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Abstract
Synchronization, which has been a common natural phenomenon, occurs frequently
in complex financial systems and is an important contagion mechanism for systemic
financial risks and even financial crises. In view of this, we construct a coupled stochas-
tic volatility model and its volatility synchronization analysis framework and combine
machine learning methods and rolling cycle window to propose a prediction method for
dynamic volatility synchronization. Taking the Shanghai Composite Index (SSEC) and
Shenzhen Component Index (SZI) as binary synchronization examples, we analyze the
dynamic forecasting performance of the proposed method in an in-sample and out-of-
sample empirical comparison by combining multiple loss functions and Superior Predic-
tive Ability (SPA) tests for high-frequency data. It is found that the in-sample estimates of
our proposed model are highly consistent with the market behavior and that the model
outperforms other models in predicting stock market volatility synchronization accuracy.
In addition, by combining dynamic simulation with multivariate empirical mechanism anal-
ysis, our methodology not only explores synchronization dynamics but also identifies sig-
nificant risk events, providing a comprehensive framework for understanding complex
system behaviors.

1 Introduction
Synchronization is the collective behavior from two or more dynamically coupled units and is
a natural phenomenon prevalent in natural systems [1]. The most successful attempt to study
synchronization was made by the researcher Kuramoto in 1975, who proposed a model that
describes the synchronization behavior of a large number of coupled oscillators and system-
atically established the foundational theory of synchronization [2], which laid the founda-
tion for understanding the synchronization phenomenon in complex systems. Since then,
with the development of complex network theory, researchers have begun to pay attention
to the effect of network structure on synchronization behavior, forming a complex network
synchronization theory [3]. In the early synchronization studies, scholars focused more on
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chaotic systems [4], complex networks [5], and so on. Nowadays, synchronization behaviorwritten in R or Python. The specific URLs for
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has shown strong research value and application demand in various types of systems, attract-
ing the attention of many scholars, including physics [6], biology [7], sociology [8,9], eco-
nomics [10–13], engineering [14] and other fields. Similar to the synchronization effect in
natural systems, various random variables in the financial market affect stock market volatility
and may trigger synchronous behavior in stock market volatility [15]. Meanwhile, under eco-
nomic globalization and financial integration, the transmission of local, regional, and inter-
national shocks is exacerbated. When a major event occurs, the financial market’s reaction
mechanism can lead to rapid risk contagion among stock markets, i.e., a risk-synchronous
behavior occurs [16,17]. Thus, the synchronized behavior of the financial system is worthy of
in-depth analysis.

However, unlike the synchronous system described by the Kuramoto model, as a complex
dynamic system, the financial system typically exhibits many complex dynamic behavioral
characteristics [18]. Researchers have developed many models of stock price dynamics in this
field in order to describe the dynamic behavior of stock market prices, such as the Geometric
Brownian Motion Model [19], the GARCH Model [20], the Heston Model [21], etc. Among
them, the Heston model, which consists of two coupled stochastic differential equations, well
describes the statistical characteristics of stock prices. Various improved Heston models have
also been widely used to simulate the dynamic process of stock prices and volatility in finan-
cial markets. For instance, the mean escape time in the improved Heston model based on the
monostable potential function [22], the stabilizing effect of financial market volatility in the
generalized Heston model [23], and the simulation of the dynamic behavior of the stock mar-
ket during the COVID-19 period [24], etc. This also makes it difficult to analyze the synchro-
nized behavior of the stock market using the Kuramoto method. Currently, for the analysis of
stock market synchronization, scholars also often use stock price synchronization indicators
based on decidable coefficients to portray the synchronization behavior in resonance effects.
For example, Roll proposed the concept of stock price synchronization [25], Morck proposed
a measure of stock return synchronization [10], and so on. The concept of volatility as a mea-
sure of risk in modern financial theory is widely accepted in finance [26]. Volatility has been
extensively studied and applied [27], in which many stock market price dynamics models
are constructed on the basis of volatility [19–21]. Moreover, with the gradual maturation of
stock forecasting research, the majority of previous scholars’ literature focuses on the predic-
tion studies of stock prices [28] and volatility [29,30]. However, while there are many factors
currently inducing risky outbreaks of stock market volatility, the main manifestation of the
risk is the synchronized behavior of amplified volatility. Therefore, this paper analyzes the
price volatility synchronization between stock markets and then proposes a model of volatil-
ity synchronization, which is particularly important to extend the theory of synchronization,
dynamics theory, and dynamic prediction of volatility synchronization in complex financial
markets.

Consequently, based on the foundation of previous research and an in-depth discussion
of stock market volatility synchronization, we plan to analyze the following issues: (i) How
can the dynamic volatility synchronicity of the stock market be measured? (ii) What is the
dynamic mechanism behind stock market volatility synchronization? (iii) How should one
dynamically predict stock market volatility synchronicity? To address these questions, this
paper attempts to make beneficial additions based on existing studies. Firstly, we introduce
realized volatility as a measure of dynamic volatility synchronization in stock markets by
integrating the concepts of stock price synchronization and stock return synchronization
indexes proposed by previous scholars; secondly, we simulate the synchronization problem of
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volatility among different stock markets by using the coupled Heston model; and lastly, Our
dynamic forecasting approach integrates machine learning techniques,showcasing the ability
of the Heston model in achieving high consistency in predictions. This research distinguishes
itself from previous studies in the following ways:

(i) A dynamic volatility synchronization method is proposed based on the concept of syn-
chronization in econophysics, leveraging high-frequency data to enhance the efficiency of
volatility estimation. Intraday fluctuations of high-frequency prices are less affected by mea-
surement errors than low-frequency observations and that high-frequency data are more
effective in estimating and predicting asset price volatility. Daily realized volatility (RV) is
defined as the sum of intraday squared returns [31,32], which is considered a more efficient
estimate of volatility than daily squared returns [33,34];

(ii) A coupled Heston model is proposed based on the Heston model, which reveals the
dynamical evolution mechanism of stock market volatility synchronization. Volatility mod-
els of the stock market are one of the common methods used to describe the fluctuations
in the stock market. The coupled Heston model we propose takes into account the fact that
the correlated synchronized behavior between stock markets primarily originates from
volatility, improving our understanding of the dynamic characteristics of complex financial
systems;

(iii) Combining machine learning methods and adopting the rolling time window tech-
nique [35,36], we carry out dynamic forecasting of the coupled Heston model and obtain pre-
dicted volatility synchronization sequence data from the predicted volatility series data. At
present, the literature studies of predecessors are mainly focused on price prediction models
such as ARCH model, GARCH model, Stochastic Volatility model, and their derived models,
but the Heston model exhibits the characteristic of high consistency between predicted data
and actual data.

The rest of the paper is structured as follows. Sect 2 describes the coupled Heston model,
volatility synchronization indicators, and the maximum likelihood method. Sect 3 focuses
on out-of-sample forecasting and methods for evaluating forecasting effectiveness. Sect 4
presents a data description, results of volatility synchronization measurement, in-sample fit-
ting results, and out-of-sample prediction results. Sect 5 is part of the analysis of the fluctua-
tion synchronization dynamics mechanism. A brief discussion is given in Sect 6.

2 Methodology
2.1 Coupled Heston volatility model
The Heston model and its extended models are commonly used to describe the dynamic evo-
lution characteristics of stock prices [21–24]. We extend the Heston model to describe the
dynamic processes between N stock indices. The model is given by the following coupled
stochastic differential equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxi(t) = –
vi(t)
2

dt +
√
vi(t)dZi

dvi(t) = 𝜅i(𝜃i – vi(t))dt + 𝛿i
√
vi(t)dYi

for i = 1, 2,… ,N (1)

Where xi(t) and vi(t) are the logarithmic price and realized volatility of the i -th stock
price index at time t, 𝜅i is the mean reversion rate of the stock price index’s volatility vi(t), 𝜃i
is the long-term mean of volatility vi(t), 𝛿i is the fluctuations of volatility, and dt is the time
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step. dZi and dYi are correlated Wiener processes with the following statistical properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨dZi⟩ = ⟨dYi⟩ = 0,
⟨dZi(t)dYi(t′)⟩ = 𝜌idt𝛿(t – t′),
⟨dZi(t)dZj(t′)⟩ = 0,
⟨dYi(t)dYj(t′)⟩ = 𝜌i,jdt𝛿(t – t′) for i ≠ j

for i, j = 1, 2,… ,N (2)

here, 𝜌i quantifies the correlation between the i-th stock market’s self-volatility and prices,
and 𝜌i,j considers the correlated synchronization behaviors between the i-th and j-th stock
markets stemming mainly from volatility.

2.2 Volatility synchronization indicator
Unlike correlation analysis, which only reveals the linear relationship between two variables,
synchronization accounts for nonlinear dynamic phenomena such as market resonance and
herd effects. Notably, Roll utilized the goodness-of-fit measure R2 in the regression model
to quantify the contribution of market factors to stock returns [25], and Morck transformed
the goodness-of-fit R2 accordingly to calculate the synchronicity of stock prices [10]. We will
continue to refer to Morck’s research methodology [10]. By introducing the realized volatility
estimated based on 5-minute high-frequency data and regressing the volatilities of two stock
market indices, we obtain the fitted coefficients R2, which are logarithmically deformed to
derive the volatility synchronization indicator:

SYNCHi,j = ln
⎛
⎝

R2
i,j

1 – R2
i,j

⎞
⎠

(3)

R2
i,j = (𝜌vi ,vj)2 (4)

vi and vj (i ≠ j) represent the realized volatilities of the two stock market indices. The correla-
tion coefficient Ri,j is a statistic that measures the strength of linear correlation between two
markets. The value of R2

i,j ranges from 0 to 1, and the closer it is to 1, the stronger the linear
correlation between the two variables. Also, the larger the value of SYNCHi,j, the stronger the
volatility synchronization between the two stock markets. According to previous studies, the
average test accuracies of the dynamic modeling methods using rolling time windows are all
significantly higher than those of the static models [35,36].

2.3 Double coupled Heston volatility model and its dynamic
synchronization
When considering only two markets or two stocks, based on the system of Eq (1), the
double-coupled system can be transformed into the following coupled stochastic differential
equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxi(t) = –
vi(t)
2

dt +
√
vi(t)dZi,

dvi(t) = 𝜅i(𝜃i – vi(t))dt + 𝛿i
√
vi(t)dYi

(5)
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Where xi(t) and vi(t) (i = 1, 2) are the logarithmic price and realized volatility of the
i-th stock price index at time t, 𝜅i is the mean reversion rate of the stock price index’s volatil-
ity vi(t), 𝜃i is the long-term mean of volatility vi(t), 𝛿i is the fluctuations of volatility, repre-
senting the magnitude of the rise and fall in volatility, and dt is the time step. dZi and dYi are
correlated Wiener processes with the following statistical properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨dZi⟩ = ⟨dYi⟩ = 0,
⟨dZ1(t)dY1(t′)⟩ = 𝜌1dt𝛿(t – t′),
⟨dZ2(t)dY2(t′)⟩ = 𝜌2dt𝛿(t – t′),
⟨dY1(t)dY2(t′)⟩ = 𝜌1,2dt𝛿(t – t′)

(6)

𝜌1 and 𝜌2 quantify the correlation between the two stock markets’ self-volatility and prices,
and 𝜌1,2 considers the correlated synchronization behaviors between the two stock markets
stemming mainly from volatility. These equations describe the coupling relationship between
stock prices and volatility. Changes in volatility affect changes in asset prices, and vice versa.

By introducing the realized volatility estimated based on 5-minute high-frequency data
and regressing the volatilities of two stock market indices, we obtain the fitted coefficients R2,
which are logarithmically deformed to derive the volatility synchronization indicator:

SYNCH = ln( R2

1 – R2 ) (7)

R2 = (𝜌v1 ,v2)2 (8)

v1 and v2 represent the realized volatilities of the two stock market indices. According to pre-
vious studies, the average test accuracies of the dynamic modeling methods using rolling
time windows are all significantly higher than those of the static models [35,36]. Therefore,
based on the above volatility synchronization indicator, we introduce the rolling time window
technique to establish a dynamic volatility synchronization indicator:

SYNCHt = ln( R2
t

1 – R2
t
) (9)

Rt denotes the coefficient of determination (R2) computed from the regression of realized
volatilities of stock indices within a rolling time window.

2.4 Parameter estimation method
There are many methods for estimating model parameters, such as the likelihood function
[37–39], Bayesian estimation [40,41], and so on. The maximum likelihood function estima-
tion method is one of the traditional and commonly used methods [37–39]. In this paper,
in order to discuss the problem of parameter estimation for the model, we first based on a
sample set:

⎧⎪⎪⎨⎪⎪⎩

xi = {xi,1, xi,2,⋯, xi,t,⋯, xi,N}
vi = {vi,1, vi,2,⋯, vi,t,⋯, vi,N}

(10)
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To discretize the stochastic model, the Eq (5) is differenced as follows, The parameters
involved in the formula have been defined and specifically introduced in Sect 2.3 above.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,t+1 = x1,t –
v1,t
2
Δt +√v1,t

√
ΔtZ1

v1,t+1 = v1,t + 𝜅1 (𝜃1 – v1,t)Δt + 𝛿1
√
v1,t
√
ΔtY1

x2,t+1 = x2,t –
v2,t
2
Δt +√v2,t

√
ΔtZ2

v2,t+1 = v2,t + 𝜅2 (𝜃2 – v2,t)Δt + 𝛿2
√
v2,t
√
ΔtY2

(11)

Then the likelihood function can be expressed as:

L (𝜙 ∣ X) =
N
∏
t=1

f𝜇,Σ(xt) =
N
∏
t=1

1
(2𝜋)2

1
|Σ| 1

2
e–

1
2 (xt–𝜇)

TΣ–1(xt–𝜇) (12)

The final set of unknown parameters can be denoted as 𝜙 = (𝜅1,𝜃1,𝛿1,𝜅2,𝜃2,𝛿2,𝜌1,𝜌2,𝛿1,2).
The values of these parameters are obtained by maximizing the log-likelihood function under
the conditions specified above. Where,

xt = [x1,t+1, v1,t+1, x2,t+1, v2,t+1]

𝜇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1,t – v1,t
2 Δt

v1,t + 𝜅1 (𝜃1 – v1,t)Δt
x2,t – v2,t

2 Δt
v2,t + 𝜅2 (𝜃2 – v2,t)Δt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Σt = ΣΔt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1,t 𝜌1𝛿1v1,t 0 0
𝜌1𝛿1v1,t 𝛿2

1v1,t 0 𝜌1,2𝛿1𝛿2
√v1,tv2,t

0 0 v2,t 𝜌2𝛿2v2,t
0 𝜌1,2𝛿1𝛿2

√v1,tv2,t 𝜌2𝛿2v2,t 𝛿2
2v2,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Δt.

The expression

max
𝜙

logL (𝜙 ∣ X)

signifies that our objective is to maximize the log-likelihood function in order to obtain the
optimal estimates for the parameter 𝜙. Meanwhile f𝜇,Σ(xt) denotes the probability density
function of a multivariate Gaussian distribution, Next, we can utilize this distribution for
parameter estimation.

logL (𝜙 ∣ X)∝ –
1
2

N
∑
t=1

∣ Σt ∣ Δt

–
1
2

N
∑
t=1
(xt – 𝜇)T Σ–1

t (xt – 𝜇)

∝ –
1
Δt

N
∑
t=1
[∣ Σ ∣ Δt2 + (xt – 𝜇)T Σ–1 (xt – 𝜇)]

(13)
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logL (𝜙 ∣ X)∝ 𝛿2
1𝛿2

2 (1 – 𝜌2
1 – 𝜌2

1,2 – 𝜌2
2 + 𝜌2

1𝜌2
2)Δt2

N
∑
t=1

⎡⎢⎢⎢⎢⎣
v21v

2
2

⎤⎥⎥⎥⎥⎦

+ 1
1 – 𝜌2

1 – 𝜌2
1,2 – 𝜌2

2 + 𝜌2
1𝜌2

2

×
N
∑
t=1

⎡⎢⎢⎢⎢⎣

1 – 𝜌2
1,2 – 𝜌2

2

v1
Δx2

1v,t+1

–
2𝜌1(1 – 𝜌2

2)
𝛿1v1

Δx1v,t+1 (Δv1,t+1 – 𝜅1(𝜃1 – v1,t)Δt)

–
2𝜌1𝜌1,2𝜌2√

v1v2
Δx1v,t+1Δx2v,t+1

+ 2𝜌1𝜌1,2

𝛿2
√
v1v2

Δx1v,t+1 (Δv2,t+1 – 𝜅2(𝜃2 – v2,t)Δt)

+ 1 – 𝜌2
1

𝛿2
1v1
(Δv1,t+1 – 𝜅1(𝜃1 – v1,t)Δt)2

–
2𝜌1,2

𝛿1
√
v1v2
(Δv1,t+1 – 𝜅1(𝜃1 – v1,t)Δt)Δx2v,t+1

+ 2
𝛿2
1
√
v1v2
(Δv1,t+1 – 𝜅1(𝜃1 – v1,t)Δt) (Δv2,t+1 – 𝜅2(𝜃2 – v2,t)Δt)

+ 1 – 𝜌2
1

𝛿1𝛿2v21
Δx2

2v,t+1

+ 2(1 – 𝜌2
1)

v2
Δx2v,t+1 (Δv2,t+1 – 𝜅2(𝜃2 – v2,t)Δt)

+ (1 – 𝜌2
1)

𝛿2
1v21v2

(Δv2,t+1 – 𝜅2(𝜃2 – v2,t)Δt)2
⎤⎥⎥⎥⎥⎦

(14)

The above two formulas respectively represent the general form of the log-likelihood
function under the multivariate Gaussian distribution and its specific expansion under
this model. The first formula provides the general expression of the log-likelihood, while
the second formula fully expands it based on the model parameters and variables, clarify-
ing the contribution of each parameter to the likelihood function. By maximizing this log-
likelihood function, the parameter 𝜙 can be effectively estimated. Estimated parameters (e.g.,
𝜅1,𝜃1,𝛿1,𝜅2,𝜃2,𝛿2,𝜌1,𝜌2,𝛿1,2) are inferred via maximum likelihood estimation unless other-
wise stated; observable quantities (e.g., xi(t) and vi(t)) are derived from market data. In addi-
tion, the parameters can also be obtained by calculating the minimum variance between the
model and actual data through simplex computation.

3 Forecasting methods
3.1 Rolling time window forecasting method
This paper further analyzes the rationality and predictive ability of the proposed model. For
comparison, we also discuss the ARCH model, the GARCH (1,1) model, and the SV model.
Based on the machine learning methods, out-of-sample daily volatility forecasting using
rolling time windows is conducted for the coupled Heston model proposed in this paper and
the three comparative models mentioned above. Subsequently, Constructing a volatility syn-
chronization index based on dual-market volatility prediction sequences. We apply a standard
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machine learning framework in which data are divided into training and prediction (or test)
samples, and the model is trained to forecast volatility synchronization. Our data ranges from
January 2, 2003, to December 29, 2023, with 5100 realized volatility series data.

By dividing the data samples (t = 1, 2,..., N = 5100) into two parts, the estimation sample
and the prediction sample[36,42–44].The estimation sample contains data for H= 1000 trad-
ing days and the prediction sample includes data for M= 4100 trading days after the estima-
tion sample (i.e., t =H+ 1, H+ 2, ..., H +M). The forecast horizon is one-day-ahead. The pre-
diction method is constructed as follows:This study adopts the rolling window dynamic pre-
diction method for volatility prediction, with its core logic being updating samples through
“fixed window + periodic sliding” to generate predictions. Specifically, the method takes as
input a time-series data matrix X (e.g., daily stock returns of enterprises), an initial window
size H= 1000, and total forecast days M, and outputs a predicted volatility sequence S′ with
length M; in operation, it first initializes an empty vector S′ to store results, then conducts
M rounds of cyclic prediction. This method features no data leakage (only using historical
data before the forecast date), dynamic adaptability (sliding window incorporating the latest
information), and stability with flexibility.

3.2 Forecast evaluation
With the predicted series of volatility synchronization values S

′
m for the coupled Heston

model proposed in this paper, along with the three comparative models described above, we
can assess the deviation of these forecast values from the standard of real market volatility
estimation, denoted as Sm (where Sm represents the RV data) [45,46]. Currently, academics
are not clear on which loss function is the most reasonable standard for measuring predictive
deviation [36,42–44]. Therefore, Hansen and Lunde suggest that as many different forms of
loss functions as possible can be used as criteria for judging the accuracy of forecasting mod-
els [47]. Based on this, this paper adopts five widely used statistical loss functions to evaluate
the prediction accuracy of various types of volatility models separately.

The five loss functions are labeled as Lossi (i = 1, 2,..., 5), among which Loss1 and Loss2
are respectively called the Mean Squared Error (MSE) and the Mean Absolute Error (MAE),
which are the two most commonly used forms of loss functions in such judgment. Loss3,
Loss4, and Loss5 are specifically the Mean Absolute Percentage Error (MAPE), Mean Squared
Percentage Error (MSPE), and Root Mean Squared Error (RMSE). The specific definitions of
each type of loss function are as follows [36,48]:

Loss1 ∶ MAE=M–1
H+M
∑
H+1

|Sm – S′m|,

Loss2 ∶ MSE=M–1
H+M
∑
H+1
(Sm – S′m)2,

Loss3 ∶ MAPE=M–1
H+M
∑
H+1

|
Sm – S′m
Sm

|,

Loss4 ∶ MSPE=M–1
H+M
∑
H+1
[Sm – S′m

Sm
]2,

Loss5 ∶ RMSE=

¿
ÁÁÀM–1

H+M
∑
H+1
(Sm – S′m)2,

PLOS One https://doi.org/10.1371/journal.pone.0334853 October 31, 2025 8/ 22

https://doi.org/10.1371/journal.pone.0334853


ID: pone.0334853 — 2025/10/28 — page 9 — #9

PLOS One Dynamic forecasting and mechanisms of volatility synchronization

Where M is the length of the forecast set. However, relying simply on some loss functions
as the evaluation criteria for comparing the prediction accuracy of the models, may lead to
conclusions that are not robust. Therefore, it is necessary to further enhance the reliability of
the results through some statistical tests. Hansen and Lunde proposed a so-called “Superior
Predictive Ability (SPA) test” [47], which employs a bootstrap method for simulation [42,44].
The SPA test has superior model discrimination capability than the similarity Reality Check
(RC) test proposed by White [49], and the conclusions drawn from the SPA test are more
robust. In other words, compared with other tests based on a single sample, the test conclu-
sions obtained from the SPA test are more reliable, and its findings can be generalized to other
similar data samples [50,51].

4 Empirical comparison
4.1 Data
The overall volatility risk of a stock market is typically reflected by the volatility of that stock
market index. In this paper, the daily realized volatility (RV) series data calculated from 5-
minute high-frequency data of two stock market indices, the Shanghai Securities Compos-
ite Index (SSEC) and the Shenzhen Securities Component Index (SZI), are proposed to be
selected as the research samples. Moreover, the daily closing price and daily realized volatil-
ity data samples of these two stock market indices are sourced from the CSMAR database,
covering the period from January 2, 2003, to December 29, 2023, resulting in a total of 5,100
trading days of data. In this case, the calculation method for the daily Realized Volatility in
the CSMAR database refers to the literature of Wei, Li, and Chen, which defines it as the sum
of the squared logarithmic returns of every 5-minute trading data [45,46].

The descriptive statistics of the log prices, log returns, and realized volatilities of the SSEC
and the SZI are given in Table 1. From Table 1, it can be observed that the realized volatility
series of the market indices exhibit characteristics of sharp peaks and thick tails, which indi-
cates that the volatility of both indices is quite drastic and far beyond the range assumed by
the normal distribution (the Jarque-Bera statistic is significant in both cases). Meanwhile, the
logarithmic price xi, logarithmic return ri, and realized volatility vi series data demonstrate
very significant autocorrelation characteristics over a very long time horizon, suggesting per-
sistent volatility with long-memory characteristics. Further, the ADF unit root test shows that
the original hypothesis of the existence of unit root is significantly rejected for each series.
Therefore, it can be considered that the individual series are smooth and thus can be further
analyzed and modeled.

4.2 Analysis of volatility synchronization
To illustrate the volatility synchronization model of the stock market, this paper calculates
the volatility synchronization values between the SSEC and the SZI over the full sample
period (Sect 4.1), using Eqs (7) and (8). The actual synchronization value is found to be
SYNCH = 2.1223.

Additionally, to explore the volatility synchronization across stock markets at multiple
scales, we conduct dynamic volatility synchronization simulations for the SSEC and the SZI at
four scales (60, 252, 500, and 1,000 days) using the estimated parameters of the coupled Hes-
ton model. Fig 1 presents the results, showing significant synchronization between the two
markets across all scales—with the highest synchronization observed at the 60-day (short-
term) scale.
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Table 1. Descriptive statistics of log prices (xi), log returns (ri), and realized volatility (vi) of stock market
indices.

SSEC SZI
x1 r1 v1 x2 r2 v2

Mean 3.4078 6.68e–05 0.0155 3.9351 0.0001 0.0205
Median 3.4587 0.0002 0.0074 4.0062 0.0002 0.0115
Max 3.7848 0.0392 0.4266 4.2907 0.0398 0.6045
Min 3.0050 –0.0402 1.16e–05 3.4186 –0.0423 3.40e–07
St.Dev. 0.1529 0.0065 0.0263 0.2145 0.0075 0.0316
Skewness –0.6776 –0.5269 6.2552 –1.0834 –0.4610 6.3313
Kurtosis –0.0446 5.0840 60.8180 0.0400 3.3775 65.416
J–B 390.43∗∗∗ 5715.14∗∗∗ 817670.0∗∗∗ 997.37∗∗∗ 2598.17∗∗∗ 941585.6∗∗∗

Q(5) 25329.74∗∗∗ 19.58∗∗∗ 8482.34∗∗∗ 25344.32∗∗∗ 21.21∗∗∗ 7186.45∗∗∗

Q(10) 50357.15∗∗∗ 39.88∗∗∗ 12686.98∗∗∗ 50410.23∗∗∗ 34.59∗∗∗ 10398.25∗∗∗

Q(20) 99488.01∗∗∗ 70.07∗∗∗ 20475.31∗∗∗ 99695.26∗∗∗ 50.58∗∗∗ 16651.95∗∗∗

ADF –2.0874 –16.826∗∗∗ –6.7862∗∗∗ –2.2923 –25.972∗∗∗ –6.5636∗∗∗

Note: The symbols ∗, ∗∗, and ∗∗∗ represent significant at the 10%, 5%, and 1% levels, respectively, and Q(n) is the
Ljung-Box Q statistic of lag order n.

https://doi.org/10.1371/journal.pone.0334853.t001

4.3 Comparison of in-sample fitting results
This paper selects the index price and volatility real data of the SSEC and the SZI to esti-
mate the parameters of the model. We set the objective function to be the sum of the aver-
age mean squared errors between the coupled Heston model estimation sequence and the
actual sequence. Then, we assign initial values to the parameters 𝜙 of the coupled Heston
model. Subsequently, we iteratively use the Nelder-Mead method, a numerical optimiza-
tion algorithm, to adjust the model parameters in order to minimize the value of the objec-
tive function. Finally, we identify the set of parameters 𝜙 that minimizes the objective func-
tion. Through the above steps, the estimated values of the parameters for the equation are
obtained as follows: 𝜅1 = 0.9908, 𝜃1 = 0.0098, 𝜎1 = 0.0972, 𝜌1 = –0.1037, 𝜅2 = 1.0222, 𝜃2 = 0.0101,
𝜎2 = 0.0994, 𝜌2 = – 0.1037, 𝜌1,2 = – 0.1037.

Then, we combined the serial data of parameter value estimation and the real data to cal-
culate the probability density functions of prices and realized volatilities, as shown in Figs 2
and 3. The comparison between the real data (squares) and the model results (solid lines) for
the SSEC and the SZI is presented in the figures. Fig 2a and 2b show the probability density
functions of the index price and realized volatility for the SSEC, while Fig 3c and 3d repre-
sent those for the SZI, respectively. It is evident that the probability density functions of index
prices and realized volatilities simulated by the coupled Heston model are in good agreement
with the actual data results, indicating a good fit for the simulation outcomes. Meanwhile,
based on the realized volatility series data obtained from the simulation, the simulated result
volatility synchronization value is obtained as SYNCHmodel = 2.1063, and the real synchroniza-
tion value is SYNCHdata = 2.1223, which is a result that further demonstrates the reliability of
the model.

4.4 Comparison of out-sample dynamic predictions
Fig 4a shows the dynamic volatility synchronization prediction results of the coupled Hes-
ton stock price dynamics model mentioned in the paper for the prediction sample interval
t = 501, 502,..., 5100 (represented by the solid line), while the dynamic volatility synchroniza-
tion results computed based on the real data are represented by the red dashed line. Similarly,
Fig 4b shows the dynamic volatility synchronization prediction results of the stock market
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Fig 1. The dynamic volatility synchronization of the SSEC and the SZI at multiple scales (60, 252, 500, and 1000 days).

https://doi.org/10.1371/journal.pone.0334853.g001

for the predicted sample interval t = 1001, 1002,..., 5100. As can be seen from the comparison
of the figures, the prediction results of the proposed model in this paper align well with the
actual results under different prediction sample intervals.

To explore the out-of-sample volatility synchronization predictive performance of the
models proposed in this paper, we conducted a comparison of their out-of-sample predic-
tion capabilities. Table 2 gives the results of the volatility synchronization value prediction
test of various volatility models under five loss functions, where the definitions of the five loss
functions Lossi are shown in Sect 3.2. The results from the table show that:

(i) The coupled Heston model attains the lowest loss across the evaluated loss functions
and ranks first. This indicates that the model better predicts the dynamic volatility synchro-
nization of the stock market, demonstrating superior synchronization value forecasting per-
formance than other models.

(ii) As far as the comparison with other ARCH, GARCH, and SV models is concerned,
the GARCH model is ranked second in terms of the loss functions MSE, MAPE, MSPE, and
RMSE and has relatively good predictive performance, whereas the SV model achieves the
lowest prediction accuracies across all loss functions.
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Fig 2. (a) and (b) are the probability density functions of the SSEC price and realized volatility. The squares denoting the real data and the solid lines indicating the
model results. The parameter fitting results are: 𝜅1 = 0.9908, 𝜃1 = 0.0098, 𝜎1 = 0.0972, 𝜌1 = – 0.1037, 𝜅2 = 1.0222, 𝜃2 = 0.0101, 𝜎2 = 0.0994, 𝜌2 = – 0.1037, 𝜌1,2 = – 0.1037.

https://doi.org/10.1371/journal.pone.0334853.g002

Fig 3. (c) and (d) are the probability density functions of the SZI price and realized volatility. The squares denoting the real data and the solid lines indicating the
model results. The parameter values are consistent with those in Fig 2.

https://doi.org/10.1371/journal.pone.0334853.g003

However, further SPA testing of this prediction is necessary to obtain more robust and
broadly applicable conclusions. The SPA test is a statistical method for comparing the pre-
dictive performance of multiple models, which evaluates whether a base model significantly
outperforms a set of alternative models under a specified loss function.

Table 3 shows the SPA test results obtained after 10,000 bootstrap simulation processes.
Column 1 of Table 3 represents the five loss functions Lossi, while column 2 lists the name of
the model selected as the base model (Mi(i= 0, ..., 3) respectively denote the coupled Heston
model, ARCH model, GARCH model, and SV model).The numbers in the table represent the
p-values of the SPA test. Specifically, under a certain loss function Lossi judgment criterion,
if the SPA test p-value of the base model is larger (closer to 1) relative to the other models, it
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Fig 4. The out-of-sample rolling forecasting results of the coupled Heston model with different estimation sample intervals (H= 500 and 1000).

https://doi.org/10.1371/journal.pone.0334853.g004

Table 2. The loss function values for the synchronization prediction of various models.
Coupled Heston
model

ARCHmodel GARCHmodel SV model

MAE 0.03483 0.37348 0.39226 1.57248
MSE 0.00174 0.24628 0.19209 3.64023
MAPE 0.03923 0.44766 0.44485 1.76765
MSPE 0.00212 0.38916 0.24352 4.66848
RMSE 0.04170 0.49627 0.43828 1.90794

https://doi.org/10.1371/journal.pone.0334853.t002

indicates that the base model is the best-performing forecast model. Conversely, if the p-value
is smaller, it suggests that the base model exhibits inferior predictive performance relative to
the comparison models. The results from the table show that:

(i) Using the SSEC and the SZI (representing two major stock markets in China) as exam-
ples, the SPA test results for the five loss functions all indicate that when the coupled Heston
model proposed in this paper is used as the base model, the SPA test p-value is approximately
equal to 1 relative to the other models. This suggests that the coupled Heston model, which
considers that the correlated synchronization behavior between stock markets primarily orig-
inates from volatility, can better predict the dynamic volatility synchronization among the
stock markets.

(ii) The SV model is the worst-performing forecasting model under almost all loss function
criteria. Overall, the four models’ ability to predict dynamic volatility synchronization across
stock markets ranks in the following order (from best to worst): the coupled Heston model
outperforms the GARCH model, the GARCH model outperforms the ARCH model, and the
ARCH model outperforms the SV model.

(iii) The conclusions drawn from the SPA test results in Table 3 are generally consistent
with those obtained in Table 2, and thus these conclusions have considerable universality for
the prediction of volatility synchronization among stock markets.
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Table 3. The SPA test values for predicting volatility synchronization for various models.
Comparative model

Loss Basic model M0 M1 M2 M3
MAE M0 0 1.0000 1.0000 1.0000

M1 0.5038 0 0.4989 1.0000
M2 0.5030 1.0000 0 1.0000
M3 0.5036 0.4990 0.5025 0

MSE M0 0 1.0000 1.0000 1.0000
M1 0.5041 0 0.4914 1.0000
M2 0.4985 1.0000 0 1.0000
M3 0.5028 0.4990 0.5033 0

MAPE M0 0 1.0000 1.0000 1.0000
M1 0.5018 0 0.5006 1.0000
M2 0.5050 1.0000 0 1.0000
M3 0.5035 0.5048 0.5036 0

MSPE M0 0 1.0000 1.0000 1.0000
M1 0.5004 0 0.5021 1.0000
M2 0.5005 1.0000 0 1.0000
M3 0.5087 0.4977 0.5093 0

RMSE M0 0 1.0000 1.0000 1.0000
M1 0.5068 0 0.4952 1.0000
M2 0.5031 1.0000 0 1.0000
M3 0.5042 0.5067 0.5045 0

https://doi.org/10.1371/journal.pone.0334853.t003

5 The dynamical mechanisms of synchronization
5.1 Synchronous correlation mechanism
In the previous sections, we conducted in-sample and out-of-sample empirical comparative
analyses of the proposed method’s dynamic forecasting performance, using the Shanghai
Composite Index and Shenzhen Component Index as examples, based on the coupled Hes-
ton model and its dynamic synchronization framework. The results demonstrate that the in-
sample estimation of the proposed model aligns closely with market behavior and exhibits
superior predictive performance, thereby addressing the research question of how to dynam-
ically measure and forecast cross-market volatility synchronization. To explore the dynami-
cal mechanisms underlying volatility synchronization, this paper will further investigate the
dynamical mechanisms of volatility synchronization across markets by combining dynamic
simulations and multivariate empirical mechanism analysis.

Upon scrutiny of the current model, it becomes evident that each synchronization met-
ric derived from real data is intricately linked to a distinct set of estimated parameters within
the framework of our proposed coupled model. The determination of each synchronization
metric is contingent upon a spectrum of estimated parameters, including but not limited to
𝜌1, 𝜌2, and 𝜌1,2. This realization paves the way for a detailed comparative analysis between the
synchronization metrics and the respective parameters of the coupled model.

Our investigation will focus on identifying any discernible patterns that may exist between
the oscillations in synchronization metrics and the alterations in these parameters. The ulti-
mate goal is to unravel the dynamical mechanisms at play, providing a deeper understanding
of the system’s behavior. Of particular interest is the pronounced connection between the syn-
chronization metrics and the parameter 𝜌1,2, as demonstrated by the following Eq (15). This
relationship will be the focus of our examination, as we seek to elucidate the patterns of their
fluctuations and impact on the dynamic mechanisms, thereby guiding our understanding of
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the synchronization process.

SYNCHmodel
t = ln( R2

t
1–R2

t
) (15)

In this study, our analysis is based on comprehensive datasets comprising 4,101 synchro-
nization metrics, as previously obtained, along with their corresponding optimal parameter
set: 𝜅1, 𝜃1, 𝜎1, 𝜌1, 𝜅2, 𝜃2, 𝜎2, 𝜌2, and 𝜌1,2. A rolling window with an average span of 1,000 data
points has been employed to smooth out short-term fluctuations and highlight longer-term
trends. To ensure the date’s authenticity and reliability for our analysis, stringent filtering and
normalization processes have been applied.

Through comparative analysis, we have identified a notable correlation between the syn-
chronization metrics and the parameter 𝜌1,2. As illustrated in Fig 5, there is a striking sim-
ilarity in the frequency characteristics between the synchronization metrics and the 𝜌1,2 as
proposed by our model. This is particularly evident in the synchronicity of peak occurrences,
suggesting a dynamic interplay that warrants further investigation. Our findings underscore
the significance of 𝜌1,2 in understanding the underlying mechanisms that drive synchroniza-
tion within the system.

The synchronicity in the occurrence of peaks within two sets of data may indicate an
underlying shared dynamical mechanism or interplay between them. Such synchronization
holds substantial significance within dynamical systems, as it may unveil the intrinsic cou-
pling behaviors within the system. This suggests an interdependent, mutually influential,
and regulatory relationship between the synchronization metrics and the parameter 𝜌1,2.

Fig 5. Comparison of synchronization metrics with 𝝆1,2 frequencies.

https://doi.org/10.1371/journal.pone.0334853.g005
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By delving into these studies, we can achieve a more profound comprehension of the inter-
nal generative mechanisms of synchronization metrics and how they respond to changes in
external conditions. This understanding allows us to anticipate how synchronization metrics
will evolve over time and adapt to various stimuli, providing a foundation for more effective
management and decision-making in complex dynamic environments.

5.2 Multivariate analysis of synchronous dynamics mechanism
Table 4 provides descriptive statistical data for ten variables, including the mean, standard
deviation (SD), first quartile (p25), median (p50, which is also the second quartile), and third
quartile (p75). Based on this table, the following conclusions can be drawn: The data in the
second row, namely the volatility synchronization metric, has a median (p50) of 0.906, which
is close to the mean of 0.903, indicating that the volatility synchronization metric is gener-
ally high and the distribution is relatively symmetrical. Additionally, the first quartile (p25)
and the third quartile (p75) are 0.860 and 0.957, respectively, showing the range of the mid-
dle of the synchronization metric data. The synchronization metric exhibits a certain standard
deviation, suggesting that synchronization varies under different parameter conditions.

The data from rows 3 to 11 represent the main parameters of the coupling model, and
the majority of them are very stable with minimal standard deviation, implying that these
parameters exhibit consistent behavior within the studied system. The distribution of all data
is close to a normal distribution, as the median is near the mean, and the interquartile range
is relatively narrow. These parameters are used to describe the dynamical model, where the
𝜅 and 𝜎 parameters may be related to the system’s response characteristics. The stability of
the 𝜃 parameters may indicate that their role in the model is fixed or unaffected by external
conditions, while the 𝜌 parameters may be associated with the strength of synchronization.

Based on the information mentioned above, we conducted a baseline regression analysis
between the parameters in the coupling model and the synchronization metrics to further
understand the impact of these model parameters on synchronization. The results are shown
in Table 5, from which we can observe the following: 𝜅1 and 𝜅2 represent the mean rever-
sion speeds of the volatility of stock price indices for two different stock markets. Their coef-
ficients are –0.413 and –0.438, respectively, and are significant at the 0.05 significance level.
This indicates that when the mean reversion speed of the volatility of the stock price indices
in the stock markets increases, the synchronization between the two markets decreases. 𝜃1

and 𝜃2 indicate the long-term mean volatility of stock price indices for the two stock markets.
The coefficient for 𝜃1 is –36.106, significant at the 0.1 significance level, while the coefficient

Table 4. Descriptive statistics of the main variables.
Variable Mean SD p25 p50 p75
SYNCH 0.903 0.125 0.860 0.906 0.957
𝜅1 1.005 0.014 1.000 1.003 1.011
𝜃1 0.010 0.000 0.010 0.010 0.010
𝜎1 0.100 0.001 0.100 0.100 0.101
𝜌1 –0.100 0.001 –0.101 –0.100 –0.100
𝜅2 1.005 0.014 1.000 1.002 1.011
𝜃2 0.010 0.000 0.010 0.010 0.010
𝜎2 0.100 0.001 0.100 0.100 0.101
𝜌2 –0.100 0.001 –0.101 –0.100 –0.100
𝜌1,2 –0.101 0.001 –0.101 –0.100 –0.100

https://doi.org/10.1371/journal.pone.0334853.t004
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Table 5. Baseline regression results of the synchronization metric with the model parameters.
𝜅1 –0.413∗∗ (–2.22)
𝜃1 –36.106∗ (–1.95)
𝜎1 –3.327∗ (–1.78)
𝜌1 3.071∗ (1.66)
𝜅2 –0.438∗∗ (–2.34)
𝜃2 –11.265 (–0.61)
𝜎2 –3.096 (–1.63)
𝜌2 3.171∗ (1.72)
𝜌1,2 3.167∗ (1.74)
Constant 3.825∗∗∗ (3.01)
Note: The symbols ∗, ∗∗, and ∗∗∗ represent significant at the 10%, 5%, and 1% levels, and the data in the parentheses
are t-value.

https://doi.org/10.1371/journal.pone.0334853.t005

for 𝜃2 is –11.265, which is not significant. This may imply that 𝜃1 has a negative impact on
synchronization, but the effect of 𝜃2 is not significant.
𝜎1 and 𝜎2 denote the fluctuations in volatility of two stock markets. The coefficient for

𝜎1 is -3.327, significant at the 0.1 significance level, while the coefficient for 𝜎2 is –3.096,
which is not significant. This suggests that 𝜎1 has a negative effect on synchronization, but
the impact of 𝜎2 is not significant. 𝜌1 and 𝜌2 reflect the correlation between the volatility and
prices within each of the two stock markets. Their coefficients are 3.071 and 3.171, respec-
tively, and are also significant at the 0.1 significance level. This indicates that when the corre-
lation between volatility and prices within the stock markets is stronger, synchronization also
increases. 𝜌1,2 manifests the primary source of the correlated synchronous behavior between
the two stock markets. Its coefficient is 3.167, significant at the 0.1 significance level. This sug-
gests that the correlated synchronous behavior between the two stock markets has a positive
effect on synchronization.

5.3 Identification of significant extreme events based on volatility
synchronization
To further identify and detect significant risk events through extreme volatility synchroniza-
tion, Fig 6 presents the identification chart of significant risk events in volatility synchro-
nization on a 60-day scale. We can observe that after major risk events such as the “money
crunch” in 2013, the stock market crash in 2015, the Trump administration’s announcement
of continued tariff hikes on China in 2019, and the “COVID-19” pandemic in 2020, the peaks
of dynamic volatility synchronization between the two stock markets, namely the Shanghai
Composite Index and the Shenzhen Component Index, have identified these significant risk
events.

Meanwhile, the measured volatility synchronization values when these identified signifi-
cant risk events occurred are all above the sum of the mean and the standard deviation. This
indicates that the two markets experienced high-intensity volatility synchronization simul-
taneously, revealing the linkage effect of volatility synchronization triggered by risk synchro-
nization, where the risk occurring in one market spreads to the other market.

In addition, after the implementation of the QDII (Qualified Domestic Institutional
Investor) system in 2007, it can be found that the volatility synchronization between the two
markets has significantly increased. This conclusion is consistent with the statement that mea-
sures such as the liberalization of QFII (Qualified Foreign Institutional Investors) and QDII
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Fig 6. Volatility synchronization significant risk event identification chart. The reference lines for the gray area are the
mean ± 1 standard deviation.

https://doi.org/10.1371/journal.pone.0334853.g006

quotas have increased the connectivity between China and international capital markets and
enhanced the linkage of fluctuations in China’s stock market.

Therefore, the dynamic volatility synchronization index constructed based on the realized
volatility in this paper can effectively measure the volatility synchronization between stock
markets, and significant risk events can be further identified through the peaks of volatility
synchronization.

6 Conclusions
Synchronization phenomena, prevalent in natural systems, also play a crucial role in com-
plex financial systems, particularly as a contagion mechanism for systemic financial risks and
crises. This study aimed to address the dynamic synchronization of stock market volatility
by proposing a coupled stochastic volatility model and a volatility synchronization analysis
framework. We integrated machine learning concepts and rolling cycle windows to predict
dynamic synchronization, focusing on the Shanghai Composite Index (SSEC) and Shenzhen
Component Index (SZI) as case studies.

Therefore, this paper constructs a volatility synchronization index for portraying the risk
synchronization between markets to portray the risk synchronization between markets by
introducing realized volatility and proposes a coupled Heston model that considers the pri-
mary sources of volatility between stock markets based on previous studies. In addition, the
integration of machine learning techniques with the proposed model set employs evolution-
ary mechanisms to dynamically predict stock market volatility synchronization using a rolling
time window approach, and the dynamic predictive performance of the model proposed
in this paper is discussed. Finally, the dynamics of volatility synchronization between mar-
kets are explored through a combination of dynamic simulation and multivariate empirical
mechanism analysis. The results show that:
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(i) The obvious high volatility synchronization between the SSEC Index and the SZI Index
indicates that the two stock markets exhibit strong interconnectedness in their fluctuations,
with a higher likelihood of risk synchronization occurring during significant unexpected
events. (ii) The in-sample estimation results show that the estimated data are in good agree-
ment with the real data, and the simulation results fit well, suggesting that the coupled Hes-
ton model proposed in this paper can effectively capture the dynamic mechanism of volatility
synchronization between stock markets. (iii) The out-of-sample dynamic forecasting results
highlight the superior forecasting ability of the coupled Heston model based on realized
volatility over the ARCH, GARCH, and SV models based on daily return data under the mul-
tiple loss function criterion examined. (iv) Using the SPA test method proposed by Hansen
and Lunde for determining the strengths and weaknesses of models, it is further confirmed
that the coupled Heston model remains the most accurate model for forecasting volatility syn-
chronization, followed by the GARCH model. (v) The proposed method can effectively iden-
tify significant financial market risk events through synchronization detection. This paper
introduces the concept of synchronization in econophysics and provides a new research per-
spective for exploring the interconnections and risk contagion between stock markets from
the viewpoint of stock market volatility synchronization. Simultaneously, the dynamic volatil-
ity synchronization measurement and forecasting analysis methods we have constructed help
investors formulate and effectively adjust cross-market asset portfolio strategies, as well as
provide more diverse research perspectives for financial regulators to prevent, manage, and
regulate stock market volatility risks.
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