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Abstract 

This study addresses the inefficiencies in ecological restoration on the Qinghai- 

Tibet Plateau (QTP), particularly concerning prolonged vegetation restoration cycles, 

slow soil quality improvement, and difficulties in quantifying manual intervention 

measures. An integrated Cubist regression tree model is developed using ecological 

environment data from the QTP and multi-source environmental monitoring data from 

2019 to 2023. The model combines a lightweight self-attention mechanism (SA) with 

bidirectional gated recurrent units (BiGRU) to enhance the accuracy and adaptability 

of restoration efficiency prediction. The SA mechanism dynamically adjusts environ-

mental factor weights to strengthen nonlinear relationship capture capabilities, while 

the BiGRU learner optimizes temporal feature representation to accommodate spa-

tiotemporal variability in restoration processes. Input factors include fractional vege-

tation cover (FVC), temperature, precipitation, soil moisture, and manual intervention 

measures (irrigation volume, planting density), with outputs being vegetation resto-

ration rate and soil quality improvement effects. Experimental results demonstrate 

that the model achieves less than 5% error in vegetation restoration rate prediction, 

with correlation coefficients exceeding 0.90, and 96% accuracy in soil improvement 

prediction. Temperature and precipitation show contribution rates of 32% and 25%, 

respectively, while soil moisture and NDVI jointly contribute 25%. Prediction accuracy 

remains above 90% across different altitude zones, indicating strong regional adapt-

ability. Notably, in areas with annual precipitation below 200 millimeters, every 10% 

increase in irrigation volume leads to approximately 15% improvement in vegetation 

survival rate. This study provides quantitative and operational intervention guidelines 

for plateau ecological restoration, enhances the evaluation efficiency of manual inter-

vention measures, and has significant practical application value.
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Introduction

The ecosystem of the Qinghai-Tibet Plateau (QTP) is facing severe degradation, 
and this situation is seriously threatening its key functions as the “Asian Water 
Tower”—including water conservation and global climate regulation [1–3]. However, 
existing ecological restoration assessment models have shown obvious limitations in 
addressing this complex challenge. Therefore, this study urgently needs to develop 
more accurate and adaptable scientific tools to guide restoration work.

The QTP, affected by its unique alpine climate, fragile soil structure, and human 
activities, is experiencing an increasingly serious ecological degradation problem. 
This is specifically manifested in the decline of vegetation coverage, the intensifica-
tion of soil erosion, and the sharp reduction of biodiversity [4]. Although China has 
continuously promoted ecological restoration projects such as converting farmland to 
grassland and artificial afforestation in recent years, the overall restoration efficiency 
is still unsatisfactory. Especially in high-altitude, arid, or freeze-thaw transition zones, 
the long vegetation restoration cycle and slow improvement of soil quality have 
become major bottlenecks restricting ecological reconstruction.

Part of the reason for this dilemma lies in the inadequacy of assessment and 
decision-making tools. Traditional ecological restoration assessment methods mainly 
rely on long-term field monitoring and empirical models. This approach makes it 
highly challenging to accurately quantify the actual effects of manual interventions 
or to capture the complex nonlinear coupling relationships among ecological factors 
[5]. Even the existing machine learning (ML) models [6–8], when applied to highly 
heterogeneous regions like the QTP in terms of geography, climate, and ecosystem, 
often expose problems such as poor spatial adaptability and insufficient prediction 
accuracy. They cannot effectively integrate multi-source heterogeneous data, nor fully 
consider the spatiotemporal dynamic changes of key factors in the ecological resto-
ration process. Therefore, there is an urgent need for an intelligent modeling method 
that can integrate multi-source data and adjust dynamic factors. Meanwhile, this 
method can possess strong temporal feature representation capabilities to accurately 
assess restoration efficiency and optimize intervention measures.

To address these challenges, this study constructs a Cubist regression tree model 
that integrates Self-Attention (SA) and Bidirectional Gated Recurrent Unit (BiGRU). It 
aims to enhance the prediction accuracy and environmental adaptability of ecological 
restoration efficiency on the QTP. The objective is to achieve a quantitative evaluation 
of manual intervention measures and optimized decision support. The innovation of 
this study lies in proposing an integrated Cubist regression tree model incorporating 
lightweight SA and BiGRU (Cubist-BiGRU-SA), based on multi-source environmental 
monitoring data from the QTP during 2019–2023. The model introduces SA into the 
Cubist tree structure to dynamically learn and adjust the relative importance of envi-
ronmental factors for ecological restoration. Meanwhile, it combines BiGRU learners 
to capture temporal evolution patterns during intervention processes. This method 
effectively improves the model’s generalization ability and prediction accuracy under 
the complex terrain and variable climate conditions of the QTP. Based on this, the study 
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seeks to provide efficient and intelligent support tools for restoration projects in the QTP and other fragile ecological regions. 
Thus, it can promote the transformation of ecological restoration from experience-driven to data-driven and mechanism-driven 
approaches.

Recent related work

A review of the current research status of ecological restoration on the QTP

In recent years, with the proposal and implementation of ecological restoration concepts, the QTP’s restoration has 
attracted significant attention from researchers. Liu et al. (2022) [9] identified key priority areas for ecological restoration 
under different scenarios on the QTP, providing a scientific basis for restoration efforts. Their research emphasized that 
selecting priority protection zones proved crucial for enhancing restoration effectiveness across multiple intervention sce-
narios. Yu et al. (2023) [10] analyzed the carbon footprint impacts of grassland ecosystem restoration projects on the QTP. 
Results demonstrated that ecological restoration contributed to carbon emission reduction while improving carbon storage 
capacity in grassland ecosystems. Ma et al. (2023) [11] investigated multiple ecological effects and driving factors of resto-
ration projects on the QTP. Findings revealed that ecological restoration not only improved FVC but also promoted biodi-
versity recovery and hydrological function restoration. Huang et al. (2024) [12] demonstrated that carbon loss caused by 
permafrost thawing on the QTP could be mitigated through ecological restoration. By increasing FVC, restoration projects 
effectively reduced temperature-induced carbon release. Li et al. (2024) [13] examined soil fungal community changes in 
restored grasslands. The study discovered significantly enhanced soil microbial diversity during restoration processes, with 
notable variations observed across different vegetation restoration approaches. Liu et al. (2025) [14] proposed multi-scale 
ecological restoration strategies to enhance water conservation capacity in the Zoige Wetlands of the QTP. Systematic 
restoration implementation substantially improved soil-water conservation and water resource management outcomes.

Review of the application of ML in ecological modeling

Advances in data science and computing power have led to increasingly widespread applications of ML in ecological 
modeling. By automatically extracting patterns from complex data, ML has become a powerful tool in ecological research. 
Simon et al. (2023) [15] applied random forest (RF) analysis to enhance interpretability in ecological modeling, shifting 
focus from pure prediction to deeper explanation. By integrating ecological models with ML methods, the study improved 
the understanding of complex ecosystems and revealed causal relationships among variables. Zhang et al. (2023) [16] 
predicted spatiotemporal changes in ecological carrying capacity using ML and PLUS models. Results demonstrated 
ML’s effectiveness in capturing dynamic variations of ecological carrying capacity, providing reliable predictive tools for 
ecological management and planning. Liu et al. (2023) [17] employed ML methods to predict algal community structures. 
The algorithmic models accurately identified relationships between environmental variables and algal distribution, offering 
a scientific basis for aquatic ecosystem protection and management. Vázquez et al. (2024) [18] analyzed the ecological 
impacts of adolescent e-cigarette use through ML approaches. Data mining revealed ecological factors underlying health 
crises, providing evidence for public health policymaking. Najafzadeh et al. (2024) [19] established empirical formulas 
between water quality parameters and flow patterns using ML models. This approach enabled real-time assessment of 
aquatic ecological status, offering new perspectives for water resource management and pollution control. Ostovich & 
Klaper (2024) [20] combined ML with multiple ammonium algal cell imaging techniques to analyze complex phenotypes 
of plant-like organisms. Data analysis through ML provided deeper insights into plant ecosystems, facilitating ecological 
monitoring and conservation. Nguyen et al. (2025) [21] developed the HydroEcoLSTM Python toolkit, incorporating long 
short-term memory (LSTM) neural networks for aquatic ecological modeling. The toolkit provided automated visualization 
interfaces for hydro-ecological modeling, improving prediction accuracy. Mehmood et al. (2025) [22] assessed the ecolog-
ical impacts of the “Ten Billion Trees” afforestation project using ML and spatiotemporal analysis. Research showed ML 
methods effectively monitored and predicted long-term ecological benefits of afforestation initiatives.



PLOS One | https://doi.org/10.1371/journal.pone.0335056  November 12, 2025 4 / 19

Research gap and innovation

Existing studies have extensively explored ecological restoration on the QTP and the application of ML. However, several 
key gaps remain, especially in spatiotemporal data processing and the quantification of manual intervention measures. 
Current models generally have three major limitations. First, they insufficiently capture spatiotemporal dynamics, making it 
difficult to reveal long-term restoration patterns driven by altitude, seasonal changes, and climate variations; second, they 
face difficulties in quantifying manual intervention measures—most of them ignore the in-depth analysis of measures such 
as irrigation volume and planting density, leading to low efficiency of restoration input and output; third, they have limited 
adaptability and generalization ability, making it hard to effectively transfer across ecological sub-regions with huge inter-
nal differences on the plateau. To fill these gaps, this study proposes an innovative hybrid model that deeply integrates 
Cubist regression tree, BiGRU, and SA. The model uses a Cubist regression tree to extract the nonlinear synergetic 
effects between environmental factors and manual intervention measures; it leverages the bidirectional learning capability 
of BiGRU to deeply explore the temporal dependencies in the restoration process. Most crucially, it innovatively introduces 
SA, enabling the model to dynamically adjust the importance weights of various factors according to different spatiotem-
poral contexts; for example, it can automatically increase the weight of “irrigation volume” in dry seasons. This markedly 
enhances the model’s environmental adaptability and prediction accuracy. Through this design, the proposed model can 
accurately predict the vegetation restoration rate and soil improvement effect. Meanwhile, this model quantifies the syn-
ergetic effect between natural conditions and manual intervention measures, providing scientific and quantitative decision 
support for formulating “localized” ecological restoration strategies in different regions of the QTP.

The ecological restoration method of the QTP

Data source and preprocessing

The data used in this study are mainly derived from multiple monitoring platforms and field surveys on the QTP, involv-
ing three aspects: meteorological, remote sensing (RS), and artificial restoration data [23]. First, meteorological data are 
obtained from multiple meteorological stations within the QTP, covering day-by-day meteorological variables such as 
temperature and precipitation, and spanning the period from 2019 to 2023. These data allow an in-depth analysis of the 
impact of climate change on the ecological restoration process. Second, RS data are acquired by satellite RS technology 
and contain ecological variables such as soil moisture and FVC. The data provide large-scale and long-term environmen-
tal change trends, which are especially suitable for monitoring the dynamic changes of ecosystems. Lastly, the manual 
restoration data are obtained from field surveys in different regions of the QTP, which contain information on irrigation 
volume, planting density, vegetation survival rate, and soil physicochemical properties. The data sources and pre- 
processing results are exhibited in Table 1.

To ensure data quality and consistency, this study implements rigorous preprocessing for data from different sources. 
First, meteorological data undergoes interpolation to fill missing values caused by equipment failure or extreme weather, 
followed by smoothing to remove potential outliers. Temperature and precipitation data receive seasonal adjustment to 

Table 1.  Data sources and preprocessing procedures.

Data types Data sources Pre-processing methods Processed data

meteorological data Meteorological stations in 
the QTP

Interpolation methods are used to fill in missing values, 
seasonal adjustments are made, and outliers are removed.

Daily average temperature, precipi-
tation, and standardized processing

RS data Satellite RS images Image correction, geometric registration, resampling, and 
temporal interpolation

Soil moisture, FVC, and standard-
ized processing

Artificial restoration 
data

Field investigations and 
on-site measurement data

Data cleaning, extreme value removal, and standardized 
processing

Irrigation volume, planting density, 
and vegetation survival rate

https://doi.org/10.1371/journal.pone.0335056.t001

https://doi.org/10.1371/journal.pone.0335056.t001
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achieve stationarity. Second, RS data preprocessing includes image correction, geometric registration, and resampling. 
Since RS images may be affected by different sensors and acquisition times, orthorectification and spatial alignment are 
performed to ensure consistency with ground measurements.

For data fusion, this study primarily employs time-series analysis methods to integrate RS, artificial restoration, and 
meteorological data. While RS data offers high spatial resolution, its longer acquisition intervals necessitate temporal 
interpolation for alignment with meteorological data. Specifically, monthly or quarterly RS data is linearly interpolated to 
match the daily resolution of meteorological data. Additionally, though manual intervention measures exhibit strong locality 
and heterogeneity, regional zoning of restoration areas enables their integration with RS and meteorological data. Thus, a 
unified spatiotemporal dataset can be created that better supports model training and prediction.

Construction and analysis of the environmental adaptability of the Cubist-BiGRU-SA model

This study proposes a novel hybrid prediction model, which deeply integrates Cubist regression tree, BiGRU, and SA, 
aiming to more accurately predict the complex ecological restoration dynamics of the QTP. The combination of these three 
components is not a simple stacking. Instead, it forms an analysis process with a clear division of labor and complemen-
tary advantages to overcome the limitations of single models in processing complex spatiotemporal data. Its core idea lies 
in using Cubist for efficient nonlinear feature extraction, capturing deep time-series dependencies through BiGRU. Finally, 
the SA is utilized to dynamically identify and focus on key time nodes, thereby significantly improving prediction accuracy 
and model interpretability. Fig 1 illustrates the Cubist-BiGRU-SA model’s architecture and data flow.

The specific integration logic of this hybrid model is as follows:

1)	Feature Extraction Layer (Cubist): The input data is multi-dimensional time-series data including temperature, precipita-
tion, FVC, irrigation volume, etc. At each time step, the Cubist regression tree first acts as a feature extractor. It divides 
the complex feature space into multiple sub-regions through a series of rules and fits a local linear model in each 
sub-region. This process effectively captures the nonlinear relationships and interaction effects between various input 
variables; it also converts the original features into a set of structured and more interpretable “rule-prediction” combined 
features.

2)	Temporal Learning Layer (BiGRU): The structured features output by the Cubist layer at each time step are fed into 
the BiGRU network in chronological order. Through its forward and backward recurrent neural networks, BiGRU can 
simultaneously learn historical information (the impact of the past on the present) and future information (the implicit 
indication of future trends on the current state). Thus, BiGRU can comprehensively capture the long-term dependen-
cies, seasonal fluctuations, and trend changes in the ecological restoration process.

3)	Attention Aggregation Layer (SA): The output of BiGRU (i.e., the hidden state at each time step) is transmitted to the 
SA layer. By calculating the correlation weights between features at different time steps, this layer dynamically identifies 
the “critical moments” that contribute the most to the final prediction result. For example, when predicting vegetation 
restoration rate, the SA mechanism may automatically assign a higher weight to the time point when extreme drought 
occurs or large-scale irrigation is conducted. This enables the model to focus on decisive events and improve sensitiv-
ity to sudden changes and key processes.

Through the collaborative work of these three-layer structures, the model can gradually extract the core information that 
has the greatest influence on the ecological restoration results from the original, high-dimensional spatio-temporal data. 
As a result, it can achieve a complete and efficient analysis chain from feature engineering to time series modeling and 
then to the focus of key information.

In the data feature extraction layer, the Cubist regression tree effectively captures nonlinear structures and interac-
tion effects among ecological data variables [24–26]. The process begins with rule-based partitioning of multi-source 
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environmental and intervention factors (e.g., temperature, precipitation, soil moisture, irrigation volume). Then, it con-
structs local linear models within each partitioned region to obtain preliminary structural prediction relationships and com-
bined features. The Cubist regression tree-based data feature extraction module is displayed in Fig 2.

Let the input sample be xi = [xi1, xi2, · · · , xid] , Cubist first divides the feature space into multiple regions Rj, and fits a 
linear model in each region, which can be represented as Equation (1):

	
ŷi = β

(j)
0 +

d∑
k=1

β
(j)
k xik, xi ∈ Rj

	 (1)

Fig 1.  The architecture of the environmental adaptability of the Cubist-BiGRU-SA model.

https://doi.org/10.1371/journal.pone.0335056.g001

https://doi.org/10.1371/journal.pone.0335056.g001
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ŷi and xik are the predicted value and the kth input feature of the ith sample, respectively; β(j)
k  denotes the linear regres-

sion coefficient in the jth regular region Rj; d represents the dimension of the input variable.
Each sample, based on its characteristics, falls into a specific rule-based leaf node where the corresponding linear 

model performs prediction. This module outputs structured rule-based feature vectors F = [f1, f2, · · · , fm] as input for sub-
sequent temporal modeling.

In the temporal learning layer, BiGRU serves as an improved recurrent neural network that learns long-term dependen-
cies in sequential data along bidirectional temporal dimensions. It is particularly suitable for handling seasonal fluctuations 

Fig 2.  The data feature extraction module based on the Cubist regression tree.

https://doi.org/10.1371/journal.pone.0335056.g002

https://doi.org/10.1371/journal.pone.0335056.g002
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and time-lag effects present in the QTP’s ecological data [27,28]. The application of BiGRU in the temporal learning layer 
is plotted in Fig 3.

The GRU of each time step t dynamically controls the information flow based on update and reset gates. Its basic cal-
culation is shown in Equations (2)–(5):

	 zt = σ(Wzxt + Uzht–1 + bz)	 (2)

	 rt = σ(Wrxt + Urht–1 + br)	 (3)

	 h̃t = tan h(Whxt + Uh(rt ⊙ ht–1) + bh)	 (4)

	 ht = (1 – zt)⊙ ht–1 + zt ⊙ h̃t 	 (5)

xt stands for the input vector at time t (i.e., the structural characteristics of Cubist output); ht represents the current hid-
den state; ⊙ means the product of elements; σ is a sigmoid function; Wz, Wr, and Wh are weight parameters; ht-1 denotes 
the output of the former neuron; bz, br, and bh refer to offset vectors. BiGRU simultaneously calculates the hidden states of 
forward ⃗ht and reverse 

←
ht, as expressed in Equations (6) and (7); then, they are spliced to obtain the final output, as given 

in Equation (8):

	 h⃗t = GRUfwd (xt)	 (6)

	
←
ht = GRUbwd (xt)	 (7)

	
Ht =

[
h⃗t;

←
ht
]
	 (8)

Finally, the output sequence 
{
H1,H2, · · · ,HT

}
 of bidirectional hidden state is obtained, which is the global temporal 

feature at each time step, providing context-aware representation for the attention layer.

Fig 3.  Schematic diagram of BiGRU applied to the temporal learning layer.

https://doi.org/10.1371/journal.pone.0335056.g003

https://doi.org/10.1371/journal.pone.0335056.g003
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In the attention aggregation layer, SA is employed to dynamically identify the time steps and variable dimensions with 
key influence in the temporal features, to improve the focus ability of the model on important patterns [29]. This layer 
mainly includes the generation and weight calculation of three groups of vectors: Query, Key, and Value, as follows:

	 Q = HWQ	 (9)

	 K = HWK 	 (10)

	 V = HWV 	 (11)

Q, K, and V refer to the matrix of “Query”, “Key”, and “Value” vectors; H means the timing representation matrix of 
BiGRU output; WQ, WK, and WV represent the trainable parameter matrix. Then, the attention score matrices A and Att(Q, 
K, V) are calculated as Equations (12) and (13):

	
A = softmax

(
Q · KT√

dk

)

	 (12)

	
Att(Q,K,V) = A · V = softmax

(
Q · KT√

dk

)
· V

	 (13)

The final output is the weighted fusion of the features of each time step, which can be written as Equation (14):

	
Att(Q,K,V) =

T∑
t=1

αtVt
	 (14)

αt  refers to the importance weight of each time step, which determines the model’s attention to different ecological 
variables’ changes.

Through the collaborative operation of these three layers, the proposed model extracts complex nonlinear patterns 
(Cubist) and captures long-term temporal dependencies (BiGRU) while focusing on key variables and periods (SA). 
Hence, this model achieves high-precision modeling and quantitative prediction of ecological restoration efficiency in the 
QTP. The process pseudocode for the Cubist-BiGRU-SA-based environmental adaptability model is revealed in Fig 4.

Experimental evaluation

This study designs a systematic experimental procedure to verify the effectiveness of the proposed Cubist-BiGRU-SA 
model in predicting ecological restoration on the QTP. The following sections detail the experimental setup, including data 
sources, preprocessing, model training protocols, and hyperparameter selection.

1)	Data sources and preprocessing

This study adopts a multi-source spatiotemporal dataset covering the period from 2019 to 2023. The data mainly come 
from three sources: meteorological data, remote sensing observation data, and field survey data. The research area 
focuses on multiple typical ecological restoration demonstration zones on the QTP’s eastern edge. These sites cover 
different altitudes and ecological conditions to ensure the representativeness of the samples. All data are continuously 
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collected over time at the same set of fixed monitoring plots, forming a high-quality panel dataset that provides a solid 
foundation for the model to learn temporal dynamic changes.

This study conducts strict preprocessing on the multi-source data to ensure their consistency and quality. The specific 
data sources, spatiotemporal frequency, preprocessing methods, and finally generated variables are summarized in Table 
2. After integration and cleaning, a dataset containing 3,217 independent time-series samples is finally constructed for 
model training and testing.

2)	Model training and hyperparameter setting

This study divides the dataset into a training set (70%), a validation set (20%), and a test set (10%) in chronological 
order. Given the strong time-series nature of the data in this study, to prevent future information from leaking into the train-
ing process (which would lead to overestimated model performance), this study adopts a strict time-series split cross- 
validation strategy. This method ensures that the data used for validation or testing is always temporally later than the 
training data, thus enabling a more realistic evaluation of the model’s generalized prediction ability.

Fig 4.  The process pseudocode for the environmental adaptability model based on Cubist-BiGRU-SA.

https://doi.org/10.1371/journal.pone.0335056.g004

https://doi.org/10.1371/journal.pone.0335056.g004
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The model’s hyperparameters are not determined by automated methods such as grid search, but by a manual tuning 
strategy that combines domain experience and iterative experiments on the validation set. This method ensures model 
performance while taking computational efficiency into account. For example, this study finds that a two-layer BiGRU net-
work is sufficient to capture complex temporal dependencies without causing severe overfitting. The finally selected key 
hyperparameters and their functional descriptions are detailed in Table 3.

The Cubist-BiGRU-SA model is compared with Cubist-GRU [30], RF-LSTM [31], BiGRU [32], and the model proposed 
by Nguyen et al. (2025) to comprehensively evaluate its performance in QTP’s ecological restoration prediction tasks. 
Multiple commonly-used evaluation metrics are selected, including Root Mean Square Error (RMSE), Mean Absolute Per-
centage Error (MAPE), coefficient of determination (R²), and prediction accuracy.

Table 2.  Data sources and preprocessing procedures.

Data type Data sources Original space-time 
frequency

Key preprocessing methods Processed data

Meteorological data National Level ground meteo-
rological station network

Daily Spatial interpolation to fill missing values, outlier 
removal, and normalization

Daily average 
temperature 
and cumulative 
precipitation

Remote sensing data MODIS satellite products 16 days/8 days Geometric correction, radiometric calibration, 
linear interpolation to match time frequency, 
standardization

FVC, soil moisture

Data on manual inter-
vention measures

Project demonstration area 
field survey and annual records

Annual/Quarterly Data cleaning, outlier removal, regional averag-
ing, standardization

Irrigation volume, 
planting density

https://doi.org/10.1371/journal.pone.0335056.t002

Table 3.  Key hyperparameter settings of the model.

Name of parameter Setting value Description and selection basis

Input time steps (T) 30 Length of the input historical time window (month)

Input variable dimension (D) 6 Including 6 items such as temperature, precipitation, 
and normalized difference vegetation index

Feature dimension of Cubist 16 Feature dimension of the structure combination of 
the Cubist output

BiGRU hidden layer 
dimensions

64 Balancing between model complexity and overfitting 
risk

BiGRU layers 2 Experiments show that a two-layer structure can 
effectively learn long-term dependencies

Dropout rate 0.3 Used to prevent overfitting and improve the model’s 
generalization ability

Learning rate 0.001 The manual optimization is achieved by observing 
the convergence of the loss function on the valida-
tion set.

Optimizer Adam An efficient optimization algorithm suitable for most 
scenarios

Batch size 32 The trade-off between GPU memory and training 
stability

Training epoch 100 Maximum number of iterations of the model

Additionally, an Early Stopping strategy is employed during training. The process automatically terminates  
when the validation loss shows no significant decrease for 10 consecutive epochs, thus reducing overfitting  
risks. All experiments are conducted on an NVIDIA A100 GPU platform using the PyTorch 2.0 framework  
for model construction and training.

https://doi.org/10.1371/journal.pone.0335056.t003

https://doi.org/10.1371/journal.pone.0335056.t002
https://doi.org/10.1371/journal.pone.0335056.t003
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Results and discussion

Analysis of model prediction performance with different algorithms

The prediction accuracy of the vegetation restoration rate of each algorithm with the increase in iterations is analyzed, and 
the results are demonstrated in Fig 5

Fig 5 reveals that the proposed Cubist-BiGRU-SA model consistently maintains superior prediction accuracy through-
out all training epochs. This model achieves peak performance of 97.06% and 97.73% at the 82nd and 91st iterations, 
respectively, significantly outperforming other comparative models. While the model by Nguyen et al. (2025) reaches 
90.57% at the 100th epoch, its overall accuracy remains consistently 6%−10% lower than the proposed model. The  
Cubist-GRU model shows stable performance during mid-to-late stages, peaking at 86.62% and outperforming both 
RF-LSTM and BiGRU. The RF-LSTM model exhibits slow overall improvement in prediction accuracy, with a maximum of 
77.88%. The BiGRU model starts with low initial accuracy (30.12% at the 10th epoch) and eventually improves to 73.32%, 
yet still underperforms the proposed model by over 20 percentage points. Collectively, the Cubist-BiGRU-SA model 
demonstrates faster convergence speed and higher final accuracy, validating its advantages and robustness in multi-
source environmental and anthropogenic variable integration modeling.

Further analysis of the predicted RMSE, MAPE, and R² results for the vegetation restoration rate across increasing 
iteration epochs for each algorithm is presented in Figs 6–8.

In Figs 6–8, comparative results of RMSE, MAPE, and R² demonstrate that the Cubist-BiGRU-SA model proposed in 
this study consistently exhibits optimal performance across all training epochs. Specifically, regarding RMSE, the model 
reaches 0.103 by the 100th epoch, remarkably outperforming Nguyen et al.‘s model (0.105) and other comparative mod-
els with the lowest error. This indicates minimal deviation between predicted and actual values. For MAPE metrics,  
Cubist-BiGRU-SA attains 5.22% at the 100th epoch, showing superior prediction accuracy and stability compared to 
Nguyen’s model (6.79%) and RF-LSTM (8.78%). Concerning R² evaluation, the proposed model achieves 0.9459 after 97 
iterations, approaching perfect fit status (R² → 1), substantially exceeding BiGRU (0.689) and RF-LSTM (0.7513), demon-
strating the strongest capability in explaining variable variance. Consequently, the proposed Cubist-BiGRU-SA model 
exhibits significant advantages over conventional deep learning models and existing research models in accuracy, stabil-
ity, and interpretability; this validates its exceptional performance in modeling complex ecological restoration systems.

Fig 5.  The prediction accuracy results of the vegetation restoration rate under different algorithms.

https://doi.org/10.1371/journal.pone.0335056.g005

https://doi.org/10.1371/journal.pone.0335056.g005
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To comprehensively evaluate the performance of the proposed Cubist-BiGRU-SA model, this study compares it with 
multiple baseline models, including the standard Cubist model, the RF-LSTM hybrid model, and the standalone BiGRU 
model. This study uses RMSE, MAPE, R², and prediction accuracy as evaluation metrics. Prediction accuracy is defined 
here as the percentage of samples where the relative error between the predicted and true values falls within the range 
of ±10%. This metric is calculated on the test set, which encompasses the latest 2023 field survey data, thus ensuring the 
practical validity of the evaluation.

The final performance evaluation results of all models are detailed in Table 4. To test whether the proposed model’s 
superiority over other baseline models is statistically significant, this study conducts a paired t-test on the prediction errors 
of each model, and the p-values are also listed.

Fig 6.  The predicted RMSE results for the vegetation restoration rate under various algorithms.

https://doi.org/10.1371/journal.pone.0335056.g006

Fig 7.  The forecasted MAPE results for the vegetation restoration rate with each algorithm.

https://doi.org/10.1371/journal.pone.0335056.g007

https://doi.org/10.1371/journal.pone.0335056.g006
https://doi.org/10.1371/journal.pone.0335056.g007
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Analysis of the roles of each factor in the model

To gain a deeper understanding of the model’s decision-making process and quantify the impact of each input feature on 
the prediction results, this study uses the SHapley Additive exPlanations (SHAP) method to analyze the trained model. 
SHAP values can reveal the magnitude and direction of each feature’s contribution to the prediction value of a single 
sample. Fig 9 provides a quantitative ranking of global feature importance by calculating the mean absolute SHAP value 
of each feature.

Fig 9 offers a clear quantitative ranking of global feature importance in the model’s prediction by calculating the mean 
absolute SHAP value of each input feature. This value measures the average impact magnitude of a single feature on the 
model’s output (vegetation restoration rate). The results demonstrate that natural climate conditions are the dominant fac-
tors determining the effectiveness of ecological restoration. Specifically, air temperature ranks first with the highest mean 
absolute SHAP value of 0.32, making it the most influential predictor; it is closely followed by precipitation with a value of 
0.25. This indicates that heat and natural moisture conditions form the macro-environmental basis for plateau vegetation 
restoration. Next are key ecosystem state variables, including soil moisture (0.13) and FVC (0.12); their importance high-
lights the direct impact of the current ecological base on future restoration potential. Finally, although they rank lower than 

Fig 8.  The predicted R² results for the vegetation restoration rate under diverse algorithms.

https://doi.org/10.1371/journal.pone.0335056.g008

Table 4.  Performance comparison and statistical significance test of diverse models on the test set.

Model RMSE MAPE (%) R² Prediction accuracy (%) p-value (compared to Cubist-BiGRU-SA)

Cubist-BiGRU-SA (this study) 0.103 5.22 0.946 96.5 –

Cubist 0.145 8.15 0.851 82.3 < 0.01

RF-LSTM 0.178 8.78 0.751 77.9 < 0.01

BiGRU 0.195 10.05 0.689 73.3 < 0.001

Nguyen et al. (2025) 0.105 6.79 0.938 90.6 < 0.05

The results show that the proposed Cubist-BiGRU-SA model performs best across all evaluation metrics. It has the lowest RMSE and MAPE, indicating 
the smallest prediction error; its R² value is closest to 1, which means the model has the strongest ability to explain the data variance. Importantly, all 
p-values are less than 0.05, demonstrating that the performance improvement of the proposed model over all baseline models is statistically significant.

https://doi.org/10.1371/journal.pone.0335056.t004

https://doi.org/10.1371/journal.pone.0335056.g008
https://doi.org/10.1371/journal.pone.0335056.t004
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the main natural factors, the two manual intervention measures—irrigation volume (0.10) and planting density (0.08)—still 
show significant predictive power. This finding has important practical significance, as it quantitatively confirms that natural 
conditions set the upper limit of restoration. However, precise manual intervention measures (especially water supplemen-
tation and planting strategies) are effective levers to improve the efficiency of ecological restoration and achieve goals.

Further analysis of the relationship between irrigation volume and vegetation survival rate in arid zones is depicted 
in Fig 10.

Fig 10 illustrates that enhanced irrigation significantly boosts vegetation survival rates in areas receiving less than 
200 millimeters of annual precipitation. Specifically, every 10% increase in irrigation volume corresponds to about a 15% 
enhancement in survival rate. When the irrigation volume reaches 40%, the survival rate can achieve 60%. These results 
quantitatively demonstrate that appropriate irrigation enhancement markedly improves ecological restoration outcomes in 
arid areas, providing measurable guidance for precision interventions.

Fig 9.  The global importance ranking of each input feature based on the mean absolute SHAP value.

https://doi.org/10.1371/journal.pone.0335056.g009

Fig 10.  Relationship between irrigation volume and vegetation survival rate.

https://doi.org/10.1371/journal.pone.0335056.g010

https://doi.org/10.1371/journal.pone.0335056.g009
https://doi.org/10.1371/journal.pone.0335056.g010
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To verify the generalization ability and stability of the model in the complex geographical environment of the QTP, this 
study divides the test samples (3217 × 0.1 ≈ 322 samples) into three regions according to altitude. The three include low- 
altitude (< 3500 meters), middle-altitude (3500–4500 meters), and high-altitude regions (> 4500 meters); meanwhile, the 
model’s prediction accuracy is evaluated for each region separately. The results are listed in Table 5.

Discussion

This study successfully develops and verifies an innovative hybrid model integrating Cubist, BiGRU, and SA. This model 
demonstrates excellent accuracy (> 96%) and strong geographical adaptability in predicting the ecological restoration 
efficiency of the QTP. The study’s core contribution lies in achieving high-precision prediction and revealing the internal 
mechanism of the model’s decision-making through SHAP analysis. The results show that temperature and precipitation 
are the dominant natural factors determining the success of restoration. In contrast, manual intervention measures (such 
as irrigation volume) are key levers to improve restoration efficiency under specific conditions. This finding provides a 
solid quantitative basis for transforming ecological restoration management from an “experience-driven” model to a “data-
driven” one, making it possible to formulate the most cost-effective intervention strategies with limited resources.

Compared with previous ecological modeling work conducted on the QTP, this study achieves significant methodolog-
ical progress. The use of hybrid deep learning models to address complex environmental prediction tasks has become a 
cutting-edge trend, as demonstrated by Alharbi et al. in the field of intelligent agricultural water quality prediction [33]. This 
study aligns with this trend but addresses the unique challenges of ecological restoration through a specially designed 
architecture. Traditional statistical models struggle to capture nonlinear relationships, while single ML models have limita-
tions. For example, although Cao et al. successfully applied ML to optimize water retention technologies for farmland soil 
[34], their research focused on the optimization of specific technologies. In contrast, the model proposed in this study aims 
to provide a more macro predictive framework to evaluate the comprehensive impact of multiple natural and human fac-
tors on the overall restoration effect (including soil quality). By leveraging Cubist to extract structured features, BiGRU to 
explore temporal dependencies, and SA to focus on the synergy of key events, the proposed model advances the techno-
logical frontier. Besides, it achieves a leap from single technology optimization to complex ecosystem outcome prediction.

Despite the encouraging results achieved by the proposed model, its limitations must be clearly recognized. First, the 
current model provides deterministic point predictions and fails to offer uncertainty estimation, which is crucial for risk 

Table 5.  Prediction accuracy of the model in different altitude regions.

Altitude region Sample size Prediction accuracy (%)

Low-altitude region (<3500m) 97 97.2

Middle-altitude region (3500-4500m) 161 96.1

High-altitude region (>4500m) 64 95.8

Total 322 –

The results in Table 5 strongly prove the proposed model’s strong generalization ability and high stability  
in the complex and diverse geographical environment of the QTP. For this evaluation, this study divides  
the test set (containing 322 samples) into three representative regions by altitude: low-altitude (< 3500  
meters), middle-altitude (3500–4500 meters), and high-altitude (> 4500 meters). The model exhibits  
excellent performance in all regions. Specifically, the prediction accuracy reaches 97.2% in the low-altitude  
region (with 97 samples), and 96.1% in the core middle-altitude region (the region with the largest sample  
size of 161); Even in the high-altitude region with the harshest ecological conditions and only 64 samples,  
its accuracy is as high as 95.8%. Most crucially, although the model’s accuracy shows an extremely slight  
decline as altitude increases and the environment becomes harsher, its performance remains at a high  
level of over 95%. This finding indicates that the model does not overfit to a specific environment; instead,  
it successfully learns the universal laws of ecological restoration, confirming its great potential for reliable  
deployment and application in different regions across the entire QTP.

https://doi.org/10.1371/journal.pone.0335056.t005

https://doi.org/10.1371/journal.pone.0335056.t005
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assessment in practical decision-making. Second, the model’s performance highly depends on high-quality fixed-point 
monitoring data, and its scalability to larger regions faces challenges. This stands in sharp contrast to studies such as 
Odebiri et al. (2022), where the research team successfully used deep learning and publicly available Sentinel-3 satellite 
data to map soil organic carbon at the national scale; this highlights the limitation of this study in terms of data depen-
dence. Additionally, the computational cost of the complex model may also be a factor to consider when conducting large-
scale, high-frequency simulations.

These limitations also point out directions for future research. The top priority is to introduce uncertainty quantification 
methods, such as generating prediction intervals through Monte Carlo Dropout or quantile regression, to enhance the 
reliability of model outputs. Second, future work should explore integration with real-time, high-resolution remote sensing 
data streams to address the issues of scalability and data dependence. Drawing on the ideas of Odebiri et al., this inte-
gration can enable dynamic monitoring and prediction of broader regions [35]. Furthermore, the application of transfer 
learning technology—transferring knowledge learned from data-rich regions to new regions with sparse data—is a highly 
promising direction to reduce the model’s dependence on local data. Through these improvements, this study is expected 
to further develop the current model from a powerful analytical tool into a comprehensive, robust, and operational intelli-
gent decision support system for ecological restoration.

Conclusion

This study constructs a multi-level spatiotemporal modeling framework (Cubist-BiGRU-SA) that integrates Cubist regression 
tree, BiGRU, and SA. This model remarkably outperforms existing methods in the prediction accuracy of vegetation restoration 
rate and soil quality improvement (exceeding 96%). More importantly, the model provides key decision support for formulating 
scientific and practical ecological restoration plans. The proposed model can convert complex ecological data into clear and 
actionable guidelines by accurately quantifying the synergetic effects of natural factors and manual intervention measures (such 
as irrigation volume and planting density). For example, it can specifically answer practical questions like “In a specific arid area, 
what percentage of increase in vegetation survival rate can be achieved by increasing irrigation volume by 10%?” This enables 
ecological restoration work to shift from the traditional “experience-driven” model to a “data-driven” one, thus greatly improving 
the targeting and effectiveness of restoration measures as well as the efficiency of fund utilization. It provides a powerful scientific 
tool for achieving accurate and efficient restoration goals in the vast and diverse ecological environment of the QTP.

Despite the excellent performance of the model, it still has the following limitations. First, the model’s adaptability under 
future extreme climate change scenarios needs to be verified, and it fails to cover all key intervention factors, such as 
grazing activities and land policies. Meanwhile, the current method’s dependence on high-quality fixed-point data also 
poses challenges to its scalability to larger regions and brings corresponding computational costs. Therefore, the direction 
of future research is multi-dimensional. Future efforts should be made to explore integration with large-scale real-time 
remote sensing monitoring and efficiently apply the model to other ecologically fragile areas with sparse data through 
transfer learning. More importantly, methods such as causal inference should be introduced to deeply reveal the internal 
mechanism of intervention measures, thereby upgrading the model from an accurate prediction tool to a more in-depth 
decision support system.

Supporting information

S1 File.  Data Packet. 
(ZIP)

Author contributions

Conceptualization: Jie Ma.

Data curation: Wenhu Jin.

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0335056.s001


PLOS One | https://doi.org/10.1371/journal.pone.0335056  November 12, 2025 18 / 19

Formal analysis: Heng Liu, Wei Wang, Jie Ma.

Funding acquisition: Yuan Han.

Investigation: Wenhu Jin, Heng Liu, Wei Wang, Wei Zhao.

Methodology: Yuan Han, Heng Liu, Wei Wang.

Resources: Wenhu Jin, Heng Liu.

Software: Wei Zhao.

Writing – original draft: Yuan Han, Wenhu Jin.

Writing – review & editing: Yuan Han.

References
	 1.	 Zhao Z, Fu B, Lü Y, Li T, Deng L, Wang Y, et al. Variable climatic conditions dominate decreased wetland vulnerability on the Qinghai‒Tibet Pla-

teau: Insights from the ecosystem pattern-process-function framework. Journal of Cleaner Production. 2024;458:142496. https://doi.org/10.1016/j.
jclepro.2024.142496

	 2.	 Wang L, Zhang Y, Chen X. Analysis and prediction of carbon storage changes on the Qinghai-Tibet Plateau. PLoS One. 2025;20(4):e0320090. 
https://doi.org/10.1371/journal.pone.0320090 PMID: 40193405

	 3.	 Fu B, Ouyang Z, Shi P. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bulletin of Chinese Acad-
emy of Sciences (Chinese Version). 2021;36(11):1298–306.

	 4.	 Zhu S, Huang Q, Li T, Li M, Yang Q, Li X, et al. Soil water content drives the spatiotemporal the distribution and community assembly of soil ciliates 
in the Nianchu River Basin, Qinghai-Tibet Plateau, China. PLoS One. 2024;19(7):e0299815. https://doi.org/10.1371/journal.pone.0299815 PMID: 
38985800

	 5.	 Ji Y, Xie M, Liu Y, Zhu R, Tang Z, Hu R. How Do Ecological Restoration Projects Affect Trade-Offs and Synergies between Ecosystem Services? 
Land. 2024;13(3):384. https://doi.org/10.3390/land13030384

	 6.	 Chen Y, Yu X, Xu D, Peng J. A spatial machine learning approach to exploring the impacts of coal mining and ecological restoration on regional 
ecosystem health. Environ Res. 2025;264(Pt 2):120379. https://doi.org/10.1016/j.envres.2024.120379 PMID: 39566676

	 7.	 Delaney JT, Larson DM. Using explainable machine learning methods to evaluate vulnerability and restoration potential of ecosystem state transi-
tions. Conserv Biol. 2024;38(3):e14203. https://doi.org/10.1111/cobi.14203 PMID: 37817744

	 8.	 Mahammad S, Islam A, Shit PK, Towfiqul Islam ARM, Alam E. Groundwater level dynamics in a subtropical fan delta region and its future pre-
diction using machine learning tools: Sustainable groundwater restoration. Journal of Hydrology: Regional Studies. 2023;47:101385. https://doi.
org/10.1016/j.ejrh.2023.101385

	 9.	 Liu Y, Liu S, Wang F, Liu H, Li M, Sun Y, et al. Identification of key priority areas under different ecological restoration scenarios on the Qinghai- 
Tibet Plateau. J Environ Manage. 2022;323:116174. https://doi.org/10.1016/j.jenvman.2022.116174 PMID: 36095988

	10.	 Yu L, Liu S, Wang F, Liu H, Liu Y, Wang Q, et al. Effect of ecological restoration projects on carbon footprint in a grassland ecosystem on the Qing-
hai‐Tibet Plateau. Land Degrad Dev. 2023;34(18):5824–34. https://doi.org/10.1002/ldr.4880

	11.	 Ma S, Wang L, Wang H, Jiang J, Zhang J. Multiple ecological effects and their drivers of ecological restoration programmes in the Qinghai‐Tibet 
Plateau, China. Land Degrad Dev. 2023;34(5):1415–29. https://doi.org/10.1002/ldr.4543

	12.	 Huang B, Lu F, Wang X, Zheng H, Wu X, Zhang L, et al. Ecological restoration is crucial in mitigating carbon loss caused by permafrost thawing on 
the Qinghai-Tibet Plateau. Commun Earth Environ. 2024;5(1). https://doi.org/10.1038/s43247-024-01511-7

	13.	 Li X, Li Q, Duan Y, Sun H, Chu H, Jia S, et al. Soil fungal communities varied across aspects of restored grassland in former mining areas of the 
Qinghai-Tibet Plateau. PLoS One. 2024;19(3):e0295019. https://doi.org/10.1371/journal.pone.0295019 PMID: 38530822

	14.	 Liu S, Dong Y, Sun Y, Wang Q. Multi-Scale Ecological Restoration Strategies to Enhance Water Conservation in Ruoergai on the Qinghai-Tibet 
Plateau. Plants (Basel). 2025;14(7):1085. https://doi.org/10.3390/plants14071085 PMID: 40219155

	15.	 Simon SM, Glaum P, Valdovinos FS. Interpreting random forest analysis of ecological models to move from prediction to explanation. Sci Rep. 
2023;13(1):3881. https://doi.org/10.1038/s41598-023-30313-8 PMID: 36890140

	16.	 Zhang Z, Hu B, Jiang W, Qiu H. Spatial and temporal variation and prediction of ecological carrying capacity based on machine learning and PLUS 
model. Ecological Indicators. 2023;154:110611. https://doi.org/10.1016/j.ecolind.2023.110611

	17.	 Liu M, Huang Y, Hu J, He J, Xiao X. Algal community structure prediction by machine learning. Environ Sci Ecotechnol. 2022;14:100233. https://
doi.org/10.1016/j.ese.2022.100233 PMID: 36793396

	18.	 Vázquez AL, Navarro Flores CM, Garcia BH, Barrett TS, Domenech Rodríguez MM. An ecological examination of early adolescent e-cigarette use: 
A machine learning approach to understanding a health epidemic. PLoS One. 2024;19(2):e0287878. https://doi.org/10.1371/journal.pone.0287878 
PMID: 38354165

https://doi.org/10.1016/j.jclepro.2024.142496
https://doi.org/10.1016/j.jclepro.2024.142496
https://doi.org/10.1371/journal.pone.0320090
http://www.ncbi.nlm.nih.gov/pubmed/40193405
https://doi.org/10.1371/journal.pone.0299815
http://www.ncbi.nlm.nih.gov/pubmed/38985800
https://doi.org/10.3390/land13030384
https://doi.org/10.1016/j.envres.2024.120379
http://www.ncbi.nlm.nih.gov/pubmed/39566676
https://doi.org/10.1111/cobi.14203
http://www.ncbi.nlm.nih.gov/pubmed/37817744
https://doi.org/10.1016/j.ejrh.2023.101385
https://doi.org/10.1016/j.ejrh.2023.101385
https://doi.org/10.1016/j.jenvman.2022.116174
http://www.ncbi.nlm.nih.gov/pubmed/36095988
https://doi.org/10.1002/ldr.4880
https://doi.org/10.1002/ldr.4543
https://doi.org/10.1038/s43247-024-01511-7
https://doi.org/10.1371/journal.pone.0295019
http://www.ncbi.nlm.nih.gov/pubmed/38530822
https://doi.org/10.3390/plants14071085
http://www.ncbi.nlm.nih.gov/pubmed/40219155
https://doi.org/10.1038/s41598-023-30313-8
http://www.ncbi.nlm.nih.gov/pubmed/36890140
https://doi.org/10.1016/j.ecolind.2023.110611
https://doi.org/10.1016/j.ese.2022.100233
https://doi.org/10.1016/j.ese.2022.100233
http://www.ncbi.nlm.nih.gov/pubmed/36793396
https://doi.org/10.1371/journal.pone.0287878
http://www.ncbi.nlm.nih.gov/pubmed/38354165


PLOS One | https://doi.org/10.1371/journal.pone.0335056  November 12, 2025 19 / 19

	19.	 Najafzadeh M, Ahmadi-Rad ES, Gebler D. Ecological states of watercourses regarding water quality parameters and hydromorphological param-
eters: deriving empirical equations by machine learning models. Stoch Environ Res Risk Assess. 2023;38(2):665–88. https://doi.org/10.1007/
s00477-023-02593-z

	20.	 Ostovich E, Klaper R. Using a Novel Multiplexed Algal Cytological Imaging (MACI) Assay and Machine Learning as a Way to Characterize Com-
plex Phenotypes in Plant-Type Organisms. Environ Sci Technol. 2024;58(11):4894–903. https://doi.org/10.1021/acs.est.3c07733 PMID: 38446593

	21.	 Nguyen TV, Tran VN, Tran H, Binh DV, Duong TD, Dang TD, et al. HydroEcoLSTM: A Python package with graphical user interface for 
hydro-ecological modeling with long short-term memory neural network. Ecological Informatics. 2025;85:102994. https://doi.org/10.1016/j.
ecoinf.2025.102994

	22.	 Mehmood K, Anees SA, Muhammad S, Shahzad F, Liu Q, Khan WR, et al. Machine Learning and Spatio Temporal Analysis for Assessing Ecologi-
cal Impacts of the Billion Tree Afforestation Project. Ecol Evol. 2025;15(2):e70736. https://doi.org/10.1002/ece3.70736 PMID: 39975709

	23.	 Zhao L, Hu G, Liu G, Zou D, Wang Y, Xiao Y, et al. Investigation, Monitoring, and Simulation of Permafrost on the Qinghai‐Tibet Plateau: A Review. 
Permafrost & Periglacial. 2024;35(3):412–22. https://doi.org/10.1002/ppp.2227

	24.	 Ci M, Liu Q, Liu Y, Jin Q, Martinez-Valderrama J, Zhao J. Multi-model assessment of potential natural vegetation to support ecological restoration. 
J Environ Manage. 2024;367:121934. https://doi.org/10.1016/j.jenvman.2024.121934 PMID: 39083935

	25.	 Ding Z-D, Sun Z, Xie Y-H, Qiao J-J, Liang R-T, Chen X, et al. Optimizing crown density and volume estimation across two coniferous forest types in 
southern China via Boruta and Cubist methods. Journal of Plant Ecology. 2024;17(5). https://doi.org/10.1093/jpe/rtae039

	26.	 Suleymanov A, Tuktarova I, Belan L, Suleymanov R, Gabbasova I, Araslanova L. Spatial prediction of soil properties using random forest, k- 
nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia. Model Earth Syst Environ. 2023;9(3):3461–71. https://doi.
org/10.1007/s40808-023-01723-4

	27.	 Li X, Zhou S, Wang F. A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm. Ocean Engineering. 
2025;315:119849. https://doi.org/10.1016/j.oceaneng.2024.119849

	28.	 Zhao L, Luo T, Jiang X, Zhang B. Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai-Tibet Plateau. PeerJ. 
2023;11:e15851. https://doi.org/10.7717/peerj.15851 PMID: 37637158

	29.	 Cui Y, Knoll A. PSNet: Towards Efficient Image Restoration With Self-Attention. IEEE Robot Autom Lett. 2023;8(9):5735–42. https://doi.org/10.1109/
lra.2023.3300254

	30.	 Michael NE, Bansal RC, Ismail AAA. A cohesive structure of bi-directional long-short-term memory (BiLSTM)-GRU for predicting hourly solar radia-
tion. Renewable Energy. 2024;222:119943.

	31.	 Ruan J, Cui Y, Song Y, Mao Y. A novel RF-CEEMD-LSTM model for predicting water pollution. Sci Rep. 2023;13(1):20901. https://doi.org/10.1038/
s41598-023-48409-6 PMID: 38017113

	32.	 Wang S, Shi J, Yang W, Yin Q. High and low frequency wind power prediction based on Transformer and BiGRU-Attention. Energy. 
2024;288:129753. https://doi.org/10.1016/j.energy.2023.129753

	33.	 Alharbi AH, Rizk FH, Gaber KS, Eid MM, El-Kenawy E-SM, Khodadadi E, et al. Hybrid deep learning optimization for smart agriculture: Dipper 
throated optimization and polar rose search applied to water quality prediction. PLoS One. 2025;20(7):e0327230. https://doi.org/10.1371/journal.
pone.0327230 PMID: 40690512

	34.	 Cao Y, Zhao Z, Zhang D. Machine learning-based soil improvement techniques and their optimization of farmland soil water retention capacity. 
Advances in Resources Research. 2025;5(2):919–45.

	35.	 Odebiri O, Mutanga O, Odindi J. Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data. Geoderma. 
2022;411:115695. https://doi.org/10.1016/j.geoderma.2022.115695

https://doi.org/10.1007/s00477-023-02593-z
https://doi.org/10.1007/s00477-023-02593-z
https://doi.org/10.1021/acs.est.3c07733
http://www.ncbi.nlm.nih.gov/pubmed/38446593
https://doi.org/10.1016/j.ecoinf.2025.102994
https://doi.org/10.1016/j.ecoinf.2025.102994
https://doi.org/10.1002/ece3.70736
http://www.ncbi.nlm.nih.gov/pubmed/39975709
https://doi.org/10.1002/ppp.2227
https://doi.org/10.1016/j.jenvman.2024.121934
http://www.ncbi.nlm.nih.gov/pubmed/39083935
https://doi.org/10.1093/jpe/rtae039
https://doi.org/10.1007/s40808-023-01723-4
https://doi.org/10.1007/s40808-023-01723-4
https://doi.org/10.1016/j.oceaneng.2024.119849
https://doi.org/10.7717/peerj.15851
http://www.ncbi.nlm.nih.gov/pubmed/37637158
https://doi.org/10.1109/lra.2023.3300254
https://doi.org/10.1109/lra.2023.3300254
https://doi.org/10.1038/s41598-023-48409-6
https://doi.org/10.1038/s41598-023-48409-6
http://www.ncbi.nlm.nih.gov/pubmed/38017113
https://doi.org/10.1016/j.energy.2023.129753
https://doi.org/10.1371/journal.pone.0327230
https://doi.org/10.1371/journal.pone.0327230
http://www.ncbi.nlm.nih.gov/pubmed/40690512
https://doi.org/10.1016/j.geoderma.2022.115695

