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While lung cancer remains a lethal disease despite treatment advances, some
parasitic infections can demonstrate cancer-modulating roles and exhibit anti-tumor
effects. The emergence of hydatid cysts as a potential anti-cancer treatment has
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Introduction

Cancer is a significant global threat to human life. Annually, approximately 20 million
new cancer cases and nearly 10 million deaths are reported worldwide [1]. Among
these, lung cancer stands out as one of the most prevalent malignancies [2]. Lung
cancer is a complex disease capable of metastasizing locally or even throughout the
body [3,4]. The standard treatments involving surgery, radiotherapy, and chemotherapy,
challenges such as tumor cell metastasis, harm to healthy cells, suppression of the
immune system, drug toxicity, and drug resistance persist. Therefore, extensive efforts
are being made to discover suitable therapeutic alternatives. The ancient idea that vari-
ous biological agents, including bacteria, yeasts, viruses, and parasites, can be used as
cancer treatments is gradually gaining attention. The positive impacts of certain parasitic
infections on tumors include triggering apoptosis, boosting the immune system, prevent-
ing metastasis, and controlling angiogenesis signals to control cancer development [5].

Hydatid disease (Cystic Echinococcosis or CE) is caused by the larval stage of
Echinococcus granulosus in the liver and lungs as primary infection sites [6]. Interest-
ingly, research has demonstrated that individuals with CE may have a lower incidence
of cancer compared to those without such cysts, suggesting that an E. granulosus
infection may serve as a protective factor against cancer [7—11]. A study of 3,300
hepatic CE patients and 815 hepatocellular carcinoma (HCC) patients found only 13
cases of co-occurrence (0.39% incidence), significantly lower than expected. The
CE+HCC cohort had prolonged median survival, suggesting CE may delay HCC pro-
gression [12]. A study of 2,086 solid tumor patients (1990-2001) found only 2 cases
of concurrent hydatid disease, showing extremely rare co-occurrence (0.096% preva-
lence) [13]. These cysts are a fluid-filled structure comprising three layers: the adven-
titial layer, formed by host-parasite reaction; the laminated layer; and the inner layer
called the germinal layer [14]. E. granulosus might decrease cancer risk by secreting
molecules that can be developed as anti-cancer therapeutic drugs [15,16]. It can also
induce this effect in the murine model, presumably through activating Th-1-polarized
immune response with common antigens, especially the mucin-type O-glycans, and
secreting molecules with anti-cancer potential, EgKI-1 in particular [16,17].

Analyzing the gene profile of B-catenin and CD133 could indicate the epithelial-
mesenchymal transition (EMT) process under the induced conditions in the cells,
which play a role in tumor progression and resistance to treatment [18]. CD133, a
membrane glycoprotein involved in cell membrane organization, is overexpressed in
tumor tissue and is regarded as a diagnostic indicator [19]. SOX-9, as a transcription
factor, plays the role of a proto-oncogene and can influence the microenvironment
of the tumor [20]. Beta-catenin plays an essential role in the proliferation of cancer
cells and their invasion [21]. Furthermore, the increased expression of CD44 aids in
promoting the migration of tumor cells [22].

This study aimed to investigate the effects of hydatid cyst antigens on cell prolif-
eration, cell death, and invasion in vitro. Additionally, the study examines how the
expression levels of SOX-9, B-catenin, CD133, and CD44 genes change in human
lung adenocarcinoma (A549) cells after treatment with parasitic antigens.
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Materials and methods
Ethical approval and consent to participate

The protocols for this study were reviewed by the Ethics Committee of Iran University of Medical Sciences and approved
on December 29, 2021, under the code IR.IUMS.FMD.REC. 1400.584.

Samples collection and preparation of the crude extract of LL

Sheep lung and liver samples naturally infected with hydatid cysts were collected post-slaughter (following Islamic pro-
tocols) from Karaj slaughterhouses (Alborz, Iran), where such contaminated tissues are routinely discarded as waste,
requiring no special permissions for research use, and were subsequently transferred to our laboratory for analysis. The
hydatid fluid was aspirated, and after observation of the protoscolices, the laminated layer)LL (was separated and washed
with PBS [23,24]. The crude extract of the hydatid laminated layer was prepared according to the previous protocol
[25,26]. LL was cut into small pieces, homogenized, and sonicated for 20min in PBS buffer containing 1% penicillin-
streptomycin (1M) on ice, centrifuged at 4°C, 2000 x g for 20min. The supernatant protein concentration was measured
using the Bradford method and then stored as the crude extract antigens of LL at -80°C before use [11,27-29].

Cell culture

The A549 cell line, derived from adenocarcinomic human alveolar basal epithelial cells obtained from the Pasteur Institute
of Iran, was cultured in Dulbecco’s Modified Eagle Medium (DMEM) high Glucose supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin in a humidified atmosphere of 5% CO, at 37°C. When the cells reached
70-90% confluence, they were detached using trypsin-EDTA and subcultured. The cells were fresh, and their stocks were
frozen at -80°C for further experiments.

Cell viability assay (MTT assay)

The cytotoxicity of LL crude antigens on A549 cells was examined using the MTT assay. Briefly, A549 cells were seeded in
DMEM in 96-well plates at a 9x 10° cells/well and allowed to adhere for 24 h at 37°C and 5% CO,. While cells reached suf-
ficient confluence, they were treated with different dosages of LL crude antigens (50, 100, 200, 300, 400, and 500 pg/ml of
LL) and incubated at 37°C for 24 and 48 hours [30]. After the incubation period, 20 pL of MTT solution at a concentration
of 5mg/mL in PBS was added to each well and incubated for 4 hours at 37°C. Subsequently, the wells’ supernatant was
removed, and the formazan crystals were dissolved in 200 uL of dimethyl sulfoxide (DMSQO). The absorbance values were
then measured at 570 nm using a microplate reader from Tecan, Austria. The percentage of cell viability was determined
by comparing the absorbance values of the treated and control groups [31]. Traditional IC50 determination may not fully
apply to LL antigens, as these complex biological mixtures exhibit pleiotropic effects that complicate classical dose-
response interpretations.

Apoptosis assay

The apoptotic cell’s cytoplasmic membrane structure can change by exposing phosphatidylserine on its surface, a char-
acteristic that can be identified using annexin V [32]. To detect apoptosis, 6 x 105 A549 cells were seeded in 6-well plates
containing DMEM supplemented with 10% FBS, 1% penicillin-streptomycin, and incubated. After a 24-hour incubation
period, the cells were treated with varying concentrations of LL antigens and further incubated at 37°C for 24 hours.
Subsequently, the cells were washed with PBS, resuspended in 500 pL of binding buffer, and exposed to 5 uL of Annexin
V-FITC and 5 pL of propidium iodide (PI) before being incubated for 10 minutes at room temperature. The percentage

of apoptotic cells was quantified and analyzed using a FACSCalibur flow cytometer (Becton Dickinson, San Jose, USA)
along with its accompanying software (Cell Quest software) [33,34].
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The flow cytometry data were analyzed with FlowJo software. Cell populations were gated using forward and side scat-
ter parameters to remove debris, and then the fluorescence intensity of the specific markers was analyzed.

Cell cycle analysis

The cell cycle distribution was determined using a Cell Cycle Detection Kit and analyzed with a FACSCalibur flow cytom-
eter from Becton Dickinson in San Jose, USA, along with the BD Cell Quest software. In summary, cells were exposed
to various concentrations of LL antigens and incubated at 37°C for 24 hours. Subsequently, DNA-binding dyes (such as
propidium iodide or PI/RNase) were introduced into each well. It is important to note that ribonuclease was applied to the
cells to ensure that only DNA, not RNA, was stained. The forward scatter (FS) and side scatter (SS) were measured to
identify the cells in different phases of the cell cycle [35].

Measurement of intracellular reactive oxygen species (ROS)

To measure the production of intracellular reactive oxygen species (ROS), a DCFH-DA Probe-Based ROS Detec-
tion Kit was utilized, and analysis was conducted using the FACSCalibur flow cytometer from Becton Dickinson in
San Jose, USA. The cells were treated as described in the previous section and incubated with DCFH-DA and PBS
for 20 minutes. Subsequently, the concentration of ROS within the cells was detected and analyzed using the flow
cytometer [36,37].

Gene expression analysis (SOX-9, B-catenin, CD133 and CD44)

The SYBR-green-based quantitative reverse transcription polymerase chain reaction (RT-PCR) technique was applied to
evaluate gene expression levels. Briefly, A549 cells (6 x 10°) were seeded in 6-well plates in DMEM supplemented with
10% FBS and 1% penicillin-streptomycin and incubated for 24 hours. Cells were treated with different concentrations

of LL antigens, and following 24 hours of incubation, the genomic content (total RNA) was extracted from each well to
measure the mMRNA expression of the SOX-9, B-catenin, CD133, and CD44 using the Qiagen Kit, according to the manu-
facturer’s protocol [38]. Quantity, purity, and optimum concentration of harvested RNAs were measured with a nanodrop
spectrophotometer (Thermo Scientific™ NanoDrop 2000c spectrophotometer) in a 260/280 nm ratio. Later, cDNA was
synthesized using the RNA as a template [39,40]. RT-PCR was performed in a LightCycler 96 thermal cycler by RT-
specific primers (Table 1) and Beta-actin, which was used as a reference gene to normalize the data [41]. The final
volume for each reaction was a 20 ul mixture consisting of 10 ul of SYBR Green qPCR Master mix, 2 ul of cDNA, 1 pl

of reverse primer, 1 yl of forward primer, and 6 pl of nuclease-free distilled water. In the amplification program, the first
denaturation was carried out at 95°C for 10 min and continued with 40 cycles, consisting of a 95°C denaturation step for
10sec, a 55°C annealing step for 20sec, and a 60°C extension step for 35sec (Fig 1). The comparative 22T method
was applied for gene expression analysis [42].

Table 1. Primer sequence of SOX9, CD44, B-actin, CD133, and B-catenin of human genes.

Gene Forward Primer 5' -3’ Reverse Primer 5' -3’ Tm
SOX9 CAACGGCTCCAGCAAGAACA GCTTCTCGCTCTCGTTCAGA 58
CD44 GGAACAGTGGTTTGGCAACA CTCTGCTGCGTTGTCATTGA 58
B-actin TGG GCATCCACGAAACTAC GATCTCCTTCTGCATCCTGT 57
CD133 AACGAACAGCATTTCTCTCTCAAGA AACCTACAGCATATTCTTCA 58
3~catenin ACTAGTCGTGGAATGGCACC TGCAGTTCGCCTTCACTATG 57

https://doi.org/10.1371/journal.pone.0335188.t001
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Fig 1. Amplification plot for B-actin, SOX-9, B-catenin, CD133, and CD44 expression. The treated and the control groups were statistically analyzed
and compared using non-parametric one-way analysis of variance (ANOVA) with Dunnett’s post hoc test and Tukey’s post hoc test. The expression
levels of selected genes of SOX-9, -catenin, CD133, and CD44 between the tested groups were evaluated using the Kruskal-Wallis and Mann-Whitney
U tests. All cell line experiments were conducted in triplicate and repeated three times to ensure specificity and accuracy. Graph Pad Prism version 9
(Graph Pad Software, San Diego, California) was utilized for all statistical calculations. The data were presented as mean+SD, and statistical signifi-
cance was determined by asterisks denoting P<0.05, P<0.01, and P<0.001 in the corresponding figures.

https://doi.org/10.1371/journal.pone.0335188.9001

Results

1. The effect of LL antigens on the cell growth inhibition, induction of apoptosis, the cell cycle progression, and
ROS production of A549 cancer cell lines:

A. The effect of LL antigens on the cell growth inhibition of A459 cells

Based on data, a dose-dependent decrease in A549 cell viability was observed in both 24h and 48h (Fig 2). Treatment of
A549 cells with 300, 400, and 500 pg/ml of LL reduced the cell viability by 60%, 56%, and 42% after 24 hours of incuba-
tion, respectively. According to the results, three concentrations of 300, 400, and 500 pg/ml following 24 hours of incuba-
tion were selected for further investigations on the possible induction of apoptosis, cell cycle distribution, ROS production,
and gene expression.

B. The effect of LL antigens on the apoptosis of A459 cells

Flow cytometry analysis demonstrated that treatment with hydatid cyst LL antigens increased the proportion of A549 cells
undergoing early and late apoptosis in a dose-dependent manner. Specifically, the percentage of early apoptotic cells
significantly increased with higher concentrations of LL antigens, reaching 400 pg/ml (P<0.0001) and 500 pg/ml (P<0.01)
compared to untreated A549 cells (Fig 2). Flow cytometry histograms for each cell group, showing detailed percentages
of viable cells (Annexin V —/PI-), early apoptotic cells (Annexin V +/Pl-), and late apoptotic or necrotic cells (Annexin V +/
Pl+), are presented in S1 Fig. As shown, early apoptotic cells increased from 1.5% in control cells to 1.85% in cells treated
with 500 pg/ml LL antigens. Conversely, necrotic cells decreased from 10.1% in control cells to 8.34% in the treated
group, supporting the pro-apoptotic effect of LL antigens on lung cancer cells.
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Fig 2. MTT assay, apoptosis, cell cycle, and ROS graphs. MTT assay graph, cells were treated with different concentrations (50, 100, 200, 300, 400,
and 500 ug/ml) of LL antigens and incubated for 24 and 48 hours. Apoptosis, cell cycle, and ROS graphs, A549 cells were treated with 300, 400, and
500 pg/ml of LL and incubated for 24 hours. Statistical differences between treated and untreated control groups were analyzed by ANOVA (ns=P>0.05,
*=P<0.05, *=P<0.01, **=P<0.001, and ****=P<0.0001).

https://doi.org/10.1371/journal.pone.0335188.9002

C. The effect of LL antigens on the cell cycle distribution of A459 cells

The accumulation of cells in the sub-G1 phase of the cell cycle, which indicates cell cycle arrest, is a recognized hall-
mark of apoptosis. As shown in Fig 2, our results demonstrate that treatment with 500 pg/ml of LL antigen significantly
increased the percentage of cells in the sub-G1 phase to 3.83%, compared to 0.85% in control cells (P<0.0001).
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Additionally, there was a dose-dependent decrease in the percentage of cells in the S phase, declining from 30.97% in
control cells to 23.83% following treatment with 500 pg/ml LL antigen. This reduction suggests a diminished proliferative
capacity of cells after exposure to the LL antigen. The flow cytometry histograms depicting the cell cycle distribution are
presented in S2 Fig.

D. The effect of LL antigens on the ROS level of A459 cells

An increase in cellular ROS levels indicates cellular stress and is typically associated with the induction of apoptosis. In
this study, the ROS levels in A549 cells were measured following treatment with escalating concentrations of LL antigens.
As shown in Fig 2D, ROS levels increased significantly after treatment with 300 pg/ml (P<0.0001), 400 pg/ml (P<0.0001),
and 500 ug/ml (P<0.0001) of LL antigens compared to untreated cells. These results demonstrate the ability of LL anti-
gens to induce cellular stress in A549 lung cancer cells. The flow cytometry histograms illustrating the ROS production
patterns are presented in S2 Fig.

2. The expression level of SOX-9, B-catenin, CD133, and CD44 in cells treated with LL antigens

The SOX-9 expression level following exposure of cells to different concentrations of LL antigens showed no remarkable
change compared to the untreated cells (Fig 3). The detected increase in the level of SOX-9 expression at the concentra-
tion of 300 ug/ml was not statistically significant (P=0.2814).

As shown in Fig 3, the expression level of CD44 in the cells treated with 300 and 500 ug/ml of LL antigen was sig-
nificantly decreased compared to the untreated cells (P-value=0.0035 for 300 pg/ml and P-value=0.0032 for 500 ug/
ml). Also, the expression level of B-catenin in the treated cells decreased compared to the untreated cells. However, this
decrease was only statistically significant in a concentration of 500 pg/ml (P=0.0412 for the dose of 500 and P=0.0578
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Fig 3. SOX-9, CD44, B-catenin, and CD133 gene expression graphs. SOX-9, CD44, -catenin, and CD133 gene expression graphs in the sample of
A549 cancer cells treated with antigens containing 300 and 500 pg/ml of protein concentration prepared from hydatid cyst layer laminate (L.L Ag) com-
pared to A549 cancer cells not treated with this Antigen (control). (ns=P>0.05, *=P<0.05, *=P<0.01, **=P<0.001 and ****=P<0.0001).

https://doi.org/10.1371/journal.pone.0335188.9003
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for 300 pg/ml) (Fig 3). The expression of the CD133 gene in the treated cells significantly decreased compared to the
untreated cells in both concentrations of 300 pg/ml (P=0.039) and 500 pg/ml (P=0.0284) (Fig 3).

Discussion

Incident cases of cancer will increase by up to 64% by 2040, with global lung cancer deaths potentially reaching 3.2 mil-
lion by 2050 [43—45]. Consequently, there is a push to discover effective treatments to decrease cancer rates and improve
survival rates. Parasitic agents, including trematodes, have displayed promising antitumor properties [46]. For example, E.
granulosus may inhibit neoplastic changes and suppress tumors [47,48]. This study was motivated by three key scientific
imperatives. First, the impact of this parasite on lung cancer cell lines was studied outside of the body without interference
from the host immune system. Second, we specifically investigated how laminated layer (LL) antigens may modulate can-
cer cell viability through ROS-mediated apoptosis, downregulate critical metastasis markers (3-catenin, CD133, CD44),
and alter cell cycle dynamics in lung adenocarcinoma. Third, the dose/time-dependent responses observed (P <0.05)
establish proof-of-concept for parasite-derived molecules as potential adjuvants to existing therapies. This rationale
bridges parasitology and oncology by demonstrating how evolutionary host-parasite interactions can yield unexpected
therapeutic opportunities.

The levels of apoptotic and necrotic cells were evaluated to determine how LL antigens impact A549 cells. Apoptosis
refers to a cellular self-destruction process that prevents inflammation. On the other hand, necrosis is characterized as
a haphazard cell demise leading to the unregulated release of inflammatory cell components [49]. Notably, Gao et al.
demonstrated that hydatid cyst fluid with a high concentration could be toxic to melanoma A375 cells, but these anti-
gens in low dosage make progress in the cell cycle and increase the expression of antiapoptotic protein Bcl-2 [50]. In
the Baysal study in 2021, the evaluation of the effect of hydatid cyst fluid on cell proliferation and the expression of some
apoptotic genes in two cell lines, A549 (lung adenocarcinoma) and BEAS-2B (healthy lung epithelial), was investigated.
Hydatid cyst fluid stopped cancer progression and prevented tumor formation. The results showed a statistically signifi-
cant decrease in the expression of the BCL-2 gene and an increase in the expression of the P53 gene, which led to an
increase in apoptosis [51]. Moreover, Diaz et al. demonstrated that the LL carbohydrates interact selectively with the
Kupffer cell receptor. It was described that the LL molecular may also have immune-regulatory and anti-inflammatory
properties [52—54]. Various parasites can disrupt the cell cycle and halt cell proliferation, underscoring the importance of
evaluating the different phases of the cell cycle (G1, S, G2, and M phase) in cancer cells treated with parasite antigens
[5]. Three synthetic small peptides derived from E. granulosus exhibited significant apoptosis and inhibited proliferation in
HT29 and HepG2 cell lines by increasing the GO/G1 phase and decreasing the S phase [55].

ROS are crucial in various cellular processes, including gene expression and programmed cell death. In a study by
Chunxue Fu et al. in 2024, it was demonstrated that the cystic fluid of E. granulosus elevated macrophage ROS levels,
suppressing the interferon-I response [56]. Our research revealed that LL antigens can induce cell death in a dose- and
time-dependent manner by promoting early apoptosis and impeding the cell cycle, mainly by reducing the S phase at 400
and 500 pg/ml concentrations. The escalation of intracellular ROS levels dose-dependently aligns with our hypothesis
regarding the increased death of tumor cells. Therefore, it may be plausible to consider specific LL antigens as potential
tumor biotherapy agents that drive cancer cells toward apoptosis through various mechanisms, including the augmenta-
tion of ROS levels.

Moreover, it was revealed that the levels of SOX9, B-catenin, CD133, and CD44 gene expressions have an impact
on stem-cell properties, including self-renewal or EMT process, which can be the determining factor in the invasion and
metastasis of tumor cells [57]. The increase in SOX9 levels enhances migration, invasion, and EMT through the Wnt/(3-
catenin pathway in lung cancer cell lines A549 [58]. In the current study, the expression levels of the SOX9 gene in the
A549 cell line treated with LL antigens compared to untreated cancer cells were investigated. It can be postulated from
our data that SOX-9 might have less contribution to LL antigen-induced cell death.
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Parasites such as Heligmosomoides polygyrus can evade the host immune system by downregulating the production of
TGF-B and suppressing CD44-T cells [59]. Also, some protozoa, like Toxoplasma gondii infection, could decrease CD44
expression [60]. On the other hand, the overexpression of CD44 has been detected in humans infected with the liver fluke
Opisthorchis viverrini, which is associated with cholangiocarcinoma, and it was suggested that CD44v9 may be involved
in the development of inflammation-associated cancer [61]. Taken together, it can be explained that down-regulating CD44
expression could further enhance the anti-cancer effect of LL antigens. This document could serve as a valuable resource
in understanding and describing this parasite’s anti-cancer effect.

Specific agents like T. gondii, Clonorchis sinensis, and Opisthorchis viverrini can cause primary liver cancers by altering
Whnt/B-catenin signaling. This alteration increases the human host’s infection and survival rates [62]. S. mansoni antigens
can induce Wnt/B- catenin signaling, leading to colorectal carcinogenesis. On the other hand, certain helminth infections
like Heligmosomoides polygyrus can reduce the severity and risk of developing cancer. It is suggested that this might
occur by decreasing the adherens junction protein B-catenin expression on human colorectal cancer cell proliferation in
vitro [63,64]. Our research supports this, showing that E. granulosus antigens can reduce the expression of the -catenin
gene, which can decrease the growth and metastasis of cancerous cells when treated with LL antigens.

It has been discovered that CD133 is linked to an increase in the formation of DNA lesions and DDR proteins in chol-
angiocarcinoma, which could lead to genetic instability and the development of cholangiocarcinoma with aggressive
clinical features [65]. Moreover, CD133 can be used as a biomarker for the early detection of small-cell lung cancer [66].

It is hypothesized that the down-regulation of CD133 might mediate the deactivation of cancer stem cells and be applied
to lung cancer therapy [67]. Interestingly, antigens found in the E. granulosus parasite have been shown to reduce the
expression of the CD133 gene, which may lead to future biotherapy options for lung cancer treatment.

This study had some limitations. One significant challenge was the inability to access new tools for separating different
proteins and compounds in their pure forms. Instead, crude antigens from one part of the parasite were used. Additionally,
comparing non-cancerous cells alongside cancerous cells would have been beneficial. However, most studies use only
cancerous cell lines to report the primary result of one experimental test. It is essential to recognize that the initial steps in
cancer treatment often focus on cancer cells before considering their effects on normal cells. This approach is grounded in
the understanding that therapies must first demonstrate efficacy against malignant cells, which can then be compared with
their effects on non-cancerous tissues. For instance, once a treatment shows promise in targeting cancer cells effectively,
subsequent studies often expand to include normal cell lines to evaluate selectivity and safety in a broader biological
context [68]. While it is critical to assess the impact of LL antigens on healthy cells, the progression from testing on cancer
cells to evaluating effects on normal cells is a standard practice in cancer research. Future studies should aim to provide
comprehensive data comparing the effects of LL antigens on both cancerous and normal cells to fully address these
important safety considerations.

Our study identifies significant changes in apoptosis and gene expression, but it does not thoroughly investigate the spe-
cific molecular pathways involved. Understanding these pathways is crucial for revealing the complex mechanisms behind
the anti-cancer properties of biological agents. Future research should focus on characterizing distinct signaling pathways,
such as the MAPK and PI3K/Akt pathways activated by ROS, which are important for mediating apoptosis and regulating
invasion-related gene expression. Additionally, while our findings indicate a decrease in SOX-9, 3-catenin, CD133, and
CD44 expression, this may be linked to reduced activity of EMT-inducing transcription factors, suggesting a lower conver-
sion of epithelial cells to a mesenchymal phenotype. A more comprehensive analysis of epithelial-mesenchymal transition
(EMT) should include additional markers and signaling pathways, such as E-cadherin downregulation and the upregula-
tion of N-cadherin and Vimentin, along with key transcription factors like Snail, Slug, ZEB, and TWIST. Finally, it should be
mentioned that the current study had some limitations. To comprehensively evaluate the potential therapeutic specificity of
hydatid cyst laminated layer antigens, it would be essential to extend the investigation to additional cancer cell lines from
various tissue origins and relevant non-cancerous cell models. This approach would clarify whether the observed cytotoxicity
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and apoptosis induction are preferentially targeted toward cancer cells, thereby supporting the development of LL antigens
as selective anti-cancer agents that future studies can warrant.

Conclusions

Our in vitro findings suggest that laminated layer (LL) antigens in hydatid cysts show potential for treating lung cancer. Our
study revealed that LL antigens can cause cell death in a dose- and time-dependent manner by promoting early apoptosis
and hindering the cell cycle. These antigens may be used potentially as tumor biotherapy agents by driving cancer cells
toward apoptosis through various mechanisms, including increasing levels of reactive oxygen species (ROS). The 400
and 500 ug/ml concentrations were particularly effective in reducing the S phase and increasing intracellular ROS lev-
els. When lung cancer cells were treated with LL antigens, their growth was associated with a significant decrease in the
expression of genes such as (3-catenin, CD133, and CD44, which play crucial roles in cell proliferation and tumor growth.
Any dysregulation or mutation in these genes can disrupt normal cellular processes, leading to uncontrolled cell growth,
tumor formation, and metastasis. The decrease in the expression of these genes is believed to be caused by a reduction
in the expression of epithelial-mesenchymal transition EMT-inducing transcription factors, which in turn reduces the trans-
formation of epithelial cells into a mesenchymal phenotype. Or it can be stated that, activation of Wnt/B-catenin signaling
by SOX9 promotes proliferation and inhibits apoptosis. CD44 and CD133 support stem cell characteristics and survival
signaling, modulating cell cycle checkpoints and protecting cells from ROS-mediated damage. ROS can induce apopto-
sis, but cancer cells often upregulate antioxidant defenses through these pathways to maintain redox balance and avoid
cell death. These findings could lay the groundwork for future research using purified E. granulosus parasite antigens in
cancer treatment, and in vivo validation is needed to confirm these observations. Finally, it should be mentioned that the
current study had some limitations. To comprehensively evaluate the potential therapeutic specificity of hydatid cyst lam-
inated layer antigens, it would be essential to extend the investigation to additional cancer cell lines from various tissue
origins and to relevant non-cancerous cell models. This approach would clarify whether the observed cytotoxicity and
apoptosis induction are preferentially targeted toward cancer cells, thereby supporting the development of LL antigens as
selective anti-cancer agents that can be warranted by future studies.

Supporting information

S1 Fig. The apoptotic effects of LL antigens on human lung cancer cells. The effects of LL antigens at various
concentrations on the induction of apoptosis in A549 cells were determined by Annexin V-FITC and propidium iodide (PI)
staining and flow cytometry. The flow cytometry histograms indicate (A): untreated control cells; (B): cells treated with 300
pg/ml; (C): cells treated with 400 ug/ml; (D): cells treated with 500 pg/ml of LL antigens following 24 hours of incubation.
These plots display the distribution and percentages of viable cells (Annexin V -/PI-) (Q4), early apoptotic cells (Annexin
V +/PIl-) (Q3), late apoptotic or necrotic cells (Annexin V +/Pl+) (Q2), and necrotic cells (Annexin V—/Pl+) (Q1).

(JPG)

S2 Fig. The effects of LL antigens on cell cycle distribution in human lung cancer cells. The cell cycle distribution
was analyzed by flow cytometry using PI staining and the flow cytometry histograms are represented for (A): un-treated
control cells; (B): cells treated with 300 ug/ml; (C): cells treated with 400 ug/ml; (D): cells treated with 500 ug/ml of LL
antigens following 24 hours of incubation. The percentages of cells in each phase are indicated in a box within each
histogram.

(JPG)

S3 Fig. The effects of LL antigens on cellular ROS level in human lung cancer cells. The A549 cells were treated
with increasing concentrations of LL antigens, separately, and subjected to ROS measurement using flow cytometry. (A)
represents untreated control cells; (B) represents cells treated with 300 ug/ml; (C) represents cells treated with 400 pg/ml;
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(D) represents cells treated with 500 pg/ml of LL antigens following 24 hours of incubation. The mean DCFH values are
indicated in each histogram for each group of cells.
(JPG)
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