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Abstract
Session-based recommendation (SBR) aims to provide personalized recommendations
based on anonymous user click sequences. Although existing methods have achieved
notable progress, most focus solely on user preferences within a single session, over-
looking item transitions across sessions, which limits their ability to model complex
behavior patterns. To address this, we propose GCACL-Rec, a model that enhances
dynamic modeling by incorporating global item transition information. It constructs a
multi-scale graph structure using Multi-scale graph neural networks (MSGNN) and
introduces a relative multi-head attention mechanism (RMA) to enhance cross-session
dependency modeling. In addition, a multi-view contrastive-adversarial joint learning
strategy (MPACL) is adopted to distinguish better relevant from irrelevant information
and extract user intent more effectively. During prediction, we use a hybrid structure that
combines a neural decision forest (NDF) with the softmax function to enable fine-grained
decision optimization and improve feature discrimination and accuracy. Experiments on
the Diginetica, Tmall and RetailRocket benchmark datasets show that GCACL-Rec out-
performs existing methods, demonstrating clear advantages in cross-session recommen-
dation tasks.

Introduction
In the Internet era, information overload has become increasingly prominent. Recommender
systems address this challenge by analyzing user behavior to deliver personalized suggestions.
Traditional methods, such as collaborative filtering [1–3], depend on users’ long-term histor-
ical data. However, in domains such as e-commerce and streaming media, this data is often
limited or unavailable. In contrast, recent user behaviors and trending clicks more accurately
reflect current interests but are typically overlooked by conventional approaches. To address
this, session-based recommendation (SBR) has emerged, which predicts the following item
of interest for anonymous users by analyzing their click sequences. This approach has gained
significant attention in recent years [4,5].
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ing in various methodological developments. Some early studies (e.g., Shani et al., 2002; Ren-
dle et al., 2010) applied Markov chain models [6] to infer user behavior based on recent inter-
actions. However, these models rely on strong independence assumptions, resulting in over-
simplified behavior patterns that fail to accurately reflect the complex dynamics of user intent,
often limiting prediction accuracy.

In recent years, deep learning-based session-based recommendation (SBR) methods have
made significant progress [7–9], primarily focusing on extracting item interaction patterns
within sessions. Current approaches follow two main directions. Sequential models, typ-
ically based on RNNs [10,11], capture the dynamic evolution of user behavior and often
employ attention mechanisms [12] and memory units to model long-term interests. Struc-
tural models, on the other hand, utilize GNNs [13–17] to build item graphs, with archi-
tectures such as GGNN [15] and GAT [18] uncovering latent item relationships.SR-GNN
[15] introduces a gating mechanism to guide information flow, effectively modeling item
transitions. However, its focus on the final clicked item limits its ability to capture the full
sequence structure. FGNN [16] addresses this issue by modeling the entire item sequence,
resulting in improved performance in both accuracy and user satisfaction. Despite these
advances, current models face two key limitations: (1) they rely on single-session data and
ignore cross-session relationships, and (2) they model sessions as directed subgraphs, reduc-
ing item transitions to pairwise interactions and missing higher-order patterns. These issues
hinder the full understanding of user behavior, particularly in complex scenarios involving
cross-session activity or multi-item combinations. Therefore, developing models that integrate
both intra-session dynamics and inter-session relations has become an urgent research need
[19,20].

To address the above challenges, we propose GCACL-Rec (Global Context-Aware Con-
trastive Learning for Recommendation), a novel session-based recommendation model that
integrates multiple components for cross-session modeling, contrastive learning, and decision
fusion. At its core, GCACL-Rec includes a global-level Multi-Scale Graph Neural Network
(MSGNN) to capture complex item transitions across sessions and a local-level Position-
aware Graph Neural Network (P-GNN) to model sequential dependencies within individ-
ual sessions. MSGNN incorporates external hypernodes that aggregate semantically related
sessions, enabling cross-session message passing through node–hypernode interactions. To
further enhance this process, a relative multi-head attention mechanism is applied to capture
position-sensitive dependencies across nodes. For local modeling, P-GNN leverages posi-
tional encoding to effectively capture sequential dependencies within sessions. Additionally,
we introduce MPACL, a Multi-Perspective Adversarial Contrastive Learning framework that
constructs diverse session views and uses adversarial training to maximize inter-view consis-
tency, improving feature robustness and discrimination. In the prediction stage, inspired by
SR-PredAO [21], we design a hybrid module that combines Neural Decision Forests (NDF)
with a softmax function. NDF captures complex nonlinear transitions, while softmax main-
tains linear interpretability, jointly enhancing the model’s ability to learn diverse item transi-
tion patterns.

In summary, the main contributions of our work are as follows:

• We propose a novel multi-scale graph construction and MSGNN model that effectively
captures complex and high-order item transitions. This model is enhanced by a relative
multi-head attention mechanism, which improves node information flow.

• We design MPACL, a multi-perspective adversarial contrastive learning framework that
builds multiple session views and uses adversarial training to ensure cross-view consistency.
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• We introduce a hybrid prediction module combining Neural Decision Forests (NDF) and
softmax, enabling the model to capture diverse and nonlinear item transitions.

• We validate GCACL-Rec on three benchmark datasets, demonstrating that it consistently
outperforms existing state-of-the-art methods in the session-based recommendation.

Related work
Session recommendation based on traditional methods
Session-based recommendation (SBR) systems aim to predict the following item a user will
interact with by analyzing short-term behavior sequences. Traditional SBR approaches fall
into two main categories: co-occurrence-based methods [22] and Markov chain-based meth-
ods [6,23]. Co-occurrence methods leverage item-to-item similarity to recommend frequently
co-appearing items but struggle to model sequential dependencies. In contrast, Markov chain
models capture short-term preferences from recent clicks and effectively reflect immediate
user intent. However, they often overemphasize the latest interactions and overlook long-
term user preferences. These limitations have motivated the development of more advanced
methods that provide a deeper understanding of user behavior and enhance recommendation
performance.

Deep learning based session recommendation
Deep learning has recently driven significant advances in session-based recommendation
(SBR). As a pioneering work, Hidasi et al. [10] first applied a recurrent neural network (RNN)
to sequential recommendation, introducing the GRU4Rec model, which laid the foundation
for future studies. Building on this, Li et al. [4] enhanced GRU4Rec with an attention mech-
anism to better capture representative item transitions. Parks et al. [5] further advanced the
field by proposing STAMP, replacing RNN encoders with attention to jointly model users’
long-term preferences and short-term behaviors. In terms of model architecture innovation,
Wang et al. [24] proposed SASRec, which employs self-attention to extract deep transition
patterns in item sequences. Despite these developments, limitations remain. Most RNN—
and CNN-based models emphasize direct transitions between adjacent items, often neglecting
complex, latent relationships among non-adjacent items, such as cross-session dependencies
or multi-hop neighbors [25,26]. This restricts their ability to capture user behavior patterns
fully. Such architectural limitations become especially problematic in cross-session scenar-
ios, where models may fail to reflect users’ valid preferences. Overcoming these challenges is,
therefore, a key focus for future research in SBR.

Session recommendation based on graph neural networks
In recent years, graph neural networks (GNNs) have shown strong performance in capturing
complex node relationships [27–29]. In the session-based recommendation (SBR) field, Wu et
al. [15] pioneered the use of Graph Neural Networks (GNNs) by introducing SR-GNN, which
reformulates the sequential recommendation task as a graph modeling problem. SR-GNN
leverages a gated graph neural network (GGNN) to learn item representations and extract
high-order information. Inspired by SR-GNN, various GNN-based models have been pro-
posed. GC-SAN [30] combines GGNN with self-attention [31] to capture local item transi-
tions and model long-term interests. NISER [32] utilizes normalization to enhance robustness
in the presence of sparse and noisy data. S2-DHCN [33] adopts a dual-channel hypergraph
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network to model short-term interests and enhance hypergraph learning. CSRM [34] incor-
porates contextual factors (e.g., time, location) and attention to improve sequential model-
ing. SGNN-HN [13] addresses non-adjacent item relations and overfitting using star-shaped
GNNs and highway networks. CoSAN [35] enhances session-awareness by utilizing neigh-
borhood session embeddings and multi-head attention. GCE-GNN [36] constructs a global
session graph by combining local and global session representations. Beyond recommender
systems, graph-based models have also been applied in safety-critical dynamic system pre-
diction tasks. For instance, Peng et al [37] proposed the Graph Time Neural Network (GTN),
which integrates graph attention mechanisms with multi-scale time series analysis and aux-
iliary learning to enhance long-term prediction in train–bridge coupled systems. Similarly,
Zhang et al. [38] introduced a self-evolving Graph Isomorphic Network (GIN) for multi-
scenario safety assessment of railway bridges, demonstrating robust performance across both
known and unseen scenarios. These studies provide new perspectives and inspire our work by
showing how graph-based attention and self-evolutionary strategies can effectively address
complex sequential dependencies and cross-scenario modeling. In the context of session-
based recommendation, Int-GNN [39] represents an attempt to incorporate frequency-based
signals to model user intent within sessions, achieving competitive performance. However,
consistent with the challenges identified in other domains such as dynamic system prediction
and cross-scenario safety assessment, Int-GNN still suffers from key limitations: it focuses
only on single-session modeling, overlooks cross-session intent dynamics, and lacks effective
strategies for handling data sparsity—one of the most common challenges in SBR. Building on
the new perspectives provided by recent graph-based advances in other fields and addressing
the specific shortcomings of Int-GNN, our study proposes a more robust and generalizable
session-based recommendation model.

Contrastive learning recommendation
Contrastive Learning (CL) is a self-supervised paradigm that extracts supervisory signals
from unlabeled data through pretext tasks. Its core idea is to learn robust representations by
maximizing agreement between different augmented views of the same instance (positives)
while minimizing similarity with views of other instances (negatives), typically optimized via
contrastive loss. CL first achieved breakthroughs in computer vision with models such as Sim-
CLR [40] and MoCo [41], and has since been extended to natural language processing [42]
and audio processing [43].

Recently, CL has gained traction in recommender systems for alleviating data sparsity and
improving representation learning. LightGCL [44] employs singular value decomposition
(SVD) for global alignment, while SimGCL [45] demonstrates that injecting uniform noise
into embeddings achieves strong performance at lower cost. Building on these foundations,
the principles of CL—view-invariant representation and hardness-aware negative sampling—
have been adapted to domain-specific challenges. For example, in knowledge-grounded dia-
logue (KGD) [46], entity-aware CL improves robustness by constructing positives with irrel-
evant noise and negatives with relevant noise, while in time series, TimesURL [47] lever-
ages frequency-temporal augmentations and dual negative sampling to learn generalizable
representations.

In session-based recommendation (SBR), CL has been applied to handle user anonymity
and noisy interactions. SCL [48] simplifies CL by directly optimizing alignment and unifor-
mity without complex augmentations, improving interpretability and efficiency. RecDCL [49]
further introduces a dual framework with batch-wise and feature-wise objectives for enhanced
robustness. However, most methods still rely on fixed augmentations and overlook adversarial
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and multi-perspective alignment. To address this, we propose Multi-Perspective Adversarial
Contrastive Learning (MPACL), which builds tailored session views and employs adversarial
training to generate challenging negatives, thereby distilling true user intent from noise and
improving both robustness and discriminative power of session representations.

Preliminary
Let V = {v1, v2,… , vn} denote the set of all items involved in the sessions, where n is the total
number of unique items. A session is represented as S = {vs,1, vs,2,… , vs,m}, which includes m
interactions from an anonymous user, where vs,i ∈V indicates the item clicked at the i-th step
of the s-th session.Given a specific session S, the goal of session-based recommendation (SBR)
is to predict the next item vs,m+1.To this end, our model aims to output a probability distribu-
tion over all items, denoted as ̂y = { ̂y1, ̂y2,… , ̂yn} , where ̂yi ∈ ̂y represents the predicted score
of item vi.These scores are sorted in descending order, and the top-K ranked items are rec-
ommended as candidates. The frequency of occurrence of an item is calculated using a count
function Cnt(vis, Si), which measures the number of times the item vis appears in the subse-
quence Si. The frequency vector of the occurrence of the sequence is defined as: seqOcc(S) =
[Cnt(vs1, S1),… ,Cnt(vsn, Sn)]This vector is used to capture the temporal occurrence patterns
of items within a session.

Method
Methodological framework overview
The overall framework of GCACL-Rec is illustrated in Fig 1. First, all sessions and the current
session are constructed into a global-level graph and a local-level graph, respectively. We also

Fig 1. Overall structure diagram of the GCACL-Rec model. The diagram provides a high-level overview of the model architecture, aiding understanding before the
detailed explanation.

https://doi.org/10.1371/journal.pone.0335176.g001
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compute item occurrence counts across all sessions to obtain frequency-based item embed-
dings. The local graph is processed by a Position-aware GNN (P-GNN) to capture high-order
local dependencies and generate local item embeddings. The global graph is processed by an
MSGNN and, combined with the frequency embeddings, is further refined by a statistics-
aware attention mechanism to emphasize high-frequency items, yielding global item embed-
dings. Next, a soft attention-based fusion module integrates global and local embeddings to
learn a pairwise-aware session representation. Meanwhile, the frequency embeddings are
passed through a Bidirectional GRU (Bi-GRU) to model both short—and long-term user
preferences. Average pooling is followed by deriving a user preference embedding hu, repre-
senting the user’s interest over the entire item set V. The fused item embeddings are also input
into another Bi-GRU to capture temporal dependencies further. The original fused embed-
dings and Bi-GRU outputs are then combined using a gated GRU to retain informative fea-
tures, resulting in the final item representation hs. Additionally, GCACL-Rec introduces a
multi-perspective adversarial contrastive learning strategy, which constructs multiple session
views and maximizes their consistency via adversarial training. Finally, a hybrid prediction
layer combining Neural Decision Forests (NDF) and Softmax is used to compute the score
for each candidate item, predicting the following item the user is likely to click in the given
session.

Local level graph neural network
To capture pairwise relationships between items within a session, we construct a local graph
GL = (VL,EL) for each session, where VL denotes the set of item nodes in the current session
and EL represents the edges based on the item click sequence in session S. To better model
item transition patterns, a self-loop is added to each item node to capture its self-state. Since
the local graph is directed and item transitions are directional, edges are categorised into four
types: rin (transition from vi to vj only), rout (from vj to vi), rin–out (bidirectional transitions),
and rself (self-loops). This edge typing strategy allows the model to represent item interaction
patterns within sessions more accurately.

Building on this, we introduce a positional embedding pos_embi for each node to cap-
ture its position within the sequence. Specifically, the positional embeddings are generated as
follows:

Pi = normalize(Wp ⋅ pos_embi) (1)

Wp is a trainable embedding matrix that maps each node’s position index pos_indexi to a
high-dimensional space. The normalization function normalise(⋅) stabilizes the embedding
values and reduces noise during propagation.

To capture node relationships more effectively, each node vi updates its features through
multiple graph convolution layers, where each layer takes the output of the previous one as
input:

hli = 𝜎
⎛
⎜
⎝
∑

vj∈Ni

AijP
(l–1)
i Wl

rij + b
l
⎞
⎟
⎠

(2)

Where Aij is the normalized measure of the relation or relative position between nodes vi
and vj, ensuring that the sum of weights over all neighbors of a node equals 1, rij denotes the
connection type between vi and vj, P

(l–1)
i is the feature representation of node vi at layer l–1,

and the initial input P(0)i is the positional embedding of node vi.
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After the graph convolution, we use a Gated Recurrent Unit (GRU) to capture time-related
patterns. GRUs are suitable for modeling sequences and managing long-term dependencies.
The computation is defined as follows:

zt = 𝜎(Wz ⋅ [hlt, xt] + bz)
rt = 𝜎(Wr ⋅ [hlt, xt] + br)
h̃t = tanh(Wh ⋅ [rt ⋅ hlt–1, xt] + bh)
ht = (1 – zt) ⋅ h̃t + zt ⋅ ht–1

(3)

Where ht is the hidden state at time t, and xt is the node feature output from the graph
convolution.

Finally, after processing through the graph convolution and GRU layers, a fully connected
network is used to map and extract node features, producing the final node representations:

XL
vi =W2 ReLU(W1hi + b1) + b2 (4)

Where hi denotes the feature output by the GRU, and W and b are learnable parameters.
Finally, the project feature representation obtained through local graph modeling is

defined as XL
vi , where XL

vi represents the embedding of the i-th project in the local graph.

Global-level graph neural networks
To address the issue of insufficient item representation in Local-GNN session modeling
caused by data sparsity, this study proposes constructing a global graph to integrate transi-
tion patterns across all sessions. Specifically, given a session set S = [S1, S2, ..., Sn], we con-
struct a global graph Gg = (Vg,Eg), where Vg represents item nodes appearing in all sessions.
In this paper, we use the term hypernodes consistently to denote auxiliary nodes that aggre-
gate structurally or semantically similar sessions. Similarly, we use global graph to describe
the integrated cross-session structure. To capture high-order item transitions across sessions,
a set of hypernodes Pg = [P1,P2, ...,Pm] is introduced, each aggregating structurally or seman-
tically similar sessions. For any node vi ∈Vg, its neighborhood includes both item nodes with
direct transition relationships and connected hypernodes that introduce semantic associa-
tions across sessions. Unlike traditional GNNs that model only local structures based on adja-
cency matrices, we adopt a dynamic routing mechanism between nodes and hypernodes to
enable bidirectional information exchange. This design effectively integrates local transition
patterns with global semantics, providing a unified and efficient graph structure for modeling
cross-session dependencies and representation learning.

Information propagation between nodes. In this method, message passing between
nodes considers both the current session representation and the weight assignment between
a node and its neighbors. Specifically, for node vi and each of its neighbors vj, an attention
score is calculated by combining the feature of vj with the semantic information of the current
session, indicating the importance of vj. The calculation is as follows:

bij = LeakyReLU (W1 (xvi ⊙ xvj)) (5)

where⊙ denotes element-wise multiplication, and W1 is a learnable weight matrix. This
design allows the model to better capture the importance of neighbor nodes in the current
session.
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To ensure the comparability of weights when computing attention for node vi, the atten-
tion scores bij are normalized using Softmax:

bij =
exp (LeakyReLU (W1 (xvi ⊙ xvj)))

∑ vk∈N g
vi
exp (LeakyReLU (W1 (xvi ⊙ xvj)))

(6)

Where Ng
vi denotes all neighbors connected to node vi. The normalized bij represents the

attention weight of neighbor vj relative to other neighbors.
After computing and normalizing the attention weights, the updated representation xgvis is

obtained by the weighted sum of all neighbor representations of node vi:

xgvis = ∑
vj∈N g

vi

bijxvi (7)

This process performs weighted aggregation of neighbor features, allowing neighbors more
relevant to the current session to contribute more. The resulting representation xgvis combines
both the node’s information and that of its neighbors, capturing richer semantic features in
the graph.

Information propagation between hypernodes. To effectively capture high-order graph
information, we generate hypernodes through three complementary strategies: mean pooling
preserves session-wide statistics, max pooling extracts dominant features, and random sam-
pling (activated when hypernodes exceed three) enhances diversity. These hypernodes then
undergo relative multi-head attention, facilitating position-aware multi-round interactions.
The initial hypernode representations are defined as S(0) = [s(0)1 , s(0)2 , ..., s(0)L ]⊤, where L is the
number of hypernodes.

Given the hypernode representations at the t-th layer S(t) ∈ RL×d, we project them into
query, key, and value vectors to capture interactions and relative positional information: Q =
S(t)WQ, K = S(t)WK, and V = S(t)WV, where WQ, WK , and WV are learnable parameter matri-
ces. With H attention heads, each head has a dimension of dk = d/H. In the h-th head, the
relative attention score between hypernodes i and j is computed as follows:

Ah
i,j = (Qh

i + 𝜇)⊤Kh
j + (Qh

i + 𝛾)⊤Rh
i–j (8)

Where R(i–j) represents the relative positional information between hypernodes i and j,
derived from their index difference i–j, and 𝜇,𝛾 are learnable bias vectors.

Then, Ah
i,j is scaled and normalized using Softmax, and the weighted sum of the value vec-

tors obtains the output:

Oh
i =

L
∑
j=1

Softmax
⎛
⎝
Ah
i,j√
dk

⎞
⎠
Vh
j (9)

With h attention heads, we compute outputs O(1),O(2),...,O(H) and concatenate them along
the feature dimension. The concatenated result is then transformed by a learnable linear pro-
jection matrix WO to obtain the updated hypernode representations P(t).

pt = [o1∥o2∥⋯∥oh] ⋅Wo (10)
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where WO ∈ℝ(H⋅dk)×d is a learnable projection matrix. Through multiple iterations, hyper-
nodes exchange information under the guidance of relative positional encoding, leading to
representations with enhanced global awareness.

The final hypernode representation p(T) is considered the output that captures both high-
order structural information and relative positional dependencies. It retains the local seman-
tic information aggregated within each hypernode while integrating the influence of other
hypernodes and their relative positions in the index space, resulting in a globally-aware and
hierarchically-structured representation.

Cross-propagation. In each propagation round, relying only on node-to-node or
hypernode-to-hypernode interactions limits information exchange to shallow structures,
making it difficult to integrate global context and local structure effectively. To address this,
we design a cross-propagation mechanism that enables nodes to directly receive information
from hypernodes, while hypernodes can also capture dynamic feedback from nodes.

Based on the previously obtained node representations xgvi and hypernode representations
p(t), we introduce a bidirectional propagation path between hypernodes and nodes to enhance
global-local fusion. During hypernode updates, we first compute interaction results via rela-
tive multi-head attention (RMHA) among hypernodes and then integrate dynamic feedback
from nodes. The update is given by:

pT+1 = RMHA(p1, p2,… , pT) +A⊤
n,s ⋅ xgvis (11)

where AT
n,s ∈ℝM×N represents the connection matrix between nodes and hypernodes, this

design ensures each iteration allows hypernodes to aggregate global semantic information
while dynamically sensing connected node features, preventing semantic drift and enhancing
representation consistency and timeliness.

In the node update phase, nodes receive messages not only from their neighbors but also
from hypernodes to enhance global awareness. The update is computed as:

XT = 𝜎 (Wx (An,n ⋅ xgvis +An,s ⋅ pT+1)) (12)

where An,n ∈ℝN×M is the node-to-neighbor adjacency matrix, Wx is a learnable projection
matrix, and 𝜎(⋅) is an activation function.

The bidirectional propagation between hypernodes and nodes is repeated for T = 0, 1, ...,
T–1. The final node representation X(T) combines neighbor and hypernode information,
enabling nodes to retain local features while capturing global context for stronger represen-
tations.

Get global embedding. In earlier sections, we introduced the MSGNN framework and
discussed preliminary item representations in session sequences. However, item occurrences
in sessions are often imbalanced, with high-frequency items better reflecting user interests.
Explicitly incorporating item frequency into graph representation learning can increase the
model’s attention to these items and improve recommendation performance. Specifically, we
define a global frequency embedding matrix EO = [eo0, eo1, ..., eoM], where each eoi is a learnable
embedding for items appearing i times, capturing user preference signals. For each item vi
in a session S = [s1, s2, ..., sL], we compute its frequency Cnt(vi, S), retrieve the corresponding
embedding from EO, and construct the session’s frequency embedding matrix:

ESO = [eocnt(v1s ,S1), e
o
cnt(v2s ,S2)

,… , eocnt(vLs ,SL)]
T

(13)
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We design a statistic-aware attention mechanism to fuse the semantic and statistical fea-
tures of items. Semantic features capture contextual information, while statistical features
(e.g., frequency) reflect the importance of an item within a session. Simple concatenation or
averaging may fail to capture their relative contributions; therefore, we introduce an adaptive
weighting mechanism to balance the influence of both feature types dynamically.

To achieve this, we apply an attention-based mechanism to compute the contribution of
the occurrence embedding ESO relative to the item feature XT , estimating the influence of
statistical features in the current representation. The computation is as follows:

𝛼i =
𝜎 (X⊤W + b) ⋅ eocnt(vis, Si)

∥eocnt(vis, Si)∥2
(14)

where W∈ℝd×d and b∈ℝd are learnable linear mapping parameters, and 𝜎(⋅) is the Sigmoid
activation function.

Based on the attention weight 𝛼i computed above, we weight the semantic representation
XT of node i to generate the final item representation vector:

XG
vi = 𝛼i ⋅ X

T (15)

The resulting XG
vi is the final global representation of node vi, combining its semantic fea-

tures and statistical information within the session.

Conversational representation learning layer
With the help of G-GNN and L-GNN, we obtain both local and global embeddings of items.
To effectively fuse local structural and global semantic representations, we introduce a soft
attention-based weighted fusion mechanism. This mechanism dynamically adjusts the contri-
bution of each semantic perspective based on contextual features. First, the local and global
embeddings are concatenated along the feature dimension:

x′vi = [X
L
vi ∥X

G
vi] (16)

where || denotes vector concatenation, XL
vi is the local item embedding, and XG

vi is the global
embedding. Then, the soft attention mechanism computes the attention weights as follows:

𝛼LG = Softmax (q⊤ ⋅ 𝜎(W ⋅ x′vi + b)) (17)

Where q is an attention query vector that captures which items are more important in the
current context. Finally, we obtain the session representation based on pairwise relations by
linearly combining item embeddings with their attention weights.

zi =
t
∑
i=1
𝛼LG x′vi (18)

The fused representation zi captures both global semantic information and short-term
dependencies from the local structure.

In sequential modeling, the order of items plays a key role in capturing user preferences.
To address this, we introduce a Bidirectional Gated Recurrent Unit (BiGRU) (consistent with
Eq (3), just performing forward and reverse calculations) to capture the dynamic evolution
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of context from the fused sequence Zi = [z1, z2, ..., zs]. After processing each zi with BiGRU,
we obtain HBi

s , which incorporates both past and future information, enabling the model to
capture both short-term transitions and long-term dependencies.

Although the BiGRU output HBi
s is expressive, its deep transformations may introduce

redundancy or noise. To address this, we introduce a Gated Fusion GRU to dynamically bal-
ance the contributions of BiGRU outputs and the original inputs, highlighting significant
changes while suppressing interference. Specifically, we first concatenate the two to compute
the gating weights:

𝛽i = 𝜎 (Wg ⋅ [zi ∥HBi
s ] + bg) (19)

The gating coefficients 𝛽i ∈ [0, 1] control the distribution of weights of the information
between the two sources, and the final fusion output is:

hs = 𝛽i ⋅HBi
s + (1 – 𝛽i) ⋅ zi (20)

When gi is large, more emphasis is placed on the dynamic modeling of BiGRU; when it is
small, more of the original local–global fused features are preserved.

Ultimately, the final output sequence hs = [hs,1,hs,2, ...,hs,i] integrates temporal model-
ing with global structure and local context, serving as a key representation for contrastive
learning and score prediction.

To model item frequency and the user interest it reflects, we have constructed the
frequency-based embedding sequence EOS and input it into a BiGRU to capture its temporal
dynamics, yielding HBi

u = BiGRU(EOS ). This design extracts sequential dependencies to iden-
tify user attention patterns, enhancing the model’s ability to represent repeated clicks and
frequent switches. The final frequency-aware user preference hu is obtained by averaging the
BiGRU output.

hu =
1
L

L
∑
i=1

HBi
u (21)

Prediction layer
This section describes how to score candidate items based on the representation of the learned
session and the user’s preference. After obtaining the final session embedding hs and global
user preference hu, we design a multi-branch prediction layer to combine user intent and item
features for more accurate recommendations. The layer comprises two main components:
a traditional softmax-based branch and a high-capacity neural decision forest (NDF) [21]
branch, both of which contribute to the final prediction. The scoring method of the traditional
branch is as follows:

̂yvi = Softmax (EOS (h̃u)⊤ + EIS(h̃s)⊤) (22)

Where h̃u and h̃s are the L2-normalized user preference and session representations, EOS
denotes the frequency distribution vector of the item, which captures user tendencies, and EIS
denotes the embedding of the initial feature of the item based on the session.

However, Most session recommenders use an encoder–predictor setup: the encoder
turns a session into a vector, and a predictor scores items. A common linear dot-product
predictor has low capacity and struggles with noisy or random clicks, bottlenecking even
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strong encoders. Recent work demonstrates that incorporating a high-capacity, tree-
inspired module—alongside denoising the session vector and pruning to manage capacity—
consistently improves accuracy. Following this, we utilize a global, context-aware encoder
and replace the linear head with a Neural Decision Forest (NDF) that incorporates denoising,
allowing the final decision boundary to better separate true next-item intent from noise. The
concatenated feature from hu and hs is first processed with James-Stein shrinkage to reduce
variance from small sample sizes:

𝜇̂(JS)ij = (1 –
m – 2
∥𝛿j∥2

) zij (23)

where zij is the j-th feature value, m is the batch size, and ∥𝛿j∥ is the L2 norm of the j-th fea-
ture across the batch.

The adjusted vector z(JS) is fed into the Neural Decision Tree (NDT) to compute the proba-
bility p(leaf)k of the sample reaching each leaf node, which is then weighted by the correspond-
ing leaf distribution 𝜋k to produce the final output:

p̂ =
2d

∑
k=1

p(leaf)k ⋅ Softmax(𝜋k) (24)

Multiple NDTs are ensembled to form the NDF, and their outputs are averaged:

̂yNDF =
1
T

T
∑
i=1

p̂i (25)

Where T is the number of trees, and p̂i is the output of the i-th tree.Finally, we fuse the
softmax and NDF branches:

̂y = q ⋅ ̂yvi + (1 – q) ⋅ ̂yNDF (26)

This hybrid design combines user preferences, item features, and high-capacity nonlinear
modeling, improving performance and robustness in complex scenarios.

Model optimization
In this section, we present the optimization process of our model. Specifically, we define
the learning objective as the cross-entropy loss function, which has been extensively used in
recommendation systems:

Lr = –
n
∑
i=1
[y log( ̂y) + (1 – y) log(1 – ̂y)] (27)

Where y denotes the one-hot encoding vector of the ground truth item.

Multi-perspective comparison adversarial joint learning
We propose a joint optimization framework combining multi-view contrastive learning and
adversarial training to enhance session representation learning. The model captures user
behavior from two complementary perspectives: global session embedding hs and user intent
representation hu, addressing data sparsity and behavioral diversity.
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To improve consistency between these views, we introduce a contrastive learning task. Two
positive sample views (s(1),v(1)) and (s(2),v(2)) are generated using augmentation strategies such
as dropout, noise injection, and sequence shuffling. Normalized cosine similarity is used to
measure alignment, and a dynamic temperature scaling mechanism is applied to stabilize gra-
dients. For negative sampling, we employ hard negative mining by computing the cosine sim-
ilarity between the anchor and all candidates in the batch, selecting the most similar ones as
hard negatives to enhance the discriminative power of the contrastive loss.

Furthermore, to further improve representation discrimination, we introduce a Cross-view
Shuffling strategy, which randomly shuffles the order of augmented views to create cross-
sample negatives. This enhances sample diversity and reduces overfitting to specific patterns.
We also retain Random Negative Sampling to ensure training stability. The final contrastive
loss is defined as:

Lcon = – log (𝜎 (sim(s(1), v(1)))) – log (1 – 𝜎 (sim(s(2), v–))) (28)

After contrastive learning, we introduce adversarial training to enhance model expressive-
ness and generalization. A GRU-based generator produces fake sequence embeddings from
randomly initialized inputs, refined by a projection head to ensure semantic consistency. A
GRU-based discriminator distinguishes between real embeddings h and generated embed-
dings ĥ. To improve training stability, we adopt Least Squares GAN (LSGAN) [50] as the loss
function:

LD =
1
2
[(D(h) – 1)2 + (D(ĥ))2] , LG = (D(ĥ) – 1)2 (29)

In this setup, the generator and discriminator form an adversarial game in the semantic
space. Unlike traditional GANs, LSGAN uses a least squares loss to mitigate vanishing gra-
dients and accelerate convergence. The generated embeddings also participate in contrastive
learning to improve semantic alignment. The final objective jointly optimizes recommenda-
tion, contrastive learning, and adversarial training:

Ltotal = Lr + 𝜇 ((1 – 𝛽) ⋅ Lcon + 𝛽 ⋅ (LD + LG)) (30)

where Lr is the main recommendation loss, and 𝜇, 𝛽 control the task balance.
This adversarial setup, combined with multi-view contrastive learning, enhances the

model’s discriminative power, generative capability, and generalization. The process of
GCACL-Rec is detailed in Algorithm 1.

Results
In this section, we systematically validate the proposed model through a large number of
experiments and provide an in-depth analysis of the following core issues:

• RQ1: Is GCACL-Rec better than existing methods?
• RQ2: Are these components necessary in GCACL-Rec?
• RQ3: Is the proposed MSGNN valid?
• RQ4: What is the effect of different numbers of hypernodes?
• RQ5: What is the effect of model depth?
• RQ6: What are the effects of different hyperparameters in GCACL-Rec?
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Algorithm 1. Training Process of GCACL-Rec

Input: Sessions S, candidate items V
Output: Top-k recommended items

1 Transform sessions into local/global views;
2 Construct local graphs GL and global graph GG with hypernodes;
3 for epoch in range(Epoches) do
4 for batch in DataLoader do
5 foreach session S in batch do
6 Graph Modeling:;

7 Local P -GNN embedding XL
vi ← (Eq.(1)–(4));

8 Global MSGNN embedding XT ← (Eq.(5)–(12));

9 Statistic-aware refinement XG
vi ← (Eq.(13)–(15));

10 Representation Learning:;
11 Fusion & sequential encoding hs ← (Eq.(16)–(20));
12 Frequency-based preference hu ← (Eq.(21));
13 Multi-Perspective Contrastive & Adversarial Learning:;
14 Contrastive on (hs, hu) ⇒Lcon ← (Eq.(28));
15 Adversarial training ⇒LD, LG ← (Eq.(29));
16 Prediction:;
17 Hybrid scoring ̂y ← (Eq.(22)–(26));

18 end for;

19 end for;
20 Loss: Ltotal =Lr + 𝜇((1 – 𝛽)Lcon + 𝛽(LD +LG)) ;
21 Update parameters by backpropagation;

22 end for;

Datasets and preprocessing
To comprehensively evaluate the effectiveness of the proposed method, we conducted exper-
iments on three real-world datasets: Diginetica, Tmall, and Retailrocket. Diginetica is from
the CIKM Cup 2016 and contains five months of transaction logs from an e-commerce plat-
form. Tmall is derived from the IJCAI-15 competition and consists of anonymized shopping
logs. The RetailRocket dataset, released by an e-commerce company on Kaggle, includes six
months of user browsing activities.

For data preprocessing, we follow a unified strategy used in prior work [15]. Ses-
sions with only one item and items appearing fewer than five times are removed. For
Tmall, sessions longer than 40 are also filtered out. Training samples are generated
using sequence splitting: for a session S = [s1, s2, ..., sn], we construct subsequences like
([s1], s2), ([s1, s2], s3), ..., ([s1, ..., sn–1], sn) for both training and testing. Statistics of the pre-
processed datasets are shown in Table 1.

Table 1. Dataset statistics on Diginetica, Tmall, and RetailRocket.
Statistics Diginetica Tmall RetailRocket
#clicks 982,961 818,479 1,085,217
# training sessions 719,470 351,268 433,643
# test sessions 60,858 25,898 15,132
# items 40,728 30968 36,968
average lengths 5.12 6.69 5.43
Note: This table summarizes the key statistics of the three benchmark datasets used in the experiments, including
the number of clicks, training and test sessions, item counts, and average session length.

https://doi.org/10.1371/journal.pone.0335176.t001
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Evaluation indicators
Following the previous work [15,33], we use two relevance-based evaluation metrics: Preci-
sion@N (P@N) and Mean Reciprocal Rank@N (MRR@N) to assess model performance. P@N
measures the proportion of correctly recommended items in the top-N list, while MRR@N
calculates the average reciprocal rank of the correct item within the top-N positions. In this
study, we set N = 10 and N = 20 for consistent evaluation across all compared methods.

Baseline models
To evaluate the model’s performance, we comprehensively evaluate the performance of
GCACL-Rec with 14 baselines from 5 different types:

Methods based on frequency and matrix decomposition

• POP: It employs item frequency statistics to recommend the top-N most popular items
from the training set.

• FPMC [6]: It employs matrix factorization combined with a Markov chain to capture short-
term item transitions.

RNNmodeling methods

• GRU4Rec [10]: It is an RNN-based model that uses a Gated Recurrent Unit (GRU) to
model user sequences.

• NARM [4]: It employs an RNN encoder to capture sequential context, followed by an atten-
tion mechanism to focus on dominant user intent.

Attention mechanismmethods

• STAMP [5]: It employs attention layers to replace all RNN encoders in previous work by
fully relying on the self-attention of the last item in the current session to capture the user’s
short-term interest.

Transformer-based methods

• SASRec [24]: It employs stacked self-attention layers with positional encoding to capture
sequential dependencies, followed by unidirectional modeling to predict the next item in
the sequence.

• BERT4Rec [51]: It employs bidirectional Transformer encoders with a masked item pre-
diction objective, followed by contextualized embeddings to capture both left and right
dependencies for sequential recommendation.

Graph neural network methods

• SR-GNN [15]: It employs a gated GNN layer to obtain item embeddings, followed by a self-
attention of the last item as STAMP [5] does to compute the session-level embeddings for
session-based recommendation.

• NISER [32]: It employs GNN-based item modeling, followed by L2 regularization, to miti-
gate the effects of long-tail distribution.

• LESSR [52]: It employs a GRU-enhanced graph structure to learn item representations,
followed by session-level aggregation.
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• GCE-GNN [36]: It employs global and session graphs jointly to learn item embeddings,
followed by a fusion layer to enhance the cross-session context.

• S2-DHCN [33]: It employs a hypergraph and line graph to model high-order relations,
followed by contrastive learning to optimize representations.

• COTREC [53]: It employs dual graph encoders trained with self-supervised signals, fol-
lowed by fusion to model intra- and inter-session structures.

• Int-GNN [39]: It employs frequency, re-interaction gaps, and user preferences to guide
intent modeling, followed by GNN-based feature extraction.

These baselines span from simple heuristics to advanced GNN and intent-aware methods,
enabling a comprehensive evaluation of our model’s effectiveness in session-based recommen-
dation.

Parameter setup
To ensure a fair comparison, we adopt the following experimental settings: 10% of the train-
ing set is randomly selected as the validation set, and all models share the same hyperparam-
eter configurations. Specifically, the latent vector dimension is set to d = 256, the batch size is
512, and cross-entropy is used as the loss function. The number of nodes in the neural deci-
sion forest is set to 128, and the depth of the tree is set to 4. All model parameters are ini-
tialized using a Gaussian distributionN (0, 0.1). The Adam optimizer [20] is applied with a
learning rate of 0.0015, a decay rate of 0.5 every five epochs, and L2 regularization set to 10–6.
Additionally, the maximum item occurrence count M is set to 300, the maximum session
length N is 100, and the temperature parameter 𝜇 is 12.5. The number of hypernodes 𝜂 is set
to 4 and the contrastive learning weight is set to 0.1. All baseline methods are run using the
best-performing settings reported in their original papers, and we report their best results.

RQ1-performance evaluation
As shown in Table 2, we compare the performance of GCACL-Rec with traditional methods
across three widely used benchmark datasets(with the best results highlighted in bold). The
results show that GCACL-Rec consistently outperforms all baselines on every dataset.

We first compare two traditional recommendation methods: POP and FPMC. POP rec-
ommends the top-N most frequent items based on popularity and shows the weakest perfor-
mance. FPMC combines first-order Markov chains with matrix factorization to utilize ses-
sion context for recommendation. While it performs better than POP, it still fails to capture
sequential patterns within sessions, leading to suboptimal results.

Compared with neural network-based session recommendation methods, traditional mod-
els show apparent limitations in modeling sequential dependencies. GRU4Rec was the first to
apply gated recurrent units (GRU) to user behavior sequences, initiating the use of deep learn-
ing in session-based recommendation. Later methods, such as NARM and STAMP, intro-
duced attention mechanisms to focus on key behaviors, significantly improving performance.
However, they mainly capture explicit interactions while ignoring the implicit relationships
between items. Subsequent Transformer-based approaches, such as SASRec and BERT4Rec,
further advanced sequential modeling by leveraging self-attention to capture long-range
dependencies. While SASRec employs an unidirectional encoder to predict the next item,
BERT4Rec adopts bidirectional context through a masked prediction objective. However,
both methods still face challenges in modeling higher-order item relations and session-level
intent.
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Table 2. The performance of various models was compared using P@K andMMR@Kmetrics.
Datasets Diginetica Tmall RetailRocket
Metrics P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10
POP 1.18 0.28 0.76 0.26 2.00 0.90 1.67 0.88 1.12 0.30 0.61 0.27
FPMC 22.14 6.66 15.43 6.20 16.06 7.32 13.10 7.12 32.37 13.82 25.99 13.38
GRU4Rec 29.45 8.33 17.93 7.33 10.93 5.89 9.47 5.78 44.01 23.67 38.35 23.27
NARM 49.70 16.17 35.44 15.13 23.30 10.70 19.17 10.42 50.22 24.59 42.07 24.88
STAMP 45.64 14.32 33.98 14.26 26.47 13.36 22.63 13.12 50.96 25.17 42.95 24.61
SASRec 48.78 17.22 35.84 14.55 27.72 12.11 21.91 11.25 45.85 23.39 37.55 22.12
BERT4Rec 50.12 17.16 36.78 15.61 28.12 12.85 22.38 11.58 46.72 25.52 38.92 23.44
SR-GNN 50.73 17.59 36.86 15.52 27.57 13.72 23.41 13.45 50.32 26.57 43.21 26.07
NISER 53.39 18.72 40.20 17.82 33.79 16.67 28.46 16.38 54.90 29.89 47.69 29.38
LESSR 51.71 18.15 36.16 15.64 27.88 12.08 22.68 11.68 53.05 28.01 45.76 27.51
GCE-GNN 54.22 19.04 41.16 18.15 33.42 15.24 28.01 15.08 50.60 25.39 43.53 24.89
S2-DHCN 53.66 18.51 40.21 17.59 31.42 15.05 26.22 14.60 53.66 27.30 46.15 26.85
COTREC 54.18 19.07 41.88 18.16 36.35 18.04 30.62 17.65 56.17 29.97 48.61 29.46
Int-GNN 55.16 19.46 41.84 18.53 40.77 18.20 34.28 17.74 58.02 31.48 50.41 30.94
GCACL-Rec 55.48 19.81 42.33 18.89 42.30 19.47 35.79 19.02 58.98 32.52 51.19 32.00
Imp 0.65% 1.91% 1.31% 2.05% 4.16% 7.69% 4.77% 7.09% 1.79% 3.67% 1.71% 3.80%
Note: Results for SASRec and BERT4Rec are sourced from [54] to ensure a fair comparison under consistent data preprocessing and splitting standards. The
best-performing results are labeled in bold, and the relative performance improvement of our model compared to the best-performing baseline is labeled with
‘Imp’.

https://doi.org/10.1371/journal.pone.0335176.t002

To overcome the limitations of traditional methods, recent research has shifted toward
graph neural network (GNN) based modeling. SR-GNN employs gated graph neural networks
to capture pairwise item transitions within sessions, but it often recommends semantically
related yet incorrect items (e.g., predicting a charger instead of a phone case) due to the lack
of higher-order dependency modeling. NISER normalizes item and session embeddings to
reduce popularity bias, but under sparse sessions, it struggles to retain fine-grained sequen-
tial cues, leading to context-mismatched predictions. GCE-GNN extends graph modeling
across sessions through session-level and global graphs, but it tends to overemphasize global
co-occurrence while neglecting intra-session transitions. S2-DHCN leverages hypergraphs for
high-order relations, yet without explicit transition direction, it fails to recover next-item flow,
and under sparsity, high-order co-occurrence amplifies noise. COTREC enhances robust-
ness with dual graph views and contrastive co-training, but struggles with nonlinear or com-
plex user intents beyond its consistency objective. Int-GNN integrates item frequency and
re-interaction intervals for intent inference, but becomes unstable in short or anonymous
sessions where global statistics are insufficient.

Compared with the above baseline methods, the proposed GCACL-Rec demonstrates con-
sistent advantages across all datasets and metrics. On average, GCACL-Rec outperforms the
best baseline by 1.48% on Diginetica, 5.92% on Tmall, and 2.74% on RetailRocket. This gain
mainly comes from two components: (i) a global, multi-scale graph with hypernodes that cap-
tures high-order item transitions within and across sessions, together with a relative multi-
head attention mechanism that enhances cross-session propagation by modeling position-
sensitive dependencies, thereby alleviating errors such as “associated but non-target” pre-
dictions; and (ii) multi-view adversarial contrastive learning coupled with a neural decision
forest, which improves robustness under sparsity, mitigates popularity bias, and models non-
linear intent patterns more effectively. The performance differences across datasets can be
attributed to their distinct characteristics (Table 1). Diginetica has shorter sessions, which
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reduces the benefit of high-order structural modeling, leading to relatively smaller improve-
ments. By contrast, Tmall and RetailRocket are more sparse and contain larger item vocabu-
laries, where the proposed global multi-scale graph and adversarial contrastive learning are
more effective in alleviating sparsity and popularity bias, resulting in larger relative gains.
Overall, GCACL-Rec addresses the key limitations observed in prior work—pairwise-only
modeling, popularity bias under sparsity, missing transition direction, and instability in short
or anonymous sessions—while achieving state-of-the-art results across benchmarks.

RQ2-Component ablation study
In this section, we analyze the contribution of each component in our model by develop-
ing four variant versions: w/o-MSGNN, w/o-RMA, w/o-MPACL, and w/o-NDF. We com-
pare these variants with the original baselines and the full GCACL-Rec model on the Digi-
netica, Tmall, and RetailRocket datasets. Specifically, in w/o-MSGNN, we remove the multi-
scale global graph and the multi-scale GNN module, using only the item view to model ses-
sion data. In w/o-RMA, we replace the relative multi-head attention used in node-to-node
propagation with standard attention. In w/o-MPACL, we remove the multi-view contrastive-
adversarial joint learning module. In w/o-NDF, we remove the neural decision forest predic-
tor and use a single softmax layer for computing the final score. The performance of GCACL-
Rec and its four ablated variants is reported in Fig 2.

As shown in Fig 2, GCACL-Rec consistently outperforms all four ablated variants and the
original baseline across all three datasets, confirming the effectiveness of each component.

Among them, MSGNN is one of the core modules, enabling the propagation of cross-
session information and the sharing of global context. Its removal leads to a noticeable drop
in performance across all metrics, as it models hierarchical user behavior through multi-scale
hypernodes (mean, max, and random sampling) and preserves complex item transition struc-
tures, enhancing representation quality. Similarly, replacing the relative multi-head attention
(RMA) with standard attention results in performance degradation. RMA dynamically cap-
tures temporal dependencies between hypernodes via relative position encoding. Without
it, the model struggles to distinguish between local and global dependencies, losing the abil-
ity to adaptively weight hypernode interactions. Removing the MPACL module also results
in a noticeable decrease in performance. By combining multi-view contrastive learning and
adversarial perturbation, MPACL helps capture diverse user interests and improves robust-
ness against complex data distributions. Excluding the NDF module weakens the model’s abil-
ity to handle nonlinear patterns. NDF enhances high-order behavior modeling through an
ensemble of neural decision trees, supported by James-Stein smoothing and dynamic pruning,
which together balance expressiveness and generalization.

In summary, GCACL-Rec integrates hierarchical temporal modeling (MSGNN-RMA),
multi-view enhancement (MPACL), and decision optimization (NDF) into a unified
“representation–fusion–decision” framework. These components complement each other and
work jointly during training, leading to significant improvements in session-based recom-
mendation performance.

RQ3-Effectiveness study of MSGNN
In this section, we validate the overall effectiveness of our proposed global graph structure
and multi-scale graph neural network (MSGNN) by constructing three structural variants:
w/o-GCN, w/o-GAT, and w/o-GGNN. Specifically, in these variants, we modify the global
graph computation method by replacing our original MSGNN module with classical GNN
architectures—namely graph convolutional networks (GCN), graph attention networks
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Fig 2. Changes in GCACL-Rec model performance after ablation of individual components. The left side of the figure displays the results of the baseline model, while
the right side shows the results of our model. The four modules in the middle represent the results of ablating each component.

https://doi.org/10.1371/journal.pone.0335176.g002

(GAT), and gated graph neural networks (GGNN)—to encode the item graph and perform
information propagation. All other components of the model remain unchanged. This allows
us to evaluate the adaptability and performance differences of various GNNs in the context of
graph modeling.

As shown in Fig 3, the GCN, GAT, and GGNN variants can capture some cross-session
structural information and demonstrate a certain level of effectiveness. However, compared
to our proposed global module, a performance gap remains across key metrics on all three
datasets. For example, on the Tmall dataset, MSGNN outperforms GAT and GGNN by
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Fig 3. Performance of different GNN variants. The figure illustrates the effectiveness of our multi-scale global graph design by comparing it with classical graph neural
network (GNN) backbones.

https://doi.org/10.1371/journal.pone.0335176.g003

approximately 0.6% and 0.9% on P@20, respectively, and achieves improvements of 0.8%–
1.1% on MMR@20. Similar trends are observed on the RetailRocket and Diginetica datasets,
with especially notable gains in MMR. The key reason for this performance difference lies in
the design of our global graph, which not only captures standard item transition structures
but also introduces hypernodes and multi-scale aggregation to model higher-order, hierarchi-
cal relationships across sessions. Moreover, MSGNN enables multi-round bidirectional mes-
sage passing between nodes, hypernodes, and among hypernodes themselves, significantly
enhancing the expressive power of the global graph. In contrast, the alternative models lack
this structural support; their message propagation is limited to shallow or static neighbor-
hood connections, making it difficult to capture complex behavioral paths and latent semantic
associations effectively.

In summary, while traditional GNNs such as GCN, GAT, and GGNN demonstrate some
modeling capacity in our cross-session global information modeling task, MSGNN—designed
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specifically for the proposed global graph structure—offers a better fit for multi-scale repre-
sentation and consistently delivers more stable and superior recommendation performance.

RQ4-Effect of the number of super points
To investigate the impact of the number of hypernodes on the performance of the MSGNN
model in the session-based recommendation, we conducted experiments on the Diginetica,
RetailRocket, and Tmall datasets, varying the number of hypernodes in the set 2, 4, 6, 8, 10,
12. Fig 4 presents the results, with the left side showing changes in P@20 and P@10 and the
right side showing trends in MMR@20 and MMR@10.

When the number of hypernodes is set to 2, the model captures only coarse-grained
semantics, such as global averages and local peaks. This limits its ability to aggregate use-
ful information, resulting in lower performance across all metrics. With four hypernodes,
the model achieves the best results on all datasets in both P@K and MMR@K, suggesting an
effective balance between generalization and recommendation quality. This setting enhances
information propagation without causing excessive aggregation. However, increasing the

Fig 4. Impact of the number of hypernodes on model performance on three datasets. The figure shows how varying the number of hypernodes impacts accuracy
(P@20/P@10) and diversity (MMR@20/MMR@10), demonstrating that using four hypernodes yields the best overall performance.

https://doi.org/10.1371/journal.pone.0335176.g004
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number of hypernodes beyond 4 (from 6 to 12) leads to performance degradation or insta-
bility. This may be due to overlapping semantics among hypernodes after multiple rounds of
message passing, which introduces interference and reduces model expressiveness.

In conclusion, the number of hypernodes has a significant impact on the performance of
MSGNN. Too few may lead to the under-representation of structural information, while too
many can cause redundancy and noise. Setting the number of hypernodes to 4 offers the best
trade-off for the effective session-based recommendation.

RQ5-Impact of model depth
To systematically evaluate the representational capacity of the model under different prop-
agation depths, we conducted a series of joint ablation experiments by configuring both the
local graph network (P-GNN) and the global graph network (Global-GNN) with 1 to 5 layers.
These experiments were performed on the Diginetica, Tmall, and RetailRocket datasets, and
the results are illustrated in Fig 5. In each experiment group, the local and global networks
were kept at the same depth to ensure comparability.

Overall, the model exhibits relatively weak performance at shallow depths (e.g., one layer).
As the number of layers increases, both recommendation accuracy (P@20, P@10) and mean

Fig 5. Impact of varying propagation depth on model performance. The figure compares the performance of GCACL-Rec with different
numbers of layers in both local and global GNNs, showing that a three-layer setting yields the best accuracy.

https://doi.org/10.1371/journal.pone.0335176.g005
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reciprocal rank (MMR@20, MMR@10) improve steadily, reaching their peak at three lay-
ers. Specifically, on the Diginetica dataset, the three-layer model achieves the best results,
with P@20 reaching 55.48 and MMR@20 reaching 19.81. Similarly, the three-layer configura-
tion yields optimal results across the main metrics on both Tmall and RetailRocket datasets.
Notably, when the model depth exceeds three layers, we observe slight fluctuations or even
minor performance drops. This degradation can be attributed to the over-smoothing effect
or noise accumulation introduced by excessively deep networks, which leads to homoge-
nized node representations and diminished structural discriminability. Furthermore, deeper
propagation may introduce redundant dependencies or cause gradient vanishing, thereby
weakening the model’s ability to capture both local and global semantics effectively.

In summary, a three-layer propagation structure strikes a favorable balance between accu-
racy and diversity. It is sufficient to capture higher-order structural information while effec-
tively preventing overfitting and representational degradation, thus delivering the best overall
performance. Therefore, we adopt a three-layer architecture as the default setting in the final
model to strike a balance between expressive power and computational efficiency.

RQ6-Sensitivity analysis
To validate the rationality of our chosen hyperparameters, we first conducted a sensitivity
experiment on the learning rate. On the RetailRocket dataset, we tested four values of learning
rate (lr) at 0.001, 0.0015, 0.002, and 0.025, and plotted the curves of Recall@20 and MRR@20
over epochs (in Fig 6). The results show that a smaller learning rate (0.001) ensures stable con-
vergence but converges more slowly overall; moderate learning rates (0.0015 and 0.002) lead
to rapid performance gains in the early epochs and eventually achieve higher Recall and MRR,
with lr = 0.0015 performing best, reaching about 58.98 in Recall@20 and 32.52 in MRR@20.
In contrast, a substantial learning rate (0.025) improves quickly in the early stage but exhibits
significant fluctuations later, indicating instability in training. Thus, lr = 0.0015 strikes a good
balance among convergence speed, final performance, and stability, making it the preferable
choice.

Fig 6. Impact of learning rate on model performance. The figure shows the results on RetailRocket with different learning rates, where lr = 0.0015 yields the best
accuracy.

https://doi.org/10.1371/journal.pone.0335176.g006
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We further performed sensitivity analysis on the contrastive loss parameter 𝜇, with results
shown in Table 3. When 𝜇 = 0.10 and 𝜇 = 0.15, the model achieved superior and stable per-
formance, with 𝜇 = 0.10 performing best (Recall@20 = 55.48, MRR@20 = 19.81). In con-
trast, when 𝜇 = 0.20 and 𝜇 = 0.25, performance dropped noticeably, with Recall@20 falling to
around 53.74. This suggests that an overly large 𝜇 assigns excessive weight to the contrastive
loss, thereby weakening the optimization of the primary recommendation task. Considering
both performance and stability, 𝜇 = 0.10 is the optimal setting. Overall, the final parameter
configuration (lr = 0.0015, 𝜇 = 0.10) was determined through extensive empirical validation
and ensures consistent and strong performance on both Recall and MRR, thus supporting the
soundness of our parameter choices.

Conclusion
This study proposes GCACL-Rec, a session-based recommendation model that combines
global graph modeling, multi-scale graph neural networks, and multi-perspective contrastive
adversarial learning. GCACL-Rec constructs a multi-scale global graph with super-nodes
to capture cross-session semantics and uses relative multi-head attention to enhance direc-
tional message passing. For local sessions, position encoding and gating mechanisms capture
short-term dependencies. The MPACL framework further strengthens user intent representa-
tion. Experiments on Diginetica, Tmall, and RetailRocket show that GCACL-Rec consistently
outperforms existing methods in accuracy and diversity, while maintaining stability under
sparsity and cold-start conditions.

Despite its strong performance, GCACL-Rec has some limitations. First, the integration of
global graphs, multi-scale attention, and adversarial training increases computational com-
plexity, which may reduce training efficiency on large-scale datasets. Second, the construction
of super-nodes and message passing depends on manually designed structures and aggrega-
tion strategies, which limit adaptability and generalization in highly dynamic scenarios.

For future work, we plan to mitigate computational complexity by applying model com-
pression techniques such as pruning and quantization, reducing model size, and improving
inference speed without sacrificing performance. We will also explore distributed training
with multi-GPU setups and cloud platforms to accelerate training and scale to larger datasets.
These efforts are essential for enhancing the efficiency and real-world applicability of the
proposed model. In summary, GCACL-Rec provides an effective solution for cross-session
fusion, high-order behavior modeling, and self-supervised learning, offering a strong founda-
tion for personalized recommendations in complex scenarios. If access to the code is required,
interested readers may contact the corresponding author, and access may be granted upon
reasonable request and evaluation.

Table 3. Performance comparison under different 𝜇 values on Diginetica.
𝜇 Recall@20 MRR@20 Recall@10 MRR@10 Best Epoch
0.10 55.45 19.84 42.15 18.92 11
0.15 55.33 19.81 42.08 18.89 10
0.20 54.87 19.68 41.90 18.78 7
0.25 53.74 19.29 41.03 18.40 3
Note: This table shows the performance of GCACL-Rec on the Diginetica dataset under different values of 𝜇. The
best result is obtained when 𝜇 = 0.10.

https://doi.org/10.1371/journal.pone.0335176.t003
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