
PLOS One | https://doi.org/10.1371/journal.pone.0335067  December 1, 2025 1 / 35

 

 OPEN ACCESS

Citation: Shen L, Yi Z, Liu J, Ying Y, Hu Y 
(2025) Identification of key genes associated 
with idiopathic pulmonary fibrosis and 
sarcopenia by bioinformatics analysis. 
PLoS One 20(12): e0335067. https://doi.
org/10.1371/journal.pone.0335067

Editor: Chandrabose Selvaraj, AMET University, 
INDIA

Received: July 5, 2025

Accepted: October 6, 2025

Published: December 1, 2025

Peer Review History: PLOS recognizes the 
benefits of transparency in the peer review 
process; therefore, we enable the publication 
of all of the content of peer review and 
author responses alongside final, published 
articles. The editorial history of this article is 
available here: https://doi.org/10.1371/journal.
pone.0335067

Copyright: © 2025 Shen et al. This is an open 
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 

RESEARCH ARTICLE

Identification of key genes associated 
with idiopathic pulmonary fibrosis and 
sarcopenia by bioinformatics analysis

Lanying Shen1☯, Zihan Yi2☯, Jiahao Liu2☯, Yinghua Ying2, Yue Hu 2*

1  Department of Geriatric Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 
Hangzhou, Zhejiang, China, 2  Key Laboratory of Respiratory Disease of Zhejiang Province, Department 
of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of 
Medicine, Hangzhou, Zhejiang, China 

☯ These authors are contributed equally.
* huyue88@zju.edu.cn

Abstract 

Background

Idiopathic pulmonary fibrosis (IPF) and sarcopenia significantly affect patients’ quality 

of life. The progression and worsening of these conditions are often associated with 

endoplasmic reticulum (ER) stress, a key cellular stress–response mechanism. This 

study aimed to investigate the involvement of ER stress in cellular dysfunction in IPF 

and sarcopenia by identifying ER stress-related crosstalk genes (ERSRCGs).

Methods

Differential gene expression and weighted gene co-expression network analysis 

(WGCNA) were used to identify ERSRCGs. Functional enrichment analyses, includ-

ing the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), 

Gene Set Variation Analysis (GSVA), and Gene Set Enrichment Analysis (GSEA), 

were performed to categorize associated pathways. Least absolute shrinkage and 

selection operator (LASSO) regression was applied to construct diagnostic models 

for sarcopenia and IPF. The CIBERSORT method was used to examine immune infil-

tration, and GeneMANIA was used to construct the protein–protein interaction (PPI) 

network.

Results

A total of 13 ERSRCGs were substantially associated with sarcopenia and IPF. GO 

and KEGG analyses revealed enrichment in amino acid metabolism and xenobiotic 

metabolism pathways. GSEA and GSVA further highlighted the involvement of these 

genes in multiple biological processes and signaling pathways. LASSO regression 

identified CTH and IDI1 for IPF, and FOXO1, CTH, HSD11B1, GSTK1, and SPTSSA 
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for sarcopenia. Immune infiltration analysis revealed significant correlations between 

ERSRCGs and immune cell populations in both diseases.

Conclusion

This study provides novel insights into the interrelated molecular pathways between 

sarcopenia and IPF, underscoring the potential of ERSRCGs as diagnostic biomark-

ers and therapeutic targets. The developed diagnostic models highlight key genes 

that could significantly improve the early detection and risk assessment strategies for 

these conditions.

1  Introduction

Both IPF and sarcopenia are well established as two major health threats that are 
progressive and for which the management is limited [1]. IPF is a chronic lung 
disease, which significantly impairs respiratory function and results in a marked 
reduction in QoL and high morbidity and mortality rates, as well as high overall costs 
of care. Despite the progress in treatment: antifibrotic agents including pirfenidone, 
nintedanib the aetiology of IPF has not been definitely established. Moreover, these 
treatments have not been very effective in halting the progression of diseases 
related to the lungs [2]. Nonetheless, older persons are at a high risk of developing 
sarcopenia which is strictly described as the loss of muscle mass and the reduced 
physical functioning that accompanies ageing, which predisposes them to mobility 
limitation and poor health [3,4]. Reduced activity capacity is common in patients with 
IPF as this is because respiratory function is impaired; this causes muscle utilisation 
to reduce resulting in the onset of sarcopenia. Godfrey et al revealed that reduced 
muscle supportive lung function is associated with a decline in overall muscle mass, 
implying the effect of respiratory disease in systemic muscle wellbeing [5]. Further-
more, a chronic inflammatory state is considered a potential link between IPF and 
sarcopenia. These patients are always found to have systemic inflammation in the 
case of IPF patients, it may cause inflammation not only in the lungs additionally it 
affects muscles resulting in metabolic changes which leads to sarcopenia [6]. Under-
standing the molecular mechanisms underlying these interconnected conditions is 
therefore critical for identifying novel therapeutic targets.

Recent academic studies have focused on exploring how crucial a role endoplas-
mic reticulum (ER) stress is in the onset of some chronic diseases, including but not 
limited to sarcopenia and IPF. The stimulus involved in the cell’s response to ER 
stress is the unfolded protein response (UPR), which has been associated with tissue 
remodeling and cellular dysfunction. This connection makes it a major research 
interest, especially in discovering the common molecular link between these two 
diseases [7,8]. In regard to IPF, studies reported that ER stress enhances fibrotic pro-
cesses by inducing cell death of the epithelial cells in addition to enhancing fibroblast 
activity that leads to the production of a tremendous amount of extracellular matrix 
and impaired lung function [9]. Similarly, in sarcopenia, accumulation of misfolded 
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proteins as a result of ER stress may lead to muscular wasting through activating inflammatory and oxidative stress path-
ways, and thereby leading to muscle wasting and loss of strength [10]. Nevertheless, in light of these results, the roles of 
ER stress-associated pathways remain only partially defined with regard to IPF and sarcopenia, pointing to a significant 
knowledge deficit in the corpus of current literature.

This study aimed to identify and validate ER stress-related crosstalk genes (ERSRCGs) associated with IPF and sar-
copenia. Thus, we applied significant differential expression analysis and weighted gene co-expression network analysis 
(WGCNA), a robust method for linking gene modules to clinicopathological traits, to identify gene networks underlying 
molecular interactions between the two conditions [11]. This research intends to integrate large-scale gene expression 
data on ER stress in deriving new insights into the common molecular pathways underlying both idiopathic pulmonary 
fibrosis (IPF) and sarcopenia. By using the principles identified in the present author’s work and based on the findings, 
one may expect the consequent emergence of novel therapeutic approaches and potential diagnostic markers facilitating 
the management of these often difficult and disabling disorders.

2  Materials and methods

2.1  Data download

Using the R package GEOquery, we obtained the IPF-related datasets GSE24206 and GSE53845 from the Gene Expres-
sion Omnibus (GEO) database [12,13]. All samples in datasets GSE24206 and GSE53845 were derived from human lung 
tissue. The chip platforms for GSE24206 and GSE53845 were GPL570 and GPL6480, respectively. Specific details are 
provided in Table 1. Dataset GSE24206 included six control group samples and 17 IPF samples, while dataset GSE53845 
contained 40 IPF samples and 8 control samples. This study used datasets GSE24206 as the training set and GSE53845 
as the validation set, and both datasets included IPF and control specimens. This study does not contain any studies with 
humanparticipants or animals performed by any of the authors.

Using the R package GEOquery, the sarcopenia-related datasets GSE8479 and GSE1428 were also obtained from 
the GEO database [14,15]. Both datasets were derived from human muscle tissue. The chip platforms for GSE8479 and 
GSE1428 were GPL2700 and GPL96, respectively (refer to Table 1 for details). Dataset GSE8479 included 26 control 
samples and 25 sarcopenia samples, while dataset GSE1428 contained 10 control and 12 sarcopenia samples. This 
study used datasets GSE8479 as the training set and GSE1428 as the validation set, and both datasets included sarco-
penia and control samples.

Endoplasmic reticulum stress-related genes (ERSRGs) are compiled in the GeneCards database (https://www.gen-
ecards.org/) [16]. Complete details about human genes can be found in the GeneCards database. “ER Stress” was the 
search term that we employed. 2391 ERSRGs in total were obtained after just the ERSRGs for “Protein Coding” were 
kept. Similar to the PubMed website’s ER stress “as keywords” (https://pubmed.ncbi.nlm.nih.gov/), there is published 

Table 1.  GEO microarray chip information.

IPF Sarcopenia

Platform GSE24206 GSE53845 GSE8479 GSE1428

GPL570 GPL6480 GPL2700 GPL96

Samples in Disease group 17 40 25 12

Samples in Control group 6 8 26 10

Tissue Lung Lung Muscle Muscle

Species Homo Sapiens Homo Sapiens Homo Sapiens Homo Sapiens

Reference PMID: 21974901 PMID: 25217476 PMID: 17520024 PMID: 15687482

GEO, Gene Expression Omnibus; And IPF, Idiopathic Pulmonary Fibrosis.

https://doi.org/10.1371/journal.pone.0335067.t001

https://www.genecards.org/
https://www.genecards.org/
https://pubmed.ncbi.nlm.nih.gov/
https://doi.org/10.1371/journal.pone.0335067.t001
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literature [17] in the 256 ERSRGs set. Following consolidation and de-duplication, a total of 2458 ERSRGs were obtained; 
for more details (refer to S1 Table in S1 File for details).

2.2  Differential expression analysis

The samples from the IPF dataset GSE24206 were divided into an IPF and control groups. Differentially expressed genes 
(GEGs) were identified using the R package limma [18]. IPF-related DEGs (IPFRDEGs) were defined as adjusted p < 0.05 
and |logFC| > 0.0. Genes with adjusted p < 0.05 and logFC > 0.0 were considered significantly upregulated, whereas those 
with adjusted p < 0.05 and logFC < 0.0 were considered downregulated. Differential expression was visualized with volcano 
plots generated using the R program ggplot2 and heatmaps created using the R package.

Similarly, the samples from the Sarcopenia dataset GSE8479 were divided into sarcopenia and control groups. Differ-
ential expression analysis was performed using limma, and sarcopenia-related DEGs (SRDEGs) were defined as adjusted 
p < 0.05 and |logFC| > 0.0. Genes with logFC > 0.0 and adjusted p < 0.05 were considered upregulated, whereas those with 
logFC < 0.0 and adjusted p < 0.05 were considered downregulated. Visualization was performed using volcano plots cre-
ated with the R package ggplot2 and expression heat maps generated using the R package pheatmap.

2.3  WGCNA

WGCNA [19] is a biology of systems approach that may be utilized to determine highly covariant gene sets and charac-
terize patterns of gene association between various samples. Furthermore, given the connectivity of the gene set and the 
relationship between the specified gene set and the phenotype resulting from the analysis, identify candidate biomarker 
genes or therapeutic targets. WGCNA was performed using the R package WGCNA [20].

To retain the top 90% of genes in the IPF dataset GSE24206, we first calculated the variance of each gene. WGCNA 
parameters were set as follows: minimum separation = 0.2, soft-threshold power = 9, minimum module size = 100 genes, 
module merging height = 0.25, and a scale-free fitting index = 0.85. Genes within each module were identified, and correla-
tions between the control and IPF groups across modules were assessed. Genes in each module were regarded as the 
module signature genes. Following a screening of the modules with r ≥ 0.30, a Venn diagram was used to intersect genes 
from the most significant module with IPFRDEGs. The overlapping genes were defined as IPF-related module genes 
(IPFRMGs).

In the sarcopenia dataset GSE8479, gene variance was calculated and the top 90% ranked by variance were retained 
for analysis. Parameters were set as follows: soft-threshold power = 9, minimum distance = 0.2, module merging thresh-
old = 0.2, scale-free fitting index = 0.90, and minimum module size = 100 genes. Genes in each module were recorded, and 
correlations between the sarcopenia and control groups were assessed. Genes in each module were considered to be 
hallmark module genes. Modules with |r| > 0.30 were selected, and a Wayne diagram was generated by the intersection of 
the most crucial module’s genes with SRDEGs to identify sarcopenia-related module genes (SRMGs).

An intersection analysis of IPFRMGs and SRMGs was then performed, and a Venn diagram was generated to illustrate 
their overlap. The resulting shared genes were defined as crosstalk genes (CGs). Subsequently, CGs were intersected 
with ERSRGs, and another Venn diagram was generated to identify ERSRCGs.

2.4  Expression difference verification and correlation analysis of ERSRCGs

To evaluate the expression differences, ERSRCGs were compared between disease and control groups in both the IPF 
dataset GSE24206 and the sarcopenia dataset GSE8479 using subgroup comparison plots. The Spearman method 
was used to analyze the associations between ERSRCGs in the two datasets. The results were visualized using igraph 
(v1.6.0) and graph (v2.1.0) in R. Correlation strength was classified as follows: |r| < 0.3 = 0.3, 0.3–0.5 = low, 0.5–0.8 = mod-
erate, and >0.8 = high.
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2.5  Gene ontology (GO) and pathway (KEGG) enrichment analysis

GO enrichment analysis was conducted across the biological process (BP), cell component (CC), and molecular function 
(MF) categories [21]. Molecular Function (MF) and CC). A popular database for keeping data on diseases, medications, 
biological pathways, genomes, and other topics is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [22]. We per-
formed gene ontology (GO) and pathway (KEGG) enrichment analysis of ERSRCGs using the R-package clusterProfiler 
(Version 4.10.0) [23]. Significance thresholds were set at p < 0.05 and false discovery rate (FDR, q-value) < 0.25.

2.6  Gene set enrichment analysis (GSEA) of IPF and sarcopenia

Gene set enrichment analysis (GSEA) evaluates the distribution of gene sets within a ranked list of genes ordered by phe-
notypic association [24]. In this study, genes in the IPF training set GSE24206 were divided into IPF and control groups, 
and GSEA was performed on all genes using the R package clusterProfiler. The parameters were as follows: seed = 2020, 
minimum gene set size = 10 genes, and maximum = 500 genes. The C2 gene sets were accessed using the Molecular 
Signatures Database (MSigDB, v2023.2.Hs) [25]. Benjamini–Hochberg (BH) correction was applied, with significance 
thresholds set at adjusted p < 0.05 and FDR value (q-value) < 0.25.

Once more, we separated the genes in the sarcopenia training set into sarcopenia and control. We used the R-package 
clusterProfiler to conduct a GSEA on every gene in the Sarcopenia training set. The following were the GSEA’s parameters: 
there were at least 10 and up to 500 genes in each gene group, and the seeds were in 2020. C2 gene sets are accessed 
via the Molecular Signatures Database (MSigDB). All. V2023.2. Hs. GSEA symbols. BH was used as the p-value correction 
method, and adj. p < 0.05 and FDR value (q-value) < 0.25 were the screening requirements for GSEA.

2.7  Analysis of gene set variation (GSVA)

GSVA is a non-parametric, unsupervised method that transforms a gene expression matrix into a gene set expression 
matrix to evaluate pathway-level enrichment across samples [26]. Using the MSigDB c2.cp.v2023.2.Hs gene sets, 
GSVA was applied to the sarcopenia training set GSE8479 and the IPF training set GSE24206. Differences in pathway 
enrichment between the IPF and control groups, as well as between the sarcopenia and control groups, were calculated. 
Screening criteria were set at adjusted p < 0.05, with BH correction for multiple testing.

2.8  Construction of diagnostic models for IPF and sarcopenia

Perform LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis for ERSRCGs in order to gen-
erate a diagnostic model for the IPF training set GSE24206. When applying the sanctions term (the magnitude of the 
lambda × slope), what is derived from the LASSO regression analysis is more generalised than overfitting; this technique 
has modest roots in the linear regression analysis. A variable trajectory diagram and diagnostic model diagram show the 
outcomes of the LASSO regression analysis. The diagnostic model of IPF was arrived at using LASSO regression analy-
sis and the Idiopathic Pulmonary Fibrosis Model Genes (IPFMGs) which comprised ERSRCGs.

Similarly, for the sarcopenia training set GSE8479, ERSRCGs were analyzed using LASSO regression to construct a 
sarcopenia diagnostic model. Genes identified in this model were defined as sarcopenia model genes (SMGs). As with the 
IPF model, variable trajectory plots and diagnostic model diagrams were used to visualize the outcomes.

Finally, genes shared between IPFMGs and SMGs were defined as Model genes.

2.9  Validation of the diagnostic models of IPF and sarcopenia

We used the IPF validation set GSE53845 and Sarcopenia validation set GSE1428 to validate the IPF diagnostic model 
and sarcopenia diagnostic model. To ascertain the diagnostic significance of the Sarcopenia model gene (SMGs) on sar-
copenia and the IPF model gene (IPFMGs) on IPF.
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Nomograms were constructed using the R package rms to visualize the functional relationships between the Model 
genes and disease diagnosis [27]. To assess the accuracy and resolution of the LASSO-based diagnostic models, cali-
bration curves were generated. Decision curve analysis (DCA), a technique for evaluating clinical predictive models, was 
performed using the R package ggDCA to evaluate the clinical utility of each model (IPFMGs in GSE24206; SMGs in 
GSE8479) [28]. Receiver Operating Characteristic (ROC) curves for the training sets (GSE8479 and GSE24206) were 
then plotted using the R package pROC, and the Area Under the Curve (AUC) was calculated to evaluate the diagnos-
tic performance of the LASSO RiskScore. LASSO-derived risk scores (RiskScore) were calculated using the following 
formula:

	
RiskScore=

∑
i

Coefficient (genei)
∗mRNA Expression (genei)

	

2.10  Validation of the IPF and sarcopenia models

To investigate the predictive effect of Model Genes on disease in IPF and Sarcopenia samples, RiskScores were calcu-
lated for both the disease and normal groups based on the expressions of IPFMGs and SMGs in the training and valida-
tion sets. The ROC curves were generated using the R package pROC to compare diagnostic performance. An AUC > 0.5 
indicated that gene expression favored disease occurrence, with diagnostic accuracy classified as poor (0.5–0.7), moder-
ate (0.7–0.9), or high (0.9).

2.11  Immune infiltration analysis of the IPF validation set

Immune cell composition was estimated from transcriptome expression data using the CIBERSORT algorithm, which 
applies linear support vector regression for deconvolution [29]. The immune infiltration matrix for dataset GSE53845 was 
obtained, and samples with immune cell fractions greater than zero were retained. A proportion histogram was plotted to 
visualize immune cell distribution. The Spearman algorithm was then used to assess the correlations between immune 
cells, and the R package heatmap (v1.0.12) was used to construct a correlation heatmap. Associations between Model 
genes and immune cells were also evaluated using Spearman correlation, with results visualized as a bubble plot gener-
ated in the R package ggplot2 (v3.4.4).

2.12  Immune infiltration analysis of the sarcopenia validation set

The CIBERSORT method was used in conjunction with the distinctive gene matrix of immune cells to filter out the data 
whose immune cell enrichment fraction was larger than zero. After obtaining the precise outcomes of the matrix of 
immune cell infiltration in dataset GSE1428, a proportion histogram was produced for presentation. We then employed the 
Spearman algorithm to determine the relationship between immune cells, and the R-package heatmap (Version 1.0.12) 
was used to construct the correlation heatmap that presented the findings of the immune cells’ association analysis. The 
R package ggplot2 (Version 3.4.4) was used to construct the correlation bubble map that shows the results of the rela-
tionship research between Model Genes and immune cells. The Spearman algorithm was used to determine how immune 
cells and model genes are related.

2.13  Protein–protein interaction (PPI) network

Gene lists are analyzed, gene function hypotheses are generated, and genes are prioritized for functional analysis using 
the GeneMANIA database (https://genemania.org/) [30]. Using the GeneMANIA website, we predicted functionally related 
genes of model genes with interaction relationships in the STRING database to build a protein-protein interaction network 
(PPI Network).

https://genemania.org/
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2.14  Regulatory network construction

The regulatory network of Model Genes and miRNA was generated, and miRNAs associated with Model Genes were 
retrieved from the TarBase database to examine the link between Model Genes and miRNAs [31]. Additionally, Cytos-
cape software was utilized to visualize the mRNA-miRNA Regulatory Network [32]. The regulation of transcription factor 
(TF) on Model Genes was examined by combining transcription factors that were obtained from the ChIPBase data-
base [19] and the HTFTarget database [33]. Furthermore, Cytoscape was utilized to visualize the mRNA-TF Regulatory 
Network.

2.15  Statistical analysis

All the statistical computations and all the analytics computations of the current research were performed using the R pro-
gram (Version 4.2.2). To contrast two sets of continuous variables, the p-value for normally distributed variables is deter-
mined by a separate Student T-Test if not indicated otherwise. The Wilcoxon Rank Sum Test, or Mann-Whitney U Test, 
was utilized to compare samples of continuous variables where the distribution was not normal. When comparing more 
than three groups, the Kruskal–Wallis test was employed. Actual score data was utilized for Spearman correlation analy-
sis aimed at determining correlation coefficients between several substances. Except where stated otherwise, all tests of 
statistical significance used a bilateral test, and the significance level was fixed at 0.05. This study does not contain any 
studies with human participants or animals performed by any of the authors.

3  Results

3.1  Technology roadmap

See Fig 1.

3.2  Analysis of differentially expressed genes in IPF and weighted gene co-expression network analysis

The IPF training set GSE24206 was first subjected to a differential analysis using R-packet limma to identify the genes 
that were differentially expressed in the two data groups. Examining the variations in gene expression levels between 
the IPF and Control groups was the goal of this. The findings were as follows: The IPF training set GSE24206 had 3596 
DEGs that satisfied the criteria of |logFC| > 0.00 and adj. p < 0.05. There were 2045 down-regulated genes (logFC < 0.00 
p-value < 0.05) and 1551 up-regulated genes (logFC > 0.00 adj. p < 0.05) below this cutoff. The dataset’s difference analy-
sis results were used to construct a map of volcanoes (Fig 2A). The differentially expressed genes that were up-regulated 
and down-regulated were shown on a heat map (Fig 2B).

The co-expression module was then screened using WGCNA for every gene in every sample of the IPF training 
set GSE24206. First, the built network was more consistent with the scale-free topology when evaluating the scale-
free fitting index (Fig 2C), which was computed and shown under various soft thresholds. The findings demonstrate 
that the least soft threshold—that is, the ideal soft threshold—that satisfies the building of a scale-free network is 
9 when the index of scale-free fitting is 0.85. Based on the ideal soft threshold, a co-expression network was built, 
and a clustering tree was used to group and label every gene in the IPF training set GSE24206 (Fig 2D). According 
to the results, the genes were grouped into 19 modules upon setting the screening threshold at 0.25. These mod-
ules included MEdarkgreen, MEturquoise, MEdarkred, MEblue, MEmidnightblue, MEbrown, MEdarkgrey, MEblack, 
MEplum1, MEcyan, MEsienna3, MEgreenyellow, MEdarkmagenta, MEsaddlebrown, MEdarkorange, MEpaletur-
quoise, MEdarkolivegreen, MEgrey, MEviolet. After that, group all of the genes together and see how they relate to 
the combined modules (Fig 2E). Lastly, according to the phrase patterns of module genes, the connection between all 
19 modules’ genes and the IPF and Control groups (Fig 2F) was determined. The MEdarkred module was the most 
important one.
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Fig 1.  Flow chart for the comprehensive analysis of IPF and sarcopenia. IPF, Idiopathic Pulmonary Fibrosis; GSEA, Gene Set Enrichment Analysis; 
GSVA, Gene Set Variation Analysis; WGCNA, Weighted Correlation Network Analysis; DEGs, Differentially Expressed Genes; CGS, Crosstalk genes; 
IPFRDEGs, Idiopathic Pulmonary Fibrosis-Related Differentially Expressed Genes; SRDEGs, Sarcopenia-Related Differentially Expressed Genes; 
IPFRMGs, Idiopathic Pulmonary Fibrosis-Related Module Genes; IPfrmgs, idiopathic pulmonary fibrosis – related module genes; SRMGs, Sarcopenia-
Related Module Genes; IPFMGs, IPF Model Genes; SMGs, Sarcopenia Model Genes; SMGS, sarcopenia model genes; GO, Gene Ontology; LASSO, 
Least Absolute Shrinkage and Selection Operator; TF, Transcription Factor; DCA, Decision Curve Analysis; ROC, Receiver Operating Characteristic; 
ERSRGs, Endoplasmic Reticulum Stress-Related Genes; ERSRCGs, Endoplasmic Reticulum Stress-Related Crosstalk Genes.

https://doi.org/10.1371/journal.pone.0335067.g001

https://doi.org/10.1371/journal.pone.0335067.g001


PLOS One | https://doi.org/10.1371/journal.pone.0335067  December 1, 2025 9 / 35

Fig 2.  Differential gene expression analysis and WGCNA for IPF datasets. A. Differential gene expression analysis volcano map of IPF group 
and Control group in Idiopathic pulmonary fibrosis training concentration. B. Heat maps of expression values of top10 up-regulated and top10 down-
regulated genes in the IPF training set. C. Scale-free network display of the optimal soft threshold in weighted gene co-expression network analysis 
(WGCNA). The left figure shows the optimal soft threshold and the right figure shows the network connectivity under different soft threshold values. D. 
Display of module aggregation results of all genes in the idiopathic pulmonary fibrosis training set. E. Clustering results of all genes in idiopathic pulmo-
nary fibrosis training set were displayed. The upper part was divided into hierarchical clustering tree, and the lower part was divided into gene modules. 
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3.3  Analysis of differentially expressed genes in sarcopenia and weighted gene co-expression network analysis

The difference in the amount of gene expression between the Sarcopenia group and the Control group in the Sarcopenia 
training set GSE8479 was first examined utilizing the R-packet limma generated differentially expressed genes between 
the two groups. The results were as follows: A total of 3386 DEGs from the Sarcopenia training set GSE8479 satisfied the 
requirements of adj. p < 0.05 and |logFC| > 0.00. Below this cutoff, there were 1721 up-regulated genes (logFC > 0.00 adj. 
p < 0.05) and 1665 down-regulated genes (logFC < 0.00 adj. p < 0.05). The dataset’s difference analysis results were used 
to construct a map of volcanoes (Fig 3A). The genes with differences in expression that were up-regulated and down-
regulated were shown on a heat map (Fig 3B).

A WGCNA was then conducted on every gene in every sample of the Sarcopenia training set GSE8479 in order to 
screen the co-expression module of the set. First, the built-up network was made more compatible with the scale-free 
topology by calculating and displaying the scale-free fitting index (Fig 3C) at different soft thresholds. The results show 
that when the index of scale-free fitting is 0.9, the best soft threshold, or minimal soft threshold, for building the scale-free 
network is 9. All of the genes in the Sarcopenia training set GSE8479 were grouped and tagged with grouping information 
by a clustering tree, and a coexpression network was built using the ideal soft threshold (Fig 3D). The findings demon-
strated that the genes were grouped in 16 modules when the screening criterion was 0.2, which were: MElightcyan, 
MEbrown, MEyellow, MEgreenyellow, MEblue, MEgrey, MEcyan, MEmagenta, MEpurple, MEsalmon, MEred, MEmid-
nightblue, MEblack, MEgreen, MEpink, MEtan. Finally, cluster all the genes and illustrate the connection of genes to the 
combined modules on the basis of merged modules (Fig 3E). After that, group all of the genes together and see how they 
relate to the combined modules (Fig 3E). Lastly, the expression profiles of the module genes were used to determine the 
association between all 16 modules’ genes and the Sarcopenia and Control groups (Fig 3F). Lastly, MEbrown, the most 
important module, was tested.

3.4  Endoplasmic reticulum stress-related dual disease intersection gene CGs

The Wayne map was created by intersecting the genes in the MEdarkred module with a cumulative total of 3596 differ-
entially expressed genes of idiopathic pulmonary fibrosis (IPFDEGs) (Fig 4A). A sum of 848 IPFDEGS were produced 
according to the Venn diagram; for more details, see S2 Table in S1 File.

The Wayne diagram was created by intersecting 3386 Sarcopenia DEGs with the genes found in the MEbrown mod-
ule (Fig 4B). In all, 982 SRMGs (sarcopenia-related module genes) were identified. Refer to S3 Table in S1 File for the 
detailed details.

Idiopathic pulmonary fibrosis-related module Genes (IPFRMGs) were intersected with sarcopenia-related module 
genes (SRMGs), and the intersection Wayne map (Fig 4C) was drawn to obtain 60 Crosstalk Genes (CGs). For specific 
information, see S4 Table in S1 File.

Finally, the 60 Crosstalk Genes (CGs) obtained were intersected with 2458 ERSRGs and the intersection Wynn map 
(Fig 4D) was drawn. 13 ERSRCGs were obtained, respectively: FOXO1, KAT2A, CTH, CTNNBIP1, HSD11B1, GABAR-
APL1, PKM, PHGDH, SEC31A, IDI1, GSTK1, SPTSSA, PRDM2.

3.5  Expression difference verification and correlation analysis of ERSRCGs

To investigate the variations in ERSRCG expression in the IPF dataset GSE24206, 13 ERSRCGs’ expression levels in 
the IPF group and Control group (IPF dataset GSE24206) were compared using a group comparison figure (Fig 5A). The 

F. Correlation analysis results of all gene cluster modules of IPF training set GSE24206 with IPF and Control groups were presented. DEGs, Differen-
tially Expressed Genes; WGCNA, Weighted Gene Co-Expression Network Analysis; IPFRMGs, Idiopathic Pulmonary Fibrosis-Related Module Genes. 
Green is the Control group and purple is the IPF group.

https://doi.org/10.1371/journal.pone.0335067.g002

https://doi.org/10.1371/journal.pone.0335067.g002
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Fig 3.  Differential gene expression analysis and WGCNA for sarcopenia datasets.  A. Differential gene expression analysis Volcano map of 
Sarcopenia training concentration group and Control group. B. Heat maps of expression values of top10 up-regulated and top10 down-regulated genes 
in the sarcopenia training set. C. Scale-free network display of the best soft threshold in weighted gene co-expression network analysis (WGCNA). 
The left figure shows the best soft threshold, and the right figure shows the network connectivity under different soft threshold. D. Display of module 
aggregation results of all genes in the sarcopenia training set. E. Clustering results of all genes of the sarcopenia training set were displayed. The upper 
part is divided into hierarchical clustering tree, and the lower part is divided into gene modules. F. Correlation analysis results between all gene cluster 
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findings of the differential analysis revealed that the expression levels of ERSRCGs in the IPF dataset GSE24206: CTH, 
PKM, IDI1, and SPTSSA as well as the degrees of these genes’ expression in the IPF group and Control group, were 
statistically significant (p-value < 0.001) (Fig 5A). In the IPF dataset GSE24206, ERSRCGs, and PRDM2 expression levels 
in the IPF group and Control group were highly statistically significant (p-value < 0.01). In the IPF dataset GSE24206, the 
expression level of ERSRCGs CTNNBIP1 had statistical significance (p-value < 0.05) in the Control group as well as the 
IPF group.

Additionally, the Group Comparison Figure (Fig 5B) showed the differences in 13 ERSRCGs levels of expression 
between the Sarcopenia and Control groups to investigate the variation in ERSRCGs expression in the Sarcopenia 
dataset GSE8479. In the Sarcopenia dataset GSE8479, the difference results showed that FOXO1, CTH, HSD11B1, 
PKM, PHGDH, GSTK1, SPTSSA, and PRDM2 expression were highly statistically different (p-value < 0.001) between the 
Sarcopenia group and the Control group (Fig 5B). KAT2A, CTNNBIP1, GABARAPL1, SEC31A, the expression of IDI1 

Fig 4.  Endoplasmic reticulum stress-related crosstalk genes.  A. The intersection of idiopathic pulmonary fibrosis differentially expressed genes 
(IPFDEGs) and module MEdarkred. Intersection diagram of B. Sarcopenia DEGs with module MEbrown. C. Intersection diagram of Idiopathic pulmonary 
fibrosis associated module genes (IPFRMGs) and sarcopenia associated module genes (SRMGs). D. Intersection diagram of Crosstalk Genes (CGs) 
and endoplasmic reticulum stress-related genes (ERSRGs). DEGs, Differentially Expressed Genes; WGCNA, Weighted Gene Co-Expression Network 
Analysis; IPFRMGs, Idiopathic Pulmonary Fibrosis-Related Module Genes; SRMGs, Sarcopenia-Related Module Genes; ERSRGs, Endoplasmic Reticu-
lum Stress-Related Genes.

https://doi.org/10.1371/journal.pone.0335067.g004

modules of the Sarcopenia training set and sarcopenia and Control groups were presented. DEGs, Differentially Expressed Genes; WGCNA, Weighted 
Gene Co-Expression Network Analysis; Sarcopenia, Sarcopenia; SRMGs, Sarcopenia-Related Module Genes. Blue is the Control group and red is the 
Sarcopenia group.

https://doi.org/10.1371/journal.pone.0335067.g003

https://doi.org/10.1371/journal.pone.0335067.g004
https://doi.org/10.1371/journal.pone.0335067.g003
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Fig 5.  Correlation analysis of ERSRCGs. A-b. Grouping comparison of expression differences of ERSRCGs in IPF dataset GSE24206 (A) and Sarco-
penia dataset GSE8479 (B). C-d. Heat maps of 13 ERSRCGs in the IPF dataset GSE24206 (C) and Sarcopenia dataset GSE8479 (D). IPF, Idiopathic 
Pulmonary Fibrosis; ERSRCGs, Endoplasmic Reticulum Stress-Related Crosstalk Genes. ns represented p-value > 0.05, which had no statistical 
significance. * meant p-value < 0.05, with statistically significant significance; ** denotes a p-value < 0.01, indicating a high level of statistical signifi-
cance; *** signifies a p-value < 0.001, reflecting an exceptionally high level of statistical significance. The absolute value of the correlation coefficient 
(r-value) below 0.3 is weak or no correlation, between 0.3 and 0.5 is weak correlation, and between 0.5 and 0.8 is moderate correlation. In A, purple 
was IPF group, green was Control group. In B, red is IPF group and light blue is Control group. Yellow represents a positive association, and vine purple 
represents a negative association.

https://doi.org/10.1371/journal.pone.0335067.g005

https://doi.org/10.1371/journal.pone.0335067.g005
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was highly significantly elevated (p-value < 0.01) in both the Sarcopenia and Control groups in the Sarcopenia dataset 
GSE8479.

We then calculated the correlation of 13 ERSRCGs in the IPF dataset GSE24206 and mapped the heat map of correla-
tion for display (Fig 5C). The findings indicated that ERSRCGs were mainly negatively correlated with other genes.

Finally, we calculated the correlations of 13 ERSRCGs in the Sarcopenia dataset GSE8479 and drew correlation heat 
maps for display (Fig 5D). The findings demonstrated that the majority of the correlations between ERSRCGs and other 
genes were negative. The expression changes of some ERSGCs in the two diseases(IPF and Sarcopenia) were not com-
pletely consistent, suggesting disease-specific differences.

3.6  Gene ontology (GO) and pathway (KEGG) enrichment analysis of overlapping genes in endoplasmic 
reticulum stress-related dual diseases

The link of 13 ERSRCGs with IPF and Sarcopenia was further investigated by means of gene ontology (GO) and pathway 
(KEGG) enrichment analysis, which examined the relationship between biological processes (BP), molecular functions 
(MF), cellular components (CC), and biological pathways (KEGG). These 13 ERSRCGs were subjected to the gene ontol-
ogy (GO) and pathway (KEGG) enrichment analysis; the particular outcomes are displayed in Table 2. As per the results, 
the 13 ERSRCGs were primarily enriched in the production of amino acids from the serine family, the positive regulation 
of gluconeogenesis, the metabolic process of glucose, the metabolic process of serine family amino acids, and other 
biological processes (BP); peroxisome, microbody, palmitoyltransferase complex, beta-catenin destruction complex, ATAC 
complex and other cellular components (CC); NAD or NADP as an acceptor, beta-catenin binding, oxidoreductase action, 

Table 2.  Results of GO enrichment analysis for ERSRCGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0009070 serine family amino acid biosynthetic process 2/13 21/18870 9.13E-05 2.01E-02 1.19E-02

BP GO:0045722 positive regulation of gluconeogenesis 2/13 21/18870 9.13E-05 2.01E-02 1.19E-02

BP GO:0006006 glucose metabolic process 3/13 193/18870 2.79E-04 3.56E-02 2.11E-02

BP GO:0009069 serine family amino acid metabolic process 2/13 40/18870 3.37E-04 3.56E-02 2.11E-02

BP GO:0010907 positive regulation of glucose metabolic process 2/13 45/18870 4.27E-04 3.56E-02 2.11E-02

CC GO:0005777 peroxisome 2/13 143/19886 3.80E-03 7.02E-02 4.62E-02

CC GO:0042579 microbody 2/13 143/19886 3.80E-03 7.02E-02 4.62E-02

CC GO:0002178 palmitoyltransferase complex 1/13 11/19886 7.17E-03 7.02E-02 4.62E-02

CC GO:0030877 beta-catenin destruction complex 1/13 11/19886 7.17E-03 7.02E-02 4.62E-02

CC GO:0140672 ATAC complex 1/13 14/19886 9.12E-03 7.02E-02 4.62E-02

MF GO:0008013 beta-catenin binding 2/13 85/18496 1.58E-03 5.64E-02 1.90E-02

MF GO:0016616 oxidoreductase activity, acting on the CH-OH 
group of donors, NAD or NADP as acceptor

2/13 125/18496 3.37E-03 5.64E-02 1.90E-02

MF GO:0016614 oxidoreductase activity, acting on CH-OH group 
of donors

2/13 135/18496 3.91E-03 5.64E-02 1.90E-02

MF GO:0019903 protein phosphatase binding 2/13 142/18496 4.32E-03 5.64E-02 1.90E-02

MF GO:0030957 Tat protein binding 1/13 10/18496 7.01E-03 5.64E-02 1.90E-02

KEGG hsa01230 Biosynthesis of amino acids 3/13 75/8865 1.57E-04 7.04E-03 5.27E-03

KEGG hsa00260 Glycine, serine and threonine metabolism 2/13 41/8865 1.58E-03 3.55E-02 2.65E-02

KEGG hsa00270 Cysteine and methionine metabolism 2/13 52/8865 2.53E-03 3.79E-02 2.84E-02

KEGG hsa05204 Chemical carcinogenesis – DNA adducts 2/13 71/8865 4.66E-03 5.17E-02 3.87E-02

KEGG hsa00980 Metabolism of xenobiotics by cytochrome P450 2/13 79/8865 5.74E-03 5.17E-02 3.87E-02

ERSRCGs, Endoplasmic Reticulum Stress-Related Crosstalk Genes; GO, Gene Ontology; BP, Biological Process; CC, Cellular Component.

https://doi.org/10.1371/journal.pone.0335067.t002

https://doi.org/10.1371/journal.pone.0335067.t002
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and reactions with donors’ CH-OH groups, protein phosphatase binding, Tat protein binding, and additional molecular 
functions (MF). The biosynthesis of amino acids, the metabolism of glycine, serine, threonine, cysteine, and methionine, 
chemical carcinogens-DNA adducts, and the cytochrome P450-mediated metabolism of xenobiotics and other biological 
pathways are additional areas in which it is concentrated (KEGG). A bubble diagram was used to display results from the 
gene ontology (GO) and pathway (KEGG) enrichment analyses (Fig 6A).

On the same token mapman, gene ontology (GO), and key gene pathway (KEGG) were employed to establish the 
networks of biological processes (BP), molecular function (MF), cell components (CC), and other pathways (KEGG) as 
depicted in the maps in (Fig 6B-E). This case should bear the matching entry and the matching molecule. As the node 
size increases, so do the amount of molecules in the entry.

3.7  Gene set enrichment analysis for IPF (GSEA)

The regulation of each gene in the IPF training set GSE24206 and the biological processes involved were examined using 
GSEA in order to ascertain the impact of the rate of expression of each gene on IPF. The specific results of the correlation 
between the impacted cell components and their molecular functions are shown in Table 3 (Fig 7A). The findings showed 
that the Mebarki Hcc Progenitor Wnt Up Ctnnb1 Dependent significantly enriched all of the genes in the GSE24206 train-
ing set for IPF (Fig 7B). Foroutan Integrated Tgfb Emt Dn (Fig 7E), Croonquist Il6 Deprivation Dn (Fig 7D), Stambolsky 
Targets Of Mutated Tp53 Dn (Fig 7C), and other physiologically significant processes and signaling pathways.

3.8  Gene set enrichment analysis for sarcopenia (GSEA)

To ascertain the impact of the degree of expression of every gene in the Sarcopenia training set GSE8479 on Sarcopenia, 
GSEA examined the biological processes involved as well as the expression of every gene in the Sarcopenia training set 
GSE8479. The relationship between the impacted cell components and the molecular functions carried out (Fig 8A); for 
particular findings refer to Table 4. The findings revealed (Fig 8B-E) that every gene in IPF training set GSE24206 was 
significantly enriched in Zheng Il22 Signaling Up (Fig 8B). Plasari Tgfb1 Signaling Via Nfic 10hr Dn (Fig 8C), Pid Notch 
Pathway (Fig 8D), Schoen Nfkb Signaling (Fig 8E) and other biologically relevant signaling pathways and functions.

3.9  IPF gene set variation analysis (GSVA)

To investigate the differences between the GSE24206 gene mutation analysis (GSVA) dataset and the c2. Cp. V2023.2. Hs. 
Symbols GMT gene set in the GSE24206 IPF and Control group, See Table 5 for specific information. Subsequently, the 
Top20 pathways that adj. p < 0.05 were screened in descending order of absolute logFC value, and a heat chart was created 
to illustrate the differences in the expression of these 20 pathways in both the IPF group and the Control group (Fig 9A).

The grouping comparison diagram (Fig 9B) was then created to display the findings after the differences were con-
firmed using the Mann-Whitney U test. According to the results of GSVA, these pathways in the IPF group and the control 
group are statistically significant, please refer to Table 5 for the pathways (adj. p < 0.05).

3.10  Sarcopenia gene set variation analysis (GSVA)

For the purpose of investigating the c2. Cp. V2023.2. Hs. Symbols. The collection of GMT genes in the data set GSE8479 
less muscle disease (Sarcopenia) group and Control group, the differences between all genes of dataset GSE8479 gene 
mutation analysis (GSVA), for specific information, see Table 6. Then, in descending order of absolute logFC value, the 
top 20 pathways with adj. p < 0.05 were screened. The variation in the manifestation of the 20 pathways between the Sar-
copenia group and the Control group was then examined and represented using a heat map (Fig 10A).

The Mann-Whitney U test was utilized to confirm the discrepancies, and a grouping comparison diagram was used to 
depict the results (Fig 10B). According to the results of GSVA, these pathways in the Sarcopenia group and the control 
group are statistically significant, please refer to Table 6 for the pathways (adj. p < 0.05).
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Fig 6.  GO and KEGG Enrichment Analysis for ERSRCGs. A. Enrichment analysis results of ERSRCGs in gene ontology (GO) and pathway (KEGG) 
showed the bubble diagram: biological process (BP), cell component (CC), molecular function (MF) and biological pathway (KEGG). The horizontal 
coordinates are GO terms and KEGG terms. B-e. Gene ontology (GO) and pathway (KEGG) enrichment analysis of ERSRCGs Network diagram 
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3.11  Construction of diagnostic model for IPF

First, the LASSO regression model (Fig 11A) and the LASSO variable locus diagram (Fig 11B) were created for visualiza-
tion to determine the diagnostic utility of 13 ERSRCGs in IPF. According to the findings, CTH and IDI1 were the two IPF 
model genes (IPFMGs) that were incorporated into the LASSO regression model.

In order to ascertain the 13 ERSRCGs’ diagnostic significance in sarcopenia, first, the LASSO variable locus (Fig 11D) 
and LASSO regression model (Fig 11C) were visualized using 13 ERSRCGs. The findings demonstrated that FOXO1, 
CTH, HSD11B1, GSTK1, and SPTSSA were the five sarcopenia model genes (SMGs) that were included in the LASSO 
regression model.

3.12  Validation of the diagnostic model of IPF and sarcopenia

To further validate the diagnostic model of IPF, based on two idiopathic pulmonary fibrosis model genes (IPFMGs), Nomo-
gram was created to demonstrate the relationship of IPF model genes in the IPF training set GSE24206 (Fig 12A). The 

showing BP (B), CC (C), MF (D) and KEGG (E). The orange nodes represent entries, the green nodes represent molecules, and the lines represent the 
relationships between entries and molecules. ERSRCGs, Endoplasmic Reticulum Stress-Related Crosstalk Genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular Function. The bubble size represents the num-
ber of genes in the bubble diagram, and the bubble color represents the size of the p-value value, the more yellow the p-value is, the smaller the p-value 
is, the more purple the p-value is, the larger the p-value is. The screening criteria for gene body (GO) and pathway (KEGG) enrichment analysis were 
p-value < 0.05 and FDR value (q value) < 0.25.

https://doi.org/10.1371/journal.pone.0335067.g006

Table 3.  Results of GSEA for IPF datasets.

ID setSize enrichmentScore NES pvalue p.adjust qvalue

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_DN 299 0.72 2.91 1.00E-10 7.44E-09 5.52E-09

CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_2 375 0.64 2.64 1.00E-10 7.44E-09 5.52E-09

PID_SYNDECAN_1_PATHWAY 46 0.80 2.52 1.00E-10 7.44E-09 5.52E-09

NABA_COLLAGENS 44 0.81 2.51 1.00E-10 7.44E-09 5.52E-09

REACTOME_COLLAGEN_CHAIN_TRIMERIZATION 44 0.81 2.51 1.00E-10 7.44E-09 5.52E-09

REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_
MULTIMERIC_STRUCTURES

61 0.76 2.50 1.00E-10 7.44E-09 5.52E-09

REACTOME_COLLAGEN_DEGRADATION 64 0.73 2.44 1.00E-10 7.44E-09 5.52E-09

REACTOME_COLLAGEN_FORMATION 86 0.70 2.44 1.00E-10 7.44E-09 5.52E-09

WP_CILIOPATHIES 157 0.64 2.41 1.00E-10 7.44E-09 5.52E-09

REACTOME_COLLAGEN_BIOSYNTHESIS_AND_MODIFYING_
ENZYMES

63 0.72 2.37 5.03E-10 3.22E-08 2.39E-08

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA2_UP 82 0.68 2.36 1.00E-10 7.44E-09 5.52E-09

RICKMAN_HEAD_AND_NECK_CANCER_D 32 0.80 2.34 6.25E-09 3.21E-07 2.38E-07

WP_GENES_RELATED_TO_PRIMARY_CILIUM_DEVELOPMENT_
BASED_ON_CRISPR

87 0.67 2.33 1.53E-10 1.11E-08 8.23E-09

ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE 64 0.69 2.31 2.63E-09 1.48E-07 1.10E-07

LEE_EARLY_T_LYMPHOCYTE_UP 102 0.65 2.31 1.00E-10 7.44E-09 5.52E-09

GRAHAM_NORMAL_QUIESCENT_VS_NORMAL_DIVIDING_DN 86 0.66 2.31 1.04E-09 6.39E-08 4.74E-08

MEBARKI_HCC_PROGENITOR_WNT_UP_CTNNB1_DEPENDENT 78 0.58 1.98 1.64E-05 3.21E-04 2.38E-04

STAMBOLSKY_TARGETS_OF_MUTATED_TP53_DN 47 0.61 1.92 1.78E-04 2.40E-03 1.78E-03

CROONQUIST_IL6_DEPRIVATION_DN 92 0.54 1.88 3.77E-05 6.35E-04 4.71E-04

FOROUTAN_INTEGRATED_TGFB_EMT_DN 72 0.48 1.61 3.82E-03 2.66E-02 1.98E-02

GSEA, Gene Set Enrichment Analysis; And IPF, Idiopathic Pulmonary Fibrosis.

https://doi.org/10.1371/journal.pone.0335067.t003

https://doi.org/10.1371/journal.pone.0335067.g006
https://doi.org/10.1371/journal.pone.0335067.t003
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findings demonstrated that, in comparison to other variables, the expression level of IDI1 of IPFMGs had a more signifi-
cant effect on the IPF diagnostic model. Compared to other variables, CTH’s expression level in the IPF diagnosis model 
was noticeably lower.

Then, using calibration analysis, a calibration curve is created to assess the IPF diagnostic model’s accuracy and 
resolution. To fit the actual probabilities and the anticipated probability in various scenarios in order to assess the model’s 
predictive impact on the actual outcomes (Fig 12B). The black calibration line on the diagnostic model for IPF’s calibra-
tion graph is nearly aligned with the ideal model’s diagonal, but it is slightly off. DCA assessed the IPF diagnosis model’s 
clinical utility using the IPF training set GSE24206, and the findings were shown in (Fig 12C). The LASSO RiskScore is 
calculated using the following formula:

	 RiskScore =CTH∗(–0.145)+IDI1∗(–2.318)	

To confirm the worth of the Sarcopenia diagnostic model, in accordance with the five Sarcopenia Model Genes, Nomo-
gram was developed to demonstrate the link between the Sarcopenia model genes (SMGs) in the SARcopenia training 

Fig 7.  GSEA for IPF datasets.  A. Gene set enrichment analysis (GSEA) of the training set of IPF shows the mountain map of 4 biological functions. 
B-e. Gene set enrichment analysis (GSEA) of IdiF training set showed that all genes were significantly enriched in Mebarki Hcc Progenitor Wnt Up 
Ctnnb1 Dependent (B), Stambolsky Targets Of Mutated Tp53 Dn (C), Croonquist Il6 Deprivation Dn (D), Foroutan Integrated Tgfb Emt Dn (E). The 
screening criteria for gene set enrichment analysis (GSEA) were adj. p < 0.05 and FDR value (q value) < 0.25, and the p-value correction method was 
Benjamini-Hochberg (BH).

https://doi.org/10.1371/journal.pone.0335067.g007

https://doi.org/10.1371/journal.pone.0335067.g007
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set GSE8479 (Fig 12D). The findings demonstrated that, in comparison to other variables, the expression of the SMGs 
gene GSTK1 had a substantially increased influence on the Sarcopenia diagnostic model. Compared to the different fac-
tors, the degree of SPTSSA expression was noticeably less useful for diagnosing sarcopenia.

The precision and clarity of the Sarcopenia diagnosis model were then evaluated by creating a calibration curve utiliz-
ing calibration analysis. To assess the predictive the model’s impact on the real results according to the appropriateness 
of the precise probability and the model’s anticipated probability in different situations (Fig 12E). The black calibration 
line on a calibration graph of the Sarcopenia diagnostic model is near the ideal model’s diagonal, but it is a little off. DCA 
assessed the clinical usefulness of the Sarcopenia diagnostic model and presented the results derived from the model 
genes in the Sarcopenia training set GSE8479 (Fig 12F). The findings demonstrated that the model’s net benefit was 
bigger, its effect was good, and within a certain range, its line remained constant above all positive and negative values. 
LASSO RiskScore is calculated by the formula that follows:

	 RiskScore = FOXO1∗(0.627)+CTH∗(1.485)+HSD11B1∗(2.493)+GSTK1∗(–1.229)+SPTSSA∗(–0.937)	

Fig 8.  GSEA for sarcopenia datasets.  A. Gene Set enrichment analysis (GSEA) of idiopathic pulmonary fibrosis training set showing 4 biological 
function mountain maps. Gene set enrichment analysis (GSEA) of B-E. sarcopenia training set showed significant enrichment of all genes in Zheng Il22 
Signaling Up (B), Plasari Tgfb1 Signaling Via Nfic 10hr Dn (C), Pid Notch Pathway (D), Schoen Nfkb Signaling (E). The screening criteria for gene set 
enrichment analysis (GSEA) were adj. p < 0.05 and FDR value (q value) < 0.25, and the p-value correction method was Benjamini-Hochberg (BH).

https://doi.org/10.1371/journal.pone.0335067.g008

https://doi.org/10.1371/journal.pone.0335067.g008
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3.13  External validation of diagnostic models for IPF

The LASSO RiskScore of all samples of the validation set GSE53845 was calculated according to the LASSO RiskScore 
formula of the training set GSE24206 for IPF. The ROC curves of the IPF training set GSE24206 (Fig 13A) and validation 
set GSE53845 (Fig 13B) were then plotted using R packet pROC predicated on the LASSO risk score. In the IPF train-
ing set, GSE24206, the expression level of RiskScore demonstrated high accuracy in classifying IPF and Control groups 
(AUC > 0.9); in the IPF validation set, GSE53845, the expression level of RiskScore demonstrated low accuracy in classi-
fying IPF and Control groups (0.5 < AUC < 0.7).

Similarly, the RiskScore for every sample in the validation set GSE1428 was determined using the LASSO RiskScore 
formula for the Sarcopenia training set GSE8479. The ROC curves of the Sarcopenia training set GSE8479 (Fig 13C) and 
validation set GSE1428 (Fig 13D) samples were then plotted using R packet pROC according to the LASSO risk score. 
The findings demonstrated that the Sarcopenia training set (GSE8479) and validation set (GSE1428) had low accuracy in 
categorizing Sarcopenia and Control groups based on RiskScore expression levels (0.5 < AUC < 0.7).

3.14  Analysis of immune infiltration in IPF

The CIBERSORT approach was utilized to determine the level of immunological infiltration of 22 different immune cell 
types using the data set GSE53845. According to the results of the immune infiltration investigation, a histogram showing 
the proportion of immune cells in dataset GSE53845 was first produced (Fig 14A). The results showed that 16 immune 
cell types were enriched in the IPF samples: follicular helpers, regulatory T cells, Tregs, gamma delta T cells, activated NK 
cells, monocytes, Macrophages M0 and M2, activated dendritic cells, resting mast cells, neutrophils, eosinophils, naive B 
cells, plasma cells, CD8 and CD4 T cells, and CD4 memory activated T cells.

Table 4.  Results of GSEA for sarcopenia datasets.

ID setSize enrichmentScore NES pvalue p.adjust qvalue

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP 75 0.80 2.55 1.00E-10 1.54E-08 1.23E-08

MCLACHLAN_DENTAL_CARIES_UP 237 0.67 2.46 1.00E-10 1.54E-08 1.23E-08

DEMAGALHAES_AGING_UP 53 0.77 2.29 8.05E-10 8.63E-08 6.92E-08

JINESH_BLEBBISHIELD_TRANSFORMED_STEM_CELL_SPHERES_DN 256 0.60 2.25 1.00E-10 1.54E-08 1.23E-08

JINESH_BLEBBISHIELD_VS_LIVE_CONTROL_UP 326 0.58 2.23 1.00E-10 1.54E-08 1.23E-08

WU_CELL_MIGRATION 173 0.62 2.23 1.00E-10 1.54E-08 1.23E-08

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP 135 0.64 2.21 1.00E-10 1.54E-08 1.23E-08

CHEN_LVAD_SUPPORT_OF_FAILING_HEART_UP 101 0.66 2.19 7.32E-10 8.13E-08 6.52E-08

BOQUEST_STEM_CELL_UP 248 0.58 2.16 1.00E-10 1.54E-08 1.23E-08

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_UP 87 0.66 2.14 1.54E-08 1.21E-06 9.73E-07

KIM_GLIS2_TARGETS_UP 83 0.66 2.14 7.01E-08 5.01E-06 4.02E-06

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN 64 0.69 2.13 1.36E-07 9.36E-06 7.51E-06

BROWNE_HCMV_INFECTION_2HR_UP 36 0.76 2.12 6.34E-07 3.71E-05 2.98E-05

NADLER_OBESITY_UP 60 0.69 2.11 1.47E-07 9.89E-06 7.93E-06

CHIARADONNA_NEOPLASTIC_TRANSFORMATION_KRAS_CDC25_DN 50 0.71 2.11 7.25E-07 4.19E-05 3.36E-05

WEST_ADRENOCORTICAL_TUMOR_MARKERS_DN 20 0.85 2.09 1.79E-06 8.86E-05 7.11E-05

ZHENG_IL22_SIGNALING_UP 51 0.69 2.05 4.45E-06 2.07E-04 1.66E-04

PLASARI_TGFB1_SIGNALING_VIA_NFIC_10HR_DN 31 0.74 2.00 2.55E-05 8.81E-04 7.07E-04

PID_NOTCH_PATHWAY 58 0.63 1.90 3.96E-05 1.25E-03 1.00E-03

SCHOEN_NFKB_SIGNALING 34 0.66 1.84 6.97E-04 1.03E-02 8.22E-03

GSEA, Gene Set Enrichment Analysis.

https://doi.org/10.1371/journal.pone.0335067.t004

https://doi.org/10.1371/journal.pone.0335067.t004
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Subsequently, correlation heat maps (Fig 14B) displayed association findings based on the quantity of 16 types of 
immune cell infiltration in the immune infiltration analysis in IPF samples. The majority of immune cells were shown 
to be significantly correlated, with resting mast cells and activated NK cells exhibiting the most positive correlation 
(r-value = 0.84, p-value < 0.05). Lastly, the connection between Model Genes and the quantity of immune cell infiltration 
was displayed using the correlation bubble diagram (Fig 14C). Most immune cells exhibited a high association, according 
to the correlation bubble map data. The gene CTH had the most powerful negative correlation with immune cells’ T cells’ 
gamma delta (r-value = −0.517, p-value < 0.05).

3.15  Analysis of immune infiltration in sarcopenia

Using the data set GSE1428, the CIBERSORT method was utilized to determine the amount of immunological infiltration 
of 21 different types of immune cells. The results of the immune infiltration investigation were used first to build a his-
togram showing the percentage of immune cells in dataset GSE1428 (Fig 15A). B cells naive, B cells memory, Plasma 
cells, T cells CD4 naive, T cells CD4 memory resting, T cells CD4 memory activated, T cells follicular helper, T cells 
regulatory Tregs, T cells gamma delta, and NK cells resting were among the 21 types of immune cell enrichment found 

Table 5.  Results of GSVA for IPF datasets.

Pathway logFC AveExpr t P.Value adj. P.Val B

KEGG MEDICUS REFERENCE CHOLESTEROL 
BIOSYNTHESIS

−1.15615 −0.10017 −5.58257 5.91E-07 0.0006 5.889634

WP CHOLESTEROL BIOSYNTHESIS PATHWAY −1.14626 −0.08223 −5.4771 8.81E-07 0.000661 5.525985

WP CHOLESTEROL SYNTHESIS DISORDERS −1.11176 −0.08382 −5.57848 6.00E-07 0.0006 5.875512

WP NEUROINFLAMMATION −1.07638 −0.05732 −5.64672 4.63E-07 0.0006 6.111748

REACTOME REGULATION OF COMMISSURAL AXON 
PATHFINDING BY SLIT AND ROBO

1.004831 0.075001 4.85426 8.86E-06 0.003353 3.42493

KEGG MEDICUS PATHOGEN SHIGELLA IPAA TO ITGA 
B RHOGEF RHOA SIGNALING PATHWAY

−0.98633 −0.07092 −5.18215 2.66E-06 0.001595 4.520198

REACTOME ANCHORING FIBRIL FORMATION 0.948205 0.047147 4.851678 8.94E-06 0.003353 3.416414

REACTOME CHOLESTEROL BIOSYNTHESIS −0.93988 −0.06294 −4.89298 7.69E-06 0.003353 3.552862

KEGG MEDICUS REFERENCE ANTIGEN PROCESSING 
AND PRESENTATION BY MHC CLASS II MOLECULES

0.914578 0.032241 3.946354 0.000209 0.020273 0.562543

KEGG MEDICUS REFERENCE MEVALONATE 
PATHWAY

−0.88886 −0.02072 −4.33344 5.63E-05 0.01401 1.747591

WP PATHWAYS OF NUCLEIC ACID METABOLISM AND 
INNATE IMMUNE SENSING

0.884769 0.07027 4.001711 0.000174 0.018414 0.728343

REACTOME TYPE I HEMIDESMOSOME ASSEMBLY 0.879044 0.091098 3.82089 0.000316 0.025625 0.191655

REACTOME REGULATION OF FOXO TRANSCRIP-
TIONAL ACTIVITY BY ACETYLATION

−0.87645 −0.0517 −4.27639 6.85E-05 0.01401 1.569328

BIOCARTA THELPER PATHWAY 0.870226 0.010607 3.805128 0.000333 0.026078 0.145551

WP ACQUIRED PARTIAL LIPODYSTROPHY BARRA-
QUER SIMONS SYNDROME

0.85583 0.061561 4.353049 5.26E-05 0.01401 1.809129

REACTOME RESPONSE OF EIF2AK1 HRI TO HEME 
DEFICIENCY

−0.85442 −0.05692 −4.09761 0.000126 0.01401 1.018563

WP OMEGA 9 FATTY ACID SYNTHESIS −0.85357 −0.01801 −4.10117 0.000125 0.01401 1.029426

BIOCARTA RAB PATHWAY −0.8525 −0.06691 −3.88697 0.000254 0.021812 0.386143

WP ENTEROCYTE CHOLESTEROL METABOLISM −0.85085 −0.03744 −4.48727 3.29E-05 0.010963 2.233972

REACTOME CROSSLINKING OF COLLAGEN FIBRILS 0.850794 0.027118 4.19339 9.11E-05 0.01401 1.312108

GSVA, Gene Set Variation Analysis; And IPF, Idiopathic Pulmonary Fibrosis.

https://doi.org/10.1371/journal.pone.0335067.t005

https://doi.org/10.1371/journal.pone.0335067.t005
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in the Sarcopenia cohort, according to the results. Monocytes, Dendritic cells resting, Dendritic cells activated, Mast cells 
resting, Mast cells activated, Macrophages M0, M1, M2, Neutrophils and Eosinophils. The difference in the expression 
of the abundance of immune cell infiltration within and between the Sarcopenia group and the Control group in dataset 
GSE1428 was subsequently displayed using subgroup comparison plots (Fig 15B).

The immune infiltration of the 21 various types of forms relative to the sarcopenia sample was then compared using 
correlation heat maps in the immune infiltration analysis section (Fig 15C). The results showed that a major portion of 

Fig 9.  GSVA Analysis. A-B. Heat maps (A) and group comparison maps (B) of the results of gene set variation analysis (GSVA) between the IPF and 
Control groups in dataset GSE24206. IPF, Idiopathic Pulmonary Fibrosis; GSVA, Gene Set Variation Analysis. ** denotes a p-value < 0.01, indicating a 
high level of statistical significance; *** signifies a p-value < 0.001, reflecting an exceptionally high level of statistical significance. Purple represents IPF 
group and green represents Control group. The requirements for screening gene set variation analysis (GSVA) was adj. p < 0.05, and the p-value correc-
tion method was Benjamini-Hochberg (BH). In the heat map, violet represents low enrichment and yellow represents high enrichment.

https://doi.org/10.1371/journal.pone.0335067.g009

Table 6.  Results of GSVA for sarcopenia datasets.

Pathway logFC AveExpr t P.Value adj. P.Val B

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT HTT 
TO ELECTRON TRANSFER IN COMPLEX III

−1.33132 −0.02997 −10.6853 4.92E-16 2.49E-13 26.16409

KEGG MEDICUS REFERENCE CITRATE CYCLE SECOND CAR-
BON OXIDATION 2

−1.32719 −0.02163 −8.36031 6.00E-12 6.73E-10 16.95717

REACTOME MITOCHONDRIAL RNA DEGRADATION −1.21164 −0.04006 −8.45607 4.04E-12 5.38E-10 17.34298

WP MITOCHONDRIAL COMPLEX III ASSEMBLY −1.21042 −0.029 −9.77661 1.85E-14 4.75E-12 22.61656

REACTOME FORMATION OF ATP BY CHEMIOSMOTIC 
COUPLING

−1.16167 −0.02268 −8.39751 5.14E-12 6.00E-10 17.10709

REACTOME CITRIC ACID CYCLE TCA CYCLE −1.15851 −0.0246 −8.42105 4.67E-12 5.66E-10 17.20193

WP TCA CYCLE AKA KREBS OR CITRIC ACID CYCLE −1.15022 −0.02724 −8.12589 1.57E-11 1.59E-09 16.01186

REACTOME CRISTAE FORMATION −1.11263 −0.01965 −9.149 2.36E-13 4.48E-11 20.12371

KEGG MEDICUS REFERENCE MITOCHONDRIAL COMPLEX 
UCP1 IN THERMOGENESIS

−1.10795 −0.00134 −11.1965 6.64E-17 7.25E-14 28.12069

WP MITOCHONDRIAL COMPLEX IV ASSEMBLY −1.09175 −0.00356 −11.0454 1.20E-16 7.25E-14 27.54548

WP MIRNAS INVOLVED IN DNA DAMAGE RESPONSE 1.089312 0.004761 11.09525 9.85E-17 7.25E-14 27.73568

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT 
TDP43 TO ELECTRON TRANSFER IN COMPLEX I

−1.07249 0.003615 −9.35613 1.02E-13 2.20E-11 20.94964

WP ELECTRON TRANSPORT CHAIN OXPHOS SYSTEM IN 
MITOCHONDRIA

−1.06573 0.004727 −10.6147 6.51E-16 2.82E-13 25.89129

KEGG MEDICUS REFERENCE ELECTRON TRANSFER IN COM-
PLEX I

−1.06017 0.014773 −8.64354 1.87E-12 2.84E-10 18.09744

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT 
SNCA TO ELECTRON TRANSFER IN COMPLEX I

−1.05524 0.009165 −8.83828 8.42E-13 1.42E-10 18.87966

KEGG MEDICUS VARIANT MUTATION INACTIVATED PINK1 TO 
ELECTRON TRANSFER IN COMPLEX I

−1.04223 0.013883 −8.51989 3.11E-12 4.49E-10 17.59998

REACTOME RESPIRATORY ELECTRON TRANSPORT −1.04216 −5.80E-05 −11.1197 8.95E-17 7.25E-14 27.82885

WP OXIDATIVE PHOSPHORYLATION −1.01476 −0.0053 −9.25089 1.56E-13 3.15E-11 20.53035

WP TCA CYCLE AND DEFICIENCY OF PYRUVATE DEHYDRO-
GENASE COMPLEX PDHC

−0.99599 −0.04001 −6.40509 1.82E-08 9.69E-07 9.115541

REACTOME THE CITRIC ACID TCA CYCLE AND RESPIRATORY 
ELECTRON TRANSPORT

−0.99478 −0.01176 −11.0892 1.01E-16 7.25E-14 27.71248

GSVA, Gene Set Variation Analysis.

https://doi.org/10.1371/journal.pone.0335067.t006

https://doi.org/10.1371/journal.pone.0335067.g009
https://doi.org/10.1371/journal.pone.0335067.t006
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immune cells had a highly significant relationship. Out of them strongly negative association was found between resting 
and active mast cells (r-value = −0.796, p-value < 0.05). Finally, one lollipop diagram presents the association between 
Model Genes and the amount of immune cell infiltration (Fig 15D). The correlation value we got on using the data from the 
correlation bubble diagram was found to be highly significant in most of the immune cell types and the gene CTH had the 
highest negative correlation with Eosinophils ((r-value = −0.544, p-value < 0.05).

3.16  Construction of PPI network and regulation network of model genes

Firstly, through the GeneMANIA website, it was constructed that the interaction network (Fig 16A) of Model Genes and 
their functionally similar genes. The co-expression, shared protein domain, and other information between them were 
shown by the lines of various colors. Twenty functionally related proteins and one model gene are among them. Refer to 
S5 Table in S1 File for specific details.

Fig 11.  Diagnostic Model of IPF and sarcopenia. A-b. Variable locus diagram (A) and diagnostic model diagram (B) of LASSO regression model of 
idiopathic pulmonary fibrosis training set; C-d. Variable locus diagram (C) and diagnostic model diagram (D) of LASSO regression model for sarcopenia 
training set. At Least Absolute Shrinkage and Selection Operator. ERSRCGs, Endoplasmic Reticulum Stress-Related Crosstalk Genes; IPFMGs, Idio-
pathic Pulmonary Fibrosis Model Genes; SMGs, Sarcopenia Model Genes.

https://doi.org/10.1371/journal.pone.0335067.g011

Fig 10.  GSVA Analysis. A-B. Heat maps (A) and comparison maps (B) of the GSVA results between the Sarcopenia and Control groups in dataset 
GSE8479. GSVA, Gene Set Variation Analysis. *** represents p-value < 0.001, which is highly statistically significant. Red represents Sarcopenia and 
light blue represents Control. The screening criteria for analysis of gene Set Variation (GSVA) was adj. p < 0.05, and the p-value correction method was 
Benjamini-Hochberg (BH). In the heat map, violet represents low enrichment and yellow represents high enrichment.

https://doi.org/10.1371/journal.pone.0335067.g010

https://doi.org/10.1371/journal.pone.0335067.g011
https://doi.org/10.1371/journal.pone.0335067.g010
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The transcription factor (TF) binding to Model Genes was then retrieved from the ChIPBase and HTFTarget databases. 
To use Cytoscape software to build and show the mRNA-TF Regulatory Network (Fig 16B). They include 18 transcription 
factors (TFS) and 1 Model gene. For details, see S6 Table in S1 File.

Fig 13.  ROC of the datastes.  A. ROC of the IPF training set. B. IPF validation set ROC. C. Sarcopenia training set ROC. D. Sarcopenia validation set 
ROC. The AUC has low accuracy at 0.5 to 0.7, and the AUC has high accuracy above 0.9.

https://doi.org/10.1371/journal.pone.0335067.g013

Fig 12.  Diagnostic analysis of IPF and sarcopenia.  A. Idiopathic pulmonary fibrosis model genes (IPFMGs) Nomogram of idiopathic pulmonary 
fibrosis training set in IPF diagnostic model. B-c. Diagnostic Model of IPF Based on Calibration graph (B) and DCA graph (C) of Model genes in the IPF 
training set. D. Sarcopenia model Genes (SMGs) Nomogram of the sarcopenia training set in the diagnostic model of sarcopenia. E-f. Diagnostic Model 
of Sarcopenia based on Calibration graph (E) and DCA graph (F) of Sarcopenia Model Genes in the sarcopenia training set. The vertical coordinate of 
the Calibration graph is the net income and the horizontal coordinate is the Probability Threshold or Threshold Probability. IPFMGs, Idiopathic Pulmonary 
Fibrosis Model Genes; SMGs, Sarcopenia Model Genes; DCA, Decision Curve Analysis; ROC Curve, Receiver Operating Characteristic Curve; ROC 
Curve, receiver operating characteristic curve; LASSO, at Least Absolute Shrinkage and Selection Operator.

https://doi.org/10.1371/journal.pone.0335067.g012

https://doi.org/10.1371/journal.pone.0335067.g013
https://doi.org/10.1371/journal.pone.0335067.g012
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Lastly, miRNAs associated with Model Genes were obtained from the TarBase database, and Cytoscape software was 
utilized to build and display the mRNA-miRNA Regulatory Network (Fig 16C). Among them, 1 Model Gene and 11 miRNAs 
are included. For details, see S7 Table in S1 File.

4  Discussion

IPF and sarcopenia are the two conditions of interest in the current research and these are two diseases that have a great 
impact on patients’ health and quality of life. IPF is a cumulative and progressive lung ailment characterized by the accu-
mulation of scar tissue, and probably lethal averaging a patient survival of three to five years from the commencement 
of the disease. The breathing is considerably impaired due to this condition, and the prognosis for the afflicted person is 
extremely poor [34]. Sarcopenia on the other hand is the physiological process of tissue and muscle wasting that occurs 

Fig 14.  Immune infiltration analysis by CIBERSORT algorithm.  A. Histogram of the proportion of immune cells in dataset GSE53845. B. Heat map 
of immune cell correlation in dataset GSE53845. C. Bubble map of correlation between immune cell infiltration abundance and Model Genes in dataset 
GSE53845. IPF, Idiopathic Pulmonary Fibrosis. The absolute value of correlation coefficient (r-value) below 0.3 is weak or no correlation, between 0.3 
and 0.5 is weak correlation, between 0.5 and 0.8 is medium correlation, and above 0.8 is strong correlation. Green was the Control group, purple was 
the IPF group. Yellow showed positive correlation, and vine purple showed negative correlation. The depth of the color indicates the strength of the 
correlation.

https://doi.org/10.1371/journal.pone.0335067.g014

https://doi.org/10.1371/journal.pone.0335067.g014
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Fig 15.  Immune infiltration analysis by CIBERSORT algorithm. A-b. Bar graph (A) and group comparison graph (B) of the proportion of immune cells 
in dataset GSE1428. C. Correlation heat map of immune cells in dataset GSE1428. D. Lollipop map of immune cell infiltration abundance and Model 
Genes in dataset GSE1428. The absolute value of the correlation coefficient (r-value) below 0.3 indicates weak or no correlation, between 0.3 and 0.5 
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indicates weak correlation, between 0.5 and 0.8 indicates moderate correlation, and above 0.8 indicates strong correlation. Light blue was a Control 
group and red was a Sarcopenia group. Yellow was a positive correlation, and vine purple was a negative correlation. The depth of the color indicates 
the strength of the correlation.

https://doi.org/10.1371/journal.pone.0335067.g015

Fig 16.  Network of crosstalk genes. A. The GeneMANIA website predicts the interaction network of functionally similar Genes of Model Genes. B. The 
mRNA-TF Regulatory Network of Model Genes. C. The mRNA-miRNA Regulatory Network of Model Genes. TF, Transcription Factor. Green is mRNA, 
blue is transcription factor TF, yellow is miRNA.

https://doi.org/10.1371/journal.pone.0335067.g016

https://doi.org/10.1371/journal.pone.0335067.g015
https://doi.org/10.1371/journal.pone.0335067.g016
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during the aging process and its disability can result in the older person becoming frail and less self-sufficient [35]. Since 
both IPF and sarcopenia are related to aging and are defined by dysregulated pathways, studies must determine the 
relationship between these two diseases and potential treatments. This research examines the correlation between IPF 
and sarcopenia through the determination of common genes predisposing to ERSRCGs. Therefore, using sophisticated 
molecular biology approaches within the current context investigation, we wanted to determine the underlying pathways 
that may connect these two diseases. Based on the current study, we found thirteen ERSRCGs, which can largely affect 
the advancement of both diseases and thus may serve as therapeutic targets and diagnostic markers. The expression 
changes of some ERSRCGs in two diseases are not completely consistent, suggesting disease-specific differences that 
may arise from tissue origin and pathological specificity. GSEA/GSVA analysis shows that the pathways are relatively 
broad, some of which have limited direct relationships with ER stress and may indirectly affect disease progression 
through processes such as metabolism, inflammation, or fibrosis. This complexity suggests that the results need to be 
interpreted with caution [36]. The subsequent sessions will further discuss these outcomes in biological contexts concern-
ing differential gene expression, gene regulatory networks, and immune cell infiltration. They may define a new paradigm 
in the management of the affected patients & disease processes which are hitherto very difficult to manage.

Identifying these 13 ERSRCGs including FOXO1, KAT2A, and CTH brings attention to the central contribution of ER 
stress in the development of IPF and sarcopenia. Conserved as a transcription factor, FOXO1 plays an essential part in 
the control of numerous metabolic processes and cell stature responses to stress. Its ability to modulate antioxidant pro-
cesses and apoptosis-related pathways underlines that a strategy targeting this protein could be a preferable approach for 
enhancing cellular protection against damage caused by ER stress [37]. Furthermore, it encoded product KAT2A which is 
implicated in chromatin remodelling and gene regulation in stress response pathways, as a histone acetyltransferase [38]. 
Recent studies have shown how modifying the functional relationships of these genes can give positive cellular outcomes 
in models with ER stress. For instance, the activation of FOXO1 can increase the expression of stress-protective genes. 
At the same time, the role of KAT2A in histone acetylation might help up-regulate chaperone proteins that are important 
in proper protein folding and degradation [39,40]. In addition, there is a synergism, which is proven by the finding that the 
interaction between FOXO1 and KAT2A optimises the protective function against ER stress. Understanding more pre-
cisely the nature and specifics of the processes that govern these connexions and the relevance of these findings to ther-
apeutic practise should be the points of focus of further research. Also, further investigation of whether these ERSRCGs 
could be used as biomarkers of IPF and sarcopenia can improve the diagnostic accuracy and promote early intervention. 
As a result, details of future studies addressing the detection and pharmacological management of agents interacting with 
the ER stress should be a priority.

In general, the validity of the diagnostic models was evident with the values of the predictive models of IPF; CTH, 
and IDI1 as well as the models of sarcopenia; FOFOXO1, CTH, HSD11B, GSTK1, and SPTSSA. CTH (Cystathionine 
gamma-lyase) is essential for the metabolism of amino acids that contain sulfur and contributes to the creation of hydro-
gen sulfide, a signaling molecule with various physiological functions. Ischemic postconditioning in the context of IPF 
enhances CTH expression, which promotes inflammation and fibrogenesis and can perhaps, be used as a biomarker 
of the degree of disease progression [41]. But yet, IDI1 is associated with the mevalonate pathway through which iso-
prenoids are synthesised. These compounds are involved in many processes which occurs within the cell and quality of 
the cell membranes. In light of the recent studies, alteration in the expression of IDI1 has the potential to influence tumor 
progression and metastasis, and may well provide a hopeful avenue for therapies [42]. Therefore, the combination of 
the expression profiles of CTH and IDI1 in clinical decision-making could improve personalized treatment strategies for 
patients. For instance, patients with high CTH levels might be anticipated to respond to treatments that influence oxi-
dative stress, or patients with changes in IDI1 may be appropriate for treatments involving metabolic pathways [43]. In 
view of the sarcopenic situation, FOXO1 (Forkhead box O1) is a transcription factor for muscle atrophy and metabolism; 
the promotion of which is very essential for the preservation of muscles [44]. HSD11B1 is known to be involved in the 
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activation of cortisone to cortisol, which in turn regulates metabolisms and inflammatory response [45], GSTK1 is known 
to participate in phase II detoxification modifying the cellular redox state [46]. SPTSSA is involved in an enzyme complex 
that synthesizes sphingolipids that are important in cellular communication and membrane stability [47]. These findings 
suggest that the roles of these genes in IPF disease alerts or prognostications should be the focus of future research for a 
further understanding of the resulting clinical characteristics.

Out of all immune cells, we distinguished 16 immune subtypes, which were upregulated in IPF samples as well as 
21 subtypes identified in sarcopenia. Using this variation, they have highlighted that different disease states conform to 
distinct immune-related niches, which implies that likely distinct immune cell types may help to either exacerbate mist 
inflammation or facilitate tissue repair [48]. In the IPF samples, it was found that the majority of the immune cells have a 
high positive correlation, and maximum positive correlation between the Mast cells resting state and active NK cells was 
found. Mast cells can release mediators such as histamine and TGF-β, promoting the activation of fibroblasts and colla-
gen deposition, thereby exacerbating the fibrotic process; activated NK cells, through cytotoxic effects and IFN-γ secre-
tion, may, to some extent eliminate abnormal fibroblasts and exert anti-fibrotic effects. This significant positive correlation 
may reflect the dynamic balance between “pro-fibrotic and anti-fibrotic” forces during the fibrotic process, helping to 
explain the duality of immune response in IPF. In sarcopenia samples, the significant negative correlation between resting 
mast cells and activated mast cells suggests a balancing role for these cells in the processes of inflammation and repair. 
Mast cells not only participate in local inflammatory responses but also play a regulatory role in muscle regeneration. If the 
dynamic balance between resting and activated states is disrupted, it may lead to a persistent inflammatory environment, 
disrupting muscle homeostasis and accelerating muscle atrophy and functional decline. This finding provides a new per-
spective for understanding the immunological basis of sarcopenia [49]. Furthermore, the correlation between model genes 
and immune cells also reveals a potential “metabolic genes - immune cells - disease phenotype” connection. In IPF, CTH 
is significantly negatively correlated with γδT cells. γδT cells are usually involved in immune monitoring and inflammatory 
response, while CTH may affect immune cell activation through its metabolites (such as H2S), thereby inhibiting γδT cell 
function and altering the local inflammatory environment. In sarcopenia, CTH is negatively correlated with eosinophils. 
Eosinophils can secrete various cell factors to regulate muscle inflammation and regeneration environment, and the 
downregulation of CTH may weaken their recruitment or activity, thus affecting muscle homeostasis. The above results 
suggest that key ERSRCGs may participate in the pathological processes of IPF and sarcopenia by regulating immune 
cell function [50].

In our study, we built a thorough regulatory network and PPI network, identifying CTH and 20 functionally similar pro-
teins, including CBS (cystathionine beta-synthase) and SQOR (sulfide quinone oxidoreductase). This PPI network pro-
vided some clue on the potential crosstalk between these genes in regulating fibrotic processes and muscle atrophy, and 
CBS being identified to be related to H2S generation and cardiovascular disease, we can imagine it would have a more 
extensive effect on tissue remodeling and repair in IPF patients [51]. The regulatory network included CTH and 18 tran-
scription factors such as MYC and SP1, which are recognized for their roles in cellular stress responses and inflammation 
[52]. The involvement of these TFs suggests a mechanism by which they may mediate the expression of genes implicated 
in fibrosis and muscle metabolism, thus emphasizing CTH’s critical role in these pathological processes.The mRNA-
miRNA regulation network also connected 11 related microRNAs encompassing hsa-miR-27a-3p and hsa-miR-30a-5p to 
CTH. These observations confirm the complex interplay of such regulation under inflammatory conditions and raise the 
possibility of differential post-transcriptional regulation of CTH and its pathways as critical in the development of IPF and 
sarcopenia.

The suboptimal performance of our diagnostic model in the independent validation cohort (AUC ≈ 0.56) underscores 
the difficulty in translating bioinformatic findings into reliable clinical tools. Key contributing factors include the signifi-
cant disease heterogeneity of both IPF and sarcopenia, as well as technical variations such as batch effects between 
cohorts. Despite its limited diagnostic utility, the model may serve as a cost-effective tool for preliminary sarcopenia 
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risk screening in IPF patients, helping prioritize individuals for more definitive assessments. Moreover, it offers valuable 
insights into shared molecular mechanisms between IPF and sarcopenia, supporting future research into therapeutic 
targets.

In this study, a threshold of adj.p < 0.05 and |logFC| > 0 was used during the screening of differentially expressed genes. 
This standard is relatively lenient, and while it helps to capture potential molecular signals as much as possible in explor-
atory analyses, it inevitably increases the risk of false positive results. Therefore, future validation of the robustness and 
biological functions of these potential candidate genes needs to be conducted through data analysis and experimental 
studies with larger sample sizes. This study relied solely on public transcriptome databases for bioinformatic analysis and 
did not include validation via in vivo or in vitro experiments. Although potential hub genes and diagnostic models were 
identified using computational methods, these findings require experimental confirmation. Future work should focus on 
elucidating the functions of key genes (e.g., CTH and FOXO1) through cellular assays, animal models, and clinical sam-
ples to verify their diagnostic and prognostic value. These efforts will help clarify the molecular mechanisms linking IPF 
and sarcopenia and facilitate clinical translation.

5  Conclusion

To summarize, this study offers a clear understanding of the molecular pathways shared by both diseases by extracting 13 
genes with potential connexions to the two diseases at multiple levels of data analysis. These results therefore offer novel 
knowledge that may be a foundation for prospective diagnostic techniques or specific therapies to improve patient expe-
rience. Future research is needed to replicate these findings on diverse clinical samples with larger formal clinical patient 
populations and to conatively assess the roles of those identified genes.
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