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Abstract

ReadSeeker, a newly fine-tuned, DNABERT-based model, differentiates NGS short

reads into protein-coding (CDS) and non-protein-coding (non-CDS) categories with-

out requiring known reference sequences. For model training, extensive datasets

encompassing viral, bacterial, and mammalian sequences where used. Training

involved generating approximately 3 million synthetic reads from annotated genomic

elements.

Performance evaluation on real-world datasets, including human, viral, and bacte-

rial samples, revealed ReadSeeker’s high accuracy, exceeding 94%, with ROC-AUC

scores above 98% in most cases.

Introduction

The advent of Next-Generation Sequencing (NGS) technologies has catalyzed a
transformative shift in the landscape of genomics, offering unprecedented insights
into the complexity of biological systems.

However, the amount of data generated using NGS is bringing classical rule-based
analysis methods to their limits. In those areas where weak signals and deeply hid-
den patterns must be recognized in order to understand the data, novel approaches
are needed.

The remarkable success of deep learning models, especially those inspired by
the transformer architecture, in various fields such as natural language process-
ing, is opening new avenues. The BERT (Bidirectional Encoder Representations
from Transformers) model, in particular, has demonstrated exceptional proficiency in
understanding complex patterns in large text corpora [1].

Drawing inspiration from this, we introduce our novel fine-tuned deep learning
model (ReadSeeker) based on the DNABERT model [2], which is highly optimized on
genomic classification tasks.

ReadSeeker is able to separate NGS reads of lengths between 151-301 base
pairs (bp) into those stemming from protein coding (CDS) and non-protein cod-
ing (nonCDS) regions, without explicitly relying on known reference sequences or
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additional information such as the presence of start or stop codons. ReadSeeker’s
superior classification performance, compared to existing methods like FragGeneS-
can [3], can greatly enhance its utility in various NGS pipelines.

Materials and methods
Data training

ReadSeeker is optimized for CDS/nonCDS discrimination of viral, bacterial and
mammalian sequences. All viral and bacterial sequences annotated with “Full” as
genome representation and “Complete Genome” at assembly level were obtained
from the NCBI Reference Sequence Database (RefSeq [4], retrieved on March 25th

2024). This resulted in 14.519 viral genomes and 38.137 bacterial genomes. Addi-
tionally, the latest releases of the Human (GCF_000001405.40_GRCh38.p14), Pig
(GCF_000003025.6_Sscrofa11.1) and Greater horseshoe bat (GCF_004115265.2_
mRhiFer1_v1) were included in the dataset.

Using custom Python scripts, the reference genomes were segmented into con-
tiguous regions of at least 300 base pairs, classified strictly as either CDS or non-
CDS. This classification was based on the “CDS” annotations within the respective
GenBank entries. Regions not annotated as CDS were designated as non-coding.
Regions with fewer than 300 bp were discarded.

For model training, 2,999,996 random reads were generated from both CDS and
nonCDS segments, with an additional 29,996 reads allocated for training evaluation.
Each synthetic read was precisely 300 bases in length. Stratified random sampling
was employed to ensure that each reference category - viral, bacterial and mam-
malian (human/pig/bat), - contributed equally to the CDS and nonCDS pools. Reads
containing ambiguous nucleotide symbols (e.g., ‘N’, ‘Y’) were excluded and replaced
by another randomly selected read from the same category and sequence type. The
probability of selecting a specific genomic region for read generation was weighted
by its length relative to the total length of all regions within the same reference cat-
egory and coding status. The training and evaluation datasets were shuffled to pre-
vent potential biases associated with sequence order, thereby minimizing the risk of
temporal over-fitting. Detailed distributions of train datasets are presented in Table 1
and supplemental S1 Fig, the scripts used to perform the dataset preparation are
available on GitHub [5].

Building upon the dataset preparation described, the fine-tuning of the Read-
Seeker model leveraged the DNABERT 6-mer model (k = 6), which had previously
demonstrated superior classification performance on prediction of splice donor and
acceptor sites and highest loss during pre-training among the DNABERT suite of
models [2]. The fine-tuning process was conducted using the scripts available from
the DNABERT resources, with specific parameter adjustments to optimize perfor-
mance. The learning rate was set at 2e-5, with the model undergoing five training
epochs. A warmup percentage of 0.1 was applied to gradually adjust the learning
rate, alongside a hidden dropout probability of 0.1 to prevent overfitting. Addition-
ally, a weight decay parameter of 0.01 was included to further regulate the model
complexity. The maximal sequence length was capped at 298 tokens.
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Table 1. Overview training dataset.

Reference Category # CDS reads # nonCDS reads # total
viral 500.000 500.000 1.000.000
bacterial 500.000 500.000 1.000.000
mammal/human 166.666 166.666 333.332
mammal/pig 166.666 166.666 333.332
mammal/bat 166.666 166.666 333.332
total 1.499.998 1.499.998 2.999.996
The table displays the breakdown of sampled reads for training the ReadSeeker model, categorized by reference (viral, bacterial, mam-
malian/human, mammalian/pig, mammalian/bat) and coding type (CDS, nonCDS). It provides detailed counts for each category along
with the overall totals, illustrating the representation and balance achieved in the training dataset.

https://doi.org/10.1371/journal.pone.0335732.t001

The fine-tuning process was conducted on a single NVIDIA A40-24Q GPU equipped with 24 GB of memory, and it
required approximately 72 hours to complete.

Performance evaluation on real world datasets

To assess the ReadSeeker model’s efficiency on real-world data, six comprehensively annotated reference genomes
were selected: two bacterial and two viral genomes, mouse and human genome. A total of eleven publicly available
datasets were utilized for performance evaluation, comprising three human stool samples, two SARS-CoV-2 samples,
one Epstein-Barr Virus (EBV), three Mycobacterium tuberculosis, one Escherichia coli and one Mus musculus sample, as
detailed in Table 2. The SARS-CoV-2 samples where chosen to illustrate the classifier behavior on compact genomes with
high gene density.

The mouse dataset was subset to the first 10 million reads, resulting in 25926 filtered and balanced reads in the bench-
mark.

To mitigate the impact of missing gene annotations in the reference genomes, higher taxonomic groups were manu-
ally selected for downloading protein sequences for Mycobacterium tuberculosis, Escherichia coli, and EBV, as noted
in (Table 2. Protein sequences corresponding to the UniProt [6] taxonomic identifiers were downloaded and searched
against the respective reference genomes using tblastn [7]. A tblastn hit was treated as possibly coding if the hit had
a sequence identity of greater than 90% and and the Protein alignment size was greater than 75% of the protein size.

Table 2. Overview test dataset.

Reference Category Reference Sample Uniprot Taxon cds balancing # Reads Read length
mammal human (GRCh38) ERR10492982 - balanced 31642 251
mammal human (GRCh38) ERR10493241 - balanced 32084 251
mammal human (GRCh38) ERR10509672 - balanced 24262 251
mammal Genomic Benchmark (human) coding/intergenomic - balanced 25000 200
mammal Mus musculus (NC_000067.7) DRR317657 - balanced 25926 255
bacterial M.tuberculosis (NC_000962.3) SRR21820122 1762 balanced 9718 301
bacterial M.tuberculosis (NC_000962.3) SRR21820124 1762 balanced 9884 301
bacterial M.tuberculosis (NC_000962.3) SRR21864655 1762 balanced 12576 301
bacterial E.Coli (NC_000913.3) SRR22674487 561 balanced 16624 151
viral EBV (GCF_002402265) ERR2024408 548681 balanced 776508 300
viral SARS-CoV-2 (NC_045512.2) ERR10913059 - unbalanced 427828 301
viral SARS-CoV-2 (NC_045512.2) ERR10913061 - unbalanced 311974 301
The Uniprot Taxon is the taxon used to download Uniprot protein sequences to treat potential false positive hits. CDS balancing indicates if the sample
was subsampled, such that the number of coding and non-coding reads is identical. # Reads shows the total number of reads used for benchemarking.
# Reads consists of 50% CDS and 50% nonCDS read for balanced Datasets. Each of the SARS-CoV2 samples had 4 nonCDS reads. Read length is
the maximal read length in the dataset.

https://doi.org/10.1371/journal.pone.0335732.t002
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Regions that were annotated as CDS and those considered as possible coding were merged to generate a mask to
exclude those regions from the nonCDS evaluation.

For accurate alignment, all samples were mapped to their respective reference genomes using Bowtie2 [8], as ref-
erenced in Table 2. To ensure a high quality of alignments, only reads with a mapping quality of 42 or higher were con-
sidered. Samtools [9] and BEDTools [10] facilitated the identification of reads that were entirely within a CDS region and
those completely outside any known CDS or unclear regions. Reads that overlapped partially with CDS regions were
excluded from the analysis.

Except for the SARS-CoV-2 samples, which lacked sufficient non-coding regions to generate nonCDS reads, the
datasets were balanced to contain an equal number of coding and non-coding reads. The sampling was carried out ran-
domly from the larger group to maintain this balance.

Additionally to our own datasets, we added the human transcriptome based “Genomic Benchmark - demo_coding_vs_
intergenomic_seqs” [11] testdataset to our benchmark comparison.

Furthermore, we benchmarked FragGeneScan [3] in version 1.32 released in December 2024 and Genomic Bench-
mark - Simple Base Model [11] in comparison to ReadSeeker. FragGeneScan was executed utilizing the ‘illumina_5’
model, which assumes an error rate of 0.5% in the reads. The execution was configured with the option ‘-w 0’ to accom-
modate short reads and used 50 CPU cores.

To obtain the Genomic Benchmark - Simple Base Model, we retrained the model on “Genomic Benchmarks -
demo_coding_vs_intergenomic_seqs” training sequences according to published scripts and evaluated the model on 50
CPU cores with our benchmark datasets.

ReadSeeker was executed on a NVIDIA A40-24Q GPU with 24 GB of memory during our benchmark tests, with excep-
tion for the “Genomic Benchmark - demo_coding_vs_intergenomic_seqs” dataset, which was executed on 50 CPU cores.

In order to maximize the reproducibility of the evaluation process, the processing of real-world read data was compre-
hensively conducted utilizing a custom Snakemake [12] pipeline. The final visualization of the classification results was
achieved through the utilization of custom Python scripts in a jupyter notebook.

For evaluation purposes, a ReadSeeker decision threshold of ≥ 0.5 was used for discrimination of CDS reads and non-
CDS reads respectively. According to the FragGeneScan manuscript [3], a read is classified as a coding sequence (CDS)
if at least 50% of its bases are identified as CDS.

The ReadSeeker-Model and scripts to generate training and evaluation data are available on GitHub [5]. The training
and blast datasets are available at Zenodo [13].

Results and discussion

As previously described, we benchmarked our newly fine-tuned ReadSeeker-model, FragGeneScan and the Genomic
Benchmark - Simple Base Model on 6 different sources of genetic material. ReadSeeker predicted the correct coding/non-
coding classes with an accuracy of at least 90.0% (“Genome Benchmark” dataset) and 96.9% (Mus musculus) (Table 3,
Fig 1A, S2 Fig). Furthermore, the ROC-AUC (Receiver Operating Characteristics, Area Under The Curve) of our Read-
Seeker model is greater than 96,40% (“Genome Benchmark” dataset) for all tested sample groups and reaches up to
99.58% (SARS-CoV-2) (Table 3, Fig 1B). ReadSeeker achieves F1-Scores between 89.40% (“Genome Benchmark”
dataset) and 96.91% (Mus musculus). The model specific Matthews Correlation Coefficients (MCC) range from 0.8066
(“Genome Benchmark” dataset) to 0.938 (Mus musculus).

The SARS-CoV-2 dataset exhibited an unusually low MCC score of 0.01, suggesting that the classifier’s decisions are
close to random guessing. This outcome is attributed to the highly imbalanced nature of the SARS-CoV-2 genome, which
resulted in only 8 non-CDS reads of 739802 reads in the dataset (S2 Fig). Such imbalance in the dataset activates the
MCC’s characteristic of interpreting datasets with predominantly one-sided distributions,in this case mostly coding, as the
equivalent of random decisions [14].
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Table 3. ReadSeeker-model, FragGeneScan and Genomic Benchmark - Base Model benchmark metrics.

Reference Tool Accuracy ROC-AUC F1 MCC
EBV ReadSeeker 0.9406 0.9874 0.9399 0.8814

FragGeneScan 0.7552 0.8701 0.7942 0.5516
Simple Base Model 0.7170 0.8753 0.7734 0.5005

SARS-CoV-2 ReadSeeker 0.9049 0.9958 0.9501 0.0101
FragGeneScan 0.9922 0.9904 0.9961 -0.0003
Simple Base Model 0.4734 0.7327 0.6426 0.0031

E. coli ReadSeeker 0.9555 0.9925 0.9562 0.9115
FragGeneScan 0.7012 0.8093 0.7696 0.4999
Simple Base Model 0.6941 0.9017 0.7618 0.4718

M. tuberculosis ReadSeeker 0.9482 0.9884 0.9499 0.8984
FragGeneScan 0.7455 0.8398 0.7946 0.5590
Simple Base Model 0.5013 0.9017 0.6673 0.0366

Human ReadSeeker 0.9672 0.9943 0.9671 0.9345
FragGeneScan 0.7051 0.8185 0.7551 0.4493
Simple Base Model 0.8176 0.9022 0.8050 0.6406

Mus musculus ReadSeeker 0.9692 0.9936 0.9692 0.9384
FragGeneScan 0.7374 0.8658 0.7898 0.5476
Simple Base Model 0.7419 0.8410 0.7031 0.5012

GB (Human) ReadSeeker 0.9004 0.9640 0.8940 0.8066
FragGeneScan 0.6473 0.7376 0.7134 0.3320
Simple Base Model 0.8899 0.9584 0.8923 0.7806

Overall ReadSeeker 0.9266 0.9814 0.9471 0.8327
FragGeneScan 0.8529 0.8808 0.9046 0.6189
Simple Base Model 0.6151 0.6093 0.7097 0.1541

For each reference group the table shows ReadSeeker’s, FragGeneScan’s and the Genome Benchmark - Simple Base Model’s Accuracy, Receiver
operating characteristic - Area Under Curve (ROC-AUC), F1-Score and Matthews Correlation Coefficient (MCC) based on classification results of the
short reads samples. Best Values are highlighted in bold. MCC values for the SARS-Cov-2 Samples are highly affected by the by the unbalanceable
genome structure of the SARS-CoV-2 genome leading to a low number of 8 non-coding reads. Even perfect classifiers receive a score of 0 with a com-
pletely unbalanced data set. Beside the unbalanced SARS-CoV-2 dataset, Readseeker outperforms FragGeneScan and the Genome Benchmark
- Simple Base Model in all classification performance measurements. The Genome Benchmark - Simple Base Model showed lower accuracy on all
datasets, which are not related to the “Genome Benchmark” dataset, indicating a potential overfit.

https://doi.org/10.1371/journal.pone.0335732.t003

ReadSeeker missclassifed 8% of the “Genomic Benchmark - demo_coding_vs_intergenomic_seqs” dataset as false-
negative (Fig 1). In comparison that is more than four times the amount of false-negative reads in our human dataset. This
difference is probably caused by the inclusion of intronic sequences as coding sequences in the “Genomic Benchmark -
demo_coding_vs_intergenomic_seqs” dataset, which are treated as nonCDS in our training and evaluation data.

On our balanced benchmark datasets ReadSeeker does not show significant differences in generating more false-
positive respectively, false negative reads (Fig 1A).

Compared to ReadSeeker, FragGeneScan demonstrated slightly higher true-positives with its chosen discrimina-
tion thresholds (Table 3, S3 Fig). However, FragGeneScan classifed approximatly 50% of the nonCDS reads as CDS,
resulting in reduced overall performance metrics, including accuracy, ROC-AUC, F1, and MCC scores. An exception was
observed in the unbalanced SARS-CoV-2 sample, where FragGeneScan, owing to its high sensitivity, achieved superior
accuracy (99.2% versus 90.4%) and F1 score (0.99 versus 0.95) (Table 3) compared to ReadSeeker.

The Genomic Benchmark - Simple Base Model showed the lowest accuracies (Table 3) in comparison to Read-
Seeker and FragGeneScan, while being around two times slower (Sect 0.2) in comparison to FragGeneScan (Sect 0.2).
Furthermore, the Genomic Benchmark - Simple Base Model showed better classification performance metrics on the
“Genomic Benchmark - demo_coding_vs_intergenomic_seqs” dataset compared to the other samples, especially our
human dataset. This indicates that the model overfit the the training dataset and learned some dataset specific markers.
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Fig 1. Performance of ReadSeeker on 11 NGS sequenced Datasets and the “Genomic Benchmark coding/intergenomic dataset”. 1A) Read-
Seeker classification using a discrimination threshold of ≥ 0.5. The independent result samples show accuracies of up to 94% and comparable
proportions of false positives and false negatives. Due to the different genome structure, the SARS-CoV-2 samples have no displayable negative
nonCDS results. 1B) ROC-Curves of the ReadSeeker classification. The colors summarize the different reference sequences. The average ROC curves
generated per reference and for individual samples are represented by solid lines. In the case of multiple samples, the individual samples are shown
dashed and faded. The ROC-AUC is at least 96.4% (Genome Benchmark - Human). See Table 3.

https://doi.org/10.1371/journal.pone.0335732.g001PLOS One https://doi.org/10.1371/journal.pone.0335732 November 13, 2025 6/ 10
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Furthermore, the model is not able to properly classify bacterial sequences (Table 3, S4 Fig). On the M. tuberculosis
dataset the Simple Base Model has an accuracy of 0.5 and an MCC of 0.03 meaning the classification result is random.

In terms of computational efficiency, FragGeneScan demonstrates a superior performance, operating approximately 25
times (Sect 0.2) faster than ReadSeeker. The results showed that ReadSeeker running on a GPU required between 4.91
seconds and 7.01 seconds per 1,000 reads, whereas FragGeneScan on CPU only required between 0.20 seconds and
0.27 seconds per 1,000 reads (Sect 0.2). This substantial difference highlights the computational efficiency advantage of
the HMM based FragGeneScan.

In future projects, the classification speed disadvantage of ReadSeeker could be mitigated through model optimiza-
tion techniques such as pruning, distillation, and quantization. By embracing slight trade-offs in prediction accuracy, these
techniques have the potential to significantly reduce the model size and consequently increase inference speed.

The ReadSeeker system, alongside its underlying DNABERT model, was initially trained on the human reference
genome. This raises a potential concern regarding information leakage when applied to the human test dataset. How-
ever, the observation that ReadSeeker demonstrated superior classification performance (Accuracy, F1 and MCC) on the
mouse dataset suggests that any information leakage into the human test dataset, if present, has a negligible impact.

Due to data availability, the evaluation of ReadSeeker was performed on datasets with read lengths in the range of 151
bp to 301 bp (Table 1). ReadSeeker’s classification performance on the (E.coli) dataset with 151 bp reads does not show
a significant difference in the benchmark metrics (Table 3) compared to the datasets with read lengths between 251 bp
and 301 bp, indicating a robust classification behavior for read lengths between (151 and 301BP).

The strong performance of the model across different species and various read lengths indicates its robustness and
reliability in diverse genomic contexts.

Conclusion

The results demonstrate that our ReadSeeker model is effective in annotating short genomic regions of 300 bp as belong-
ing to CDS or non-CDS genome regions with an accuracy exceeding 94%, except for the unbalanced SARS-CoV-2 sam-
ples and the “Genomic Benchmark - demo_coding_vs_intergenomic_seqs” dataset, created by other interpretation of
coding sequences, as discussed previously.

Furthermore, ReadSeeker showed superior classification performances in compared to the existing Genomic Bench-
mark - Simple Base Model and FragGeneScan. The later showed a lack in specificity (S3 Fig). Unlike existing methods,
such as specific Hidden Markov Models (HMM) like FragGeneScan, our model does not depend on tracking open read-
ing frames (ORFs), promoter regions from large assemblies, or the direct assignment using closely related reference
sequences, as seen with RATT [15]. In contrast to context sensitive Hidden-Markov-Models [16] capable of including a
few contextual bases, ReadSeeker can use the whole read as context due to its transformer based structure. Addition-
ally, the ReadSeeker model exhibits robust performance across diverse organism groups, including viruses, bacteria, and
mammals. We could also show a high performance of ReadSeeker on organisms with highly unbalanced genomes like
the SARS-CoV-2 Samples.

Although the nature of neural networks renders our ReadSeeker model is approximately 25 times slower compared
to FragGeneScan (Sect 0.2), it serves as a valuable complementary method. This is particularly evident in scenarios
where FragGeneScan’s accuracy is insufficient and reference-based annotations are inadequate due to high mismatches
between target and reference sequences or where reference sequences are incomplete.

The model’s independence from organism-specific constraints allows it to be applied broadly across different fields of
genomics, including environmental DNA studies and metagenomics.

Lastly, the integration of the ReadSeeker model with existing genomic analysis pipelines can provide a more holistic
understanding of genomic data, aiding in the discovery of new genes, regulatory elements, and other functional genomic
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regions. Future work will focus on optimizing the model’s inference speed and exploring its applicability to even shorter
reads than 151BP and a potential change to the Byte-Pair-Encoding based DNABERT 2 [17].

Supporting information

S1 Fig. Krona plot of training dataset. The Krona plot illustrates the taxonomic distribution of the ReadSeeker training
dataset, providing a comprehensive overview of the relative abundance of different taxa present in the dataset. The hier-
archical structure of taxonomic classifications is depicted, allowing for an intuitive understanding of the taxonomic compo-
sition of the dataset The graphic illustrates the even source data distribution on viral (red), bacterial(cyan) and mammalian
(green) genomes.
(TIFF)

S2 Fig. Readseeker Confusion matrices. The confusion matrices illustrate the performance of the Readseeker classi-
fier on datasets derived from 12 different samples and evaluated against seven test reference genomes. Here, the label
‘0’ corresponds to non-coding (nonCDS) read sequences, while the label ‘1’ indicates coding sequence (CDS) reads. The
results demonstrate that Readseeker effectively distinguishes between nonCDS and CDS reads, highlighting its strong
sensitivity and specificity. Notably, the classification behavior for the Sars-CoV-2 dataset deviates from the other reference
genomes. This anomaly arises from the dataset’s inherent imbalance, characterized by only 8 nonCDS reads.
(EPS)

S3 Fig. FragGeneScan Confusion matrices. The confusion matrices display the classification performance of FragGe-
neScan applied to datasets from 12 samples and evaluated against seven test reference genomes. In this context, the
label ‘0’ denotes non-coding (nonCDS) read sequences, while the label ‘1’ represents coding sequence (CDS) reads.
FragGeneScan exhibited a high sensitivity, evidenced by its accurate classification of the majority of CDS reads. How-
ever, its specificity was compromised, with nearly 50% of nonCDS reads being misclassified as CDS. This reflects a chal-
lenge in distinguishing nonCDS from CDS reads within this dataset. Additionally, the Sars-CoV-2 dataset demonstrated
outlier behavior, attributed to its unbalanced nature, characterized by merely 8 nonCDS reads.
(EPS)

S4 Fig. Genomic Benchmark - Simple Model Confusion matrices. The confusion matrices display the classification
performance of Simple Base Model applied to datasets from 12 samples and evaluated against seven test reference
genomes. In this context, the label ‘0’ denotes non-coding (nonCDS) read sequences, while the label ‘1’ represents cod-
ing sequence (CDS) reads. TheGenomic Benchmark - Simple Model classified nearly all negative sequences of the M.
tuberculosis as coding leading to a random always CDS decision for this dataset. On the Epstein-Barr Virus and the E.
coli samples, the Genomic Benchmark - Simple Model misclassified 26.5% to 29.5% false-positives. Additionally, the
Sars-CoV-2 dataset demonstrated outlier behavior, attributed to its unbalanced nature, characterized by merely 8 nonCDS
reads.
(EPS)

S1 Table. Real process time comparison of ReadSeeker and FragGeneScan.
(PDF)

S2 Table. Comparison of the Real Processing Time per 1000 Reads of ReadSeeker and FragGeneScan.
(PDF)
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