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Abstract 

In disaster research, individual-level mobile phone location data is considered highly 

valuable for assessing population mobility and disaster impacts. However, due to 

privacy regulations in China, only spatially aggregated mobile data with a resolution 

of 1 km × 1 km are available. These data do not contain explicit population individ-

ual population movement, which poses challenges for analyzing population move-

ment patterns in disaster research. To using this grid-based mobile data to describe 

population movement, we applied an empirical orthogonal function (EOF) method 

to the post-disaster phase of the 2017 Jiuzhaigou earthquake. The first EOF mode 

(EOF1) primarily exhibits positive anomalies centered over the Jiuzhaigou Valley. 

The principal components for the EOF1 show a decreasing trend from midnight to 

20:00, indicating a continuous outflow of population from the Jiuzhaigou Valley during 

this period. The second mode (EOF2) exhibits negative anomalies at the Jiuzhaigou 

Valley and along the road to the southwest of the Valley, while positive anomalies 

appear along two roads, i.e., one extending from the Jiuzhaigou Valley to Shuanghe, 

and the other from the Chuanzhusi Town government square to western Chuanzhusi. 

The primary components of EOF2 reveal that, from midnight to 10:00, population 

increased along these two roads while decreasing over the Jiuzhaigou Valley and 

the road leading southward to the Chuanzhusi Town government square. After 10:00, 

this population change pattern diminished between 10:00–15:00. Based on the EOF2 

results, two evacuation routes were identified: Path 1 extended northwest from the 

Chuanzhusi Town government square; Path 2 led southeast from Jiuzhaigou Valley 

through Shuanghe Town. In comparison, the BBAC_I clustering method identifies 

clusters with similar temporal trends but fails to pinpoint the most affected areas or 

infer evacuation directions. In contrast, EOF analysis overcomes these limitations by 

revealing key impact zones and evacuation patterns, even in the absence of trajec-

tory data.
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Introduction

Understanding population movement patterns following disasters is essential for 
effective emergency response, minimizing loss of life, and optimizing the allocation 
of emergency resources. Traditional methods for population analysis, such as field 
surveys, provide detailed demographic information and insights into the motivations 
behind population movements [1]. However, these methods are limited in disaster 
scenarios due to their high costs, time-consuming data collection, and low resolution 
for effective emergency response [2,3]. Remote sensing data offers an alternative. 
For instance, night-time light satellite imagery is useful for estimating population 
density [4], but faces limitations in disaster population analysis for their invalidation 
during daylight. General satellite imagery can support daytime assessments of build-
ing damage and potential population displacement, but its utility is often hindered by 
limited spectral resolution constraints, adverse weather conditions, and lengthy data 
processing times [5,6], hampering its ability to provide real-time support for rescue 
operations [7].

Given these limitations, the widespread adoption of smartphones offers a valu-
able alternative for population analysis in disasters. Mobile phone data, with its 
high spatio-temporal resolution and wide coverage [8,9], has been instrumental in 
generating spatial-temporal statistical information on human activities across multi-
ple domains, including disaster scenarios [10–17]. By utilizing detailed, user-based 
mobile location data, researchers can monitor real-time evacuation patterns and 
examine how population movement is influenced by various factors under disasters, 
such as earthquake intensity [18], socioeconomic status [19,20], transportation diver-
sity [21], and regional connectivity [22]. These insights enable a deeper understand-
ing of how individuals respond and make decisions during disasters.

Despite these advantages, detailed user-based mobile phone data are rarely 
accessible due to strict privacy regulations. As a result, many studies rely on grid-
based mobile phone data—aggregated from individual records—which provide 
population counts within defined spatial grids at specific time intervals. However, 
this aggregation removes user-specific trajectory information, making it challenging 
to analyze individual-level population movement patterns. While previous studies 
[23,24] have used such data to evaluate disaster impacts and regional resilience, 
they generally unable to capture detailed mobility patterns during crises.

To address this issue, researchers have explored various analytical methods that 
aim to extract meaningful information from grid-level data. Among these, the Breg-
man Block Average Co-clustering algorithm with I-divergence (BBAC_I) has emerged 
as an efficient spatiotemporal clustering technique [25] and has been applied to 
analyze population changes during disaster events, including the 2017 Jiuzhaigou 
earthquake [26]. BBAC_I is capable of identifying regions with similar temporal trends 
in population variation. However, it has limited ability to identify critical impact zones 
or uncover directional movement flows—especially when applied to anonymized, 
gridded datasets without trajectory data.

To overcome these limitations, this study explores the use of the Empirical 
Orthogonal Function (EOF) method, which decomposes spatial-temporal data into 
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orthogonal modes that reflect dominant patterns of variation. By detecting positive and negative anomalies in EOF com-
ponents, this method allows for the exploration of population changes over time, enabling preliminary assessments of 
movement directions and intensities during disasters. For example, during earthquakes, populations often evacuate from 
high-risk areas to safer regions, resulting in population increases in shelters, decreases in hazardous zones, and fluctua-
tions along evacuation routes. By analyzing these population spatial changes with EOF analysis, it becomes possible to 
infer evacuation directions and patterns even in the absence of individual trajectory data.

Since both the EOF and BBAC_I methods are capable of capturing spatial-temporal population changes, this study 
applies both approaches to analyze population movements following the 2017 Jiuzhaigou earthquake. Their results were 
compared to evaluate the strengths and limitations of each approach in capturing post-disaster population dynamics.

The analytical framework of this study is illustrated in Fig 1.

Fig 1.  Analytical framework of the study.

https://doi.org/10.1371/journal.pone.0335415.g001

https://doi.org/10.1371/journal.pone.0335415.g001
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Materials and methods

Data

Earthquake description and data description.  At 21:19 on August 8, 2017, a magnitude 7.0 earthquake struck 
Jiuzhaigou County in northern Sichuan Province, China (Fig 2). According to the National Seismological Science Data 
Center, the epicenter was located at 33.20°N, 103.82°E, with a focal depth of 20 km. This earthquake caused significant 
casualties and economic losses in the local community. As of 20:00 on August 13, 2017, the earthquake had resulted in 
25 deaths, 525 injuries, 6 missing persons, 176,492 people affected, and 73,671 buildings damaged to varying degrees.

The mobile location data used in this study were provided by China Unicom, covering the affected areas of the earth-
quake with hourly time scale. The dataset includes records from August 2, 2017 (six days before the earthquake), and 

Fig 2.  Spatial intensity distribution on August 9, 2017.

https://doi.org/10.1371/journal.pone.0335415.g002
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August 9, 2017 (the day after the earthquake), which were used to represent pre- and post-disaster population distribu-
tions, respectively.

To protect user privacy and comply with legal requirements, the data provider aggregated individual mobility records 
into spatial grids with a spatial resolution of 1 km x 1 km and a temporal resolution of one hour. Each grid data record 
contains attributes, including Grid ID, Grid Location, Timestamp, and Number of Users.

In this study, the term “population count” refers to the hourly number of mobile phone signals detected within each spa-
tial grid, reflecting the static spatial distribution of the population at different times. However, the dataset does not contain 
individual trajectories or explicit movement paths, and thus differs fundamentally from conventional origin-destination (OD) 
datasets. Accordingly, this study explores how population movement patterns in disaster contexts can be inferred from 
such aggregated data, despite the absence of explicit trajectory information.

Data processing.  Ideally, each grid in the dataset should contain complete hourly data for two full days—August 2 and 
August 9, 2017—resulting in two 24-hour time series. However, due to unknown reasons, most grids experienced varying 
degrees of missing values in their time series. To ensure data reliability and accurately capture population dynamics 
associated with the disaster, the following preprocessing steps were implemented:

(1)	 Exclusion of grids with excessive missing data

Grids with three or more consecutive missing hourly values were removed. In the context of an earthquake, human 
behavior can change drastically within a span of three consecutive hours (12.5% of the total time series), potentially lead-
ing to significant shifts in population numbers within a grid. To ensure data reliability, we removed grids with three or more 
consecutive missing hours. After this filtering step, we retained grid cells with data for both observation dates: August 2, 
2017 (six days before the earthquake) and August 9, 2017 (the day after the earthquake). This ensured consistency in 
the spatial scope of the analysis and improved the accuracy of assessing the earthquake’s impact on population. Based 
on this filtered dataset, we calculated the difference in population counts between the two dates for each grid to generate 
population anomaly data for further analysis.

(2)	 Interpolation of remaining missing values

For grids retained after filtering, linear interpolation was applied to fill isolated missing values. This method was selected 
for its simplicity and minimal assumptions regarding data behavior, making it suitable for unpredictable conditions such as 
disaster events. Since grids with excessive missing data had already been removed, the interpolation process was applied 
under appropriate conditions and yielded reliable results.

(3)	 Derivation of population anomalies

To isolate population changes attributable to the earthquake, it was necessary to remove daily variability from the 
post-disaster data. This was achieved by subtracting the pre-disaster population values (August 2) from the corresponding 
post-disaster values (August 9) for each hour in each grid. The population anomaly time series were calculated using the 
following formula:

	 Dit = Ppost,it – Ppre,it 	 (1)

where Ppre,it  and Ppost,it  denote the population counts in grid i at time t on August 2 and August 9, respectively, and Dit 
denotes the population anomaly.

Prior to data processing, we identified 683 grid cells with mobile location data available for at least one timestamp. 
Among these, approximately 46% were classified as valid grids after the above data procession steps (i.e., with less than 
three consecutive missing values in their time series), while the remaining 54% were considered invalid. Although invalid 
grids were more numerous, they accounted for only 13.8% of the total population on August 2. Since both August 2 and 
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August 9 were Wednesdays, population patterns are expected to be similar. Given the low pre-earthquake population in 
invalid grids, it is reasonable to assume that their post-earthquake population was also limited. Moreover, Fig 2 shows that 
valid and invalid grids exhibit similar geographic distribution patterns. These findings support the conclusion that excluding 
invalid grids is unlikely to introduce significant spatial or demographic bias.

Subsequently, we overlaid the spatial distribution of grids onto the official macroseismic intensity map published by the 
China Earthquake Administration to visualize the seismic intensity level of each grid (Fig 2). This intensity map follows 
the Chinese seismic intensity standard, under which regions with an intensity level below Ⅵ are generally not considered 
to suffer destructive seismic impacts and are typically excluded from seismic fortification planning [27,28]. Based on this 
standard, our study focuses on areas where the seismic intensity is Ⅵ or above, where the population is more likely to 
be exposed to potential earthquake impacts. These high-intensity zones are centered around Jiuzhaigou County, with a 
spatial coverage defined by a latitude range of 32.6128° to 33.6702° and a longitude range of 103.0779° to 104.3304°, as 
depicted in Fig 2.

Method

Empirical orthogonal function (EOF).  EOF analysis is a widely used technique for extracting primary patterns from 
complex datasets and is particularly effective in analyzing spatiotemporal data. This method decomposes the original 
dataset into orthogonal spatial and temporal modes by calculating the eigenvalues and corresponding eigenvectors of 
the covariance matrix derived from the data [29]. The eigenvectors represent the spatial modes (EOFs), which capture 
the spatial distribution characteristics of the dataset, while the associated eigenvalues indicate the proportion of variance 
explained by each mode. Higher variance implies greater significance of that spatial mode [30]. The temporal modes, or 
principal components (PCs) are projections of the original data onto the EOFs, reflecting the temporal evolution of each 
spatial mode.

To perform EOF analysis, we first constructed a spatiotemporal matrix O(G,T) using the anomaly dataset, where G 
denotes spatial grids and T denotes hourly timestamps on August 9, 2017. This matrix was mean-centered to produce the 
anomaly matrix O′(G,T), from which we computed the corresponding covariance matrix C(G,G). Eigenvalues and eigen-
vectors were then extracted from this matrix to identify the leading EOF modes that account for the largest proportion of 
variance in the dataset.

Interpretation of EOF results involves examining both the spatial and temporal components. In the spatial modes, 
positive and negative values indicate grids where the variable (i.e., population count) deviates from the mean in opposite 
directions, indicating spatial patterns of population inflow or outflow. While the signs of the EOFs and PCs are mathemati-
cally arbitrary—multiplying both by −1 does not alter the result—their physical interpretation depends on their combination. 
For example, a positive PC value associated with a positive EOF anomaly suggests population increase in those grids, 
whereas a negative EOF anomaly would suggest a decrease. The interpretation reverses when the PC is negative.

In practice, the first few EOF modes typically explain the majority of variance in the dataset and are thus the most infor-
mative for understanding dominant spatiotemporal patterns. In our case, the first and second EOF modes alone explained 
a substantial portion of total variance and revealed meaningful spatial-temporal behaviors of population movement follow-
ing the 2017 Jiuzhaigou earthquake. Consequently, we focused on the leading EOF modes to extract and interpret the 
dominant trends of post-disaster population dynamics. The main procedures of the EOF computation are summarized in 
Table 1. For more details about EOF analysis, please refer to the works of Monahan [30] and Wilks [31].

The Bregman block average co-clustering algorithm with I-divergence (BBAC_I)

The Bregman Block Average Co-clustering algorithm with I-divergence (BBAC_I) is a spatiotemporal co-clustering tech-
nique that simultaneously partitions both rows and columns of a data matrix by minimizing a generalized form of Breg-
man divergence—specifically, the I-divergence—between the original data and its co-clustered representation. Unlike 
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traditional clustering methods that focus solely on spatial similarities and often neglect temporal sequence structures [32], 
BBAC_I integrates information from both spatial and temporal dimensions, thereby capturing complex patterns across 
both axes. This method is even advantageous in scenarios involving only spatial clustering, as it incorporates temporal 
clustering information into spatial clustering, and vice versa [33]. Previous studies [34,35] have validated BBAC_I’s effec-
tiveness in revealing key spatial and temporal dynamics in various datasets.

In our analysis, we applied BBAC_I to the forementioned spatiotemporal matrix O(G,T). To focus on spatial pattern 
differentiation, all time points were grouped into a single temporal cluster, allowing for a uniform comparison of spatial 
grids across the entire time series. The algorithm then performed co-clustering on the rows and columns of the matrix to 
produce an initial co-cluster matrix Ô(Ĝ,T).

The optimization objective of BBAC_I is to minimize the information divergence between the original and co-clustered 
matrices. The corresponding loss function is defined as the following formula:

	 Floss = DI (O(G,T) || Ô(Ĝ,T))	 (2)

where DI denotes the I-divergence, a form of generalized Bregman divergence. Through iterative updates of cluster 
assignments, the algorithm seeks to minimize Floss, thereby enhancing intra-cluster similarity and inter-cluster differen-
tiation. This optimization ensures that the average values within each cluster are internally consistent yet distinct from 
others. The implementation steps of the BBAC_I algorithm used in this study are summarized in Table 2, for more details 
on the algorithm, please refer to the studies by Wu [35], Dai [26] and Nattino [36].

Result

Population changes under different intensity levels

To assess the earthquake’s impact on population dynamics across different seismic intensity zones, we analyzed changes 
in population anomalies, which represent deviations from typical population fluctuations specifically attributed to the earth-
quake event. This analysis helped identify key evacuation moments and the overall evacuation process. Fig 3 illustrates 
the hourly average population anomalies on August 9 (the day following the earthquake), highlighting significant disrup-
tions caused by the earthquake across various intensity levels.

Notably, at 00:00 on August 9 (three hours after the earthquake), the average population anomalies across different 
intensity zones were 50–200 people higher than usual. This initially elevated population in the most severely affected 

Table 1.  Execution Steps of the EOF Algorithm.

Empirical orthogonal function

Input:O(G,T)
Start: 
1. Subtract the row mean µ from each row of O(G,T) to generate the anomaly matrix Ó(G,T): 
Ó=Ó – µ

2. Generate the covariance matrix C(G,G) based on Ó(G,T): 

C(G,G) =Ó
T
∗Ó

3. Decompose C(G,G) to get the eigenvalues Vand corresponding eigenvectors P: 
C = P V P–1

4. Sort the eigenvalues in descending order to get Vsorted  and select the first corresponding eigenvectors 
as EOFs: 
EOFs = Vsorted[: , :k]

5. Calculate the temporal modes PCs:
PCs =Ó ∗ EOFs
End: Output EOFs and PCs

https://doi.org/10.1371/journal.pone.0335415.t001

https://doi.org/10.1371/journal.pone.0335415.t001
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areas may reflect temporary congregation or delayed evacuation behaviors. Despite this early influx, a noticeable decline 
in the population anomaly occurred from 00:00–06:00 in the highest intensity zones (Intensity Ⅷ and Ⅸ), with a sharper 
decrease after 06:00. Although some fluctuations were observed, the overall trend remained downward. By 19:00–20:00, 
the population anomalies in these zones had further decreased by an average of 500–600 compared to normal levels. 
After 20:00, the population gaps relative to normal days began to narrow, possibly due to the naturally lower nighttime 
population in the region, which reduced deviations from baseline levels during this period..

Table 2.  Pseudocode of the BBAC_I Algorithm.

The Bregman block average co-clustering algorithm with I-divergence

Input:
O (G,T): Original spatiotemporal matrix with G spatial grids and T timestamps
tc: Number of time clusters
gc: Number of grid clusters
max_iterations: Maximum number of iterations

Procedure:
1 Initialization

1.1 Perform min_max scaling onO (G,T)
1.2 Randomly assign grids to gc grid clusters// create initialÔ(Ĝ,T)
1.3 tc = 1// All time points are grouped into a single cluster

2 Repeat until f_loss < threshold or iteration count reaches max_iterations
2.1 Calculate I-divergence:floss=DI(O (G,T) || Ô(Ĝ,T))
2.2 For each grid in G:
  2.2.1 Temporarily assign the grid to each cluster in (1, …, gc)
  2.2.2 Calculate I-divergence for each assignment
  2.2.3 Assign the grid to the cluster that minimizes the I-divergence:

i = arg mini∈{1,...,gc}(floss)

2.3 Update Ô(Ĝ,T) based on new assignments
Output:

  Ô(Ĝ,T)// Final optimal co-clustered matrix

https://doi.org/10.1371/journal.pone.0335415.t002

Fig 3.  Hourly average population anomaly across different seismic intensity levels on August 9 (Post-Earthquake). “Population anomaly” rep-
resents deviations from the baseline on August 2 (Pre-Earthquake), highlighting changes specifically attributed to the earthquake, where positive values 
indicate increases above the baseline and negative values indicate decreases below it.

https://doi.org/10.1371/journal.pone.0335415.g003

https://doi.org/10.1371/journal.pone.0335415.t002
https://doi.org/10.1371/journal.pone.0335415.g003
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Interestingly, the population anomaly in Intensity Ⅶ showed an inverse pattern compared to Intensity Ⅷ and Ⅸ. Between 
00:00 and 06:00, as the population anomaly decreased in Intensity Ⅷ and Ⅸ, Intensity Ⅶ experienced a delayed increase, 
indicating a time-lagged population shift from higher to lower intensity zones. After 14:00, the population in Intensity Ⅶ 
showed minimal differences from regular days, suggesting that most evacuees had left the highest-intensity areas.

Intensity VI followed a similar pattern to Intensity Ⅶ, though less pronounced. From 00:00–06:00, the average population 
anomaly increased slightly, by about 50, suggesting a gradual relocation from high-intensity zones to Intensity Ⅵ. After 06:00, 
the population anomaly decreased and remained stable, likely due to the larger grid area of Intensity VI, which covers more 
than twice the combined grid area of Intensity Ⅶ, Ⅷ, and Ⅸ, thereby diluting the effect of population inflow.

Overall, these trends indicate that the main period for population gathering and evacuation from the highest intensity 
zones (Intensity Ⅷ and Ⅸ) occurred between 00:00 and 13:00, followed by delayed population increases in adjacent 
lower-intensity (Intensity Ⅵ and Ⅶ) areas, indicating a time-lagged relocation process. As the evacuation continued, popu-
lation in Intensity Ⅵ and Ⅶ also began to decline. By 14:00, anomalies in these lower-intensity zones had largely returned 
to normal, suggesting that the majority of the population had evacuated from the highest-intensity areas.

These observed patterns align with the official rescue report [37], which documented several hotels served as tempo-
rary shelters in Intensity VIII and IX zones and early rescue operations in the Jiuzhaigou Scenic Area starting at midnight 
on August 9. This supports the evacuation timeline inferred from our dataset, including the early population decline in the 
highest-intensity zones and corresponding delayed increases in adjacent lower-intensity areas (Intensity Ⅶ and Ⅵ).

While this analysis outlines key evacuation trends across seismic intensity zones, it remains challenging to determine 
the specific evacuation directions, hotspots and evacuation intensity at finer spatial resolutions. Therefore, further analysis 
at the grid scale is necessary to better understand population movement during the disaster.

EOF analysis results

Significant disparities in population distribution and evacuation behavior can be observed among grids experiencing the 
same seismic intensity. Therefore, a grid-level analysis was conducted to elucidate population evacuation dynamics fol-
lowing the earthquake. Consistent with previous sections, we applied EOF analysis to post-earthquake anomaly data from 
August 9. The first and second modes (EOF1 and EOF2) accounted for 60.4% and 28.5% of the total variance, respec-
tively. To clearly describe the results, we focused on the top 20% of grids with the strongest anomalies in either EOF1 or 
EOF2, as they accounted for over 80% of the variance in their respective modes.

(a)	 EOF1

EOF1 (Fig 4A) reveals a pattern dominated by positive anomalies, with negligible negative anomalies limited to only 
three grids in Zhangzha and Shuanghe. The strongest positive anomalies were observed in Zhangzha, centered around 
the epicenter, followed by Chuanzhushi and Shuanghe. The clustering of strong positive anomalies in the Jiuzhaigou Val-
ley demonstrates that EOF1 reflects the most significant population shifts that occurred in this area.

The primary component of EOF1 (PC1), as depicted in Fig 4C, reflects the dynamic population trends within the 
Jiuzhaigou Valley. Between midnight and 5 AM, PC1 showed a consistent increase, indicating a continuous inflow of 
people—likely seeking temporary refuge within the valley. After 5 AM, PC1 began to decline but remained positive, sug-
gesting a decelerated rate of inflow, potentially reflecting the initial phase of evacuation, that some individuals may had 
already started evacuating. Following 12 PM, PC1 continued to decline and turned negative, reflecting a substantial popu-
lation outflow, consistent with the official report of large-scale evacuations from Jiuzhaigou County during this period [37]. 
This correspondence confirms EOF1 as a reliable indicator of major population movements following the earthquake.

(b)	 EOF2

EOF2 captured the spatial heterogeneity of population shifts during the evacuation process. The spatial pattern (Fig 
4B) exhibited a pronounced contrast between grids with positive and negative anomalies. Most grids near the People’s 
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Fig 4.  The EOF analysis results on August 9. (A-B) Spatial distribution of EOF1 and EOF2, respectively. (C-D) PCs curves corresponding to EOF1 
and EOF2, respectively.

https://doi.org/10.1371/journal.pone.0335415.g004

https://doi.org/10.1371/journal.pone.0335415.g004
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Government of Chuanzhushi (marked as a government building icon in Fig 4B) were featured with negative anoma-
lies, except for one positive anomaly located in the northwest of Chuanzhushi. Another core area of negative anomalies 
was located in the Jiuzhaigou Valley (Zhangzha Town). Extending eastward from the valley and then southward toward 
Shuanghe Town, the surrounding grids exhibited a continuous spatial corridor formed by positive anomalies.

The primary component of EOF2 (PC2), as depicted in Fig 4D, offers insight into the evolving evacuation dynamics. 
From 0 to 6 AM, PC2 gradually increased but remained negative, indicating a gradual slowdown in population accumu-
lation in negatively anomalous areas such as grids near the People’s Government of Chuanzhushi and the Jiuzhaigou 
Valley. After 6 AM, PC2 turned positive and rose sharply, suggesting a significant shift as individuals evacuated toward 
positively anomalous regions. The peak at 10 AM represents the height of evacuation activity, followed by a steady 
decline, with PC2 approaching zero around 2 PM—suggesting that most evacuations had been completed by then.

Based on the temporal evolution of PC2 and the spatial distribution of EOF2 anomalies, we infer that evacuation routes 
during the earthquake corresponded to the pathways connecting negative anomaly centers (evacuation origins) to positive 
anomaly zones (potential shelters or transit hubs). We then overlaid the EOF2 anomaly map with the local road network 
(Fig 4B) and identified two primary evacuation routes: Route 1 connected the negative anomaly grids near the Chuan-
zhusi government building to the isolated positive anomaly grid in the northwest (green line on the left of Fig 4B); Route 2 
extended from the negative anomaly center in the Jiuzhaigou Valley toward the positively anomalous region in Shuanghe 
to the south (green line on the right of Fig 4B). Both routes align closely match those documented in the official rescue 
report [37], with Route 2 being confirmed as the principal evacuation corridor.

To further validate the inferred spatial patterns, we mapped real-world points of interest (POIs) identified from evac-
uation reports and media sources such as People’s Daily, Sichuan Daily onto the EOF2 anomaly map (Fig 4B). Major 
evacuation hubs—such as Chuanzhusi Government Square, Jiuzhaigou Huanglong Airport and hotels distributed through-
out Jiuzhaigou Valley—were located within areas of strong negative anomalies and served as initial gathering sites. 
Conversely, sites near zones of strong positive anomalies, such as the Baihe County and Jiuzhaigou County govern-
ment buildings, functioned as transit or secondary shelter sites. These correspondences reinforce the robustness of the 
EOF2-derived evacuation interpretations.

Together, EOF1 and EOF2 provide a comprehensive understanding of population dynamics during the earthquake. 
While EOF1 effectively identifies regions experiencing the most significant population shifts, EOF2 captures the spatio-
temporal characteristics of evacuation behavior, offering detailed insights into the evacuation process.

Comparison of EOF and BBAC_I in analyzing population change

Previous research has employed the BBAC_I clustering method to analyze population changes during the Jiuzhaigou 
earthquake [26]. To enable a direct comparison with the Empirical Orthogonal Function (EOF) method, we applied the 
BBAC_I method to the same dataset.

Since the BBAC_I method cannot handle negative data, we used the original population data for clustering analysis. 
Fig 5 provides a detailed spatial distribution of each cluster, along with corresponding time series of population counts on 
August 9 (Post-Earthquake). Overall, the cluster distribution shows a radial pattern centered on Cluster 3 (highlighted in 
red), with the magnitude of population change diminishing outward.

Cluster 3, serving as the core of the overall spatial distribution, contained the highest population in the fewest grids. In 
these grids, the population remained stable until 5 AM, followed by a decline between 5 and 10 AM, and then a more grad-
ual decrease thereafter. An exceptional pattern was observed in one grid within Cluster 3, where the population surged 
to approximately 8,000 between midnight and 10 AM before rapidly declining, with the population approaching zero by 2 
PM—indicating near-complete evacuation.

Cluster 2 and Cluster 4, surrounding Cluster 3, comprise the majority of the spatial grids. Most grids in Cluster 4 expe-
rienced a population decline between 5 and 10 AM, followed by more moderate changes later in the day. Some grids, 
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however, showed a population increase during this same interval, with a few continuing to grow afterward. Cluster 2, typ-
ically located on the peripheries of towns, exhibited smaller populations and weaker fluctuations, with no grid exceeding 
400 individuals during the analyzed period.

Cluster 1, characterized by fewer and more randomly distributed grids. These grids showed a noticeable population 
increase in the early morning hours and peaked between 5 AM and 10 AM, followed by a rapid decline.

While the BBAC_I method effectively integrates temporal patterns into spatial clustering and shows proficiency in 
deriving clusters with similar temporal patterns, it has limitations. Specifically, it does not clearly identify the most severely 
impacted areas or support preliminary assessment of evacuation directions in seismic events.

In contrast, the EOF method effectively overcomes these limitations. By focusing on the top 20% of the strongest 
anomalies in EOF1 and EOF2, we successfully identified regions with the most significant changes in population activity. 
For example, grids in Cluster 2 were largely absent from the EOF results due to minimal variation, thus helping to pin-
point the key areas that require prioritized emergency attention. In addition, PC2 captured both the timing and magnitude 
of population movements among grids, providing an initial classification of grid functions during the earthquake, such as 
evacuation corridors and temporary shelter areas.

Furthermore, EOF analysis aids in identifying evacuation routes even without explicit tracking data. For example, 
although Cluster 3 exhibited the largest and most dramatic population changes, the direction and extent of evacuation 
from these areas remained unclear. EOF results revealed that a significant number of individuals evacuated from Clus-
ter 3 in the Jiuzhaigou valley and passed through Shuanghe Town, thereby suggesting a probable evacuation corridor. 
This finding underscores the value of the EOF method in identifying evacuation routes and priority zones for emergency 
response.

Fig 5.  Cluster analysis results on August 9. (A) Spatial distribution of clusters. (B-E) Temporal population series for grids corresponding to cluster1-4, 
respectively.

https://doi.org/10.1371/journal.pone.0335415.g005

https://doi.org/10.1371/journal.pone.0335415.g005
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In summary, compared to the BBAC_I method, the EOF method provides a more comprehensive understanding of 
population dynamics during disaster events. By reducing multidimensional data into a few principal modes, it effectively 
highlights both key temporal patterns in population activity and major spatial movements related to population evacuation.

Discussion

Impact of missing data on the study

In this study, we noticed an unusual phenomenon: shortly after the earthquake, most grid areas, including those in 
high-intensity seismic zones and near the epicenter, exhibited population increases, as detailed in Fig 3 and Fig 5. 
This observation is counterintuitive, as people are generally expected to evacuate high-risk areas following a disaster. 
Prompted by this anomaly, we conducted a thorough reassessment of our data preprocessing procedures.

During data preprocessing, we excluded grid data with a large number of missing values in their time series. Our analy-
sis indicates that such data loss was not random but likely associated with severe earthquake-induced disruptions—partic-
ularly the destruction of base stations and power outages, which are the most plausible causes of the missing population 
data in the time series. Consequently, although located in the same intensity zones as their neighboring grids with valid 
data, these excluded grids were probably the most heavily impacted [14,38].

The presence of stable signal coverage likely reflected the continued functionality of critical infrastructure—such as 
communication and power networks—and may have influenced survivors’ evacuation decisions. As a result, populations 
may have relocated from areas with disrupted signal coverage (excluded from analysis) to nearby areas with available 
signal coverage (included in analysis), which were perceived as relatively safer. This dynamic could explain the counterin-
tuitive population inflow observed within the highest-intensity zones, as survivors concentrated in grids with better infra-
structure conditions.

Therefore, our findings suggest that in practical rescue operations, special attention should be paid to areas with 
extensive missing mobile location data. The absence of such data could be an indicator of more severe disaster impacts 
in these locations.

Conclusion

Our study demonstrates the utility of grid-aggregated mobile location data with advanced analytical techniques—partic-
ularly the Empirical Orthogonal Function (EOF) method—to analyze population dynamics during disasters. Through the 
EOF method, we were able to preliminarily identify the actual evacuation routes following the Jiuzhaigou earthquake, 
revealing patterns of population movement. Although the data do not provide individual trajectory information, they still 
offer meaningful insights into large-scale evacuation behaviors.

The main findings derived from our analysis are summarized as follows:

(1)	EOF1 captured the overall population evacuation patterns. It revealed that the regions with strong population 
changes after the earthquake, such as Zhangzha, Chuanzhushi, and Shuanghe, experienced the most significant 
evacuations.

(2)	 EOF2 provided more detailed insights into the specific evacuation routes and variations in population movement. It 
identified critical evacuation paths in heavily affected areas like Zhangzha and Chuanzhushi, highlighting how popula-
tions evacuated from higher-risk areas. The analysis of PC2 revealed shifts in evacuation intensity over time, offering 
a clearer picture of the evacuation flow dynamics.

(3)	 Compared to the BBAC_I method, the EOF approach offers a deeper understanding of disaster-induced population 
dynamics by filtering out low-impact grids, identifying functional zones such as evacuation corridors and shelters, and 
capturing both the temporal and spatial characteristics of evacuation without relying on individual trajectory data.
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While our study provides valuable insights, there are several areas for optimization in future research. First, the anal-
ysis was limited by the availability of only two observation days in the dataset: August 2, 2017 (six days before the earth-
quake), and August 9, 2017 (the day after the earthquake). This restricted temporal coverage may introduce inaccuracies 
when removing daily variation, reducing the overall validity of the results to some extent. Second, missing mobile location 
data could be further utilized to assess damage to power systems during disasters and pinpoint the most hazardous 
areas. Additionally, the estimation of evacuation routes could be enhanced by employing advanced techniques, such as 
complex network analysis, to further uncover the actual paths taken by evacuees. This approach would provide more 
detailed information on the direction and intensity of population movements across different areas, leading to more accu-
rate and reliable evacuation route estimations.
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