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Abstract

This study addresses the inefficiencies in ecological restoration on the Qinghai-
Tibet Plateau (QTP), particularly concerning prolonged vegetation restoration cycles,
slow soil quality improvement, and difficulties in quantifying manual intervention
measures. An integrated Cubist regression tree model is developed using ecological
environment data from the QTP and multi-source environmental monitoring data from
2019 to 2023. The model combines a lightweight self-attention mechanism (SA) with
bidirectional gated recurrent units (BiGRU) to enhance the accuracy and adaptability
of restoration efficiency prediction. The SA mechanism dynamically adjusts environ-
mental factor weights to strengthen nonlinear relationship capture capabilities, while
the BiGRU learner optimizes temporal feature representation to accommodate spa-
tiotemporal variability in restoration processes. Input factors include fractional vege-
tation cover (FVC), temperature, precipitation, soil moisture, and manual intervention
measures (irrigation volume, planting density), with outputs being vegetation resto-
ration rate and soil quality improvement effects. Experimental results demonstrate
that the model achieves less than 5% error in vegetation restoration rate prediction,
with correlation coefficients exceeding 0.90, and 96% accuracy in soil improvement
prediction. Temperature and precipitation show contribution rates of 32% and 25%,
respectively, while soil moisture and NDVI jointly contribute 25%. Prediction accuracy
remains above 90% across different altitude zones, indicating strong regional adapt-
ability. Notably, in areas with annual precipitation below 200 millimeters, every 10%
increase in irrigation volume leads to approximately 15% improvement in vegetation
survival rate. This study provides quantitative and operational intervention guidelines
for plateau ecological restoration, enhances the evaluation efficiency of manual inter-
vention measures, and has significant practical application value.
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Introduction

The ecosystem of the Qinghai-Tibet Plateau (QTP) is facing severe degradation,
and this situation is seriously threatening its key functions as the “Asian Water
Tower’—including water conservation and global climate regulation [1-3]. However,
existing ecological restoration assessment models have shown obvious limitations in
addressing this complex challenge. Therefore, this study urgently needs to develop
more accurate and adaptable scientific tools to guide restoration work.

The QTP, affected by its unique alpine climate, fragile soil structure, and human
activities, is experiencing an increasingly serious ecological degradation problem.
This is specifically manifested in the decline of vegetation coverage, the intensifica-
tion of soil erosion, and the sharp reduction of biodiversity [4]. Although China has
continuously promoted ecological restoration projects such as converting farmland to
grassland and artificial afforestation in recent years, the overall restoration efficiency
is still unsatisfactory. Especially in high-altitude, arid, or freeze-thaw transition zones,
the long vegetation restoration cycle and slow improvement of soil quality have
become maijor bottlenecks restricting ecological reconstruction.

Part of the reason for this dilemma lies in the inadequacy of assessment and
decision-making tools. Traditional ecological restoration assessment methods mainly
rely on long-term field monitoring and empirical models. This approach makes it
highly challenging to accurately quantify the actual effects of manual interventions
or to capture the complex nonlinear coupling relationships among ecological factors
[5]. Even the existing machine learning (ML) models [6—8], when applied to highly
heterogeneous regions like the QTP in terms of geography, climate, and ecosystem,
often expose problems such as poor spatial adaptability and insufficient prediction
accuracy. They cannot effectively integrate multi-source heterogeneous data, nor fully
consider the spatiotemporal dynamic changes of key factors in the ecological resto-
ration process. Therefore, there is an urgent need for an intelligent modeling method
that can integrate multi-source data and adjust dynamic factors. Meanwhile, this
method can possess strong temporal feature representation capabilities to accurately
assess restoration efficiency and optimize intervention measures.

To address these challenges, this study constructs a Cubist regression tree model
that integrates Self-Attention (SA) and Bidirectional Gated Recurrent Unit (BiGRU). It
aims to enhance the prediction accuracy and environmental adaptability of ecological
restoration efficiency on the QTP. The objective is to achieve a quantitative evaluation
of manual intervention measures and optimized decision support. The innovation of
this study lies in proposing an integrated Cubist regression tree model incorporating
lightweight SA and BiGRU (Cubist-BiGRU-SA), based on multi-source environmental
monitoring data from the QTP during 2019-2023. The model introduces SA into the
Cubist tree structure to dynamically learn and adjust the relative importance of envi-
ronmental factors for ecological restoration. Meanwhile, it combines BiGRU learners
to capture temporal evolution patterns during intervention processes. This method
effectively improves the model’'s generalization ability and prediction accuracy under
the complex terrain and variable climate conditions of the QTP. Based on this, the study
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seeks to provide efficient and intelligent support tools for restoration projects in the QTP and other fragile ecological regions.
Thus, it can promote the transformation of ecological restoration from experience-driven to data-driven and mechanism-driven
approaches.

Recent related work
A review of the current research status of ecological restoration on the QTP

In recent years, with the proposal and implementation of ecological restoration concepts, the QTP’s restoration has
attracted significant attention from researchers. Liu et al. (2022) [9] identified key priority areas for ecological restoration
under different scenarios on the QTP, providing a scientific basis for restoration efforts. Their research emphasized that
selecting priority protection zones proved crucial for enhancing restoration effectiveness across multiple intervention sce-
narios. Yu et al. (2023) [10] analyzed the carbon footprint impacts of grassland ecosystem restoration projects on the QTP.
Results demonstrated that ecological restoration contributed to carbon emission reduction while improving carbon storage
capacity in grassland ecosystems. Ma et al. (2023) [11] investigated multiple ecological effects and driving factors of resto-
ration projects on the QTP. Findings revealed that ecological restoration not only improved FVC but also promoted biodi-
versity recovery and hydrological function restoration. Huang et al. (2024) [12] demonstrated that carbon loss caused by
permafrost thawing on the QTP could be mitigated through ecological restoration. By increasing FVC, restoration projects
effectively reduced temperature-induced carbon release. Li et al. (2024) [13] examined soil fungal community changes in
restored grasslands. The study discovered significantly enhanced soil microbial diversity during restoration processes, with
notable variations observed across different vegetation restoration approaches. Liu et al. (2025) [14] proposed multi-scale
ecological restoration strategies to enhance water conservation capacity in the Zoige Wetlands of the QTP. Systematic
restoration implementation substantially improved soil-water conservation and water resource management outcomes.

Review of the application of ML in ecological modeling

Advances in data science and computing power have led to increasingly widespread applications of ML in ecological
modeling. By automatically extracting patterns from complex data, ML has become a powerful tool in ecological research.
Simon et al. (2023) [15] applied random forest (RF) analysis to enhance interpretability in ecological modeling, shifting
focus from pure prediction to deeper explanation. By integrating ecological models with ML methods, the study improved
the understanding of complex ecosystems and revealed causal relationships among variables. Zhang et al. (2023) [16]
predicted spatiotemporal changes in ecological carrying capacity using ML and PLUS models. Results demonstrated
ML’s effectiveness in capturing dynamic variations of ecological carrying capacity, providing reliable predictive tools for
ecological management and planning. Liu et al. (2023) [17] employed ML methods to predict algal community structures.
The algorithmic models accurately identified relationships between environmental variables and algal distribution, offering
a scientific basis for aquatic ecosystem protection and management. Vazquez et al. (2024) [18] analyzed the ecological
impacts of adolescent e-cigarette use through ML approaches. Data mining revealed ecological factors underlying health
crises, providing evidence for public health policymaking. Najafzadeh et al. (2024) [19] established empirical formulas
between water quality parameters and flow patterns using ML models. This approach enabled real-time assessment of
aquatic ecological status, offering new perspectives for water resource management and pollution control. Ostovich &
Klaper (2024) [20] combined ML with multiple ammonium algal cell imaging techniques to analyze complex phenotypes
of plant-like organisms. Data analysis through ML provided deeper insights into plant ecosystems, facilitating ecological
monitoring and conservation. Nguyen et al. (2025) [21] developed the HydroEcoLSTM Python toolkit, incorporating long
short-term memory (LSTM) neural networks for aquatic ecological modeling. The toolkit provided automated visualization
interfaces for hydro-ecological modeling, improving prediction accuracy. Mehmood et al. (2025) [22] assessed the ecolog-
ical impacts of the “Ten Billion Trees” afforestation project using ML and spatiotemporal analysis. Research showed ML
methods effectively monitored and predicted long-term ecological benefits of afforestation initiatives.
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Research gap and innovation

Existing studies have extensively explored ecological restoration on the QTP and the application of ML. However, several
key gaps remain, especially in spatiotemporal data processing and the quantification of manual intervention measures.
Current models generally have three major limitations. First, they insufficiently capture spatiotemporal dynamics, making it
difficult to reveal long-term restoration patterns driven by altitude, seasonal changes, and climate variations; second, they
face difficulties in quantifying manual intervention measures—most of them ignore the in-depth analysis of measures such
as irrigation volume and planting density, leading to low efficiency of restoration input and output; third, they have limited
adaptability and generalization ability, making it hard to effectively transfer across ecological sub-regions with huge inter-
nal differences on the plateau. To fill these gaps, this study proposes an innovative hybrid model that deeply integrates
Cubist regression tree, BiGRU, and SA. The model uses a Cubist regression tree to extract the nonlinear synergetic
effects between environmental factors and manual intervention measures; it leverages the bidirectional learning capability
of BiGRU to deeply explore the temporal dependencies in the restoration process. Most crucially, it innovatively introduces
SA, enabling the model to dynamically adjust the importance weights of various factors according to different spatiotem-
poral contexts; for example, it can automatically increase the weight of “irrigation volume” in dry seasons. This markedly
enhances the model’s environmental adaptability and prediction accuracy. Through this design, the proposed model can
accurately predict the vegetation restoration rate and soil improvement effect. Meanwhile, this model quantifies the syn-
ergetic effect between natural conditions and manual intervention measures, providing scientific and quantitative decision
support for formulating “localized” ecological restoration strategies in different regions of the QTP.

The ecological restoration method of the QTP
Data source and preprocessing

The data used in this study are mainly derived from multiple monitoring platforms and field surveys on the QTP, involv-
ing three aspects: meteorological, remote sensing (RS), and artificial restoration data [23]. First, meteorological data are
obtained from multiple meteorological stations within the QTP, covering day-by-day meteorological variables such as
temperature and precipitation, and spanning the period from 2019 to 2023. These data allow an in-depth analysis of the
impact of climate change on the ecological restoration process. Second, RS data are acquired by satellite RS technology
and contain ecological variables such as soil moisture and FVC. The data provide large-scale and long-term environmen-
tal change trends, which are especially suitable for monitoring the dynamic changes of ecosystems. Lastly, the manual
restoration data are obtained from field surveys in different regions of the QTP, which contain information on irrigation
volume, planting density, vegetation survival rate, and soil physicochemical properties. The data sources and pre-
processing results are exhibited in Table 1.

To ensure data quality and consistency, this study implements rigorous preprocessing for data from different sources.
First, meteorological data undergoes interpolation to fill missing values caused by equipment failure or extreme weather,
followed by smoothing to remove potential outliers. Temperature and precipitation data receive seasonal adjustment to

Table 1. Data sources and preprocessing procedures.

Data types Data sources Pre-processing methods Processed data
meteorological data | Meteorological stations in Interpolation methods are used to fill in missing values, Daily average temperature, precipi-
the QTP seasonal adjustments are made, and outliers are removed. tation, and standardized processing
RS data Satellite RS images Image correction, geometric registration, resampling, and Soil moisture, FVC, and standard-
temporal interpolation ized processing
Artificial restoration | Field investigations and Data cleaning, extreme value removal, and standardized Irrigation volume, planting density,
data on-site measurement data processing and vegetation survival rate

https://doi.org/10.1371/journal.pone.0335056.t001
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achieve stationarity. Second, RS data preprocessing includes image correction, geometric registration, and resampling.
Since RS images may be affected by different sensors and acquisition times, orthorectification and spatial alignment are
performed to ensure consistency with ground measurements.

For data fusion, this study primarily employs time-series analysis methods to integrate RS, artificial restoration, and
meteorological data. While RS data offers high spatial resolution, its longer acquisition intervals necessitate temporal
interpolation for alignment with meteorological data. Specifically, monthly or quarterly RS data is linearly interpolated to
match the daily resolution of meteorological data. Additionally, though manual intervention measures exhibit strong locality
and heterogeneity, regional zoning of restoration areas enables their integration with RS and meteorological data. Thus, a
unified spatiotemporal dataset can be created that better supports model training and prediction.

Construction and analysis of the environmental adaptability of the Cubist-BiGRU-SA model

This study proposes a novel hybrid prediction model, which deeply integrates Cubist regression tree, BiGRU, and SA,
aiming to more accurately predict the complex ecological restoration dynamics of the QTP. The combination of these three
components is not a simple stacking. Instead, it forms an analysis process with a clear division of labor and complemen-
tary advantages to overcome the limitations of single models in processing complex spatiotemporal data. lts core idea lies
in using Cubist for efficient nonlinear feature extraction, capturing deep time-series dependencies through BiGRU. Finally,
the SAis utilized to dynamically identify and focus on key time nodes, thereby significantly improving prediction accuracy
and model interpretability. Fig 1 illustrates the Cubist-BiGRU-SA model’s architecture and data flow.

The specific integration logic of this hybrid model is as follows:

1) Feature Extraction Layer (Cubist): The input data is multi-dimensional time-series data including temperature, precipita-
tion, FVC, irrigation volume, etc. At each time step, the Cubist regression tree first acts as a feature extractor. It divides
the complex feature space into multiple sub-regions through a series of rules and fits a local linear model in each
sub-region. This process effectively captures the nonlinear relationships and interaction effects between various input
variables; it also converts the original features into a set of structured and more interpretable “rule-prediction” combined
features.

2) Temporal Learning Layer (BiGRU): The structured features output by the Cubist layer at each time step are fed into
the BiGRU network in chronological order. Through its forward and backward recurrent neural networks, BiGRU can
simultaneously learn historical information (the impact of the past on the present) and future information (the implicit
indication of future trends on the current state). Thus, BiGRU can comprehensively capture the long-term dependen-
cies, seasonal fluctuations, and trend changes in the ecological restoration process.

3) Attention Aggregation Layer (SA): The output of BiGRU (i.e., the hidden state at each time step) is transmitted to the
SA layer. By calculating the correlation weights between features at different time steps, this layer dynamically identifies
the “critical moments” that contribute the most to the final prediction result. For example, when predicting vegetation
restoration rate, the SA mechanism may automatically assign a higher weight to the time point when extreme drought
occurs or large-scale irrigation is conducted. This enables the model to focus on decisive events and improve sensitiv-
ity to sudden changes and key processes.

Through the collaborative work of these three-layer structures, the model can gradually extract the core information that
has the greatest influence on the ecological restoration results from the original, high-dimensional spatio-temporal data.
As a result, it can achieve a complete and efficient analysis chain from feature engineering to time series modeling and
then to the focus of key information.

In the data feature extraction layer, the Cubist regression tree effectively captures nonlinear structures and interac-
tion effects among ecological data variables [24—26]. The process begins with rule-based partitioning of multi-source
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Fig 1. The architecture of the environmental adaptability of the Cubist-BiGRU-SA model.

https://doi.org/10.137 1/journal.pone.0335056.9001

environmental and intervention factors (e.g., temperature, precipitation, soil moisture, irrigation volume). Then, it con-
structs local linear models within each partitioned region to obtain preliminary structural prediction relationships and com-
bined features. The Cubist regression tree-based data feature extraction module is displayed in Fig 2.

Let the input sample be x; = [xi1, Xi2, - - - , Xig] , Cubist first divides the feature space into multiple regions R] and fits a
linear model in each region, which can be represented as Equation (1):

d
Vi= é’)+2ﬁ,§’)xik, Xi € R;
past (1)
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Fig 2. The data feature extraction module based on the Cubist regression tree.

https://doi.org/10.1371/journal.pone.0335056.9002

yi and x, are the predicted value and the kth input feature of the ith sample, respectively; ﬂ,((j) denotes the linear regres-
sion coefficient in the jth regular region R; d represents the dimension of the input variable.

Each sample, based on its characteristics, falls into a specific rule-based leaf node where the corresponding linear
model performs prediction. This module outputs structured rule-based feature vectors F = [f1, fs, - - - , fy] @s input for sub-
sequent temporal modeling.

In the temporal learning layer, BiGRU serves as an improved recurrent neural network that learns long-term dependen-
cies in sequential data along bidirectional temporal dimensions. It is particularly suitable for handling seasonal fluctuations
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and time-lag effects present in the QTP’s ecological data [27,28]. The application of BiGRU in the temporal learning layer
is plotted in Fig 3.

The GRU of each time step t dynamically controls the information flow based on update and reset gates. Its basic cal-
culation is shown in Equations (2)—(5):

zi = o(Wyxe + Ushe g + by) (2)

rt = o(Wyx; + Urhey + by) 3)

ht = tan h(Wixt + Un(r: ® hey) + bp) (4)
he=(1-2)® hey + 26 hy (5)

x, stands for the input vector at time ¢ (i.e., the structural characteristics of Cubist output); h, represents the current hid-
den state; © means the product of elements; o is a sigmoid function; W,, W, and W, are weight parameters; h,, denotes
the output of the former neuron; b, b, and b, refer to offset vectors. BiGRU simultaneously calculates the hidden states of
forward 5, and reverse Et, as expressed in Equations (6) and (7); then, they are spliced to obtain the final output, as given

in Equation (8):

ht = GRUsyq (X;) (6)
he = GRUpwa (xt) (7)
H; = [ht; ht] (8)
Finally, the output sequence {Hl, Hy, - ,HT} of bidirectional hidden state is obtained, which is the global temporal

feature at each time step, providing context-aware representation for the attention layer.

R,
() Reverse
5 — 1k

e e — ———11 Forward

Structural Result output

feature data_
output by Cubist

|

Fig 3. Schematic diagram of BiGRU applied to the temporal learning layer.

https://doi.org/10.137 1/journal.pone.0335056.9003
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In the attention aggregation layer, SA is employed to dynamically identify the time steps and variable dimensions with
key influence in the temporal features, to improve the focus ability of the model on important patterns [29]. This layer
mainly includes the generation and weight calculation of three groups of vectors: Query, Key, and Value, as follows:

Q=HWA (9)
K = HWX (10)
V=HW (1)

Q, K, and V refer to the matrix of “Query”, “Key”, and “Value” vectors; H means the timing representation matrix of
BiGRU output; W2, WX, and WY represent the trainable parameter matrix. Then, the attention score matrices A and Att(Q,

K, V) are calculated as Equations (12) and (13):

Q-KT>
A = softmax
( Vi

(12)

KT
Att(Q,K, V) = A- V = softmax (QK) -V

Vi (13)

The final output is the weighted fusion of the features of each time step, which can be written as Equation (14):

.
AtH(Q,K, V) =) " axVi
t=1 (14)

ay refers to the importance weight of each time step, which determines the model’s attention to different ecological
variables’ changes.

Through the collaborative operation of these three layers, the proposed model extracts complex nonlinear patterns
(Cubist) and captures long-term temporal dependencies (BiGRU) while focusing on key variables and periods (SA).
Hence, this model achieves high-precision modeling and quantitative prediction of ecological restoration efficiency in the
QTP. The process pseudocode for the Cubist-BiGRU-SA-based environmental adaptability model is revealed in Fig 4.

Experimental evaluation

This study designs a systematic experimental procedure to verify the effectiveness of the proposed Cubist-BiGRU-SA
model in predicting ecological restoration on the QTP. The following sections detail the experimental setup, including data
sources, preprocessing, model training protocols, and hyperparameter selection.

1) Data sources and preprocessing

This study adopts a multi-source spatiotemporal dataset covering the period from 2019 to 2023. The data mainly come
from three sources: meteorological data, remote sensing observation data, and field survey data. The research area
focuses on multiple typical ecological restoration demonstration zones on the QTP’s eastern edge. These sites cover
different altitudes and ecological conditions to ensure the representativeness of the samples. All data are continuously
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1 Start

2 Input: Multi source environmental and intervention factor data

3 Output: Vegetation restoration rate and soil quality improvement value in the target area
4 #Feature Extraction Layer - Cubist Regression Tree

5 def cubist feature extraction(input seq):

6 cubist features =[]

7 fortinrange(input_seq.shape[1]):

8 timestep_data = input seq([:, t, ;] # Features at time t

9 region = rule partition(timestep_data)  # Rule-based region split
10 local model =fit_linear model(region) ~ # Fit local linear model
11 prediction = apply_model(region, local model, timestep_data)

12 cubist_features.append(prediction)

13 return torch.stack(cubist features, dim=1)

14 # Temporal Learning Layer - BIGRU

15 class BiGRULayer(nn.Module):

16 def init (self, input dim, hidden dim, num layers=1):

17 super(BiGRULayer, self). init ()

18 self.bigru = nn.GRU(input_dim, hidden_dim, num_layers=num layers,
19 bidirectional=True, batch_first=True)

20 # Attention Aggregation Layer - Self-Attention

21 class SelfAttention(nn.Module):

22 def it (self, hidden dim):

23 super(SelfAttention, self). init ()

24 self.query = nn.Linear(hidden dim, hidden dim)

25 self key = nn.Linear(hidden dim, hidden dim)

26 self.value = nn.Linear(hidden _dim, hidden_dim)

27 self.scale = np.sqrt(hidden_dim)

28 def forward(self, x):

29 Q = self.query(x)

30 K = self.key(x)

31 V = self.value(x)

32 attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / self.scale
33 attention weights = torch.softmax(attention_scores, dim=-1)

34 attended_output = torch.matmul(attention_weights, V)

35 return attended_output # Shape: [batch_size, time_steps, hidden_dim]
36 End

Fig 4. The process pseudocode for the environmental adaptability model based on Cubist-BiGRU-SA.
https://doi.org/10.1371/journal.pone.0335056.9004

collected over time at the same set of fixed monitoring plots, forming a high-quality panel dataset that provides a solid
foundation for the model to learn temporal dynamic changes.

This study conducts strict preprocessing on the multi-source data to ensure their consistency and quality. The specific
data sources, spatiotemporal frequency, preprocessing methods, and finally generated variables are summarized in Table
2. After integration and cleaning, a dataset containing 3,217 independent time-series samples is finally constructed for
model training and testing.

2) Model training and hyperparameter setting

This study divides the dataset into a training set (70%), a validation set (20%), and a test set (10%) in chronological
order. Given the strong time-series nature of the data in this study, to prevent future information from leaking into the train-
ing process (which would lead to overestimated model performance), this study adopts a strict time-series split cross-
validation strategy. This method ensures that the data used for validation or testing is always temporally later than the
training data, thus enabling a more realistic evaluation of the model’'s generalized prediction ability.
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Table 2. Data sources and preprocessing procedures.

Data type Data sources Original space-time | Key preprocessing methods Processed data
frequency
Meteorological data National Level ground meteo- | Daily Spatial interpolation to fill missing values, outlier | Daily average
rological station network removal, and normalization temperature

and cumulative
precipitation

Remote sensing data MODIS satellite products 16 days/8 days Geometric correction, radiometric calibration, FVC, soil moisture
linear interpolation to match time frequency,
standardization

Data on manual inter- Project demonstration area Annual/Quarterly Data cleaning, outlier removal, regional averag- | Irrigation volume,
vention measures field survey and annual records ing, standardization planting density

https://doi.org/10.1371/journal.pone.0335056.t002

The model’s hyperparameters are not determined by automated methods such as grid search, but by a manual tuning
strategy that combines domain experience and iterative experiments on the validation set. This method ensures model
performance while taking computational efficiency into account. For example, this study finds that a two-layer BiGRU net-
work is sufficient to capture complex temporal dependencies without causing severe overfitting. The finally selected key
hyperparameters and their functional descriptions are detailed in Table 3.

The Cubist-BiGRU-SA model is compared with Cubist-GRU [30], RF-LSTM [31], BiGRU [32], and the model proposed
by Nguyen et al. (2025) to comprehensively evaluate its performance in QTP’s ecological restoration prediction tasks.
Multiple commonly-used evaluation metrics are selected, including Root Mean Square Error (RMSE), Mean Absolute Per-
centage Error (MAPE), coefficient of determination (R?), and prediction accuracy.

Table 3. Key hyperparameter settings of the model.

Name of parameter Setting value Description and selection basis

Input time steps (T) 30 Length of the input historical time window (month)

Input variable dimension (D) |6 Including 6 items such as temperature, precipitation,
and normalized difference vegetation index

Feature dimension of Cubist | 16 Feature dimension of the structure combination of
the Cubist output

BiGRU hidden layer 64 Balancing between model complexity and overfitting

dimensions risk

BiGRU layers 2 Experiments show that a two-layer structure can
effectively learn long-term dependencies

Dropout rate 0.3 Used to prevent overfitting and improve the model’s
generalization ability

Learning rate 0.001 The manual optimization is achieved by observing
the convergence of the loss function on the valida-
tion set.

Optimizer Adam An efficient optimization algorithm suitable for most
scenarios

Batch size 32 The trade-off between GPU memory and training
stability

Training epoch 100 Maximum number of iterations of the model

Additionally, an Early Stopping strategy is employed during training. The process automatically terminates
when the validation loss shows no significant decrease for 10 consecutive epochs, thus reducing overfitting
risks. All experiments are conducted on an NVIDIA A100 GPU platform using the PyTorch 2.0 framework
for model construction and training.

https://doi.org/10.1371/journal.pone.0335056.t003
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Results and discussion
Analysis of model prediction performance with different algorithms

The prediction accuracy of the vegetation restoration rate of each algorithm with the increase in iterations is analyzed, and
the results are demonstrated in Fig 5

Fig 5 reveals that the proposed Cubist-BiGRU-SA model consistently maintains superior prediction accuracy through-
out all training epochs. This model achieves peak performance of 97.06% and 97.73% at the 82nd and 91st iterations,
respectively, significantly outperforming other comparative models. While the model by Nguyen et al. (2025) reaches
90.57% at the 100th epoch, its overall accuracy remains consistently 6%-10% lower than the proposed model. The
Cubist-GRU model shows stable performance during mid-to-late stages, peaking at 86.62% and outperforming both
RF-LSTM and BiGRU. The RF-LSTM model exhibits slow overall improvement in prediction accuracy, with a maximum of
77.88%. The BiGRU model starts with low initial accuracy (30.12% at the 10th epoch) and eventually improves to 73.32%,
yet still underperforms the proposed model by over 20 percentage points. Collectively, the Cubist-BiGRU-SA model
demonstrates faster convergence speed and higher final accuracy, validating its advantages and robustness in multi-
source environmental and anthropogenic variable integration modeling.

Further analysis of the predicted RMSE, MAPE, and R? results for the vegetation restoration rate across increasing
iteration epochs for each algorithm is presented in Figs 6-8.

In Figs 6-8, comparative results of RMSE, MAPE, and R? demonstrate that the Cubist-BiGRU-SA model proposed in
this study consistently exhibits optimal performance across all training epochs. Specifically, regarding RMSE, the model
reaches 0.103 by the 100th epoch, remarkably outperforming Nguyen et al.‘'s model (0.105) and other comparative mod-
els with the lowest error. This indicates minimal deviation between predicted and actual values. For MAPE metrics,
Cubist-BiGRU-SA attains 5.22% at the 100th epoch, showing superior prediction accuracy and stability compared to
Nguyen’s model (6.79%) and RF-LSTM (8.78%). Concerning R? evaluation, the proposed model achieves 0.9459 after 97
iterations, approaching perfect fit status (R>— 1), substantially exceeding BiGRU (0.689) and RF-LSTM (0.7513), demon-
strating the strongest capability in explaining variable variance. Consequently, the proposed Cubist-BiGRU-SA model
exhibits significant advantages over conventional deep learning models and existing research models in accuracy, stabil-
ity, and interpretability; this validates its exceptional performance in modeling complex ecological restoration systems.
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Fig 5. The prediction accuracy results of the vegetation restoration rate under different algorithms.
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Fig 6. The predicted RMSE results for the vegetation restoration rate under various algorithms.
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Fig 7. The forecasted MAPE results for the vegetation restoration rate with each algorithm.
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To comprehensively evaluate the performance of the proposed Cubist-BiGRU-SA model, this study compares it with
multiple baseline models, including the standard Cubist model, the RF-LSTM hybrid model, and the standalone BiGRU
model. This study uses RMSE, MAPE, R?, and prediction accuracy as evaluation metrics. Prediction accuracy is defined
here as the percentage of samples where the relative error between the predicted and true values falls within the range
of +10%. This metric is calculated on the test set, which encompasses the latest 2023 field survey data, thus ensuring the
practical validity of the evaluation.

The final performance evaluation results of all models are detailed in Table 4. To test whether the proposed model’s
superiority over other baseline models is statistically significant, this study conducts a paired t-test on the prediction errors
of each model, and the p-values are also listed.
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Fig 8. The predicted R? results for the vegetation restoration rate under diverse algorithms.
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Table 4. Performance comparison and statistical significance test of diverse models on the test set.

Model RMSE MAPE (%) R? Prediction accuracy (%) p-value (compared to Cubist-BiGRU-SA)
Cubist-BiGRU-SA (this study) 0.103 5.22 0.946 96.5 -

Cubist 0.145 8.15 0.851 82.3 <0.01

RF-LSTM 0.178 8.78 0.751 77.9 <0.01

BiGRU 0.195 10.05 0.689 73.3 < 0.001

Nguyen et al. (2025) 0.105 6.79 0.938 90.6 <0.05

The results show that the proposed Cubist-BiGRU-SA model performs best across all evaluation metrics. It has the lowest RMSE and MAPE, indicating
the smallest prediction error; its R? value is closest to 1, which means the model has the strongest ability to explain the data variance. Importantly, all
p-values are less than 0.05, demonstrating that the performance improvement of the proposed model over all baseline models is statistically significant.

https://doi.org/10.1371/journal.pone.0335056.t004

Analysis of the roles of each factor in the model

To gain a deeper understanding of the model’s decision-making process and quantify the impact of each input feature on
the prediction results, this study uses the SHapley Additive exPlanations (SHAP) method to analyze the trained model.
SHAP values can reveal the magnitude and direction of each feature’s contribution to the prediction value of a single
sample. Fig 9 provides a quantitative ranking of global feature importance by calculating the mean absolute SHAP value
of each feature.

Fig 9 offers a clear quantitative ranking of global feature importance in the model’s prediction by calculating the mean
absolute SHAP value of each input feature. This value measures the average impact magnitude of a single feature on the
model’s output (vegetation restoration rate). The results demonstrate that natural climate conditions are the dominant fac-
tors determining the effectiveness of ecological restoration. Specifically, air temperature ranks first with the highest mean
absolute SHAP value of 0.32, making it the most influential predictor; it is closely followed by precipitation with a value of
0.25. This indicates that heat and natural moisture conditions form the macro-environmental basis for plateau vegetation
restoration. Next are key ecosystem state variables, including soil moisture (0.13) and FVC (0.12); their importance high-
lights the direct impact of the current ecological base on future restoration potential. Finally, although they rank lower than
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Fig 9. The global importance ranking of each input feature based on the mean absolute SHAP value.

https://doi.org/10.1371/journal.pone.0335056.9009

the main natural factors, the two manual intervention measures—irrigation volume (0.10) and planting density (0.08)—still
show significant predictive power. This finding has important practical significance, as it quantitatively confirms that natural
conditions set the upper limit of restoration. However, precise manual intervention measures (especially water supplemen-
tation and planting strategies) are effective levers to improve the efficiency of ecological restoration and achieve goals.
Further analysis of the relationship between irrigation volume and vegetation survival rate in arid zones is depicted
in Fig 10.
Fig 10 illustrates that enhanced irrigation significantly boosts vegetation survival rates in areas receiving less than
200 millimeters of annual precipitation. Specifically, every 10% increase in irrigation volume corresponds to about a 15%
enhancement in survival rate. When the irrigation volume reaches 40%, the survival rate can achieve 60%. These results
quantitatively demonstrate that appropriate irrigation enhancement markedly improves ecological restoration outcomes in
arid areas, providing measurable guidance for precision interventions.

0.0 T v T T T T .
0.0 0.1 0.2 03 04
Irrigation volume (%)

Improvement rate of vegetation survival rate (%)

Fig 10. Relationship between irrigation volume and vegetation survival rate.

https://doi.org/10.1371/journal.pone.0335056.9010
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To verify the generalization ability and stability of the model in the complex geographical environment of the QTP, this
study divides the test samples (3217 x 0.1 =322 samples) into three regions according to altitude. The three include low-
altitude (< 3500 meters), middle-altitude (3500—4500 meters), and high-altitude regions (> 4500 meters); meanwhile, the
model’s prediction accuracy is evaluated for each region separately. The results are listed in Table 5.

Discussion

This study successfully develops and verifies an innovative hybrid model integrating Cubist, BIGRU, and SA. This model
demonstrates excellent accuracy (> 96%) and strong geographical adaptability in predicting the ecological restoration
efficiency of the QTP. The study’s core contribution lies in achieving high-precision prediction and revealing the internal
mechanism of the model’s decision-making through SHAP analysis. The results show that temperature and precipitation
are the dominant natural factors determining the success of restoration. In contrast, manual intervention measures (such
as irrigation volume) are key levers to improve restoration efficiency under specific conditions. This finding provides a
solid quantitative basis for transforming ecological restoration management from an “experience-driven” model to a “data-
driven” one, making it possible to formulate the most cost-effective intervention strategies with limited resources.
Compared with previous ecological modeling work conducted on the QTP, this study achieves significant methodolog-
ical progress. The use of hybrid deep learning models to address complex environmental prediction tasks has become a
cutting-edge trend, as demonstrated by Alharbi et al. in the field of intelligent agricultural water quality prediction [33]. This
study aligns with this trend but addresses the unique challenges of ecological restoration through a specially designed
architecture. Traditional statistical models struggle to capture nonlinear relationships, while single ML models have limita-
tions. For example, although Cao et al. successfully applied ML to optimize water retention technologies for farmland soil
[34], their research focused on the optimization of specific technologies. In contrast, the model proposed in this study aims
to provide a more macro predictive framework to evaluate the comprehensive impact of multiple natural and human fac-
tors on the overall restoration effect (including soil quality). By leveraging Cubist to extract structured features, BiGRU to
explore temporal dependencies, and SA to focus on the synergy of key events, the proposed model advances the techno-
logical frontier. Besides, it achieves a leap from single technology optimization to complex ecosystem outcome prediction.
Despite the encouraging results achieved by the proposed model, its limitations must be clearly recognized. First, the
current model provides deterministic point predictions and fails to offer uncertainty estimation, which is crucial for risk

Table 5. Prediction accuracy of the model in different altitude regions.

Altitude region Sample size Prediction accuracy (%)
Low-altitude region (<3500m) 97 97.2

Middle-altitude region (3500-4500m) 161 96.1

High-altitude region (>4500m) 64 95.8

Total 322 -

The results in Table 5 strongly prove the proposed model’s strong generalization ability and high stability
in the complex and diverse geographical environment of the QTP. For this evaluation, this study divides
the test set (containing 322 samples) into three representative regions by altitude: low-altitude (< 3500
meters), middle-altitude (3500—4500 meters), and high-altitude (> 4500 meters). The model exhibits
excellent performance in all regions. Specifically, the prediction accuracy reaches 97.2% in the low-altitude
region (with 97 samples), and 96.1% in the core middle-altitude region (the region with the largest sample
size of 161); Even in the high-altitude region with the harshest ecological conditions and only 64 samples,
its accuracy is as high as 95.8%. Most crucially, although the model’'s accuracy shows an extremely slight
decline as altitude increases and the environment becomes harsher, its performance remains at a high
level of over 95%. This finding indicates that the model does not overfit to a specific environment; instead,
it successfully learns the universal laws of ecological restoration, confirming its great potential for reliable
deployment and application in different regions across the entire QTP.

https://doi.org/10.1371/journal.pone.0335056.t005

PLOS One | https://doi.org/10.137 1/journal.pone.0335056  November 12, 2025 16/19



https://doi.org/10.1371/journal.pone.0335056.t005

PLO\Sﬁ\\.- One

assessment in practical decision-making. Second, the model’'s performance highly depends on high-quality fixed-point
monitoring data, and its scalability to larger regions faces challenges. This stands in sharp contrast to studies such as
Odebiri et al. (2022), where the research team successfully used deep learning and publicly available Sentinel-3 satellite
data to map soil organic carbon at the national scale; this highlights the limitation of this study in terms of data depen-
dence. Additionally, the computational cost of the complex model may also be a factor to consider when conducting large-
scale, high-frequency simulations.

These limitations also point out directions for future research. The top priority is to introduce uncertainty quantification
methods, such as generating prediction intervals through Monte Carlo Dropout or quantile regression, to enhance the
reliability of model outputs. Second, future work should explore integration with real-time, high-resolution remote sensing
data streams to address the issues of scalability and data dependence. Drawing on the ideas of Odebiri et al., this inte-
gration can enable dynamic monitoring and prediction of broader regions [35]. Furthermore, the application of transfer
learning technology—transferring knowledge learned from data-rich regions to new regions with sparse data—is a highly
promising direction to reduce the model's dependence on local data. Through these improvements, this study is expected
to further develop the current model from a powerful analytical tool into a comprehensive, robust, and operational intelli-
gent decision support system for ecological restoration.

Conclusion

This study constructs a multi-level spatiotemporal modeling framework (Cubist-BiGRU-SA) that integrates Cubist regression
tree, BiGRU, and SA. This model remarkably outperforms existing methods in the prediction accuracy of vegetation restoration
rate and soil quality improvement (exceeding 96%). More importantly, the model provides key decision support for formulating
scientific and practical ecological restoration plans. The proposed model can convert complex ecological data into clear and
actionable guidelines by accurately quantifying the synergetic effects of natural factors and manual intervention measures (such
as irrigation volume and planting density). For example, it can specifically answer practical questions like “In a specific arid area,
what percentage of increase in vegetation survival rate can be achieved by increasing irrigation volume by 10%?” This enables
ecological restoration work to shift from the traditional “experience-driven” model to a “data-driven” one, thus greatly improving
the targeting and effectiveness of restoration measures as well as the efficiency of fund utilization. It provides a powerful scientific
tool for achieving accurate and efficient restoration goals in the vast and diverse ecological environment of the QTP.

Despite the excellent performance of the model, it still has the following limitations. First, the model's adaptability under
future extreme climate change scenarios needs to be verified, and it fails to cover all key intervention factors, such as
grazing activities and land policies. Meanwhile, the current method’s dependence on high-quality fixed-point data also
poses challenges to its scalability to larger regions and brings corresponding computational costs. Therefore, the direction
of future research is multi-dimensional. Future efforts should be made to explore integration with large-scale real-time
remote sensing monitoring and efficiently apply the model to other ecologically fragile areas with sparse data through
transfer learning. More importantly, methods such as causal inference should be introduced to deeply reveal the internal
mechanism of intervention measures, thereby upgrading the model from an accurate prediction tool to a more in-depth
decision support system.
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