex relationships between urban landscapes and larval presence probability in public areas.

This paper proposes a novel approach to help understand how urban landscape structure and composition affect pos-
itive breeding sites of Ae. albopictus in the public domain. It aims to determine to which extent landscape factors, derived
from remote sensing images, can help explain the presence of positive Aedes breeding sites in public areas and to use
these factors to predict the presence probability of such sites in the Montpellier metropolitan area, southern France, where
the presence of Ae. Albopictus has increased over the last two decades.
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2. Materials and methods
2.1. Geographical context

Montpellier, with its metropolitan area, is a major city of the south of France located in the Occitanie region, near the
Mediterranean Sea (Fig 1). It has a population of around 306,000 people, reaching over 500,000 when considering its
metropolitan area [42]. Montpellier benefits from a Mediterranean climate characterized by mild winters, with an aver-
age January temperature of 7.6°C, and hot and dry summers, with an average July temperature of 24.4°C. The average
annual temperature is 15.5°C. In the Occitanie region, the majority of dengue cases are imported, with 51 cases reported
in 2022, 212 in 2023 and 178 in 2024 [18,43-45]. However autochthonous dengue cases have also been reported, with
12 cases in 2022, 22 in 2023 and 5 in 2024 [18,43—45]. This indicates a notable presence of locally transmitted dengue
despite the predominance of imported cases, highlighting the need for effective local vector control strategies to help
reduce the risk of dengue outbreaks in the region.

2.2. Entomological data

Entomological data collected in the Montpellier metropolitan area between November 2021 and March 2022 were obtained
from operational services of EID-MED (Entente Interdépartementale pour la Démoustication du littoral Méditerranéen).
These data were collected in specific municipalities of the Montpellier metropolitan area (Saint-Clément-de-

Riviere, Prades-le-Lez, Clapiers, and Castelnau-le-Lez; Fig 1) based on the operational capacities and priorities of the EID-
MED services. The initial dataset includes in-situ observations of potential breeding sites (n=3811) made exclusively in the
public domain (e.g., streets, parking lots), such as, containers like storm drain, telecom cable chambers (i.e., concrete block
used as cable pulling box) or rainwater retention basins, likely to harbor Ae. albopictus and Culex pipiens larvae.

For each record, the type of container and its positivity (i.e., presence of water only, but in an immediate urban con-
text considered favorable for mosquito development by the vector control agents, or presence of water and larvae) were
recorded. Although the winter period between November and March is not the most suitable period for larvae presence
due to the temperature conditions, the entomological prospecting carried out by the vector control agents is based on
an operational assumption: if a container contained stagnant water during this season and was located in an immediate
urban context considered favorable for mosquito development, it was classified as positive. Indeed, according to expert
knowledge, water can remain stagnant over long periods once these containers are supplied with water by rainfall or
human activities (e.g., cleaning public spaces, washing cars). Telecom cable chambers do not drain and storm drains
tend to be poorly maintained, causing water to accumulate. The water retained at the bottom of storm drains and tele-
com cable chambers also results from design problems, as observed by EID-MED agents during prospects, a challenge
discussed by Carrieri et al. (2011) in Italy. Conversely, if no water is present during this period, this demonstrates that the
container is sufficiently watertight or drained to prevent water accumulation under any conditions throughout the year, and
it is considered as being negative for larvae (absence). Several types of public spaces breeding sites were inspected:
storm drain, open retention basins, telecom cable chambers, urban pits, rural pits, underground waste garbage cans, and
reservoir structures. In this study, only storm drains (Fig 1a) and telecom cable chambers were considered, as they are
the structures the most likely to harbor Ae. albopictus larvae ([46,47], Fig 1b), and because other containers favorable to
Ae. albopictus were too rare in the database. This entomological dataset was not derived from an exhaustive census of
all containers across the city, but from exploratory surveys with an operational purpose. Therefore, 265 positive breeding
sites (i.e., 8.5% of the data) were considered as presence data in the model, while 3088 negative breeding sites were
considered as absence data.

While climatic parameters such as temperature and precipitation are recognized as key drivers of mosquito
larval development (11,28), their inclusion was not feasible in this study due to some limitations. First, available
climatic datasets have spatial resolutions that are too coarse to capture the highly localized scale of the specific
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Fig 1. Studied site and entomological data composed of positive or negative containers capable of harboring Ae. albopictus mosquito larvae
in public spaces. Photos of prospected breeding sites: (a) telecom cable chambers and (b) storm drain. Photo credit: Héloise Pottier (2024).
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breeding sites investigated (22,23). Additionally, based on expert knowledge from EID-MED and as demonstrated
by Carrieri et al., 2011 and Hounkpe, 2012 [13,46], design issues causing persistent water retention in the spe-
cific breeding sites, combined with the fact that containers can also be filled by human action, likely reduce the
influence of precipitations variability on the filling dynamics of these breeding sites. We therefore decided to
exclude climatic factors to hence focus solely on urban landscape variables to evaluate the influence of the struc-
ture and composition of the immediate geographical context (urban landscape) on the positivity of these specific
containers.

2.3. Remote sensing data

Two very high-resolution Pléiades satellite images of the study area acquired on November 2 and 6, 2021 were used in
the study. Orthorectified Pléiades images include a 50 cm resolution panchromatic band and four 2 m resolution multispec-
tral bands (blue, red, green, near-infrared). A mosaic of the two images was made using Orfeo ToolBox (OTB) software v.
8.1.2 to create a complete image of the Montpellier metropolitan area. The use of very high-resolution imagery allowed for
the detailed characterization of urban landscape features relevant for studying mosquito breeding sites, including vegeta-
tion patches and built-up areas [14,15,22,24].

2.4. Extraction of explanatory variables

Normalized Difference Vegetation Index (NDVI, [48]) and Brightness Index (BI, [49,50]) were computed using the formula
NDVI = % and Bl = \/(REDZ + NIR?), where “NIR” refers to the reflectance measured in the near-infrared band
and “RED” corresponds to the reflectance measured in the red spectral band. We selected these specific spectral indices
because they facilitated the extraction of a vegetation layer using the NDVI and abuilt-up area layer using the Bl from the
satellite imagery. A threshold was applied to the NDVI (> 0.2) to retain only areas with significant vegetation cover [51].
For the BI, values above 500 were selected to obtain a built-up area layer. To improve this urban layer, we used the NDVI
vegetation layer to reclassify the areas classified as buildings by the Bl but where there actually was vegetation. The pro-
cess was realized using the QGIS software v. 3.16.

Textural indices from Pléiades were extracted using the FOTOTEX algorithm [24,52] to characterize the structure
of urban types within the study area. In FOTOTEX, Fourier transforms combined with principal component analyses
(PCA) convert the textural information within the image into a frequency signal and reduce it into three principal
components (PC1, PC2, and PC3), representing distinct texture indices. FOTOTEX was applied to the panchro-
matic image (PAN) with an analysis window size of 201 pixels to identify spatial patterns that represent urban areas
in their globality. Additionally, FOTOTEX was applied to spectral indices (NDVI and Bl) with a window size of 101
pixels (conversion to meters depends on the spatial resolution; i.e., at 2 meters per pixel, this corresponds to 202
meters) to capture finer spatial patterns associated specifically with vegetation and urban structures [ 24,52]. The
derived texture indices were analyzed by dividing point clouds, where each point represents an analysis window,
into 12 angular sectors (or quadrants). For each quadrant, the four windows that are the furthest from the origin of
the axes are identified and help represent the content of the initial image (PAN, NDVI, or Bl) (see Teillet et al., 2021
[52] for details). Then, we created a colored composition of the three principal components, which allows for a rapid
assessment and overview of the spatial organization. Analyses were conducted using the Python package “fototex
1.5.9” [52].

Finally, a 202 meters grid was created based on the output resolution of the textural indices calculated on the NDVI.
The resampling of textural indices calculated from panchromatic images was processed using R Stats software v. 4.4.1.
Statistical measures, such as mean, standard deviation, and maximum values were calculated within each grid cell over
Bl and NDVI with QGIS software v. 3.16. This approach allowed obtaining statistics associated with vegetation pixels
(NDVI) and urban pixels (Bl). Table 1 lists all variables used in this study.

PLOS One | https://doi.org/10.137 1/journal.pone.0335794 November 5, 2025 6/25




PLO\Sﬁ\\.- One

Table 1. Satellite data, method for layer creation, and variables extracted from grid cells (PAN =Panchromatic).

Satellite data Band Method for layer Spectral Indices| Variables extracted from grid cells Related variable names
creation
Pléaides NIR, RED Equations Bl Mean of Bl pixels Bl mean
Multispectral Standard deviation of Bl pixels Bl stdev
Maximum of Bl pixels Bl max
NDVI Mean of NDVI pixels NDVI mean
Standard deviation of NDVI pixels NDVI stdev
Maximum of NDVI pixels NDVI max
Pléiades PAN FOTOTEX 3 principal components associated with | FOTO PAN PC1, FOTO PAN
Panchromatic the panchromatic band PC2, FOTO PAN PC3
FOTOTEX Bl 3 principal components associated with | FOTO BI PC1, FOTO BI
BI PC2, FOTO BI PC3
FOTOTEX NDVI 3 principal components associated with | FOTO NDVI PC1, FOTO

NDVI

NDVI PC2, FOTO NDVI PC3

https://doi.org/10.1371/journal.pone.0335794.t001

2.5. Sampling bias

At the scale of the study region (i.e., the Montpellier metropolitan area) observations can have an environmental sampling
bias when not all environmental conditions in the study area are sampled [53]. If some environmental conditions in the
area are not represented in the samples, the model built with the samples may not accurately reflect the entire region. To
assess a potential sampling bias in our study, a PCA was applied to urban landscape variables to represent study area
cells in an orthonormal space, well-suited to Euclidean distance calculation and hereafter referred to as environmental
space. The distance between each cell and the nearest sampled cell in the environmental space was calculated. These
distances helped assess how well the observations covered the full range of environmental conditions of the study area
[54]. In other words, for a given cell, the greater the distance to a sampled cell is, the less the observations (samples) are
representative of the specific environmental conditions of this cell. As a result, the model will be less reliable for that cell.
Spatializing these distances (i.e., representing them in the geographical space) helps identify undersampled areas.

2.6. Ensemble modeling

SDMs were implemented using the RStats biomod2 package v. 4.2-5-2 [55]. SDMs predict species distributions in unsam-
pled geographical areas based on environmental variables [41]. Biomod2 allows building and evaluating individual SDMs
and combining them into ensemble models [56]. This process increases the robustness and reliability of predictions by
averaging the outcomes. To avoid multicollinearity between explanatory variables, pairwise Pearson correlations were cal-
culated, using a threshold of 0.85, as recommended by Elith et al. (2010) [57]. As no correlation exceeded this threshold,

all variables were retained for further analysis.

The following methods were tested in this study: artificial neural networks (ANNS), classification tree analysis (CTA),
flexible discriminant analysis (FDA), generalized boosting method (GBM), generalized linear models (GLM), generalized
additive models (GAM), multiple adaptive regression splines (MARS), maximum entropy (MAXNET), random forest (RF),

eXtreme gradient boosting training (XGBOOST), and surface range envelope (SRE, also called BIOCLIM). Methods were
applied using BioMod2’s “bigboss” default parameters. Models were built using 10-fold cross-validations, where the data-

set was divided into 10 datasets of equal sizes, each of them being used in turn to validate the model, while the remaining
data were used to create the models [41]. The Area Under the Curve (AUC) of a Receiver Operating Characteristic (ROC)
curve [58] and the True Skill Statistic (TSS, [59]) were calculated and averaged to assess individual models’ performances

[40]. Individual models’ performance was used to guide the selection of models in ensembles, complemented by the
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analysis of variable importance scores [41]. Several selections were tested, and we chose to retain the one that included
a sufficient number of models (i.e., 6 individual models with an AUC between 0.70 and 0.75), with a satisfactory global
AUC of the ensemble model (> 0.80), and where importance scores of variables were the highest in the ensemble model.
To evaluate the ensemble model, variable importance scores were computed with three permutation runs [40] where
predictions are done after shuffling individual variables. A Pearson correlation score between the original and shuffled
predictions is calculated and an importance score is calculated as 1 - correlation. A high score indicates the variable being
shuffled has a strong influence on the model, while a score close to 0 means the variable has little to no impact on the
predictions [40]. Response curves were calculated by holding all other variables constant (mean value) while varying
one, and then plotting the model’s predictions against this variable. The resulting curve illustrates the species’ response
to that variable, helping to understand its ecological preferences and how the variable influences the model’s predictions.
To assess the probability of larvae presence map in new geographic areas, the coefficient of variation (CV), defined as
the ratio of the standard deviation to the mean probability, is used as a measure of uncertainty. A high CV value indicates
greater uncertainty in the model’s predictions reflecting poor reliability in the predictions [40]. Fig 2 summarizes the model-
ing method used in this study.

3. Results
3.1. Landscapes variables

The Brightness Index (BI) was used as a proxy for built-up area features over the entire Montpellier metropolitan area
(S1 File). Variations in values reflect different types of built-up surfaces, however, some surfaces can be mistaken for
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Fig 2. Modeling method used.
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bare ground. NDVI helps identify vegetation in urban areas, where values between 0.2 and 0.8 show moderate to denser
vegetation. Vegetation is sparse in the city center and in some commercial and industrial areas, but relatively abundant in
certain residential areas (S1 File).

FOTOTEX, when applied on the thresholded BI, resulted in the three principal components (PC) accounting for 87% of
the total variance of the image (i.e., 75%, 9% and 3% respectively). The first principal component (PC1) reveals a gradi-
ent in the density of urban objects. Windows below 0 on PC1 (e.g., windows 1 and 2 in Fig 3b) are textures composed of
small, sparsely distributed urban objects with low number of repetitions (low density). As the values on PC1 increase, the
textures are composed of small objects that repeat more frequently, the density of objects being higher. These textures
are associated with high frequencies (i.e., high repetition of objects in the image, e.g., windows 5 and 6 in Fig 3b) result-
ing in a fine, fragmented, and organized pattern. Along the second principal component (PC2), a gradient in the size of
urban objects emerges. This gradient ranges from small to large objects. Along PC2, we can observe small isolated urban
objects (e.g., windows 1, 2 in Fig 3b) or larger isolated objects (e.g., windows 10 and 11 in Fig 3b).

The analysis of windows resulting from texture on Bl offers the possibility to categorize urban structures into four dif-
ferent types, based on the representation of texture-based arrangements of buildings along the PC1 and PC2 axes (Fig.
4). These types of urban structures evidence different levels of homogeneity and organization of urban landscapes. On
the top left, large objects, sparsely distributed, follow a homogeneous and organized structure, while on the bottom left,
objects are smaller and exhibit disorganization resulting in more heterogeneous landscapes. PC2 mainly gathers informa-
tion related to object size. On the top right, objects are mainly large, disorganized, and follow a dense disorganized distri-
bution (corresponding to commercial, industrial, or public infrastructures), while on the bottom right distribution, objects are
smaller, still densely distributed but very organized in space (corresponding to residential urban types). PC1 mainly gath-
ers information related to object density. Fig 4 illustrates how a textural analysis of building size and distribution (density,
organization) from very high spatial resolution images like Pléiades can evidence different types of urban environments in
an unsupervised manner (where no prior knowledge or complementary data are required).

By analyzing the color composition in FOTOTEX of the three main components of Bl, we can highlight both the diversity
and similarity of textures across the study area (Fig 3a). At the center of the map, the texture is associated with the dense
city center, with little vegetation (purple color). Surrounding this central area, we observe a ring with textures varying
between residential zones and mixed-use areas. Textures leaning towards green are associated with commercial areas,
exhibiting a coarser texture with a variety of objects. Finally, peripheral municipalities with residential areas are shown
in light pink. This phenomenon illustrates an urban gradient, ranging from a dense city center to a peri-urban periphery,
where building density gradually decreases and vegetation becomes more prominent. This gradient can here be observed
at different levels, Montpellier as the main city center (in purple), is surrounded by peripheral secondary centers (in pink),
with a similar urban gradient structure visible around each of these secondary centers.

FOTOTEX, when applied on the thresholded NDVI, resulted in the three PC accounting for 87% of the total variance
of the image (i.e., 74%, 10% and 3% respectively). PC1 is composed of windows below 0, with large single patches
(windows 1 and 2; Fig 5). As values on Axis 1 increase, patches of vegetation are more fragmented and repeat more
frequently (corresponding to high-frequency textures, windows 5 and 6; Fig 5). In windows 7 and 8, textures are still frag-
mented but vegetation patches are larger (Fig 5). Along PC2, textures are composed of large vegetation patches (win-
dows 1 and 2) that appear to be increasingly fragmented (windows 8, 9, and 10; Fig 5b).

By analyzing the color composition of the three main components of NDVI, we observe an heterogeneity in the distribu-
tion of vegetation across urban areas (Fig 5a). Textures associated with red/pink colors (PC1) indicate a majority of small,
fragmented objects that correspond to peripheral municipalities associated with residential areas with lots of vegetation. In
the city center of Montpellier and peripheral areas, textures associated with green color (PC2) correspond to areas where
vegetation is not predominant in fragmented small patches but in small isolated patches or larger and not fragmented
patches (parks or hedges).
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Fig 4. Representation of texture-based structure of urban areas on the PC1-PC2 axes produced by FOTOTEX over the Brightness Index (BI)
where the levels of homogeneity and organization of urban landscapes are indicated.

https://doi.org/10.1371/journal.pone.0335794.9004

In the panchromatic image, which does not distinguish between vegetation and urban objects, patterns correspond
to the general structure and arrangement of the urban landscape (S2 File). Along PC1, the patterns are coarser, repre-
senting open fields with hedges, gradually transitioning to finer urban structures. On PC2, the transition moves from finer
urban structures to coarser patterns characterized by large, irregularly arranged buildings.

3.2. Sampling bias

The distance between each cell and the nearest sampled cell in the environmental space displays a strongly positively
skewed distribution with a mean value of 1.8 and first and third quartile at 1.3 and 2.6 respectively (Fig 6). Sampled
environments with a distance of 0 (i.e., well sampled) are highlighted in light yellow (Fig 6a). Environments that were not
sampled but are close to sampled contexts exhibit very low to low distance (up to 1.6) and are distributed throughout the
area (depicted in light green in Fig 6). As the distance increases (moderate class), the environments become more distinct
from the sampled areas but retains some resemblance to the sampled contexts. The corresponding textures are associ-
ated with housing neighborhoods as well as collective housing and commercial areas (Fig 6b). Higher values (above 2.0),
shown in green and dark green colors, represent environments that are considerably different from the sampled ones.
These include for example the city center of Montpellier, with dense buildings and fewvegetation (Fig 6¢). Extremely high
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values, with a max distance value of 20, correspond to highly distinct urban objects, such as quarries and parking lots,
with very large complexes (Fig 6d).

3.3. Modeling

Individual SDM models. The highest performing SDMs were the CTA and GBM models, with AUC values of 0.77 and
0.78, respectively. The ANN, FDA, GLM, MARS, MAXNET, and XGBOOST models showed moderate performances, with
AUC values ranging from 0.70 to 0.75. In contrast, three models — GAM, RF, and SRE - showed lower performances, with
AUC values below 0.70 (Fig 7). Variable importance score of each individual model is presented in supporting information
(S3 File). The standard deviations across all algorithms are relatively consistent, ranging with AUC ranging from 0.04 to
0.05 and TSS ranging from 0.08 to 0.10.

Ensemble model. Ensemble model selections were made based on the average AUC values of individual models (Fig
7). To balance predictive performance with an understanding of the importance of variables, we kept individual models
with an AUC between 0.70 and 0.75 (i.e., ANN, FDA, GLM, MARS, MAXNET, XGBOOST), which resulted in an ensemble
model AUC value of 0.81. The other two selections (individual models with AUC>0.70 and individual models with
AUC>0.75) showed overall AUC values of 0.84 and 0.85, respectively. Variable importance scores were lower than the
first selection, although the same important variables emerged across all three test selections. By analyzing the variable
importance score of the selected ensemble model, NDVI mean (0.42), the first component of texture for the brightness
index (FOTO BI PC1, 0.25), the first component of texture for the vegetation index (FOTO NDVI PC1, 0.24), the third
component of the NDVI indices (FOTO NDVI PC3, 0.18), and the first component of the panchromatic image (FOTO PAN
PC1, 0.12) are the variables contributing the most to the model (Fig 8a). Other variables have importance scores below
0.10.

0.5-
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/|1 ANN
ANN
0.4~ R | "MAXNETL o CTA
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Fig 7. Area Under the Curve (AUC) and True Skill Statistic (TSS) averaged across all model runs, along with their respective standard
deviations.

https://doi.org/10.1371/journal.pone.0335794.9007

PLOS One | https://doi.org/10.137 1/journal.pone.0335794 November 5, 2025 14 /25



https://doi.org/10.1371/journal.pone.0335794.g007

PLO\Sﬁ\\.- One

0.4 -
wn J
O 0.3
fus
@]
b7
- max
) = Q1
8 i mean
© Q3 -
£ 0.2 - min
o == Variable importance
Q scores for the
E ensemble model
—
——
0.1 -
—_
—_ —— —
8 el
&0@ (;\/ Qc;\* (?) QC:\ @ QC:L Q(,’l/ QC:’) CQ’A ’b+ & p Q(:)/ Q(j)
O S A I R
® $© o /\oq S a0 oF \J O@ <O
O« < O& & QO& {(o& « O
b Explanatory variables
NDVI mean FOTO NDVI PC1 FOTO BI PC1 FOTO NDVI PC3
06~
04- =
02~ ~
ol | o —— 11 i . - - m— S (TTe s e —
B,,)Q ng c"Q m’p Q‘)Q Q » ® D) N o kY A Q N 9
FOTO PAN PC1 NDVI stdev FOTO BI PC2 FOTO PAN PC2
06~
04-
02 — % ' i | l ! ! " Ty —
o N o KN R Q & > M A Q 9 » o M A Q 9%
Q (\Y AN
FOTO PAN PC3 BI stdev BI max NDVI max
06
04 4 N _
o o — . J 1 — b 0 o — b [T 1 — ' L '
» o ¥ L © S & & ’LQ@ Q@ @6’ o N ? N
BI mean FOTO NDVI PC2 FOTO BI PC2
06- Mean of response
— curves of the
04 — T 11 ensemble model
025 TU N ———— W RN e ——— 1 .‘ BU R i — R
& & & » §12 ° v LT TN T S

Fig 8. Variable importance scores and response curves for the ensemble model. (a) Variable importance scores for each explanatory variable and

(b) response curves with mean as a constant for the ensemble model.

https://doi.org/10.137 1/journal.pone.0335794.9008

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025

15/25


https://doi.org/10.1371/journal.pone.0335794.g008

PLO\Sﬁ\\.- One

Relationships between the probability of positive breeding sites and environmental variables were analyzed using
response curves (Fig 8b). The probability of a positive breeding site decreases rapidly above NDVI=0.35. Regarding tex-
ture indices, the probability of a positive breeding sites strongly increases when the first Bl component has values above
5, with probabilities exceeding 0.4. This increase is also observed when the first PAN component increases. The proba-
bility of presence also increases linearly with the values of the third NDVI component. In contrast, the probability of larval
presence decreases when the first NDVI component increases. The other variables show less influence on probability
presence and are fairly constant (i.e., FOTO BI PC3, FOTO NDVI PC2).

Probabilities of larval presence. The ensemble model was used to predict the probability of larval presence (positive
public breeding sites) across the metropolitan area of Montpellier. The predicted probabilities range from 8% to 92%, with
a mean of 41%. The coefficient of variation (CV) ranges from 6.6 to 170, with a mean of 51.

The highest probabilities of larval presence are mainly located in the western and northeastern parts of the metropolitan
area of Montpellier (classified as ‘high’ to ‘very high’), where uncertainty is ‘low’ to ‘very low’ (below 40, Fig 9a). In contrast,
probabilities are ‘very low’ in the sampled area of Castelnau-le-Lez, where uncertainty is ‘high’ to ‘very high’ (above 40).
Although downtown Montpellier shows ‘low’ to ‘moderate’ probabilities (0.2 to 0.6), a ‘very high’ uncertainty is observed in
the area (>40) (Fig 9). Moreover, the map of unsampled environments reveals that these areas significantly differ from the
sampled environments, with ‘very high’ distance values (Fig 4).

4. Discussion
4.1. General approach

This study aimed to assess how very-high resolution remote sensing images can (i) help understand the influence of
urban landscapes on Ae. albopictus larvae breeding in drainage and telecommunications urban network infrastructures in
public spaces, and (ii) predict the probability of larvae presence. This research was conducted in an urban context where
dengue is not currently endemic, but represents a growing concern for public health. The originality of this study, carried
out in collaboration with a local operational agency, lies in the study of Ae. albopictus larval habitats in public spaces,
environments rarely explored. It is also to our knowledge one of the first attempts to integrate operational breeding site
prospecting into larvae presence modeling [29,60]. Most studies focusing on Aedes mosquitoes larval habitat prediction
using remote sensing, concern Ae. aegypti and have been conducted in tropical areas where arboviruses, particularly
dengue, are endemic [15,30,61-63]. Other papers focus on Ae. albopictus larval habitats in dengue-endemic areas such
as Thailand, Brazil, and Argentina [26,28,31]. Our study site is increasingly affected by vector-borne diseases, as the
number of imported and autochthonous dengue cases continues to rise year after year [17,18].

4.2. Relationships between remotely-sensed landscape characterization and larvae presence

Remote sensing studies consistently highlighted the significant role that vegetation plays in the abundance of Ae. albopic-
tus [26,29]. Our results confirm a strong influence of vegetation, with the mean NDVI being the most contributing variable
in the models (both in individual SDMs and in the ensemble model) for predicting the presence of positive breeding sites
in the public domain. Such finding was also demonstrated by Little et al. (2017) [29], where NDVI was found to be an
important indicator of juvenile mosquito occurrence. However, our results suggest the relationship is more complex than

it appears, as the probability of larvae presence decreases when the NDVI increases from 0.3 to 0.5 (Fig 6b). Such NDVI
values typically describe sparse and moderate vegetation, which in our case would be less favorable to the presence of
larvae, something in agreement with previous studies [31,64—66].

The response curves of the textural indices with NDVI reveal that the probability of larvae presence reaches a minimum
when the landscape associated with vegetation exhibits a fine texture with organized and fragmented patterns (Fig 3b,
6b). These results indicate that if the vegetation is fragmented into small patches, the urban landscape is less favorable to
larvae in public spaces. This observation aligns with previous studies, such as those by Reiskind et al. (2010), and Cianci
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et al. (2015) [66,67], which also demonstrated that the morphology of urban vegetation can influence the presence of
mosquito larvae. Such a finding could help advise urban planning strategies by providing guidance on the morphology
of vegetated patches that should be integrated in urban areas, especially in public spaces, to minimize the risk of
vector-borne diseases.

Textural indices obtained over Bl showed their ability to discriminate urban types according to two texture gradients
of density and size of objects (Fig 3b). On the one hand, we observe that the probability of presence of Ae. albopictus
larvae in public spaces increases when the value of PC1 increases, suggesting that the presence of larvae is associated
with high-frequency textures composed of dense, small urban objects. On the other hand, the probability of presence
decreases when PC2 has very high values, suggesting that patterns are composed of coarse and irregularly organized
urban objects. This could indicate that the presence of larvae in the public domain is more associated with highly dense,
fragmented, organized small urban objects, rather than large heterogeneous urban objects. The conclusions extracted
from the two variables point out that, residential areas are more prone to gather the conditions that favor larval presence.

4.3. Pléiades Imagery and texture analysis

Previous studies used various satellite images to characterize the urban environment (e.g., MODIS, SRTM, SPOT5, Sen-
tinel 2, Ikonos) and associated it with Ae. albopictus breeding sites or adult mosquitos’ presence [28-31,61]. We chose to
use Pléiades imagery to extract spectral and textural indices over the entire area. The use of very high spatial resolution
imagery to extract spectral indices and combine them with texture analysis allowed us to refine the studied objects and
achieve a better interpretation of textures [24,68]. In addition, the use of spectral indices as FOTOTEX inputs reduce the
effect of spectral variability, which can be explained by the slight difference in angle of incidence when acquiring the two
images making up the mosaic image of the entire area. This effect can be seen when the FOTOTEX algorithm is applied
to the panchromatic image since the radiometric information of the panchromatic band is considered in the calculation (S3
File, [52]). This effect may also explain the lower influence of the panchromatic band in ensemble modeling. However, the
textural analysis approach enables the characterization of different types of urban environments in an unsupervised man-
ner, which can be directly integrated as a continuous variable in predictive models or used to generate urban type maps.

4.4. Ensemble modeling and prediction of larvae presence probability

Spectral and textural indices were used to predict larvae presence probability (i.e., positive breeding sites), while earlier
studies mainly used remote sensing to better understand the effect of land cover on larvae distribution or abundance
[26,29,31]. Some studies have focused on predictions using data from Ae. aegypti breeding sites and ovitraps [61,63,69],
but few have specifically addressed predictions of Ae. albopictus breeding sites [28]. In regions where dengue is present
but not yet endemic, health concerns tend to be less critical. As a consequence, resources for systematic vector surveil-
lance are more limited, which in turn affects the data availability and reduces the volume of data that can be used to build
robust predictive models. In contrast, French overseas regions with regular dengue outbreaks [24,69,70], allocate more
resources to breeding site monitoring due to greater public health concerns, dedicating more manpower on more frequent
monitoring campaigns on the field. In areas where Ae. aegypti is the main vector and dengue is endemic; prediction and
modeling can enable better management by minimizing the risk of epidemics and anticipating crisis management of an
already well-established public health problem. Our study fills a gap by applying ensemble SDMs to predict Ae. albopictus
larvae presence probabilities in public spaces, which could improve prevention and control strategies in regions where
dengue is present but not yet endemic. Indeed, in such areas, those predictions have the potential to be used to assess
and prevent epidemic risk, especially when populations are not immune.

Studies that model and predict larval presence probability tend to use models such as decision trees or MaxEnt
[28,61,69]. Many researchers cite the superior predictive performance of ensemble modeling compared to the use of a
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single model [56,71]. However, some individual predictive models, when evaluated on their own, have been shown to out-
perform ensemble models that combine multiple predictions [72]. In our study, individual models were constructed using
the “bighoss” parametrization proposed by the biomod2 team to benefit from a parametrization suitable to each model.
The performance of individual models varied due to their diverse capabilities to handle linear versus non-linear relation-
ships — such as Random Forest and Generalized Linear Models — or their distinct mathematical principles, like MaxEnt or
Artificial Neural Networks (ANNs). All the individual models delivered satisfactory and fairly consistent performances, lead-
ing to the development of a consistent and robust ensemble model. By combining the six individual SDMs, we achieved
an overall improvement in the AUC, surpassing the AUC of individual SDMs. Cross-validation of each model considered
separately provides an indication of model quality, thus contributing to the evaluation of the ensemble model and its per-
formance, but could be further strengthened by validation with completely independent data to assess its reliability [41,56].
Probability maps identified urban environments favorable to Ae. albopictus larvae presence in the drainage and tele-
com urban network infrastructures. However, these results should be treated with caution in areas where the uncertainty
of the overall model is high. Sampling biases map could be used to readjust sampling protocols by prioritizing unsampled
urban contexts to ensure that the diversity of environments is well represented. Despite these uncertainties and the need
to improve protocols, probability mapping can be used to target areas that could be prioritized for enhanced maintenance
and cleaning of urban breeding sites like storm drains and telecom cable chambers to avoid water accumulation over
the year. Therefore, our results help characterize the environment favorable to the presence of positive breeding sites.
Recent studies carried out on Ae. albopictus in Montpellier can help us estimate the density of mosquitoes or larvae using
a mechanistic model based on meteorological data, environmental variables, and potential breeding sites data, focusing
on private areas and their surroundings, without explicitly considering public spaces [70]. Our results on larvae presence
probability can provide complementary information on Ae. albopictus and could be used as inputs or contribute to improv-
ing mosquito density modeling by providing more precise information on positive breeding sites. However, it is important to
acknowledge that larval presence alone does not fully represent vector competence and transmission risk, which depend
on additional biological, environmental and socio-economic factors, including population vulnerability or human behaviors.

4.5. Dataset evaluation and sampling bias

The EID-MED field agents collected the entomological data used in this study to identify which breeding sites in pub-

lic areas across neighborhoods of the metropolitan area of Montpellier are likely to be positive. Breeding sites in public
areas are rarely considered in modeling approaches [28,63,73]. However, recent studies like Haddawy et al., 2019 have
explored the use of Google Street View imagery to identify breeding containers in public spaces [74]. This raises ques-
tions about the resources dedicated to data collection in the field. Current resources in Montpellier metropolitan area only
allow for a limited number of prospections in few environmental contexts, while a much wider sampling both in private and
public spaces would be required to improve knowledge on larvae distribution and abundance. Such information would be
key to have realistic data, to obtain more accurate model outputs, and to better inform vector control strategies.

An unusual aspect of the entomological dataset used is that data on breeding sites and their positivity to larvae were
collected in the metropolitan area during the winter period (i.e., November to March), which is not the period during which
larvae are more likely to be found due to predominantly unfavorable temperature conditions. However, due to relatively
mild winters in the region, favorable conditions are not excluded in specific places and times during this period. These
aspects of the dataset are mainly explained by the fact that EID-MED primary mission is the surveillance of other mos-
quito species in the coastal wetlands of the entire Mediterranean area [75]. All agents are fully mobilized to this task
between April and October, leaving no opportunity for data collection in urban areas during this period. The expertise of
field agents reveals that breeding sites with poor design or insufficient maintenance tend to retain stagnant water during
periods of unfavorable conditions (November to March), these sites will stay in water throughout these months and will
therefore contain larvae during the period favorable to Ae. albopictus mosquitoes (April to October). September and
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October are the most rainy months of the year in the Montpellier area, characterized by strong localized rainy events

with high accumulation of precipitation [76]. Public breeding sites that drain well will not fill up with water during those two
months and will not retain water. However, if there is a design flaw in some public breeding sites, water that will fill them
up will partially stagnate and remain present throughout the winter if no manual drainage is made, since the weather con-
ditions will prevent evaporation. The presence of stagnant water inside breeding sites underlines that precipitation during
the days preceding the fieldwork is not a necessary driver of, and is not correlated to breeding site watering and larvae
appearance dynamics. These assumptions rely on expert knowledge and could benefit from validation through compara-
tive data collected during the summer. It would be highly valuable to monitor the positivity of these “winter potential breed-
ing sites” during summer to better evaluate the reliability and representativeness of the winter dataset. In addition, another
source of water should also be considered in such studies since the filling of these types of breeding sites can also be
linked to human activities, such as street cleaning and maintenance of rainwater infrastructure. That is why meteorological
variables like rainfall are not considered in the models.

The entomological data provided were not uniformly distributed across the Montpellier metropolitan area, with samples
taken only in the northeastern of the area. This resulted in an uneven sampling of the different environmental contexts
encountered in the study area (Fig 4), being limited to certain types of urban environments. To improve the quality of this
sampling and thus reduce environmental bias, it would be necessary to sample in more diversified environmental contexts
[33]. The spatialized indicator presented in Fig 4, based on the distance between non-sampled and sample sites in the
environmental variable space, could help improve the sampling protocol by prioritizing locations corresponding to unsam-
pled environments (those exhibiting high indicator values). This mapping would therefore make it easy to identify the
areas to be sampled as a priority by EID-MED agents, to improve the quality and representativeness of sampling.

Finally, our dataset contains only 8.5% of positive breeding sites, which represents far less presence data than
absence data. Moudry et al. (2024) suggest that the size of our dataset and the uneven distribution between presence and
absence data allow us to carry out robust SDM [77]. However, the performance of SDMs can generally be limited, even
with a large sample size, as it does not guarantee the complete representation of the large distribution area (ecological
niche) of Ae. albopictus [77,78]. A more balanced sample distribution could still improve the performance of the model [77]
and a sampling bias correction method could be used when this is low [54]. More broadly, the specific context of emerging
arboviral risks in this region means that entomological surveillance protocols have traditionally been less intensive than
in endemic tropical areas, which partly explains current limitations in data coverage and sampling diversity. This context
of emerging risk in a temperate region adds a particularly valuable perspective to this study, as it reflects the challenges
encountered by many countries or regions now facing the emergence of these diseases. Importantly, this study highlights
the relevance and feasibility of developing spatial models using data constrained by operational realities and specific
contexts. Understanding these operational and logistical constraints is essential to interpreting the limitations of current
datasets and to improving surveillance and control strategies. It is thus necessary to continue implementing more effi-
cient, and optimized vector surveillance and control strategies. These strategies could benefit from stronger links between
operational and research sectors, particularly in order to question the transferability of knowledge, data, methods (e.g., on
sampling design, landscape characterization, data analysis and modeling approaches) related to dengue-endemic areas.

5. Conclusions

This study used remote sensing imagery to investigate the influence of urban landscapes on the presence of Ae. albopic-
tus larvae within public spaces of the Montpellier metropolitan area, France. Spectral and textural indices derived from
very high-resolution imagery were used to predict larvae presence, providing insights into the mosquito’s ecology. The
originality of this study is twofold: it lies both in its focus on an area where dengue is not yet endemic, and in its focus

on breeding sites located in the public spaces (vs. private spaces), where the establishment of the dengue vector Ae.
albopictus and climate change raise significant public health concerns for the years to come. The study highlighted a
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role of urban vegetation on larval presence within telecom cable chambers and storm drains in public spaces, indicating
however that the probability of larval presence tends to decreases with increasing vegetation index values. The analysis
revealed that urban landscapes, expressed in this study as a combination of vegetation and urban objects, play a role

in determining the presence of Ae. albopictus breeding sites in the public domain, where small organized urban objects
and large patches of vegetation could increase the likelihood of larval presence. Our study of breeding sites in the public
domain provides some insights into an understanding of their relationship with urban landscapes at a fine scale. Ensem-
ble models significantly improved the prediction of breeding site presence, highlighting the importance of vegetation and
textural indices. Our study highlights the potential presented by the combination of remote sensing imagery and SDMs to
target and prioritize mosquito control interventions in urban areas. These predictive maps can be useful for optimizing the
allocation of resources, ensuring that vector control efforts are concentrated in the most critical areas to reduce mosquito
density and thus limit the spread of vector-borne diseases. In addition, by identifying areas where water is likely to accu-
mulate, such as poorly designed or maintained public infrastructures, urban maintenance teams can take preemptive
actions to eliminate potential breeding sites. This approach contributes to reducing mosquito populations and mitigating
the public health risks associated with vector-borne diseases like dengue. While this study focuses on breeding sites in
public spaces, research would greatly benefit from using datasets combining public and private breeding sites that would
provide a more comprehensive understanding of the urban environment’s capacity to sustain Ae. Albopictus larvae. Close
collaboration between scientists and operational staff could help enhance vector control strategies and improve field
actions, where an urgent response to vector-borne public health issues is needed.

Supporting information

S1 File. Brightness Index (Bl) and Normalized Difference Vegetation Index (NDVI) calculated with the multispec-
tral Pléaides image over the metropolitan area of Montpellier. The top-left inset shows the dense city center of Mont-
pellier, while the top-right one shows a residential area in a nearby municipality.
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S2 File. Projection of PAN windows in the factorial plane made up of the first two principal components for a
window size of 202 m. The colors correspond to the different angular sectors of point cloud individuals. Images subsets
correspond to the analysis windows furthest from the axis origin, for each angular sector.
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S3 File. Variable importance score of each individual model.
(TIFF)

Acknowledgments

Thanks to the “EID-MED” for providing access to their entomological dataset. We also thank the ‘Dispositif Institutionnel
National d’Accés Mutualisé en Imagerie Satellitaire’ (DINAMIS) and the ‘Institut national de I'information géographique et
forestiere’ (French national geographic institute — IGN) for providing the orthorectified Pléiades CNES 2022 Distribution
AIRBUS DS.

Author contributions

Conceptualization: Claire Teillet, Héloise Pottier, Rodolphe Devillers, Emmanuel Roux.

Data curation: Claire Teillet, Héloise Pottier, Alexandre Kerr, Frederic Jean, Gregory L’Ambert, Nicolas LeDoeuff.
Formal analysis: Claire Teillet, Héloise Pottier.

Investigation: Alexandre Kerr, Frederic Jean, Gregory L’Ambert, Nicolas LeDoeuff.

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025 21/25



http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0335794.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0335794.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0335794.s003

PLO\Sﬁ\\.- One

Methodology: Claire Teillet, Héloise Pottier, Rodolphe Devillers, Alexandre Defossez, Thibault Catry, Emmanuel Roux.

Project administration: Rodolphe Devillers, Thibault Catry, Emmanuel Roux.

Resources: Rodolphe Devillers, Emmanuel Roux.

Software: Claire Teillet, Alexandre Defossez.

Supervision: Claire Teillet, Rodolphe Devillers, Emmanuel Roux.

Validation: Claire Teillet, Rodolphe Devillers, Emmanuel Roux.

Visualization: Claire Teillet.

Writing — original draft: Claire Teillet.

Writing — review & editing: Claire Teillet, Héloise Pottier, Rodolphe Devillers, Alexandre Defossez, Thibault Catry,

Alexandre Kerr, Frederic Jean, Gregory L'’Ambert, Nicolas LeDoeuff, Emmanuel Roux.

References

1.

10.

1.

12.

13.

14.

15.

16.

Haider N, Hasan MN, Onyango J, Asaduzzaman M. Global landmark: 2023 marks the worst year for dengue cases with millions infected and thou-
sands of deaths reported. IJID Reg. 2024;13:100459. https://doi.org/10.1016/j.ijregi.2024.100459 PMID: 39497753

WHO. Dengue and severe dengue [Internet]. 2024 [cited 2024 Sep 15]. Available from: https://www.who.int/news-room/fact-sheets/detail/
dengue-and-severe-dengue

Baldacchino F, Marcantonio M, Manica M, Marini G, Zorer R, Delucchi L, et al. Mapping of Aedes albopictus Abundance at a Local Scale in Italy.
Remote Sens. 2017;9(7):749. https://doi.org/10.3390/rs9070749

Lwande OW, Obanda V, Lindstrém A, Ahlm C, Evander M, Naslund J, et al. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for
Arbovirus Pandemics. Vector Borne Zoonotic Dis. 2020;20(2):71-81.

Jourdain F, Roiz D, de Valk H, Noél H, LAmbert G, Franke F, et al. From importation to autochthonous transmission: Drivers of chikungunya and
dengue emergence in a temperate area. PLoS Negl Trop Dis. 2020;14(5):e0008320. https://doi.org/10.1371/journal.pntd.0008320 PMID: 32392224

Cunze S, Koch LK, Kochmann J, Klimpel S. Aedes albopictus and Aedes japonicus - two invasive mosquito species with different temperature
niches in Europe. Parasit Vectors. 2016;9(1):573. https://doi.org/10.1186/s13071-016-1853-2 PMID: 27814747

Lee IH, Duvall LB. Maternally Instigated Diapause in Aedes albopictus: Coordinating Experience and Internal State for Survival in Variable
Environments. Front Behav Neurosci [Internet]. 2022 Apr 25 [cited 2024 Aug 20];16. Available from: https://www.frontiersin.org/journals/
behavioral-neuroscience/articles/10.3389/fnbeh.2022.778264/full

Fonseca DM, Unlu |, Crepeau T, Farajollahi A, Healy SP, Bartlett-Healy K, et al. Area-wide management of Aedes albopictus. Part 2: gauging the
efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag Sci. 2013;69(12):1351-61. https://doi.
org/10.1002/ps.3511 PMID: 23649950

Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethio-
pia. Interdiscip Perspect Infect Dis. 2015;2015:706276. https://doi.org/10.1155/2015/706276 PMID: 26435712

Abilio AP, Abudasse G, Kampango A, Candrinho B, Sitoi S, Luciano J, et al. Distribution and breeding sites of Aedes aegypti and Aedes
albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis.
2018;12(9):e0006692. https://doi.org/10.1371/journal.pntd.0006692 PMID: 30208017

Rajarethinam J, Ong J, Neo Z-W, Ng L-C, Aik J. Distribution and seasonal fluctuations of Ae. aegypti and Ae. albopictus larval and pupae in resi-
dential areas in an urban landscape. PLoS Negl Trop Dis. 2020;14(4):e0008209. https://doi.org/10.1371/journal.pntd.0008209 PMID: 32310960

Stefopoulou A, Balatsos G, Petraki A, LaDeau SL, Papachristos D, Michaelakis A. Reducing Aedes albopictus breeding sites through education: A
study in urban area. PLoS One. 2018;13(11):e0202451. https://doi.org/10.1371/journal.pone.0202451 PMID: 30408031

Carrieri M, Angelini P, Venturelli C, Maccagnani B, Bellini R. Aedes albopictus (Diptera: Culicidae) population size survey in the 2007 Chikungunya
outbreak area in Italy. |. Characterization of breeding sites and evaluation of sampling methodologies. J Med Entomol. 2011;48(6):1214-25. https://
doi.org/10.1603/me10230 PMID: 22238882

Machault V, Yébakima A, Etienne M, Vignolles C, Palany P, Tourre Y, et al. Mapping Entomological Dengue Risk Levels in Martiniqgue Using
High-Resolution Remote-Sensing Environmental Data. ISPRS Int J Geo-Inf. 2014;3(4):1352—71. https://doi.org/10.3390/ijgi3041352

Bailly S, Rousset D, Fritzell C, Hozé N, Ben Achour S, Berthelot L, et al. Spatial Distribution and Burden of Emerging Arboviruses in French Gui-
ana. Viruses. 2021;13(7):1299.
Hafsia S, Haramboure M, Wilkinson DA, Baldet T, Yemadje-Menudier L, Vincent M, et al. Overview of dengue outbreaks in the southwest-

ern Indian Ocean and analysis of factors involved in the shift toward endemicity in Reunion Island: A systematic review. PLoS Negl Trop Dis.
2022;16(7):e0010547. https://doi.org/10.1371/journal.pntd.0010547 PMID: 35900991

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025 22/25



https://doi.org/10.1016/j.ijregi.2024.100459
http://www.ncbi.nlm.nih.gov/pubmed/39497753
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://doi.org/10.3390/rs9070749
https://doi.org/10.1371/journal.pntd.0008320
http://www.ncbi.nlm.nih.gov/pubmed/32392224
https://doi.org/10.1186/s13071-016-1853-2
http://www.ncbi.nlm.nih.gov/pubmed/27814747
https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2022.778264/full
https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2022.778264/full
https://doi.org/10.1002/ps.3511
https://doi.org/10.1002/ps.3511
http://www.ncbi.nlm.nih.gov/pubmed/23649950
https://doi.org/10.1155/2015/706276
http://www.ncbi.nlm.nih.gov/pubmed/26435712
https://doi.org/10.1371/journal.pntd.0006692
http://www.ncbi.nlm.nih.gov/pubmed/30208017
https://doi.org/10.1371/journal.pntd.0008209
http://www.ncbi.nlm.nih.gov/pubmed/32310960
https://doi.org/10.1371/journal.pone.0202451
http://www.ncbi.nlm.nih.gov/pubmed/30408031
https://doi.org/10.1603/me10230
https://doi.org/10.1603/me10230
http://www.ncbi.nlm.nih.gov/pubmed/22238882
https://doi.org/10.3390/ijgi3041352
https://doi.org/10.1371/journal.pntd.0010547
http://www.ncbi.nlm.nih.gov/pubmed/35900991

PLO\Sﬁ\\.- One

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.
41.

Delaunay P, Hubiche T, Blanc V, Perrin Y, Marty P, Del Giudice P. Aedes albopictus en France métropolitaine. Ann Dermatol Vénéréologie.
2012;139(5):396—401.

Cochet A, Calba C, Jourdain F, Grard G, Durand GA, Guinard A, et al. Autochthonous dengue in mainland France, 2022: geographical extension
and incidence increase. Eurosurveillance. 2022;27(44):2200818. https://doi.org/10.2807/1560-7917.ES.2022.27.44.2200818

Weeratunga P, Rodrigo C, Fernando SD, Rajapakse S. Control methods for Aedes albopictus and Aedes aegypti. Cochrane Database Syst Rev.
2017;2017(8):CD012759.

Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis |, Magiorkinis G, et al. Satellite Earth Observation Data in Epidemiological
Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. Remote Sens. 2019;11(16):1862. https://doi.org/10.3390/rs11161862

Dlamini SN, Beloconi A, Mabaso S, Vounatsou P, Impouma B, Fall IS. Review of remotely sensed data products for disease mapping and epidemi-
ology. Remote Sens Appl Soc Environ. 2019;14:108—18.

Marti R, Li Z, Catry T, Roux E, Mangeas M, Handschumacher P, et al. A Mapping Review on Urban Landscape Factors of Dengue Retrieved from
Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sens. 2020;12(6):932. https://doi.org/10.3390/rs 12060932

Tran A, Daudé E, Catry T. Télédétection et modélisation spatiale [Internet]. éditions Quae; 2022 [cited 2023 May 29]. Available from: https://www.
quae-open.com/produit/204/9782759236299/teledetection-et-modelisation-spatiale

Teillet C, Devillers R, Tran A, Catry T, Marti R, Dessay N, et al. Exploring fine-scale urban landscapes using satellite data to predict the distribution
of Aedes mosquito breeding sites. Int J Health Geogr. 2024;23(1):18. https://doi.org/10.1186/s12942-024-00378-3 PMID: 38972982

Arboleda S, Jaramillo-O N, Peterson AT. Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia. J Vector Ecol.
2012;37(1):37-48. https://doi.org/10.1111/j.1948-7134.2012.00198.x PMID: 22548535

Arduino MdB, Mucci LF, Santos LMd, Soares MFdS. Importance of microenvironment to arbovirus vector distribution in an urban area,
Sao Paulo, Brazil. Rev Soc Bras Med Trop [Internet]. 2020 Apr 3 [cited 2022 Jun 2];53. Available from: http://www.scielo.br/j/rsbmt/a/
bLLXZJtWNFdY3RrpJ7cWJzx/?lang=en&format=html

Benitez EM, Luduefa-Almeida F, Frias-Céspedes M, Almirén WR, Estallo EL. Could land cover influence Aedes aegypti mosquito populations?
Med Vet Entomol. 2020;34(2):138—44. https://doi.org/10.1111/mve.12422 PMID: 31840284

Sarfraz MS, Tripathi NK, Farugue FS, Bajwa Ul, Kitamoto A, Souris M. Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using
a fuzzy analytical hierarchical process based on climatic and physical parameters. Geospat Health. 2014;8(3):S685-97. https://doi.org/10.4081/
gh.2014.297 PMID: 25599639

Little E, Biehler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL. Socio-Ecological Mechanisms Supporting High Densities of Aedes albopictus
(Diptera: Culicidae) in Baltimore, MD. J Med Entomol. 2017;54(5):1183-92.

Albrieu-Llinds G, Espinosa MO, Quaglia A, Abril M, Scavuzzo CM. Urban environmental clustering to assess the spatial dynamics of Aedes aegypti
breeding sites. Geospat Health. 2018;13(1):654. https://doi.org/10.4081/gh.2018.654 PMID: 29772886

Martin ME, Alonso AC, Faraone J, Stein M, Estallo EL. Aedes aegypti and Aedes albopictus abundance, landscape coverage and spectral indices
effects in a subtropical city of Argentina [Internet]. bioRxiv. 2022 [cited 2022 Jun 29]. p. 2022.01.11.475665. Available from: https://www.biorxiv.org/
content/10.1101/2022.01.11.475665v1

Rahman MS, Ekalaksananan T, Zafar S, Poolphol P, Shipin O, Haque U, et al. Ecological, Social, and Other Environmental Determinants of
Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand. Int J Environ Res Public Health. 2021;18(11):5971. https://doi.
0rg/10.3390/ijerph18115971 PMID: 34199508

Dharmamuthuraja D, P D R, Lakshmi M I, Isvaran K, Ghosh SK, Ishtiaq F. Determinants of Aedes mosquito larval ecology in a heterogeneous
urban environment- a longitudinal study in Bengaluru, India. PLoS Negl Trop Dis. 2023;17(11):e0011702. https://doi.org/10.1371/journal.
pntd.0011702 PMID: 37939204

Cardi J. Les nouveaux quartiers du moustique tigre: conception des espaces batis et prolifération d’Aedes albopictus dans trois villes des Bouches-

du-Rhéne: diagnostic et préconisations [Internet] [These de doctorat]. Aix-Marseille; 2022 [cited 2024 Sep 15]. Available from: https://theses.
fr/2022A1XM0204

Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8(9):993—-1009. https://doi.
org/10.1111/j.1461-0248.2005.00792.x PMID: 34517687

Franklin J, Miller JA. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press; 2009. p. 339.

Araujo MB, Anderson RP, Marcia Barbosa A, Beale CM, Dormann CF, Early R, et al. Standards for distribution models in biodiversity assessments.
Sci Adv. 2019;5(1):eaat4858. https://doi.org/10.1126/sciadv.aat4858 PMID: 30746437

Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, et al. Sample selection bias and presence-only distribution models: implica-
tions for background and pseudo-absence data. Ecol Appl. 2009;19(1):181-97. https://doi.org/10.1890/07-2153.1 PMID: 19323182

Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J. Predictive performance of presence-only species distribution models: a benchmark study
with reproducible code. Ecol Monogr. 2022;92(1):e01486.

Thuiller W, Georges D, Engler R. BIOMOD - a platform for ensemble forecasting of species distributions. 2009.

Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ. A review of evidence about use and performance of species distribution modelling ensembles
like BIOMOD. Divers Distrib. 2019;25(5):839-52.

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025 23/25



https://doi.org/10.2807/1560-7917.ES.2022.27.44.2200818
https://doi.org/10.3390/rs11161862
https://doi.org/10.3390/rs12060932
https://www.quae-open.com/produit/204/9782759236299/teledetection-et-modelisation-spatiale
https://www.quae-open.com/produit/204/9782759236299/teledetection-et-modelisation-spatiale
https://doi.org/10.1186/s12942-024-00378-3
http://www.ncbi.nlm.nih.gov/pubmed/38972982
https://doi.org/10.1111/j.1948-7134.2012.00198.x
http://www.ncbi.nlm.nih.gov/pubmed/22548535
http://www.scielo.br/j/rsbmt/a/bLLXZJtWNFdY3RrpJ7cWJzx/?lang=en&format=html
http://www.scielo.br/j/rsbmt/a/bLLXZJtWNFdY3RrpJ7cWJzx/?lang=en&format=html
https://doi.org/10.1111/mve.12422
http://www.ncbi.nlm.nih.gov/pubmed/31840284
https://doi.org/10.4081/gh.2014.297
https://doi.org/10.4081/gh.2014.297
http://www.ncbi.nlm.nih.gov/pubmed/25599639
https://doi.org/10.4081/gh.2018.654
http://www.ncbi.nlm.nih.gov/pubmed/29772886
https://www.biorxiv.org/content/10.1101/2022.01.11.475665v1
https://www.biorxiv.org/content/10.1101/2022.01.11.475665v1
https://doi.org/10.3390/ijerph18115971
https://doi.org/10.3390/ijerph18115971
http://www.ncbi.nlm.nih.gov/pubmed/34199508
https://doi.org/10.1371/journal.pntd.0011702
https://doi.org/10.1371/journal.pntd.0011702
http://www.ncbi.nlm.nih.gov/pubmed/37939204
https://theses.fr/2022AIXM0204
https://theses.fr/2022AIXM0204
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
http://www.ncbi.nlm.nih.gov/pubmed/34517687
https://doi.org/10.1126/sciadv.aat4858
http://www.ncbi.nlm.nih.gov/pubmed/30746437
https://doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182

PLO\Sﬁ\\.- One

42.

43.
44,
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Institut national de la statistique et des études économiques. Comparateur de territoires [Internet]. 2023. Available from: https://www.insee.fr/fr/
statistiques/zones/1405599?debut=0&g=comparateurs+territoire

Santé publique France. Bulletin. Surveillance du Chikungunya, de la Dengue et du Zika en Occitanie - Bilan de la saison 2022. 2022 Dec. p. 3.
Santé publique France. Bulletin. Surveillance du Chikungunya, de la Dengue et du Zika en Occitanie. 2023 Dec. p. 3.

Santé publique France. Bulletin. Bilan de la surveillance renforcée 2024 du chikungunya, de la dengue, du Zika et du West-Nile en Occitanie. 2024
Dec. p. 4.

Hounkpe J. Gites larvaires d’Aedes albopictus dans le bati et les ouvrages de gestion des eaux pluviales: état des lieux et enjeux en termes de
stratégie de contrble. 2012;68.

Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public
health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435—-47. https://doi.org/10.1089/vbz.2011.0814 PMID: 22448724

Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the Great Plains with ERTS. 1974 [cited 2023 Nov 3]. Available
from: https://ntrs.nasa.gov/citations/19740022614

Kauth R, Thomas G. The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LAND-
SAT. LARS Symp [Internet]. 1976 Jan 1. Available from: https://docs.lib.purdue.edu/lars_symp/159

Gadal S, Gbetkom PG, Mfondoum AH. A new soil degradation method analysis by Sentinel 2 images combining spectral indices and statistics
analysis: application to the Cameroonians shores of Lake Chad and its hinterland. In: Science S, Publications T, editors. 7th International Confer-
ence on Geographical Information Systems Theory, Applications and Management (GISTAM 2021) [Internet]. Online Streaming, Czech Republic;
2021 [cited 2024 Aug 26]. p. 25-36. (Proceedings of the 7th International Conference on Geographical Information Systems Theory, Applications
and Management (GISTAM 2021)). Available from: https://hal.science/hal-03207299

Gandhi GM, Parthiban S, Thummalu N, Christy A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis — A Case Study of Vellore
District. Procedia Comput Sci. 2015;57:1199-210.

Teillet C, Pillot B, Catry T, Demagistri L, Lyszczarz D, Lang M, et al. Fast Unsupervised Multi-Scale Characterization of Urban Landscapes Based
on Earth Observation Data. Remote Sens. 2021;13(12):2398. https://doi.org/10.3390/rs13122398

Moua Y. Correction de I'effet du biais d’échantillonnage dans la modélisation de la qualité des habitats écologiques: application au principal vecteur
du paludisme en Guyane frangaise [Internet] [phdthesis]. Université de Guyane; 2017 [cited 2021 Jul 22]. Available from: https://tel.archives-ou-
vertes.fr/tel-01547595

Moua Y, Roux E, Seyler F, Briolant S. Correcting the effect of sampling bias in species distribution modeling — a new method in the case of a low
number of presence data. Ecol Inform. 2020;57:101086.

Thuiller W, Georges D, Guegen M, Engler R, Breiner F, Lafourcade B, et al. biomod2: Ensemble Platform for Species Distribution Modeling [Inter-
net]. 2024 [cited 2024 Oct 12]. Available from: https://biomodhub.github.io/biomod2/

Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. Evaluation of consensus methods in predictive species distribution modelling. Divers
Distrib. 2009;15(1):59-69.

Elith J, Kearney M, Phillips S. The art of modelling range-shifting species. Methods Ecol Evol. 2010;1(4):330—42. https://doi.
org/10.1111/j.2041-210x.2010.00036.x

Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36.
https://doi.org/10.1148/radiology.143.1.7063747 PMID: 7063747

Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl
Ecol. 2006;43(6):1223-32.

Chaves LF, Friberg MD. Aedes albopictus and Aedes flavopictus (Diptera: Culicidae) pre-imaginal abundance patterns are associated with dif-
ferent environmental factors along an altitudinal gradient. Curr Res Insect Sci. 2020;1:100001. https://doi.org/10.1016/j.cris.2020.100001 PMID:
36003600

Espinosa MO, Polop F, Rotela CH, Abril M, Scavuzzo CM. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a
dengue vector control programme. Geospat Health. 2016;11(3):471. https://doi.org/10.4081/gh.2016.471 PMID: 27903056

Estallo EL, Sangermano F, Grech M, Luduefia-Almeida F, Frias-Cespedes M, Ainete M, et al. Modelling the distribution of the vector Aedes aegypti
in a central Argentine city. Med Vet Entomol. 2018;32(4):451-61. https://doi.org/10.1111/mve.12323 PMID: 30027565

Andreo V, Cuervo PF, Porcasi X, Lopez L, Guzman C, Scavuzzo CM. Towards a workflow for operational mapping of Aedes aegypti at urban scale
based on remote sensing. Remote Sens Appl Soc Environ. 2021;23:100554.

Rey JR, Nishimura N, Wagner B, Braks MAH, O’Connell SM, Lounibos LP. Habitat Segregation of Mosquito Arbovirus Vectors in South Florida. J
Med Entomol. 2006;43(6):1134—41.

Hondrio NA, Castro MG, Barros FSMd, Magalhdes MdAFM, Sabroza PC. The spatial distribution of Aedes aegypti and Aedes albopictus in a tran-
sition zone, Rio de Janeiro, Brazil. Cad Saude Publica. 2009;25(6):1203—14. https://doi.org/10.1590/s0102-311x2009000600003 PMID: 19503951

Cianci D, Hartemink N, Zeimes CB, Vanwambeke SO, lenco A, Caputo B. High Resolution Spatial Analysis of Habitat Preference of Aedes Albopic-
tus (Diptera: Culicidae) in an Urban Environment. J Med Entomol. 2015;52(3):329-35.

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025 24125



https://www.insee.fr/fr/statistiques/zones/1405599?debut=0&q=comparateurs+territoire
https://www.insee.fr/fr/statistiques/zones/1405599?debut=0&q=comparateurs+territoire
https://doi.org/10.1089/vbz.2011.0814
http://www.ncbi.nlm.nih.gov/pubmed/22448724
https://ntrs.nasa.gov/citations/19740022614
https://docs.lib.purdue.edu/lars_symp/159
https://hal.science/hal-03207299
https://doi.org/10.3390/rs13122398
https://tel.archives-ouvertes.fr/tel-01547595
https://tel.archives-ouvertes.fr/tel-01547595
https://biomodhub.github.io/biomod2/
https://doi.org/10.1111/j.2041-210x.2010.00036.x
https://doi.org/10.1111/j.2041-210x.2010.00036.x
https://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
https://doi.org/10.1016/j.cris.2020.100001
http://www.ncbi.nlm.nih.gov/pubmed/36003600
https://doi.org/10.4081/gh.2016.471
http://www.ncbi.nlm.nih.gov/pubmed/27903056
https://doi.org/10.1111/mve.12323
http://www.ncbi.nlm.nih.gov/pubmed/30027565
https://doi.org/10.1590/s0102-311x2009000600003
http://www.ncbi.nlm.nih.gov/pubmed/19503951

PLO\Sﬁ\\.- One

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Reiskind MH, Styers DM, Hayes |, Richards SL, Doyle MS, Reed EM. Short-term, large-area survey of container Aedes spp. (Diptera:
Culicidae): presence and abundance is associated with fine-scale landscape factors in North Carolina, USA. Environ Health Insights.
2020;14:1178630220952806. https://doi.org/10.1177/1178630220952806

Lang M, Alleaume S, Luque S, Baghdadi N, Feret JB. Landscape Structure Estimation using Fourier-Based Textural Ordination of High Resolution
Airborne Optical Image. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium [Internet]. Valencia: IEEE; 2018
[cited 2019 Feb 19]. p. 6600-3. Available from: https://ieeexplore.ieee.org/document/8518640/

Bailly S, Machault V, Beneteau S, Palany P, Girod R, Lacaux JP, et al. Modeling spatiotemporal Aedes aegypti risk in French Guiana using meteo-
rological and remote sensing data. 2021 Aug 9;2021.08.02.21261373.

Tran A, Mangeas M, Demarchi M, Roux E, Degenne P, Haramboure M, et al. Complementarity of empirical and process-based approaches to
modelling mosquito population dynamics with Aedes albopictus as an example-Application to the development of an operational mapping tool of
vector populations. PLoS One. 2020;15(1):e0227407. https://doi.org/10.1371/journal.pone.0227407 PMID: 31951601

Crossman ND, Bass DA. Application of common predictive habitat techniques for post-border weed risk management. Divers Distrib.
2008;14(2):213-24.

Crimmins SM, Dobrowski SZ, Mynsberge AR. Evaluating ensemble forecasts of plant species distributions under climate change. Ecol Model.
2013;266:126-30.

German A, Espinosa MO, Abril M, Scavuzzo CM. Exploring satellite based temporal forecast modelling of Aedes aegypti oviposition from an opera-
tional perspective. Remote Sens Appl Soc Environ. 2018;11:231-40.

Haddawy P, Wettayakorn P, Nonthaleerak B, Su Yin M, Wiratsudakul A, Schoéning J, et al. Large scale detailed mapping of dengue vector breeding
sites using street view images. PLoS Negl Trop Dis. 2019;13(7):e0007555. https://doi.org/10.1371/journal.pntd.0007555 PMID: 31356617

Chambre régionale des comptes Occitanie. Rapport d’'observations définitives et sa réponse - Entente interdépartementale pour la demoustication
du littoral méditérannéen EID-MED (Hérault). 2024.

Mateos RM, Sarro R, Diez-Herrero A, Reyes-Carmona C, Lépez-Vinielles J, Ezquerro P. Assessment of the socio-economic impacts of extreme
weather events on the coast of southwest Europe during the period 2009-2020. Appl Sci. 2023;13(4):2640.

Moudry V, Bazzichetto M, Remelgado R, Devillers R, Lenoir J, Mateo RG, et al. Optimising occurrence data in species distribution models: sample
size, positional uncertainty, and sampling bias matter. Ecography. 2024;2024(12):e07294. https://doi.org/10.1111/ecog.07294

Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R. A comparative evaluation of presence-only methods for modelling species distribution. Divers
Distrib. 2007;13(4):397-405.

PLOS One | https://doi.org/10.1371/journal.pone.0335794 November 5, 2025 25/25



https://doi.org/10.1177/1178630220952806
https://ieeexplore.ieee.org/document/8518640/
https://doi.org/10.1371/journal.pone.0227407
http://www.ncbi.nlm.nih.gov/pubmed/31951601
https://doi.org/10.1371/journal.pntd.0007555
http://www.ncbi.nlm.nih.gov/pubmed/31356617
https://doi.org/10.1111/ecog.07294

