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Abstract 

Objective

This study evaluated whether active learning can enable efficient classification of 

venous thromboembolism (VTE) reports using minimal labeled data. In parallel, we 

assessed whether deep learning (DL) models can achieve substantially superior 

performance compared to traditional machine learning (ML) models and overcome 

the limitations associated with small sample sizes and class imbalance in real-world 

clinical datasets.

Methods

5,839 imaging reports with, of which 1,088 (18.6%) were VTE-positive. Traditional 

ML models (RF, SVM, SVM with SGD, GBM) were combined with active learning 

strategies (random sampling, uncertainty-based, word similarity, TF-IDF similarity). 

DL models (LSTM, multi-kernel 1D-CNN with GloVe, BERT-based models) were also 

evaluated. F1 scores were used as the performance metric.

Results

Among VTE-positive patients, 65.0% had corresponding ICD-10 codes, indicating 

frequent under-documentation. ML models with active learning achieved F1 scores 

of 0.70–0.80, while DL models, particularly LSTM and multi-kernel 1D-CNN with 

GloVe achieved F1 scores ≥0.94 in a 7-class classification, even under severe class 

imbalance. Excluding the “No DVT and PE” class for a 6-class classification among 

VTE-positive cases led to reduced model performance, with the largest decline 

observed in BioBERT. The average inference time per report ranged from 0.0014 to 

0.024 seconds depending on the model architecture, suggesting that the system is 

feasible for near real-time deployment in clinical settings.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0335262&domain=pdf&date_stamp=2025-11-10
https://doi.org/10.1371/journal.pone.0335262
https://doi.org/10.1371/journal.pone.0335262
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5691-1813
https://orcid.org/0000-0002-3499-0466
https://orcid.org/0000-0001-8437-9254
mailto:fastbat@gmail.com
mailto:vascularkim@catholic.ac.kr


PLOS One | https://doi.org/10.1371/journal.pone.0335262  November 10, 2025 2 / 15

Conclusion

DL models substantially outperformed traditional ML in classifying VTE reports, with 

high accuracy, acceptable inference time, and robustness to class imbalance. These 

models hold promise for augmenting clinical workflows, particularly in addressing 

under-coded but clinically significant VTE cases.

Introduction

Deep vein thrombosis (DVT) is a type of venous thromboembolism (VTE) in which 
a blood clot forms in the deep veins of the lower leg or thigh. Although DVT is often 
asymptomatic, severe DVT can markedly impede venous return in the lower extrem-
ities, potentially causing swelling or pain. In some cases, the clot dislodges from its 
original site, traveling to the pulmonary artery (pulmonary artery thromboembolism) or 
passing through a patent foramen ovale into systemic circulation, leading to para-
doxical embolism [1]. In the United States, VTE is recognized as a leading cause 
of preventable cardiovascular disease, a major postoperative complication, and the 
number one preventable cause of death [2]. Each year, 375,000–425,000 VTE cases 
occur post-surgery, incurring per-case costs of $12,000 to $15,000 [3]. Furthermore, 
pulmonary embolism is an acutely life-threatening post-operative complication, and 
chronic venous thromboembolism can lead to pulmonary arterial hypertension and 
associated right heart failure [4].

The main pathophysiology of VTE is described by Virchow’s triad (stasis of blood 
flow, epithelial injury of the vessel, and a hypercoagulable state of the blood). Var-
ious risk factors are implicated, such as immobilization due to trauma or surgery, 
malignancy, inflammatory bowel disease, and autoimmune diseases [5]. Hospitalized 
patients, in particular, can be considered a high-risk group for VTE because they 
often suffer from acute or chronic illnesses with multiple overlapping risk factors [6]. 
For inpatients deemed to be high risk for VTE, the most crucial step is appropriate 
VTE prophylaxis such as anticoagulants, compression stockings, intermittent pneu-
matic compression (IPC), or early ambulation depending on each patient’s individual-
ized risk [7,8].

Analyzing ICD-10 codes has limitations for accurately identifying VTE prevalence 
because actual inpatient diagnoses are often omitted. VTE that occurs secondarily 
to other conditions might not be systematically coded, and discrepancies can occur 
between imaging test reports and discharge diagnoses [9]. Although some algorithms 
incorporating treatment data and imaging results have been proposed to improve 
VTE detection sensitivity, issues of insufficient sensitivity and validity in large-scale 
datasets remain problematic [10–14].

An alternative approach is to analyze the original radiologic test reports instead 
of ICD-10 codes, potentially yielding a more accurate estimate of VTE prevalence. 
However, those reports contain free-text descriptions and complex clinical information 
unique to each patient, so attaining high accuracy with simple rule-based methods 
is difficult. Machine learning can identify significant patterns in large text datasets; 
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models such as the Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM) each 
handle high-dimensional data but in different ways. Combining machine learning with active learning can substantially 
reduce labeling costs, because the most uncertain or information-poor data can be prioritized for annotation [15–17].

Nevertheless, machine learning alone might be insufficient to fully capture the contextual relationships within unstruc-
tured, complex text. Therefore, deep learning models have garnered attention. For instance, BERT (Bidirectional Encoder 
Representations from Transformers) learns bidirectional context via a self-attention mechanism to improve understand-
ing of word interactions within sentences [18,19]. BioBERT and BioLinkBERT further incorporate biomedical domain 
texts or knowledge graphs to enhance model accuracy in medical applications [20,21]. As other deep learning options, 
one-dimensional convolutional neural networks (1D-CNNs) can quickly capture local text patterns, while Long Short-Term 
Memory (LSTM) models excel at maintaining context over long sequences [22,23].

In this study, we compare the performance of machine learning models (SVM, RF, GBM) for classifying VTE-related 
test reports with that of deep learning architectures (BERT-based models, 1D-CNN, LSTM). We added active learning to 
the machine learning framework to investigate whether high accuracy could be achieved with minimal labeling. Our goal 
for this exploration was to identify the most appropriate technique for VTE report classification and lay the groundwork for 
an automated model that could be practically used in clinical environments.

Materials and methods

Datasets of interest

The dataset used in this study comprises imaging test reports from inpatients suspected of having VTE at The Catholic 
University of Korea Seoul St. Mary’s Hospital from May 1st 2016 to May 31st 2022. The tests we analyzed were chest 
computed tomography (CT), pulmonary artery CT angiography, DVT CT, lower extremity vein CT, and lower extremity 
vein duplex ultrasonography. Additionally, demographic factors (patient age and sex) and ICD-10–based diagnoses were 
collected. The hospital’s Information Strategy Team extracted the relevant data, and all personally identifiable information 
including hospital identification codes and names was anonymized. Authors could have accessed the extracted data since 
July 3rd 2023, and the authors did not have access to information that could identify individual participants during after 
data collection.F1.

A skilled expert examined each test report in the collected dataset to determine the presence and anatomical loca-
tion of pulmonary embolism (PE) and DVT. PE was defined as the presence of a thrombus in the truncal, segmental, or 
subsegmental region of the pulmonary artery. DVT was classified according to its location: proximal (from the inferior vena 
cava to the popliteal vein), distal (soleal and calf veins), thrombophlebitis (great or small saphenous veins), and others 
(thrombi in the subclavian vein, internal jugular vein, upper extremity veins, etc.).

According to those criteria, each test result report was annotated into one of seven classes: no PE or DVT, PE only, 
proximal DVT, distal DVT, thrombophlebitis, other DVT, or both PE and DVT. If the documentation was ambiguous or 
difficult to interpret, a second expert was consulted and a consensus decision was made. Formal inter-rater agreement 
statistics were not computed, as dual review was applied only to a limited number of uncertain cases. Among patients 
confirmed to have VTE, a subset was selected to examine whether their test report findings matched the ICD-10 codes 
recorded, thereby assessing the consistency between those two data sources.

Machine learning-based classification with word embedding and active learning

We divided the collected test reports into training and test sets using a computerized randomization method, with an 8:2 
ratio of training to test data. Before applying active learning, each test report, written in free-text form, was vectorized via 
word embedding for efficient processing. In this study, we adopted three word embedding methods—Term Frequency 
(TF), Word2Vec, and Doc2Vec [24,25]. TF is a bag-of-words approach that converts each word in a document into a 
unique index and stores the frequency of occurrence at the corresponding index. Word2Vec transforms each word in 
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a document into a high-dimensional vector, placing semantically similar words in nearby positions in the vector space. 
Doc2Vec represents the entire document as a single vector, reflecting its overall context and structure, thus facilitating 
classification of semantically similar texts in a broader context.

We selected three machine learning models—RF, SVM, and GBM—to train on the vectorized data. For the SVM, we 
examined an optimization method based on Stochastic Gradient Descent (SGD), hereafter called SVM with SGD, to 
improve its learning efficiency on large datasets.

Each model was initially trained on 8 samples before we applied the active learning query strategy. After training on 
those samples, the models selected the most uncertain (highly needed) data from newly presented samples, requested 
labeling, and were retrained on the newly labeled data. The seven available query strategies were random sampling, three 
uncertainty-based sampling methods (least confidence, margin sampling, entropy sampling), Length-Words, Word similar-
ity, and Term Frequency–Inverse Document Frequency (TF-IDF) similarity [26].

Least confidence calculates a model’s uncertainty about the most probable (best sequence) label derived from the 
posterior probability. For a data sample x, uncertainty is typically defined by:

	 ϕLC(x) = 1 – P
(
y∗
∣∣ x; θ)	 (1)

where P(y∗|x; θ) is the softmax output indicating how likely it is that x belongs to the top-predicted class y∗. A lower confi-
dence implies a higher level of uncertainty (1 – confidence), suggesting a greater need for labeling and retraining on that 
data.

Margin sampling assesses the difference between the model’s highest and second-highest class probabilities for a 
given x. A smaller difference implies greater uncertainty because it indicates that the model cannot decisively distinguish 
between the top two classes (y∗1 and y∗2). The margin of classification can be represented as:

	 ϕMS(x) = 1 – (P
(
y∗1
∣∣ x; θ) – P (

y∗2
∣∣ x; θ))	 (2)

Entropy sampling measures the disorder (entropy) in the probability distribution across all classes. The more evenly 
distributed the probabilities, the less confident the model is about any single class, indicating higher uncertainty. The 
entropy for a data sample is calculated as:

	
ϕES(x) = –

C∑
c=1

P
(
yc
∣∣ x; θ) · logP (

yc
∣∣ x; θ)

	 (3)

Where P(yc|x; θ) is the probability that sample x belongs to class c, and –logP(yc|x; θ) denotes its information entropy. The 
maximum entropy occurs when the probability distribution is nearly uniform, signifying that the model cannot confidently 
assign x to any single class.

Length-Words assumes that sentences with more words potentially contain more information than sentences with fewer 
words. Thus, samples (sentences) with a greater word count are prioritized for training.

Word similarity uses cosine similarity among data points vectorized via word embedding. The data sample that yields 
the lowest cosine similarity to already-learned samples is considered “most novel,” prompting the model to request label-
ing to capture new patterns the model has not yet fully learned.

TF-IDF similarity applies an IDF weight to the TF-based embedding, emphasizing rare words. Samples with the lowest 
cosine similarity are then selected for training. Cosine similarity is defined as:

	
Cosine similarity = cosθ = A·B

|A||B| =
∑n

i=1 AiBi√∑n
i=1 (Ai)

2×
∑n

i=1 (Bi)
2

	 (4)
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When using TF for word embedding, we applied all seven active learning strategies to train and evaluate the machine 
learning models. However, when Word2Vec or Doc2Vec was used for embeddings, we used Word similarity alone or Word 
similarity combined with one of three uncertainty-based sampling methods (least confidence, margin sampling, or entropy 
sampling)—, which was collectively termed “Word similarity uncertainty sampling.” To accomplish this, we computed the simi-
larity of newly presented data u to already-labeled data and calculated each class c’s average similarity as follows:

	
Average similarity (Class c) = 1∣∣Lc

∣∣
∑
x∈Lc

Cosine similarity(x, u)
	 (5)

Here, Lc is the set of labeled data belonging to class c, and cosine similarity(x, u) is between vectorized data x and u. We 
used those average similarities, as we integrated the uncertainty-based sampling (least confidence, margin, entropy) to 
form the Word similarity uncertainty sampling strategy.

In this study, we defined one epoch as a full active learning cycle starting from a small labeled set of 8 samples. During 
each epoch, we performed a series of query iterations in which, at every step, the model predicted on the unlabeled pool, 
selected one sample according to a predefined query strategy, added the newly labeled sample to the training set, and then 
retrained the model from scratch. After each query iteration, the model’s F1 score was recorded on a fixed test set. This 
process continued until 50% of the training data had been used, at which point the epoch was complete. To account for ran-
domness in sample selection and model initialization, we repeated this entire process identically for 50 independent epochs. 
At the end of all repetitions, we aggregated the F1 scores from each corresponding query iteration across all 50 epochs and 
averaged them. The purpose of this design was to reduce the variance inherent in small-sample active learning and to better 
characterize the typical performance trajectory of each approach. Fig 1 summarizes the active learning workflow.

Fig 1.  Overview of the active learning workflow for VTE imaging test report classification. The total dataset of imaging reports was split into a 
training set (80%) and a test set (20%). Three vectorization methods (TF, Word2Vec, Doc2Vec) were applied. Four machine learning classifiers (RF, 
SVM, SVM with SGD, GBM) were trained using active learning strategy. One epoch started with 8 labeled samples. At each query iteration, the model 
predicted labels on the unlabeled pool, and one sample was selected for labeling based on one of seven query strategies. The newly labeled sample 
was added to the training set, and the model was retrained from scratch. This process continued until 50% of the training pool had been labeled. The F1 
score was measured on the test set after each query iteration. The entire process was repeated for 50 epochs, and performance metrics were aggre-
gated to plot learning curves.

https://doi.org/10.1371/journal.pone.0335262.g001

https://doi.org/10.1371/journal.pone.0335262.g001


PLOS One | https://doi.org/10.1371/journal.pone.0335262  November 10, 2025 6 / 15

Deep learning-based classification

Next, we evaluated the classification performance of the deep learning models—BERT, 1D-CNNs, and LSTM—on the test 
reports. Because these reports predominantly contain biomedical terms, the pre-trained BioBERT and BioLinkBERT were also 
used to see whether they handled domain-specific text more effectively. Moreover, given the varying lengths and textual pat-
terns of the test reports (and the fact that identical results could be expressed differently), we adopted two 1D-CNN variants; a 
Multi-Kernel 1D-CNN and a Multi-Kernel 1D-CNN with Global Vectors for Word Representation (GloVe). In total, seven models 
were tested: BERT, BioBERT, BioLinkBERT, 1D-CNN, Multi-Kernel 1D-CNN, Multi-Kernel 1D-CNN with GloVe, and LSTM.

During preprocessing, each radiology report was tokenized using the tokenizer provided with the respective deep 
learning model (e.g., BERT tokenizer). We set the maximum input length to 256 tokens, where a token refers to the unit 
used by the tokenizer, typically comprising individual words or subword segments. If the tokenized sequence was shorter 
than 256 tokens, padding tokens were added; if longer, the excess tokens were truncated from the end. Each model was 
trained for 50 epochs, where one epoch refers to one complete pass through the training dataset. Additionally, we applied 
5-fold cross-validation to maximize the use of available training data while ensuring robustness in performance evaluation.

For training, we used Adaptive Moment Estimation (ADAM) as the optimizer and implemented early stopping to prevent 
overfitting if validation performance failed to improve. Specifically, if the validation accuracy did not improve by at least 
0.0001 for two consecutive epochs, training was halted.

The test reports used in this study were annotated into seven classes, among which the “no DVT or PE” class com-
prised the largest proportion, raising concerns about potential class imbalance. Accordingly, we investigated performance 
differences between two scenarios: classifying all seven classes versus classifying only the six smaller classes (excluding 
the “no DVT and PE” class).

For BERT, BioBERT, and BioLinkBERT, we tuned the hyperparameters to find each model’s optimal settings. Con-
cretely, we tried batch sizes of 32 and 64, and learning rates of 0.00001, 0.00003, and 0.00005, to compare higher 
learning rates (faster but possibly higher loss) and lower learning rates (slower but potentially minimizing loss). We also 
evaluated how stemming, lemmatization, and lowercasing affected performance.

Performance evaluation

In this study, we use the F1 score to assess model performance after each active learning query iteration. The F1 score is 
defined as the harmonic mean of precision and recall, calculated as follows:

	 Precision = True Positive
True Positive+False Positive 	 (6)

	 Recall = True Positive
True Positive+False Negative 	 (7)

	 F1 score = 2 · Precision·Recall
Precision+Recall	 (8)

In addition to evaluating classification performance using the F1 score, we also measured the inference time per sam-
ple after model training. For deep learning models in particular, inference time was defined as the average time required 
for a trained model to process a single radiology report and produce a classification output.

Study ethics

This study was conducted with the approval of the Institutional Review Board (IRB) of Seoul St. Mary’s Hospital. All 
information that could identify the study subjects was anonymized (IRB# KC22RISI0470). The requirement for consent 
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was waived because this was a retrospective study using de-identified medical records that were fully anonymized prior to 
data access. The data had been collected during routine clinical care and included no personally identifiable information 
such as patient names or identification numbers. All data were anonymized by a designated privacy officer before being 
accessed by the researchers. Given the nature of the study, it was not feasible to obtain consent from each individual 
without compromising the study’s validity. The IRB determined that the study posed minimal risk to participants and that 
waiver of consent would not adversely affect their rights or welfare.

Results

Datasets of interest

During the data collection period, 5,839 imaging tests were performed at our institution for inpatients suspected of having 
VTE. Specifically, there were 2,425 cases of chest CT, 69 cases of pulmonary artery CT angiography, 568 cases of DVT 
CT, 886 cases of lower extremity vein CT, and 1,891 cases of lower extremity vein duplex ultrasonography. Among those 
patients, 2,953 were male (50.6%) and 2,886 were female (49.4%), with an average age of 61.9 years (Table 1).

Of the 5,839 imaging tests, VTE was detected in 1,088 cases (18.6%). Among the VTE-positive cases, there were 75 
cases of PE only (6.9%), 570 cases of proximal DVT (52.4%), 286 cases of distal DVT (26.3%), 58 cases of thrombophle-
bitis (5.3%), and 11 cases of other DVT (1.0%); additionally, 88 cases (8.1%) involved both DVT and PE (Table 2).

To examine how many patients with VTE-positive test reports actually received ICD-10 codes indicating the VTE. We 
randomly selected 572 VTE-positive tests and reviewed the assigned ICD-10 codes. We found that 372 (65.0%) carried a 
VTE-related ICD-10 code (Table 3).

Machine learning-based classification of test reports

Fig 2 illustrates the F1 scores achieved by each model across the various query iterations when TF-IDF–based word 
embedding was applied with the seven active learning strategies. When the RF was trained using random sampling or 
margin sampling, it attained the highest performance at query iteration 100, with an F1 score of approximately 0.75. 
Following that, GBM, SVM with SGD, and SVM reached maximum F1 scores of around 0.70, 0.67, and 0.63, respec-
tively. Notably, both the RF and GBM eventually exceeded an F1 score of 0.80, indicating robust classification capability, 
whereas SVM with SGD and SVM remained at roughly 0.75 and 0.72, respectively. Of particular interest, Word similarity 
and TF-IDF similarity (both reliant on cosine similarity) tended to yield the lowest performance at query iteration 100.

Table 1.  Demographics and Modality of imaging tests undergone by the study participants.

Statistics (n = 5,839)

Demographics

Sex

  Male 2,953 (50.6%)

  Female 2,886 (49.4%)

Age 61.9 (+/- 15.1)

Modality of imaging test

Chest CT 2,425 (41.5%)

Pulmonary artery CT angiography 69 (1.2%)

Lower extremity vein CT 568 (9.7%)

Deep vein thrombosis CT 886 (15.2%)

Lower extremity vein duplex ultrasonography 1,891 (32.4%)

Data are presented as n (%) or mean (+/- standard deviation).

CT, Computed tomography.

https://doi.org/10.1371/journal.pone.0335262.t001

https://doi.org/10.1371/journal.pone.0335262.t001
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Fig 3 shows the model performance when Word2Vec was used for word embedding, and Word similarity was combined 
with least confidence, entropy sampling, or margin sampling. At query iteration 100, RF and SVM with SGD both achieved 
the highest F1 scores of around 0.65, followed by SVM at roughly 0.62 and GBM below 0.55. Ultimately, RF, SVM, and 
SVM with SGD converged at F1 scores of about 0.70, with no striking differences among the query strategies. In contrast, 
GBM performed best (~0.66) when Word similarity alone was applied; incorporating uncertainty-based methods reduced 
its F1 score to the 0.65–0.60 range.

Overall, the different query strategies produced no major differences in final F1 scores. However, when Word similarity 
was used alone, certain intervals exhibited a drop in performance during active learning, making prediction less stable. In 
contrast, coupling Word similarity with an uncertainty-based method resulted in more consistent improvement, culminating 
in comparatively higher F1 scores at query iteration 100.

Fig 4 shows results using Doc2Vec-based word embedding with the same training procedure used with Word2Vec. RF, 
SVM, and SVM with SGD all reached their highest F1 scores (0.64–0.66) at query iteration 100. Although GBM started 
lower at around 0.61 at query iteration 100, all models eventually converged within the 0.70–0.65 range, indicating no 
significant differences across models or query strategies. The instability of Word similarity observed with Word2Vec was 
not as pronounced with Doc2Vec. During active learning, RF showed slightly reduced performance when coupling cosine 
similarity with margin sampling, and SVM declined under cosine similarity with entropy or margin sampling. However, 
those gaps diminished throughout successive training, leading to similar final outcomes.

Performance of deep learning-based classification

We tested seven deep learning strategies—BERT, BioBERT, BioLinkBERT, 1D-CNN, Multi-Kernel 1D-CNN, Multi-Kernel 
1D-CNN with GloVe, and LSTM—to classify the test reports and evaluate their performance. We first examined seven 

Table 2.  Prevalence and classification of VTE.

Classification Statistics (n = 5,839)

Presence of VTE

VTE Present 1,088 (18.6%)

No VTE 4,751 (81.4%)

Classification of VTE

PE only 75 (6.9%)

Proximal DVT 570 (52.4%)

Distal DVT 286 (26.3%)

Thrombophlebitis 58 (5.3%)

Other DVT 11 (1.0%)

DVT and PE 88 (8.1%)

Data are presented as n (%).

VTE, Venous thromboembolism; PE, Pulmonary embolism; DVT, Deep vein thrombosis.

https://doi.org/10.1371/journal.pone.0335262.t002

Table 3.  ICD-10 code matching in a random sample of VTE-positive test reports (n = 572).

ICD-10 Code Status n (%)

VTE-related ICD-10 code assigned 372 (65.0%)

No VTE-related ICD-10 code assigned 200 (35.0%)

Total 572

ICD, International Classification of Diseases; VTE, Venous thromboembolism.

https://doi.org/10.1371/journal.pone.0335262.t003

https://doi.org/10.1371/journal.pone.0335262.t002
https://doi.org/10.1371/journal.pone.0335262.t003
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classes: “PE only,” “Proximal DVT,” “Distal DVT,” “Thrombophlebitis,” “Other DVT,” “Both DVT and PE,” and “No DVT or 
PE.” LSTM achieved the highest F1 score (0.9513), followed by the Multi-Kernel 1D-CNN with GloVe at 0.9492. Differ-
ences among the other models were not substantial, and all except 1D-CNN surpassed an F1 score of 0.94.

These findings likely stem from the severe class imbalance, with more than 80% of the training data labeled “No DVT 
or PE.” We therefore removed that class and re-evaluated the remaining six classes. In this 6-class scenario, LSTM 
again attained the highest F1 score (0.9168), followed by the Multi-Kernel 1D-CNN with GloVe (0.9093). However, those 
score represent a sizeable drop from the 7-class scores. In fact, all models showed a notable decrease in F1 score in the 
6-class scenario. BioBERT, in particular, declined by about 0.09. Table 4 summarizes the 6-class and 7-class classification 
outcomes using the seven strategies.

For the 6-class setting, the best-performing BERT model was the BERT-base-multilingual-cased with a batch size of 
64, a learning rate of 0.00003, and no stemming, lemmatization, or lowercasing. BioBERT (BioBERT-base-cased-v1.2) 
achieved its highest F1 score at a batch size of 32, a learning rate of 0.00005, and similarly no stemming, lemmatization, 
or lowercasing. By contrast, BioLinkBERT (BioLinkBERT-base) performed best under a batch size of 32, a learning rate of 
0.00003, and full preprocessing (stemming, lemmatization, and lowercasing). S1 and S2 Tables detail the various hyper-
parameter combinations tested for BERT, BioBERT, and BioLinkBERT, along with their corresponding F1 scores.

Fig 2.  Performance graphs of active learning with the seven query strategies using term frequency for the word embedding. A. Random Forest, 
B. Gradient Boosting Machine, C. Support Vector Machine, D. Support Vector Machine with Stochastic Gradient Descent.

https://doi.org/10.1371/journal.pone.0335262.g002

https://doi.org/10.1371/journal.pone.0335262.g002
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In the 6-class classification task, we measured the average inference time of each deep learning model using a batch 
size of 1. For transformer-based models, the average inference time per report was 0.0238 second for BERT, 0.0238 
second for BioBERT, and 0.0240 second for BioLinkBERT (based on 217 test samples). For CNN-based models and 
LSTM, the inference time was significantly lower: 0.00180 second for 1D-CNN, 0.00154 seconds for multi-kernel 1D-CNN, 
0.00149 seconds for multi-kernel 1D-CNN with GloVe, and 0.00146 seconds for LSTM (based on 71 test samples). All 
timings include both tokenization and classification steps.

Discussion

VTE can be confirmed via CT or ultrasound, and results are often documented in free-text format. Although these reports 
can be used to identify VTE in inpatients, previous studies have pointed out that manually assigning ICD-10 codes might 
underestimate the actual prevalence of VTE [9]. In line with those findings, only 65.0% of the 1,088 VTE cases confirmed 
in this study had corresponding ICD-10 diagnostic codes in their records.

Analyzing the original imaging reports instead of relying on ICD-10 codes could be a promising way to accurately esti-
mate VTE prevalence. However, having experienced specialists annotate every report is both time- and labor-intensive, 

Fig 3.  Performance graphs of active learning using Word2Vec for word embedding. The query strategies were either word similarity alone or word 
similarity combined with least confidence, entropy sampling, or margin sampling. A. Random Forest, B. Gradient Boosting Machine, C. Support Vector 
Machine, D. Support Vector Machine with Stochastic Gradient Descent.

https://doi.org/10.1371/journal.pone.0335262.g003
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underscoring the need for an efficient approach. For example, active learning for clinical text classification is recognized 
for achieving performance comparable to random sampling [16,17,26]. Therefore, we investigated whether active learn-
ing could classify VTE-related imaging reports more efficiently than random sampling, and, leveraged natural language 
processing (NLP), to see whether we could achieve high accuracy with minimal training data.

We compared various word embedding techniques and query strategies and found that using word similarity alone 
produced low or unstable performance in the early training phase (query iteration ~100). Although performance improved 

Fig 4.  Performance graphs of active learning using Doc2Vec for word embedding. The query strategies were either word similarity alone or word 
similarity combined with least confidence, entropy sampling, or margin sampling. A. Random Forest, B. Gradient Boosting Machine, C. Support Vector 
Machine, D. Support Vector Machine with Stochastic Gradient Descent.

https://doi.org/10.1371/journal.pone.0335262.g004

Table 4.  Performance of the deep learning models in classifying pulmonary embolism and venous thromboembolism. 6-Class classification 
excludes the “No DVT and PE” class.

BERT BioBERT BioLinkBERT 1D CNN Multi-kernel 1D CNN Multi-kernel 1D CNN with GloVe LSTM

6-Class 0.8631 0.8576 0.8815 0.8493 0.8943 0.9093 0.9168

7-Class 0.9435 0.9474 0.9490 0.9322 0.9449 0.9492 0.9513

PE, Pulmonary embolism; DVT, Deep vein thrombosis; BERT, Bidirectional Encoder Representations from Transformers; 1D CNN, one-dimensional 
convolutional neural networks; LSTM, Long Short-Term Memory.

https://doi.org/10.1371/journal.pone.0335262.t004
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and stabilized during successive iterations, it fell short of the initial goal of “achieving high accuracy with minimal training.” 
In contrast, with Word2Vec-based embedding, combining word similarity with an uncertainty-based approach facilitated 
relatively faster stabilization, though Doc2Vec (another dense representation) did not exhibit the same pattern. Generally, 
embeddings using dense representations (Word2Vec, Doc2Vec) tended to underperform embeddings using sparse repre-
sentations (TF).

Although the overall F1 scores of the machine learning–based models ranged from 0.70 to 0.80, most models demon-
strated a plateau in performance toward the end of training. Despite the moderate dataset size, the classification accuracy 
of traditional machine learning models remained limited, and further gains are unlikely to result simply from increasing the 
amount of labeled data. This limitation is expected to be exacerbated in future multi-institutional settings due to increased 
data heterogeneity. Accordingly, machine learning–based approaches may struggle to deliver clinically meaningful perfor-
mance in more complex or diverse environments. Future model development and validation efforts should therefore focus 
on deep learning–based models, which demonstrated consistently higher performance across all evaluation settings in 
this study.

Therefore, we also used deep learning models to classify each imaging test report to see whether those results would 
be more precise. We found that LSTM attained an F1 score above 0.95 in the 7-class scenario, and the BioBERT and 
BioLinkBERT performed slightly better than the naive BERT. Nevertheless, BioLinkBERT was not substantially superior to 
the 1D-CNN or LSTM, and in some cases performed comparably or slightly worse.

BERT-based models are generally considered to be more accurate than 1D-CNN or LSTM. Their comparatively lower 
performance in this study can be attributed to the limited size of the dataset. BERT models typically require large-scale 
data and mandatory fine-tuning to reach their full potential. Even so, we maximized the BERT performance by tuning the 
hyperparameters, which raised the 6-class classification score from a minimum of 0.7785 to 0.8630 and improved the 
7-class classification from 0.9070 to 0.9435. With further data collection and continued hyperparameter optimization, it 
might be possible to annotate test reports at reduced cost while more accurately determining the actual prevalence of 
VTE.

Additionally, inference time analysis showed that all deep learning models produced classification results within a 
clinically acceptable timeframe. BERT-based models required approximately 0.023–0.024 seconds per report, which may 
be relatively slow but still allows for practical deployment in non-urgent clinical settings. In contrast, LSTM and CNN-
based models demonstrated significantly faster inference times (around 0.0014–0.0018 seconds per report), making them 
particularly suitable for semi-automated review systems or potential integration into routine workflows. Given the moderate 
complexity of the classification task in this study, deploying lighter-weight models such as LSTM or multi-kernel CNN may 
offer a more favorable trade-off between speed and accuracy than heavier transformer-based architectures. However, 
as our findings are based on single-center data, further validation across institutions is essential to confirm whether this 
observation holds in more diverse clinical environments.

This study has several limitations. First, we aimed to determine whether deep learning models which typically require 
large-scale labeled datasets and high computational resources could achieve strong classification performance when 
trained on relatively small amounts of data using active learning. This approach was motivated by the practical constraints 
of manual annotation and the computational burden associated with large language models. However, relying on data 
from a single institution raises concerns about generalizability. Radiology reports often differ in structure, terminology, and 
reporting practices across institutions, which may limit the external validity of our findings. Although external validation 
was not feasible within the scope of the current study due to data access limitations, we acknowledge that such validation 
is crucial.

To address this, future work could adopt a sequential validation strategy in which data from additional institutions are 
incrementally incorporated into training and validation. This would allow for a more realistic assessment of how well the 
model generalizes across diverse clinical environments and could help identify domain-specific language patterns that 
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hinder extrapolation. In addition, as the size and diversity of data increase, methods such as knowledge distillation or 
model pruning may help reduce computational burden while preserving model performance in deployment settings.

Second, because more than 80% of the tests were negative for VTE and certain classes (e.g., distal DVT) constituted 
only about 1% of the positive cases, severe class imbalance was evident. One strategy to address class imbalance is 
undersampling, where an equal number of samples are randomly selected from each class based on the size of the least 
frequent class, thereby achieving a uniform class distribution during training. However, in our dataset, the “Other DVT” 
class included only 11 samples, accounting for just 1.0% of the VTE-present cases. Adjusting all other classes to match 
this minimal count would substantially reduce the usable training data and likely impair model generalizability. This limita-
tion stems from an inherent clinical reality, as such rare phenotypes are naturally underrepresented in real-world hospital 
settings. Addressing this issue requires the acquisition of additional minor-class data or the use of stratified sampling 
to maintain balanced training/test sets. However, even multi-center data might not guarantee sufficient samples for the 
minority classes, so data augmentation or methods such as the synthetic minority over-sampling technique (SMOTE), 
followed by stratified sampling, are needed to improve model balance.

Third, even after training on multi-center data, prediction errors might persist. To ensure that clinicians can trust and 
act upon model outputs, techniques that explain each model’s contextual reasoning are required. Thus, methods such 
as Local Interpretable Model-Agnostic Explanations (LIME) or Shapley Additive Explanations (SHAP) should be con-
sidered to enhance interpretability and clinician confidence. These methods are designed to explain the predictions of 
complex models such as deep neural networks. They do so by estimating how much each word or phrase in the input text 
contributes to the final prediction. For instance, in a report containing the phrase “no evidence of pulmonary embolism”, 
such interpretability tools could help verify that the model appropriately increases the probability of predicting “No PE or 
DVT” class in response to this negating phrase. These explanations would provide insights into the model’s token-level 
or phrase-level contributions to its predictions, helping clinicians better understand and validate the reasoning process. 
Although not implemented in the current study, we plan to incorporate such analyses in future work to improve transpar-
ency and foster clinical acceptance.

Fourth, to evaluate the model in real clinical settings, prospective studies are needed, alongside external validation, to 
verify that the performance observed with the original dataset can be maintained in real-world conditions.

In summary, although we attempted to classify VTE imaging reports with minimal labeled data by combining machine 
learning models with active learning, our initial objective of achieving robust performance with limited training was not 
fully realized. Model performance required a certain amount of training to stabilize, and minority classes (e.g., distal DVT) 
were not sufficiently learned, resulting in fluctuating performance. As a result, active learning alone was insufficient to 
reach clinically required accuracy. On the other hand, applying deep learning models—particularly LSTM and Multi-Kernel 
1D-CNN with GloVe—yielded higher accuracy, and the BERT-based models showed potential for improvement if more 
data or further hyperparameter optimization become available. Still, the high computational cost of deep learning suggests 
that future work should use techniques such as knowledge distillation and pruning to reduce model size and inference 
time, thereby enhancing the feasibility of real clinical deployment.

Conclusion

This study compared machine learning and deep learning methods for automated VTE imaging report classification, 
incorporating active learning to reduce labeling costs. Combining machine learning and active learning produced instabil-
ity in the early training phase and did not always achieve sufficiently high average accuracy for clinical application, through 
more diverse metrics might be needed to evaluate the final performance. On the other hand, deep learning models (e.g., 
LSTM, Multi-Kernel 1D-CNN with GloVe) attained relatively high accuracy, and BERT-based models showed potential for 
improvements with additional data or hyperparameter tuning. However, the high computational expense of deep learn-
ing remains a challenge. Future research should apply strategies such as knowledge distillation or pruning to enhance 
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computational efficiency, address class imbalance, and improve model interpretability, thereby paving the way for practical 
clinical adoption of automated VTE report classification.
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