

RESEARCH ARTICLE

Effects of different physical therapy training protocols on patients with idiopathic scoliosis: Short-term results

Haohan Lu¹ , Min Li¹, Naizhen Wang², Guobiao Ye², Feilong Zhu³, Mingling Guo¹, Cheng Zeng¹*

1 Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian, China,

2 Department of Rehabilitation, Fuzhou Second General Hospital, Fujian, China, **3** College of Physical Education and Sports, Beijing Normal University, Beijing, China

* zc840225584@163.com

Abstract

Background

Idiopathic scoliosis (IS), a three-dimensional spinal deformity common in adolescents, can be treated with numerous approaches, including Schroth, Spiral stabilization (SPS), and core exercises, to improve spinal alignment and health. However, few studies have shown the superiority of one treatment over another.

Objective

This retrospective cohort study was designed to evaluate the efficacy of three distinct physical therapy protocols in managing IS among adolescents aged 6–18 years with Cobb angles $\leq 40^\circ$.

Methods

A total of 61 patients were allocated to one of three therapeutic groups. Each group received interventions twice weekly for 10 sessions. Primary outcomes were assessed by measuring changes in the Cobb angle, whereas secondary outcomes included evaluations of pain (visual analog scale, VAS), the angle of trunk rotation (ATR), trunk aesthetic clinical evaluation (TRACE), radiographic parameters (Alignment of the C7 plumbline (C7PL), clavicle angle, and pelvic obliquity), and quality of life (the Scoliosis Research Society-22 questionnaire, SRS-22).

Results

The findings revealed significant within-group improvements in the Cobb angle, pain, and trunk rotation for all interventions ($p < 0.05$). Notably, between-group comparisons indicated that both the Schroth and SPS modalities resulted in greater reductions

OPEN ACCESS

Citation: Lu H, Li M, Wang N, Ye G, Zhu F, Guo M, et al. (2025) Effects of different physical therapy training protocols on patients with idiopathic scoliosis: Short-term results. PLoS One 20(10): e0334713. <https://doi.org/10.1371/journal.pone.0334713>

Editor: KOICHIRO ONO, Nippon Medical School, JAPAN

Received: March 4, 2025

Accepted: October 1, 2025

Published: October 17, 2025

Copyright: © 2025 Lu et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data availability statement: All relevant data are within the manuscript and its [Supporting information](#) files. All scolio data files are available from the figshare database (DOI:10.6084/m9.figshare.28424249). https://figshare.com/articles/dataset/scolio_data_xlsx/28424249?file=52381676.

Funding: This research was funded by Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

Competing interests: The authors have declared that no competing interests exist.

in the Cobb angle and trunk rotation than core stabilization exercises did ($p < 0.05$). Moreover, SPS resulted in superior enhancements in the clavicle angle and dynamic postural control, whereas Schroth yielded significant improvements in C7PL alignment.

Conclusion

This short-term study underscores the relative effectiveness of the Schroth and SPS interventions in managing three-dimensional spinal deformities and enhancing dynamic postural control while recognizing the limitations of core stabilization exercises for scoliosis.

Clinical trial registration

This retrospective analysis of a clinical trial has been registered in the Chinese Clinical Trial Registry (ChiCTR2500096077) <https://www.google.com/search?client=firefox-b-d&q=ChiCTR2500096077>.

1. Introduction

Idiopathic scoliosis (IS) is a prevalent three-dimensional structural deformity of the spine characterized by an abnormal curvature coupled with torsional distortion [1–3]. Its definition varies among studies, but IS generally refers to a Cobb angle that exceeds 10° [4,5] excluding other identifiable causes, such as congenital or neuromuscular disorders [6,7]. Pathologically, IS is frequently perceived as a consequence of imbalances in the growth and development of the spinal structure and its associated musculature [8,9]. The term “idiopathic” highlights the unclear etiology of this condition, although multiple hypotheses, ranging from genetic predisposition to biomechanical imbalances, have been proposed.

IS predominantly affects adolescents during growth spurts. Adolescent idiopathic scoliosis (AIS) is the most prevalent subtype and accounts for more than 90% of all cases of spinal scoliosis [10]. In addition to being a three-dimensional deformity, IS significantly impacts patients’ quality of life (QoL) and psychological well-being [11–13]. QoL serves as a key metric for evaluating treatment outcomes for IS and is influenced by factors such as the severity of scoliosis, treatment modalities, and the adaptability of individual patients [14,15].

Epidemiologically, the global prevalence of IS is approximately 2–3%, with AIS comprising the majority of cases [16]. AIS typically emerges between the ages of 10 and 18 and exhibits a notable gender disparity: girls not only have a greater incidence but also tend to experience greater curve severity than males do [17,18]. These physical changes, particularly in female patients, often result in heightened psychological distress due to alterations in body image [12, 19]. Consequently, proactive interventions are essential to halt or correct the progression of IS.

Several systematic reviews and meta-analyses have evaluated the effectiveness of exercise-based interventions in managing AIS, particularly in controlling curve progression [20–22]. Among these, the Schroth method, spiral stabilization (SPS), and core stabilization exercises have emerged as prominent noninvasive options aimed at alleviating symptoms and potentially correcting spinal curvature [23]. The Schroth method, developed by Katharina Schroth, emphasizes specific exercises tailored to the individual's curve as well as awareness of posture and breathing techniques that may contribute to improved spinal alignment [24]. This method has shown promise in slowing the advancement of spinal curvature and enhancing the overall quality of life for adolescents diagnosed with IS [25]. In contrast, the SPS approach involves exercises that focus on the dynamic stabilization of the spine and target core muscle engagement to promote balance and strength in the musculature surrounding the spine [26–28]. SPS is predicated on the notion that improved core stability can lead to better postural control and potentially mitigate the effects of scoliosis [23,28]. Core stabilization exercises have been widely implemented as a fundamental aspect of rehabilitation programs for various musculoskeletal conditions, including scoliosis [29,30]. These exercises aim to enhance the function and endurance of the core muscles, thereby supporting the spine and improving overall physical performance [31,32].

The 2016 guidelines of the International Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) [33] recommend the following:

Mild curve (Cobb angle 10°–20°): Physiotherapeutic scoliosis-specific exercises (PSSEs) are recommended as the main therapeutic strategy for managing scoliosis.

Moderate curve (Cobb angle of 20°–40°): Bracing is widely recognized as the most effective non-surgical intervention for preventing curve progression, while PSSE are recommended as a valuable adjunct to support brace efficacy and improve patient adherence.

Severe curve (Cobb angle $\geq 40^\circ$): Surgical consultation may be needed.

In most cases, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle $\geq 40^\circ$ are advised to undergo surgical treatment to prevent further curve progression and improve quality of life. However, recent studies suggest that for patients who refuse surgery, bracing may serve as an effective alternative. A recent systematic review and meta-analysis [34] found that bracing can significantly control the progression of scoliosis even in patients with curves exceeding 40°. These findings offer new insights for clinical decision-making, particularly in cases where patients decline surgical intervention.

Different exercise therapy plans are recommended for PSSE in different countries and regions [33,35]. For example, Schroth therapy was developed in Germany and is widely used there [24]. For mild to moderate curves, particularly in growing patients, targeted physical therapy has shown promise. Compared with patients in general exercise programs, patients who participate in specific scoliosis exercises show significant improvements. These therapies may delay or prevent the need for surgery and reduce the duration or intensity of bracing and are particularly effective for single-curve, low to moderate scoliosis during growth periods [36].

PSSE have been increasingly recognized as a cornerstone of conservative management for AIS, particularly in mild to moderate cases. Among the various approaches, Schroth therapy is the most extensively studied, with evidence supporting its effectiveness in reducing curve progression and delaying the need for bracing during early growth phases [36]. In recent years, alternative methods such as SPS and conventional core stabilization exercises have also gained clinical attention for their potential in improving spinal alignment and neuromuscular control. Several systematic reviews and meta-analyses [20,22,36,37] have suggested that PSSEs are superior to general physiotherapy or no intervention; however, the existing evidence remains limited by small sample sizes, inconsistent methodologies, and short-term follow-ups. Critically, there is a notable lack of studies directly comparing different exercise modalities under the same clinical conditions, making it difficult to draw conclusions about their relative efficacy and practical application. To address this gap, the present retrospective study investigates and compares the outcomes of adolescents with AIS who underwent Schroth

therapy, SPS, or traditional core stabilization exercises, aiming to provide clinically relevant evidence that can inform individualized, evidence-based rehabilitation strategies.

2. Materials and methods

2.1 Study design

This retrospective study included a total of 61 patients with idiopathic scoliosis between June 2021 and June 2024. All subjects were outpatients from the rehabilitation department of Fujian Children's Hospital and were diagnosed by clinicians with IS. The treatments they received were divided into three groups, the Schroth group, the spiral stabilization (SPS) group and the core stabilization group, for retrospective analysis to determine which treatment was more effective.

This study was conducted in accordance with the ethical principles of the Declaration of Helsinki and approved by the Medical Ethics Committee of Fujian Children's Hospital (approval number 2024ETKLRK10006) [38]. The requirement for informed consent was waived by the ethics committee due to the retrospective nature of the study based on anonymized data. Throughout the study, the privacy and confidentiality of all participants were carefully maintained. The data were accessed for research purposes in January 2025. Furthermore, all data were anonymized and handled in accordance with applicable data protection regulations [39].

The minimal data set required to replicate the findings of this study has been deposited in Figshare and is available at the following Data Review URL for peer review purposes: https://figshare.com/articles/dataset/scolio_data_xlsx/28424249?file=52381676. A permanent DOI will be provided upon publication.

2.1.1 Sample size calculation. An a priori power analysis was performed using G*Power software (version 3.1) to determine the required sample size [40]. Based on prior literature, effect sizes for exercise-based interventions in adolescent idiopathic scoliosis (AIS) typically range from medium to large ($SMD=0.6\text{--}0.9$, approximately corresponding to Cohen's $f=0.25\text{--}0.45$) [41–43]. Assuming a significance level of $\alpha=0.05$ and a statistical power ($1-\beta$) = 0.80, the required sample size for a one-way ANOVA with three groups was estimated to range from 57 to 72 participants. To account for an anticipated dropout rate of 10%, the target sample size was calculated to be between 64 and 80 participants (~21–27 participants per group). Given the retrospective nature of the study, the final sample size was determined by the number of eligible patients available during the study period, resulting in a total of 61 participants. While this is slightly below the upper target range, we consider it sufficiently close to provide meaningful and clinically relevant insights.

2.2 Participants

2.2.1 Inclusion criteria.

1. Patients diagnosed with idiopathic scoliosis and a Cobb angle $\leq 40^\circ$.
2. Aged 6–18 years.
3. Receiving no additional treatment.
4. Regular outpatient treatment records and detailed pre- and posttreatment evaluations, including X-ray examinations and functional scale assessments

2.2.2 Exclusion criteria.

1. Patients with non-idiopathic scoliosis, congenital malformations or trauma-related complications, and rheumatological or immunological diseases.
2. Patients with previous fractures of the spine/lower limbs or surgical treatment.
3. Psychiatric problems or other contraindications to exercise.

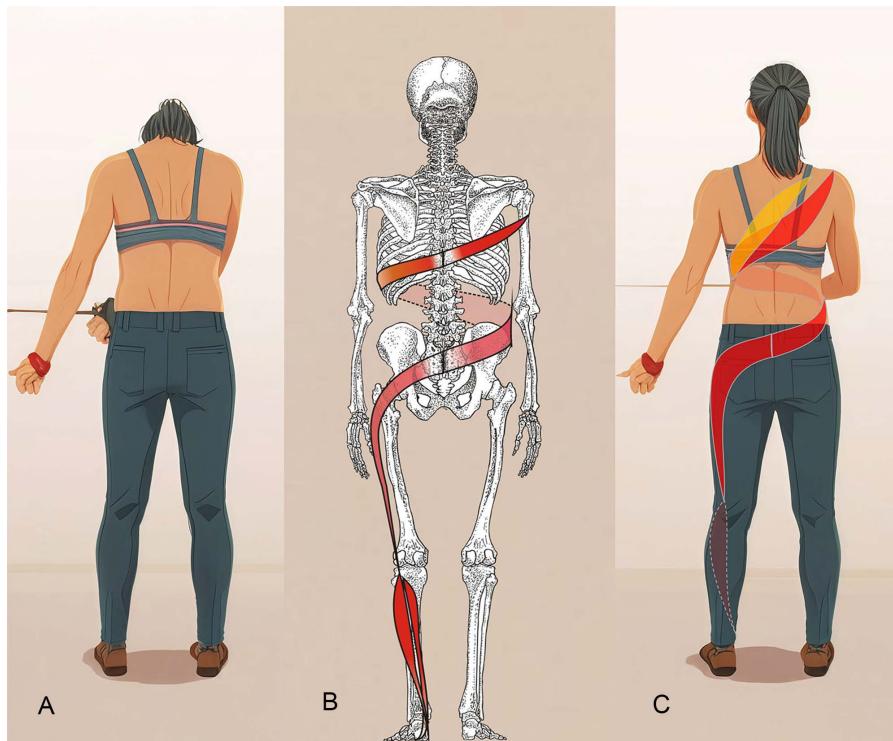
2.3 Interventions

The subjects received one of three types of training. For patients with Cobb angles between 20° and 40°, bracing was applied strictly according to the guidelines [33]. Each training was delivered for 30 minutes twice a week, and 10 sessions constituted a course of treatment. All included subjects participated in at least one course of treatment. All training sessions were supervised by a professional physical therapist, and children under 12 years of age were additionally supervised by their parents. Patients who received training in the hospital were assigned homework with the same frequency and time so that they could continue to follow the training.

2.3.1 Schroth group. Each session lasted 30 minutes and focused on Schroth exercises specifically tailored to the patient's type of scoliosis. The program was guided by a trained physiotherapist and emphasized precise execution, individualized adjustments, and continuous progress monitoring to ensure optimal outcomes. Each exercise targeted spinal alignment correction, self-elongation, derotation with corrective breathing and muscular balance and was typically performed for 5–10 minutes per movement. The training included targeted movements such as the “great arch,” which involves spinal elongation and thoracic expansion, and the “side-lying muscle cylinder exercise,” which focuses on breathing into the concave areas while maintaining a neutral spine alignment. Other exercises, such as “rotational sitting,” address pelvic and spinal alignment and precise postural adjustments, whereas “standing muscle cylinder exercise” and “supine breathing correction” enhance spinal elongation, respiratory mechanics, and muscular balance through structured movements and controlled breathing (see Fig 1). Breathing correction aims to establish intra-abdominal pressure and promote spinal alignment [44–46]. Detailed information on the exercises is presented in [S1 File](#).

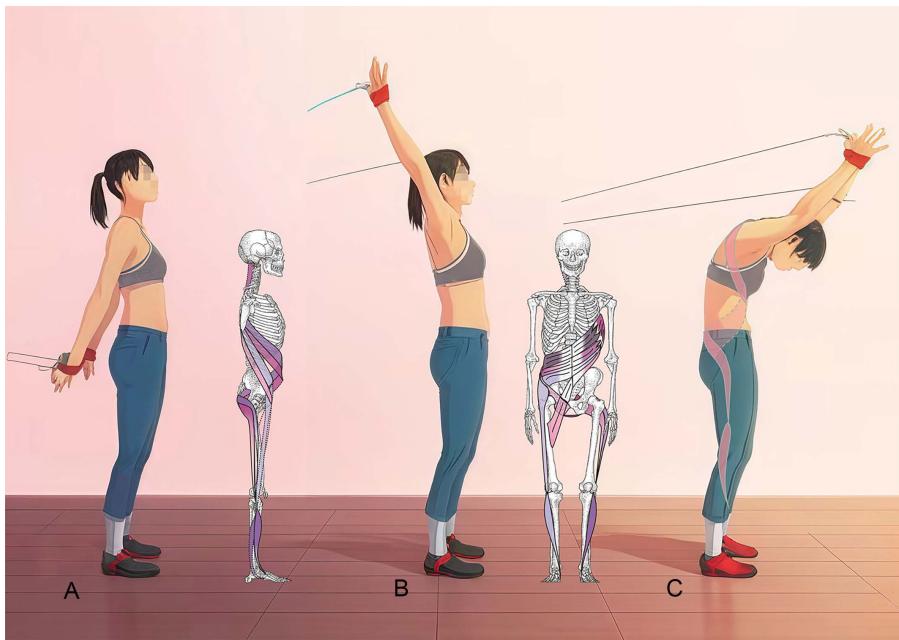
2.3.2 Spiral stabilization (SPS) group. Each session consisted of 30 minutes of SPS exercises guided by a trained physiotherapist. The program emphasized precise execution, personalized adjustments, and continuous monitoring to ensure optimal rehabilitation outcomes. Each exercise is intended to correct spinal alignment, activate spiral muscle

Fig 1. Schroth group programs. (A) Great arch; (B) Side-Lying muscle cylinder exercise; (C) Standing muscle cylinder exercise; (D) Standing hip push on a stall bar; (E) Rotational sitting exercise; (F) Supine breathing correction (see detailed exercise descriptions in Supplementary File [S1 File](#)).

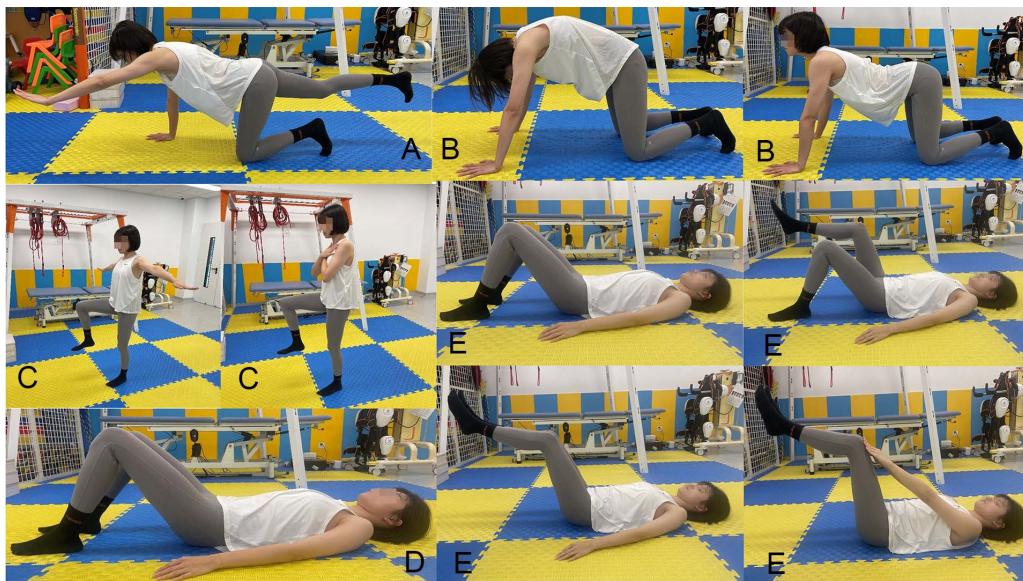

<https://doi.org/10.1371/journal.pone.0334713.g001>

chains, and enhance balance and mobility. Movements typically last 5–10 minutes with a focus on spinal elongation, core stabilization, and muscle coordination. Key exercises include “central plane alignment,” which targets spinal straightening and restoring natural curvatures, and “gait optimization,” which integrates stability and symmetry through walking drills. Other targeted practices, such as “peripheral muscle band coordination,” enhance shoulder and pelvic girdle flexibility, whereas “central muscle band stabilization movements” are intended to improve strength and functional movement patterns (see [Figs 2 and 3](#)). All exercises adhered to the SPS principles of vertical axis training and emphasized muscle balance, symmetrical movement, and gait refinement [26]. SPS exercise is highly personalized and is based on the patient’s ability and training principles, which are outlined in [S2 File](#).

2.3.3 Core stabilization group. Each session consisted of 30 minutes of core stabilization exercises guided by experienced physiotherapists. Key movements include the “all fours exercise,” which involves controlling arm and leg extensions to activate glutes and stabilize the core, and the “cat-camel exercise,” which focuses on spinal mobility and breathing coordination. Other exercises, such as “single leg balance,” improve stability and coordination, whereas “pelvic tilts” and “double-leg abdominal press” engage the abdominal muscles to increase lumbar support and core strength [29,47] (see [Fig 4](#)). All exercises were structured to progressively build balance and maintain a neutral spinal alignment. The detailed program of the exercises is presented in [S3 File](#).


2.4 Outcome measurements

The basic data of the subjects, including age, sex, and body mass index (BMI), were collected before the first outpatient treatment. Other parameters included pain (VAS scale) [48,49], angle of trunk rotation (ATR) [50,51], full-length spine


Fig 2. SPS exercise (Central Muscle Band Stabilization Movements). (A) Start position; (B) Activated muscle chains; (C) End position (see detailed exercise descriptions in Supplementary File [S2 File](#)).

<https://doi.org/10.1371/journal.pone.0334713.g002>

Fig 3. SPS exercise (Peripheral Muscle Band Coordination). (A) Start position; (B) Transition position; (C) End position (see detailed exercise descriptions in Supplementary File [S2 File](#)).

<https://doi.org/10.1371/journal.pone.0334713.g003>

Fig 4. Core stabilization group programs. (A) All-fours exercise; (B) Cat-camel exercise; (C) Single leg balance; (D) Pelvic tilts; (E) Double-leg abdominal press (see detailed exercise descriptions in Supplementary File [S3 File](#)).

<https://doi.org/10.1371/journal.pone.0334713.g004>

radiographs, trunk aesthetic clinical evaluation (TRACE) [52,53], and the Scoliosis Research Society-22 questionnaire (SRS-22) [54,55]. These data were collected again at a follow-up visit 6 months later. All data were collected and organized by the same researcher. The full-length spine radiographs were measured to obtain the corresponding Cobb angle,

Risser sign, and alignment of the C7 plumbline (C7PL) in relation to the central sacral vertical line (CSV) (C7PL-CSV) [56–58], clavicle angle, and pelvic obliquity. In this study, all radiographic measurements were performed by the same experienced physical therapist, who was blinded to the patients' treatment group assignments in order to minimize potential measurement bias. This study examined the degree of improvement of the subjects in different groups after treatment by combining the analysis of imaging indicators with functional assessment scales.

2.4.1 Primary outcome. The Cobb angle is measured by full-length radiographs of the spine. This method was invented by Dr. John Cobb in 1948 [59]. The Cobb angle is widely recognized as the key measurement for evaluating and tracking the progression of scoliosis. It is determined by measuring the curvature angle by first drawing lines parallel to the upper edge of the highest vertebral body and the lower edge of the lowest vertebral body within the affected curve. After these reference lines are established, perpendicular lines are drawn from them that meet at a point where the curvature angle is determined. This measurement provides a precise and reliable metric for assessing spinal deformities while ensuring consistency in the clinical diagnosis and longitudinal monitoring of scoliosis progression [60,61]. The Cobb angle referred to in this study is the largest angle of the bend measured in the patient's imaging.

2.4.2 Secondary outcomes. Visual Analog Scale (VAS): The visual analog scale (VAS) is a pain assessment tool invented by Hayes and Patterson in 1921. It is widely used in epidemiological and clinical research. This method assesses pain on a continuous range from none to extreme. Unlike the classification scale, which divides pain into categories such as none, mild, moderate, and severe, the VAS reflects a continuous view of pain without a clear division. The VAS usually has a 10-centimeter straight line with end marked "no pain" and the other end marked "worst pain." Patients mark a point on the line to indicate their perceived level of pain. By measuring this point, a value representing the intensity of pain can be obtained. This design provides a more accurate and subjective measurement of pain and is in line with the continuity of the pain experience perceived by patients.

The Scoliosis Research Society-22 questionnaire (SRS-22): The SRS-22 is a tool specifically designed to evaluate health-related quality of life (HRQoL) across five key dimensions. It consists of 22 items, with five questions dedicated to each of four categories (i.e., function, pain, self-image, and mental health) along with two items that assess treatment satisfaction. Respondents rate each question on a scale ranging from 1 to 5 points. The Chinese version of the SRS-22 questionnaire used in this study has demonstrated strong reliability and validity, confirming its effectiveness as a suitable instrument for assessing HRQoL among patients with adolescent idiopathic scoliosis in mainland China [62,63].

Angle of trunk rotation (ATR): The assessment of trunk rotation is conducted using a scoliometer while the patient is in the Adam's forward flexion test position. In this stance, the individual bends forward at the waist until the back is horizontal with the feet together, arms hanging freely, and knees straight. Once the patient is in this position, the scoliometer is placed vertically along the spine at the location of the rib hump. The segment with the greatest inclination angle is identified, and the corresponding angle of trunk rotation (ATR) is recorded [64–66].

Trunk aesthetic clinical evaluation (TRACE): Aesthetic enhancement is crucial in evaluating treatment outcomes for adolescent idiopathic scoliosis (AIS), yet there are currently no established standards for this assessment. The TRACE tool was developed to measure symmetry and serves as an indicator of aesthetic quality in patients. This assessment consists of four key components: shoulder (scored from 0 to 3), scapula (0–2), hemi-thorax (0–2), and waist (0–4). The overall score is calculated by summing these four components and adding an additional point, resulting in a total score that ranges from 1 to 12. TRACE has shown adequate reproducibility, making it a suitable option for incorporation into standard clinical practice [52,53].

Other radiographic outcomes: In addition to the Cobb angle, full-length anteroposterior spine radiographs can reveal improvements in coronal balance in patients with IS. All data were processed and acquired by the same researcher utilizing Image-Pro Plus software (version 7.0; Media Cybernetics, Inc., USA). All image data were measured and analyzed in a blinded manner. To ensure data quality, all measurements were performed twice, and the final data were obtained by averaging the two results.

1. Alignment of the C7 plumbline (C7PL) in relation to the central sacral vertical line (CSV) (C7PL-CSV)

A plumb line should be established at the midpoint of the C7 vertebra, known as the C7 plumb line (C7PL). In a similar manner, a plumb line should be drawn at the midpoint of the S1 vertebra on the X-ray, which is referred to as the central sacral vertical line (CSV) [56–58,67], and the horizontal distance between the two plumb lines should be measured, which is considered the offset distance. Theoretically, these two straight lines overlap for people without scoliosis.

2. Clavicle angle

The clavicle angle is the angle between the line connecting the highest points of the clavicles at both ends (conoid tubercle) on the X-ray and the horizontal reference line (HRL) [67,68].

3. Pelvic obliquity

This study introduces the pelvic coronal reference line (PCRL), which is created by connecting the tips of the sacral ala on both sides. This method offers a more precise depiction of the coronal deviation of the pelvis. The angle formed between the PCRL and the horizontal reference line (HRL) is used to indicate the pelvic inclination angle [68,69].

2.5 Statistical analysis

Statistical analysis of the data was conducted using SPSS® software version 25.0 (IBM® Corp., Armonk, NY, USA). The Shapiro-Wilk test was used to evaluate the normality of distribution, and Levene's test was used to test the equality of variance. Data was presented as mean±standard deviation for normally distributed variables and median (interquartile range) for non-normally distributed variables. For within-group comparisons (pre- and posttreatment), paired t tests were conducted. Between-group differences were assessed using the chi-square test for categorical variables, one-way analysis of variance for normally distributed continuous variables followed by the least significant difference (LSD) post hoc test for pairwise comparisons, and the nonparametric Kruskal-Wallis test was used for non-normally distributed variables. A significance level of $p<0.05$ was set for all analyses.

3. Results

3.1 Baseline characteristics

In this study, a total of 61 patients were enrolled and divided into three distinct groups: the Schroth group, which included 22 patients; the spiral stabilization (SPS) group, which included 21 patients; and the core stabilization group, which included 18 patients. An analysis of the baseline characteristics revealed no statistically significant differences among the three groups in terms of gender distribution ($p=0.064$), age ($p=0.055$), body mass index (BMI) ($p=0.121$), Risser sign ($p=0.732$), or Cobb angle distribution (10° – 20° vs. 20° – 40° ; $p=0.386$), indicating that the potential confounding effect of bracing was relatively balanced across interventions (Table 1).

3.2 Imaging and functional outcomes

3.2.1 Within-group comparisons. The results of all three groups revealed significant differences ($p<0.05$) in some indicators (Table 2).

In the Schroth group, the Cobb angle decreased from $20.32\pm8.62^{\circ}$ to $11.00\pm7.40^{\circ}$ ($p<0.05$), representing a statistically significant improvement ($p<0.05$). The SPS group exhibited a statistically significant decrease from $20.52\pm8.66^{\circ}$ to $11.71\pm9.83^{\circ}$ ($p<0.05$). The core stabilization group also showed a statistically significant reduction from $24.44\pm8.48^{\circ}$ to $17.72\pm8.22^{\circ}$ ($p<0.05$).

In the Schroth group, the VAS score improved from significantly 1.23 ± 1.57 to 0.23 ± 0.43 ($p<0.05$). The SPS group also demonstrated a statistically significant reduction in VAS scores from 1.71 ± 1.52 to 0.57 ± 1.03 ($p<0.05$), while the core stabilization group showed a statistically significant reduction from 1.56 ± 1.62 to 0.39 ± 0.85 ($p<0.05$).

The Schroth group exhibited a statistically significant improvement in ATR, decreasing from $7.55 \pm 2.79^\circ$ to $4.14 \pm 2.40^\circ$ ($p < 0.05$). The SPS group also showed a statistically significant improvement from $8.57 \pm 3.17^\circ$ to $5.00 \pm 3.11^\circ$ ($p < 0.05$), as did the core stabilization group from $11.28 \pm 4.65^\circ$ to $8.00 \pm 4.59^\circ$ ($p < 0.05$). Regarding the alignment of the C7 plumbline (C7PL-CSVL), the Schroth group demonstrated a statistically significant improvement from 1.28 ± 1.06 cm to 0.59 ± 0.68 cm ($p < 0.05$). The SPS group showed a non-significant reduction from 0.96 ± 1.12 cm to 0.62 ± 0.64 cm ($p > 0.05$). Similarly, the core stabilization group did not show a statistically significant change from 1.62 ± 1.21 cm to 1.07 ± 0.70 cm ($p > 0.05$).

In terms of the clavicle angle, the SPS group demonstrated a statistically significant improvement from $2.41 \pm 1.25^\circ$ to $0.50 \pm 0.22^\circ$ ($p < 0.05$). The Schroth group exhibited a non-significant reduction from $2.04 \pm 1.87^\circ$ to $1.43 \pm 1.24^\circ$ ($p > 0.05$), as did the core stabilization group from $2.72 \pm 1.82^\circ$ to $1.83 \pm 1.37^\circ$ ($p > 0.05$).

Table 1. Demographic characteristics of the participants by group and p values for group differences.

	Schroth (n=22)	SPS (n=21)	Core (n=18)	P
Gender				0.064
Male	3 (13.64%)	7 (33.33%)	1 (5.56%)	
Female	19 (86.36%)	14 (66.67%)	17 (94.44%)	
Age (years)	10.73 (2.25)	12.14 (1.59)	11.50 (1.69)	0.055
BMI (kg/m ²)	21.35 (2.62)	20.26 (2.02)	19.93 (2.13)	0.121
Cobb 10–20°(no brace)	13 (59.09%)	12 (57.14%)	7 (38.89%)	0.386
Risser sign				0.732
0	13 (59.09%)	9 (42.86%)	11 (61.11%)	
1	4 (18.18%)	2 (9.52%)	2 (11.11%)	
2	2 (9.09%)	2 (9.52%)	2 (11.11%)	
3	1 (4.55%)	2 (9.52%)	2 (11.11%)	
4	2 (9.09%)	5 (23.81%)	1 (5.56%)	
5	0 (0.0%)	1 (4.76%)	0 (0.0%)	

Continuous variables are expressed as the mean \pm standard deviation (SD).

Categorical variables were analyzed via the chi-square test and are expressed as numbers and percentages.

<https://doi.org/10.1371/journal.pone.0334713.t001>

Table 2. Intra- and intergroup comparisons of the Cobb angle, VAS score, ATR, C7PL alignment, clavicle angle, pelvic angle, and TRACE score.

	Schroth		SPS		Core		Schroth vs. SPS	Schroth vs. Core	SPS vs. Core
	Primary	6 months	Primary	6 months	Primary	6 months			
Cobb(°)	20.32 (8.62)	11.00 (7.40)*	20.52 (8.66)	11.71 (9.83)*	24.44 (8.48)	17.72 (8.22)*	0.785	0.016*	0.033*
VAS	1.23 (1.57)	0.23 (0.43)*	1.71 (1.52)	0.57 (1.03)*	1.56 (1.62)	0.39 (0.85)*	0.165	0.528	0.481
ATR(°)	7.55 (2.79)	4.14 (2.40)*	8.57 (3.17)	5.00 (3.11)*	11.28 (4.65)	8.00 (4.59)*	0.409	0.001*	0.008*
C7PL(cm)	1.28 (1.06)	0.59 (0.68)*	0.96 (1.12)	0.62 (0.64)	1.62 (1.21)	1.07 (0.70)	0.911	0.030*	0.041*
Clavicle Angle(°)	2.04 (1.87)	1.43 (1.24)	2.41 (1.25)	0.50 (0.22)*	2.72 (1.82)	1.83 (1.37)	0.006*	0.240	<0.001*
Pelvic angle(°)	1.88 (1.00)	0.91 (0.90)*	1.86 (1.42)	0.32 (0.33)*	1.62 (1.02)	1.39 (0.85)	0.011*	0.047*	<0.001*
TRACE	4.50 (2.39)	2.73 (2.75)*	4.67 (1.59)	1.95 (1.47)*	7.22 (2.10)	4.89 (1.91)*	0.238	0.002*	<0.001*

* indicates statistical significance at a p value < 0.05 .

Continuous variables are presented as the mean values along with their standard deviations (SDs).

<https://doi.org/10.1371/journal.pone.0334713.t002>

For the pelvic angle, the Schroth group showed a statistically significant improvement from $1.88 \pm 1.00^\circ$ to $0.91 \pm 0.90^\circ$ ($p < 0.05$), as did the SPS group from $1.86 \pm 1.42^\circ$ to $0.32 \pm 0.33^\circ$ ($p < 0.05$). The core stabilization group exhibited a non-significant reduction from $1.62 \pm 1.02^\circ$ to $1.39 \pm 0.85^\circ$ ($p > 0.05$).

The TRACE scores were significantly reduced in all groups: in the Schroth group from 4.50 ± 2.39 to 2.73 ± 2.75 ($p < 0.05$), in the SPS group from 4.67 ± 1.59 to 1.95 ± 1.47 ($p < 0.05$), and in the core stabilization group from 7.22 ± 2.10 to 4.89 ± 1.91 ($p < 0.05$).

3.2.2 Between-group comparisons. The between-group analyses demonstrated notable variations in outcomes among the three groups (Table 2). Compared with the core stabilization group, the Schroth group exhibited a significantly greater reduction in the Cobb angle ($p = 0.016$), and the SPS group also showed a significantly greater reduction ($p = 0.033$). No significant difference was observed between the Schroth and SPS groups ($p = 0.785$). No statistically significant differences were detected regarding improvement in VAS scores among the three groups. The decrease in VAS scores was comparable between the Schroth and SPS groups ($p = 0.165$), the Schroth and core stabilization groups ($p = 0.528$), and the SPS and core stabilization groups ($p = 0.481$).

For ATR, the Schroth group exhibited a significantly greater reduction compared to the core stabilization group ($p = 0.001$), as did the SPS group ($p = 0.008$). No significant difference was found between the Schroth and SPS groups ($p = 0.409$). Regarding C7PL alignment, the Schroth group demonstrated a significantly greater improvement compared to the core stabilization group ($p = 0.030$), as did the SPS group ($p = 0.041$). No significant difference was observed between the Schroth and SPS groups ($p = 0.911$).

In terms of the clavicle angle, the Schroth group demonstrated a significantly greater improvement compared to the core stabilization group ($p < 0.001$), and the Schroth group demonstrated a significantly greater improvement compared to the SPS group ($p = 0.006$). The comparison between the Schroth group and the core stabilization group did not reveal a statistically significant difference ($p = 0.240$).

For the pelvic angle, the Schroth group demonstrated a significantly greater reduction compared to both the SPS group ($p = 0.011$) and the core stabilization group ($p = 0.047$). The SPS group also demonstrated a significantly greater reduction compared to the core stabilization group ($p < 0.001$). Finally, compared with the core stabilization group, both the SPS group ($p < 0.001$) and the Schroth group ($p = 0.002$) demonstrated significantly greater reductions in the TRACE score. No significant difference was observed between the Schroth and SPS groups ($p = 0.238$).

3.2.3 Quality of life (SRS-22). All three groups showed no significant between-group differences across all dimensions of the SRS-22, including pain, self-image, function, mental health, and satisfaction ($p > 0.05$ for all).

In the within-group comparisons, all three treatments (Schroth, SPS, and core stabilization) demonstrated statistically significant improvements in pain, self-image, and mental health ($p < 0.05$ for all). For functional scores, a statistically significant improvement was found only within the SPS group ($p < 0.05$), whereas the Schroth and core stabilization groups showed no significant changes ($p > 0.05$).

Because patients assessed their satisfaction only after treatment, the statistical significance of the changes in this domain could not be evaluated due to the lack of baseline data (Table 3).

4. Discussion

The analysis of three approaches to physical therapy (Schroth, spiral stabilization (SPS), and core stability exercises) highlights their respective advantages and limitations in treating idiopathic scoliosis. All three interventions effectively reduce the Cobb angle and trunk rotation angle (ATR) and improve pain (as measured by the visual analog scale (VAS)).

In interpreting the radiographic findings, it is important to distinguish between statistical and clinical significance. Although our study demonstrated statistically significant reductions in Cobb angle within all three groups, it is the magnitude of these changes that strengthens their clinical relevance. Specifically, all groups demonstrated mean Cobb angle reductions exceeding 5° , the conventional threshold used to account for inter-rater and intra-rater measurement variability

Table 3. Intra- and Intergroup Comparisons of Quality of Life (SRS-22).

	Schroth		SPS		Core		Schroth vs. SPS	Schroth vs. Core	SPS vs. Core
	Primary	6 months	Primary	6 months	Primary	6 months			
Pain	2.01 (0.25)	1.84 (0.19)*	2.08 (0.25)	1.88 (0.15)*	2.12 (0.32)	1.87 (0.22)*	All $P > 0.05$		
Self-image	2.71 (0.89)	1.96 (0.71)*	2.98 (0.92)	1.86 (0.70)*	2.57 (0.86)	1.80 (0.76)*			
Function	2.90 (0.25)	2.86 (0.22)	3.10 (0.43)	2.94 (0.27)*	2.91 (0.32)	2.89 (0.30)			
Mental health	2.73 (0.21)	2.55 (0.23)*	2.78 (0.28)	2.54 (0.22)*	2.80 (0.24)	2.62 (0.17)*			
Satisfaction	–	1.43 (0.54)	–	1.60 (0.85)	–	1.56 (0.62)			

* indicates statistical significance at a p value < 0.05 .

Continuous variables are presented as the mean values along with their standard deviations (SDs).

<https://doi.org/10.1371/journal.pone.0334713.t003>

[33]. This suggests that the improvements observed likely reflect genuine structural changes rather than measurement artifacts. Future studies incorporating MCID-based responder analysis at the individual level would further strengthen the interpretability of these findings.

However, core stability exercises demonstrate lower specificity in addressing scoliosis-related issues. While core exercises can promote muscle balance and endurance, they lack the corrective focus on spinal neutral alignment emphasized by the Schroth and SPS methods [70,71]. The improvement in the pelvic tilt in the core stability group was negligible because these exercises prioritize muscle symmetry rather than directly controlling pelvic alignment. This contrasts sharply with the Schroth and SPS therapies, which combine strategies to address coronal and sagittal imbalances. Schroth emphasizes respiratory mechanics and rib correction, whereas SPS focuses on coordinating pelvic and scapular stability [44,45]. This distinction makes Schroth more suitable for addressing three-dimensional deformities, although it may sometimes overcorrect thoracic curves, especially in types 3B/3BH [26,70].

With respect to improvements in the clavicular angle, SPS achieved the greatest progress due to its emphasis on dynamic postural control and scapular balance. In contrast, Schroth targets rib opening mechanics through three-dimensional derotation breathing but often neglects compensation of the scapula and clavicle. The static nature of Schroth training limits its dynamic functional carryover, whereas SPS enhances dynamic movement control, which may benefit daily activities and gait [26,28]. These findings suggest that future research should incorporate dynamic assessment tools such as electromyography to better evaluate functional improvements [29].

For C7 plumb line alignment (C7PL), only Schroth showed significant improvement. This result may stem from Schroth's focus on body awareness and static postural correction, which aids in achieving a neutral position of the spine. However, given that humans walk thousands of steps daily, the lack of dynamic movement training in Schroth may limit its impact on daily activities. SPS addresses this gap by targeting dynamic postural adjustments, which highlights its potential to integrate scoliosis treatment into functional tasks [49,70].

According to the SRS-22 assessment, all groups may have experienced improvements in certain aspects of quality of life; however, no statistically significant differences were observed between groups [42,72]. This result should be interpreted with caution, as potential ceiling effects and the limited sensitivity of the scale may have influenced the ability to detect subtle changes. Nevertheless, participation in structured physical therapy programs may contribute to enhanced psychological well-being and perceived physical function [73]. Among the three treatments, SPS may offer additional benefits in functional outcomes, potentially due to its emphasis on dynamic movements such as gait optimization, which support patients' reintegration into social and family activities. Furthermore, active engagement in scoliosis treatment is known to foster psychosocial involvement [74], which may complement the physical effects of therapy, although further research with more sensitive assessment tools is needed to substantiate this impact.

Although all radiographic measurements in this study were performed by the same experienced rehabilitation therapist who was blinded to treatment group assignments, some potential residual sources of measurement bias remain. Intra-rater variability is inherent in manual Cobb angle measurements, and small measurement errors have been documented even under blinded and standardized conditions. Additionally, variability in patient positioning during standing radiographs may introduce minor inconsistencies in spinal alignment visualization. These limitations should be considered when interpreting the radiographic outcomes of this study.

The relatively short duration of the intervention and follow-up (6 months) limits our ability to fully assess the long-term effects and sustainability of treatment outcomes [25,75]. This is particularly relevant given that the participants' mean age was approximately 10 years, placing them at the early stage of the peak growth phase, during which scoliosis is most likely to progress. We fully acknowledge the importance of extended follow-up—ideally continuing through skeletal maturity—for accurately capturing the natural course of curve progression and the long-term effects of treatment. Moreover, the wide age range of included patients (6–18 years) may introduce heterogeneity in both treatment compliance and physiological response to therapy, as juvenile and adolescents often differ in terms of skeletal maturity, neuromuscular development, and motor skill proficiency. Similarly, early-onset scoliosis may differ pathophysiologically from later-onset cases, potentially influencing responsiveness to conservative interventions [76]. While the Risser sign was recorded as a marker of skeletal maturity and discussed accordingly, further stratification or subgroup analysis based on age and onset type may be valuable in future studies [77,78]. In accordance with the SOSORT guidelines, we recommend follow-up examinations for patients after 6 months [33]. However, patients may face social and familial challenges, such as heavy academic burdens, which prevent them from coming to the hospital for follow-up. This may lead to slight inconsistencies in the timing of these assessments and potentially bias the results. Similarly, differences in patients' self-discipline and compliance may lead to inconsistencies in the intensity and frequency of home training that cannot be monitored [79]. This may result in variations in follow-up outcomes.

Another limitation of this study is the lack of quantitative objective data, which limits the comprehensiveness assessment of the results of physical therapy outcomes [80]. Specifically, reliance on subjective measures such as the SRS-22 questionnaire and TRACE scores, and VAS introduces a degree of subjectivity, as these outcomes are inherently influenced by patients' perceptions and inter-observer variability [81]. While patient-reported outcomes remain essential for capturing the patient's perspective on functional and quality-of-life improvements, as emphasized by current SOSORT guidelines, they alone are insufficient to comprehensively reflect the biomechanical and physiological adaptations elicited by treatment. Objective biomechanical assessments, such as surface electromyography (sEMG) [82,83], gait analysis, and isokinetic dynamometry, can provide valuable complementary insights into muscle activation patterns, motor control, and functional performance. Accordingly, we have explicitly addressed this point to underscore the need for future studies to integrate both patient-reported and objective biomechanical measures in order to achieve a more comprehensive evaluation of treatment effects and to deepen our understanding of the underlying mechanisms driving therapeutic improvements.

Bracing is an important confounding factor in scoliosis management, as guidelines recommend its use when the Cobb angle exceeds 20° but not below this threshold [33]. Although some studies suggest that bracing may enhance the effects of exercise therapy [84], our analysis showed that the distribution of patients in the 10°–20° versus 20°–40° categories was relatively balanced across groups (Schroth: 59%, SPS: 57%, Core stabilization: 39%), with no significant differences observed ($p=0.386$, $p>0.05$; [Table 1](#)). This indicates that bracing is unlikely to account for the differences in outcomes. While excluding younger patients or those using braces might reduce potential bias, it would also substantially lower statistical power and limit the ability to detect meaningful effects. We therefore retained these participants and acknowledge this as a limitation.

Additionally, the Risser sign has not been optimally managed, which may lead to inconsistencies in the potential growth of the patient population [85]. This is a double-edged sword: a smaller Risser sign indicates a greater risk of disease

progression for the patient but also suggests a greater possibility of recovery, thereby affecting the consistency of treatment responses [86]. Early detection and early treatment are important. Future research should control these variables to gain a clearer understanding of the optimal timing of interventions for IS [87].

The relatively small sample size of this study—particularly in the core stabilization group—limits the statistical power to detect potentially meaningful between-group differences, especially for secondary outcomes such as SRS-22 quality of life and VAS pain scores. The non-significant findings observed for these subjective outcomes should therefore be interpreted with caution, as they may reflect insufficient statistical power rather than a true absence of effect. This limitation hindered our ability to determine whether certain physical therapy regimens were more beneficial for specific subtypes of scoliosis [88,89].

The non-randomized, retrospective design inherently introduces selection bias, limiting the ability to establish causal relationships. In particular, a baseline imbalance was observed in Cobb angle between groups, with the core stabilization group presenting with a higher mean baseline value, which may have influenced the comparability of treatment outcomes. Second, important confounding factors such as home exercise compliance and socioeconomic status were not fully controlled, although standardized exercise instructions and routine clinical monitoring were implemented [90]. Residual confounding cannot be ruled out and may have affected the results. Future randomized, prospective studies with rigorous confounder control will be essential to more definitively evaluate the efficacy of different exercise interventions in AIS and to clarify their causal impact on clinical outcomes.

This study focused primarily on coronal imaging assessments, utilizing the Cobb angle and related anteroposterior radiographic parameters, without incorporating sagittal imaging for a comprehensive evaluation of spinal alignment [91]. An important consideration in this design was the need to minimize radiation exposure in adolescent patients [92,93], which constrained subsequent imaging assessments to standing full-length anteroposterior radiographs. As a result, this study did not assess potential changes in sagittal alignment, including thoracic kyphosis, lumbar lordosis, and pelvic parameters, which are critical for a comprehensive understanding of spinal deformities and treatment responses [91], such as spinal kyphosis, spinal lordosis, and pelvic rotation, which are crucial for a comprehensive understanding of spinal deformities. Future research should consider the use of advanced low-radiation imaging technologies, such as three-dimensional spinal assessment systems, to evaluate the three-dimensional characteristics of scoliosis, including spinal and pelvic deformities [94,95]. These methods can enhance the accuracy and comprehensiveness of scoliosis assessments and provide a more detailed understanding of treatment outcomes [96].

This study lacked an assessment of spinal flexibility, which may impact the treatment results [97]. Previous research has revealed a negative correlation between the Cobb angle, spinal rotation, and seated forward bending test results in patients with AIS, indicating that a larger Cobb angle and greater degree of spinal rotation are associated with poorer lumbar flexibility [98]. Improving spinal flexibility and mobility is crucial for the conservative treatment of scoliosis [96,97]. The lack of flexibility assessment in this study overlooks a key dimension in the understanding of the relationship between flexibility improvement and treatment outcomes. This omission limits the ability to comprehensively evaluate the therapeutic benefits of training programs and their impact on correcting spinal deformities and potentially reduces the generalizability of the findings. Future research should address this gap by incorporating flexibility assessments to elucidate the multifaceted effects of physical therapy interventions on scoliosis correction and functional outcomes.

Moreover, as emphasized in the SOSORT guidelines [33], current evidence regarding the efficacy of conservative treatment is strongest for adolescents with moderate scoliosis (Cobb angle $\leq 40^\circ$). Extrapolation of our findings to adults or patients with more severe curves should be made with caution, given the limited evidence base and the differing biomechanical and clinical profiles of these populations. In addition, future research should focus specifically on patients aged 10–18 years with Cobb angles between 10° and 20° , for whom exercise serves as the primary intervention, as this may provide more definitive evidence regarding treatment efficacy. Despite the promising findings, several limitations should be acknowledged. The retrospective design, relatively small sample size, and short follow-up period may affect the

robustness and generalizability of the results. A major limitation of this study is that follow-up was confined to the active treatment period, which does not satisfy the SRS criterion for defining long-term success—maintenance of the final Cobb angle within $\pm 5^\circ$ of baseline two years after the cessation of non-surgical therapy. As a result, the outcomes reported here capture only short-term effects. Future prospective studies with extended follow-up, ideally continuing for at least two years after treatment completion, are needed to establish the durability and long-term efficacy of these exercise-based interventions [33].

5. Conclusion

This short-term retrospective analysis demonstrated that Schroth, SPS, and core stabilization exercises all improved Cobb angle and ATR in patients with AIS, although core stabilization was slightly less effective. Schroth and SPS offered additional aesthetic benefits, but all three had limited effects on pain and quality of life. These findings support their use as conservative, noninvasive treatments for AIS.

Supporting information

S1 File. Schroth group programs.

(DOCX)

S2 File. SPS group programs.

(DOCX)

S3 File. Core stabilization group programs.

(DOCX)

Author contributions

Conceptualization: Haohan Lu, Cheng Zeng.

Data curation: Haohan Lu, Min Li, Mingling Guo.

Formal analysis: Haohan Lu, Naizhen Wang, Guobiao Ye, Feilong Zhu, Cheng Zeng.

Investigation: Min Li, Naizhen Wang, Guobiao Ye.

Methodology: Haohan Lu, Cheng Zeng.

Project administration: Haohan Lu.

Supervision: Cheng Zeng.

Validation: Haohan Lu, Cheng Zeng.

Writing – original draft: Haohan Lu.

Writing – review & editing: Cheng Zeng.

References

1. Meyer-Miner A, Van Gennip JLM, Henke K, Harris MP, Ciruna B. Resolving primary pathomechanisms driving idiopathic-like spinal curvature using a new katnb1 scoliosis model. *iScience*. 2022;25(9):105028. <https://doi.org/10.1016/j.isci.2022.105028> PMID: 36105588
2. Amzallag-Bellenger E, Uyttenhove F, Nectoux E, Moraux A, Bigot J, Herbaux B, et al. Idiopathic scoliosis in children and adolescents: assessment with a biplanar X-ray device. *Insights Imaging*. 2014;5(5):571–83. <https://doi.org/10.1007/s13244-014-0354-0> PMID: 25217150
3. Havey RM, Gavin TM, Patwardhan AG. Stability of the scoliotic spine: effect of scoliosis braces. *Spine (Phila Pa 1976)*. 2016;41 Suppl 7:S18–9. <https://doi.org/10.1097/BRS.0000000000001428> PMID: 26780611
4. Wu H, Ronksy JL, Cheriet F, Harder J, Küpper JC, Zernicke RF. Time series spinal radiographs as prognostic factors for scoliosis and progression of spinal deformities. *Eur Spine J*. 2011;20(1):112–7. <https://doi.org/10.1007/s00586-010-1512-9> PMID: 20661754

5. Jaremko JL, Poncet P, Ronsky J, Harder J, Dansereau J, Labelle H, et al. Comparison of Cobb angles measured manually, calculated from 3-D spinal reconstruction, and estimated from torso asymmetry. *Comput Methods Biomed Engin.* 2002;5(4):277–81. <https://doi.org/10.1080/10255840290032649> PMID: 12186706
6. Baker M, Griggs R, Byrne B, Connolly AM, Finkel R, Grajkowska L, et al. Maximizing the benefit of life-saving treatments for pompe disease, spinal muscular atrophy, and duchenne muscular dystrophy through newborn screening: essential steps. *JAMA Neurol.* 2019;76(8):978–83. <https://doi.org/10.1001/jamaneurol.2019.1206> PMID: 31107518
7. Chandrasekharan K, Martin PT. Genetic defects in muscular dystrophy. *Methods Enzymol.* 2010;479:291–322. [https://doi.org/10.1016/S0076-6879\(10\)9017-0](https://doi.org/10.1016/S0076-6879(10)9017-0) PMID: 20816173
8. Muellner M, Haffer H, Moser M, Chiapparelli E, Dodo Y, Adl Amini D, et al. Paraspinal musculature impairment is associated with spinopelvic and spinal malalignment in patients undergoing lumbar fusion surgery. *Spine J.* 2022;22(12):2006–16. <https://doi.org/10.1016/j.spinee.2022.07.103> PMID: 35944826
9. Noonan AM, Buliung E, Briar KJ, Quinonez D, Séguin CA, Brown SHM. Glycerol induced paraspinal muscle degeneration leads to hyper-kyphotic spinal deformity in wild-type mice. *Sci Rep.* 2023;13(1):8170. <https://doi.org/10.1038/s41598-023-35506-9> PMID: 37210442
10. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. *J Child Orthop.* 2013;7(1):3–9. <https://doi.org/10.1007/s11832-012-0457-4> PMID: 24432052
11. Cantele F, Posanti E, Pittarello C, Masiero S. Is higher compliance to brace therapy associated with poorer quality of life and self-image? A 36-months follow-up study. *J Back Musculoskelet Rehabil.* 2023;36(5):1163–9. <https://doi.org/10.3233/BMR-220361> PMID: 37458018
12. Schwieger T, Campo S, Weinstein SL, Dolan LA, Ashida S, Steuber KR. Body image and quality of life and brace wear adherence in females with adolescent idiopathic scoliosis. *J Pediatr Orthop.* 2017;37(8):e519–23. <https://doi.org/10.1097/BPO.0000000000000734> PMID: 26886460
13. Meng Z-D, Li T-P, Xie X-H, Luo C, Lian X-Y, Wang Z-Y. Quality of life in adolescent patients with idiopathic scoliosis after brace treatment: a meta-analysis. *Medicine (Baltimore).* 2017;96(19):e6828. <https://doi.org/10.1097/MD.0000000000006828> PMID: 28489761
14. Kaya MH, Erbahçeci F, Alkan H, Kocaman H, Büyükturan B, Canlı M, et al. Factors influencing of quality of life in adolescent idiopathic scoliosis. *Musculoskelet Sci Pract.* 2022;62:102628. <https://doi.org/10.1016/j.msksp.2022.102628> PMID: 35872563
15. Hsu P-C, Feng C-K, Huang S-H, Chiu J-W, Chou C-L, Yang T-F. Health-related quality of life in children and adolescent with different types of scoliosis: a cross-sectional study. *J Chin Med Assoc.* 2019;82(2):161–5. <https://doi.org/10.1097/JCMA.000000000000020> PMID: 30839509
16. Simoneau M, Mercier P, Blouin J, Allard P, Teasdale N. Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis. *BMC Neurosci.* 2006;7:68. <https://doi.org/10.1186/1471-2202-7-68> PMID: 17052338
17. Wei-Jun W, Xu S, Zhi-Wei W, Xu-Sheng Q, Zhen L, Yong Q. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. *Eur Spine J.* 2012;21(1):77–83. <https://doi.org/10.1007/s00586-011-1960-x> PMID: 21826498
18. Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Adolescent idiopathic scoliosis. *Nat Rev Dis Primers.* 2015;1:15030. <https://doi.org/10.1038/nrdp.2015.30> PMID: 27188385
19. Auerbach JD, Lonner BS, Crerand CE, Shah SA, Flynn JM, Bastrom T, et al. Body image in patients with adolescent idiopathic scoliosis: validation of the Body Image Disturbance Questionnaire—Scoliosis Version. *J Bone Joint Surg Am.* 2014;96(8):e61. <https://doi.org/10.2106/JBJS.L.00867> PMID: 24740669
20. Yuan W, Shi W, Chen L, Liu D, Lin Y, Li Q, et al. Digital physiotherapeutic scoliosis-specific exercises for adolescent idiopathic scoliosis: a randomized clinical trial. *JAMA Netw Open.* 2025;8(2):e2459929. <https://doi.org/10.1001/jamanetworkopen.2024.59929> PMID: 39964686
21. Berdishevsky H, Lebel VA, Bettany-Saltikov J, Rigo M, Lebel A, Hennes A, et al. Physiotherapy scoliosis-specific exercises - a comprehensive review of seven major schools. *Scoliosis Spinal Disord.* 2016;11:20. <https://doi.org/10.1186/s13013-016-0076-9> PMID: 27525315
22. Ma K, Wang C, Huang Y, Wang Y, Li D, He G. The effects of physiotherapeutic scoliosis-specific exercise on idiopathic scoliosis in children and adolescents: a systematic review and meta-analysis. *Physiotherapy.* 2023;121:46–57. <https://doi.org/10.1016/j.physio.2023.07.005> PMID: 37820462
23. Baik S-M, Kim S-H, Lee J-H. A scoping review of the different types of exercise programs proposed for the improvement of postural balance in adolescents with idiopathic scoliosis. *J Back Musculoskelet Rehabil.* 2023;36(6):1261–72. <https://doi.org/10.3233/BMR-220391> PMID: 37482978
24. Marchese R, Ilhan E, Pacey V. How schroth therapists vary the implementation of Schroth worldwide for adolescents with idiopathic scoliosis: a mixed methods study. *J Clin Med.* 2023;12(18):6063. <https://doi.org/10.3390/jcm12186063> PMID: 37763003
25. Schreiber S, Parent EC, Hedden DM, Moreau M, Hill D, Lou E. Effect of Schroth exercises on curve characteristics and clinical outcomes in adolescent idiopathic scoliosis: protocol for a multicentre randomised controlled trial. *J Physiother.* 2014;60(4):234. <https://doi.org/10.1016/j.jphys.2014.08.005> PMID: 25439713
26. Nechvátal P, Hitrik T, Kendrová LD, Macej M. Comparison of the effect of the McKenzie method and spiral stabilization in patients with low back pain: a prospective, randomized clinical trial. *J Back Musculoskelet Rehabil.* 2022;35(3):641–7. <https://doi.org/10.3233/BMR-210055> PMID: 34657873
27. Junker D, Stöggli T. The training effects of foam rolling on core strength endurance, balance, muscle performance and range of motion: a randomized controlled trial. *J Sports Sci Med.* 2019;18(2):229–38. PMID: 31191092

28. Yagci G, Yakut Y, Simsek E. The effects of exercise on perception of verticality in adolescent idiopathic scoliosis. *Physiother Theory Pract.* 2018;34(8):579–88. <https://doi.org/10.1080/09593985.2017.1423429> PMID: 29308950
29. Akuthota V, Ferreiro A, Moore T, Fredericson M. Core stability exercise principles. *Curr Sports Med Rep.* 2008;7(1):39–44. <https://doi.org/10.1097/01.CSMR.0000308663.13278.69> PMID: 18296944
30. Gür G, Ayhan C, Yakut Y. The effectiveness of core stabilization exercise in adolescent idiopathic scoliosis: a randomized controlled trial. *Prosthet Orthot Int.* 2017;41(3):303–10. <https://doi.org/10.1177/0309364616664151> PMID: 27625122
31. Yagci G, Yakut Y. Core stabilization exercises versus scoliosis-specific exercises in moderate idiopathic scoliosis treatment. *Prosthet Orthot Int.* 2019;43(3):301–8. <https://doi.org/10.1177/0309364618820144> PMID: 30628526
32. Ko K-J, Kang S-J. Effects of 12-week core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescents with idiopathic scoliosis. *J Exerc Rehabil.* 2017;13(2):244–9. <https://doi.org/10.12965/jer.1734952.476> PMID: 28503541
33. Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. *Scoliosis Spinal Disord.* 2018;13:3. <https://doi.org/10.1186/s13013-017-0145-8> PMID: 29435499
34. Babaee T, Moradi V, Hashemi H, Shariat A, Anastasio AT, Khosravi M, et al. Does bracing control the progression of adolescent idiopathic scoliosis in curves higher than 40°? A systematic review and meta-analysis. *Asian Spine J.* 2023;17(1):203–12. <https://doi.org/10.31616/asj.2022.0162> PMID: 36382367
35. Marti CL, Glassman SD, Knott PT, Carreon LY, Hresko MT. Scoliosis Research Society members attitudes towards physical therapy and physiotherapeutic scoliosis specific exercises for adolescent idiopathic scoliosis. *Scoliosis.* 2015;10:16. <https://doi.org/10.1186/s13013-015-0041-z> PMID: 26056527
36. Karavidas N, Iakovidis P, Chatziprodromiou I, Lytras D, Kasimis K, Kyrkousis A, et al. Physiotherapeutic Scoliosis-Specific Exercises (PSSE-Schroth) can reduce the risk for progression during early growth in curves below 25°: prospective control study. *Eur J Phys Rehabil Med.* 2024;60(2):331–9. <https://doi.org/10.23736/S1973-9087.24.08177-2> PMID: 38502554
37. Andrade RM, Callegari Ferreira ME, Piras L, Kiyomoto MDLP, Carvas Junior N, Kiyomoto HD, et al. Effect of therapeutic exercises on the progression of adolescent idiopathic scoliosis: a protocol of a systematic review. *BMJ Open.* 2024;14(12):e083282. <https://doi.org/10.1136/bmjopen-2023-083282> PMID: 39638598
38. Parums DV. Editorial: The 2024 Revision of the Declaration of Helsinki and its continued role as a code of ethics to guide medical research. *Med Sci Monit.* 2024;30:e947428. <https://doi.org/10.12659/MSM.947428> PMID: 39616449
39. Phillips A, Borry P, Shabani M. Research ethics review for the use of anonymized samples and data: a systematic review of normative documents. *Account Res.* 2017;24(8):483–96. <https://doi.org/10.1080/08989621.2017.1396896> PMID: 29140743
40. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behav Res Methods.* 2007;39(2):175–91. <https://doi.org/10.3758/bf03193146> PMID: 17695343
41. Kuru T, Yeldan İ, Dereli EE, Özdiçinler AR, Dikici F, Çolak İ. The efficacy of three-dimensional Schroth exercises in adolescent idiopathic scoliosis: a randomised controlled clinical trial. *Clin Rehabil.* 2016;30(2):181–90. <https://doi.org/10.1177/0269215515575745> PMID: 25780260
42. Monticone M, Ambrosini E, Cazzaniga D, Rocca B, Ferrante S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. *Eur Spine J.* 2014;23(6):1204–14. <https://doi.org/10.1007/s00586-014-3241-y> PMID: 24682356
43. Romano M, Minozzi S, Bettany-Saltikov J, Zaina F, Chockalingam N, Kotwicki T, et al. Exercises for adolescent idiopathic scoliosis. *Cochrane Database Syst Rev.* 2012;2012(8):CD007837. <https://doi.org/10.1002/14651858.CD007837.pub2> PMID: 22895967
44. Kastrinis A, Kourmantakis G, Tsekoura M, Nomikou E, Katsoulaki M, Theodosopoulos E, et al. The effect of Schroth method on postural control and balance in patients with adolescent idiopathic scoliosis: a literature review. *Adv Exp Med Biol.* 2023;1425:469–76. https://doi.org/10.1007/978-3-031-31986-0_45 PMID: 37581820
45. Ceballos-Laita L, Carrasco-Uribarren A, Cabanillas-Barea S, Pérez-Guillén S, Pardos-Aguilera P, Jiménez Del Barrio S. The effectiveness of Schroth method in Cobb angle, quality of life and trunk rotation angle in adolescent idiopathic scoliosis: a systematic review and meta-analysis. *Eur J Phys Rehabil Med.* 2023;59(2):228–36. <https://doi.org/10.23736/S1973-9087.23.07654-2> PMID: 36692412
46. Schreiber S, Whibley D, Somers EC. Schroth Physiotherapeutic Scoliosis-Specific Exercise (PSSE) trials—systematic review of methods and recommendations for future research. *Children (Basel).* 2023;10(6):954. <https://doi.org/10.3390/children10060954> PMID: 37371186
47. Foley Davelaar CM, Weber Goff E, Granger JE, Gill DE, Dela Cruz NMR, Sugimoto D. Conservative treatments of adolescent idiopathic scoliosis: physical therapists' perspectives. *Clin Pediatr (Phila).* 2024;63(8):1132–8. <https://doi.org/10.1177/00099228231208609> PMID: 37942698
48. Kane RL, Bershadsky B, Rockwood T, Saleh K, Islam NC. Visual Analog Scale pain reporting was standardized. *J Clin Epidemiol.* 2005;58(6):618–23. <https://doi.org/10.1016/j.jclinepi.2004.11.017> PMID: 15878476
49. Powell CV, Kelly AM, Williams A. Determining the minimum clinically significant difference in visual analog pain score for children. *Ann Emerg Med.* 2001;37(1):28–31. <https://doi.org/10.1067/mem.2001.111517> PMID: 11145767
50. Romano M, Minozzi S, Bettany-Saltikov J, Zaina F, Chockalingam N, Kotwicki T, et al. Therapeutic exercises for idiopathic scoliosis in adolescents. *Cochrane Database Syst Rev.* 2024;2(2):CD007837. <https://doi.org/10.1002/14651858.CD007837.pub3> PMID: 38415871

51. Park J-H, Jeon H-S, Park H-W. Effects of the Schroth exercise on idiopathic scoliosis: a meta-analysis. *Eur J Phys Rehabil Med.* 2018;54(3):440–9. <https://doi.org/10.23736/S1973-9087.17.04461-6> PMID: 28976171
52. Negrini S, Donzelli S, Di Felice F, Zaina F, Caronni A. Construct validity of the Trunk Aesthetic Clinical Evaluation (TRACE) in young people with idiopathic scoliosis. *Ann Phys Rehabil Med.* 2020;63(3):216–21. <https://doi.org/10.1016/j.rehab.2019.10.008> PMID: 31816447
53. Zaina F, Negrini S, Atanasio S. TRACE (Trunk Aesthetic Clinical Evaluation), a routine clinical tool to evaluate aesthetics in scoliosis patients: development from the Aesthetic Index (AI) and repeatability. *Scoliosis.* 2009;4:3. <https://doi.org/10.1186/1748-7161-4-3> PMID: 19154604
54. Li M, Wang C-F, Gu S-X, He S-S, Zhu X-D, Zhao Y-C, et al. Adapted simplified Chinese (mainland) version of Scoliosis Research Society-22 questionnaire. *Spine (Phila Pa 1976).* 2009;34(12):1321–4. <https://doi.org/10.1097/BRS.0b013e31819812b7> PMID: 19455008
55. Zaina F, Ferrario I, Caronni A, Scarano S, Donzelli S, Negrini S. Measuring quality of life in adults with scoliosis: a cross-sectional study comparing SRS-22 and ISYQOL questionnaires. *J Clin Med.* 2023;12(15):5071. <https://doi.org/10.3390/jcm12155071> PMID: 37568473
56. Ha AS, Tuchman A, Matthew J, Lee N, Cerpa M, Lehman RA, et al. Intraoperative versus postoperative radiographic coronal balance for adult spinal deformity surgery. *Spine Deform.* 2021;9(4):1077–84. <https://doi.org/10.1007/s43390-021-00297-4> PMID: 33625662
57. Honda S, Murata K, Otsuki B, Shimizu T, Sono T, Masuda S, et al. Active rheumatoid arthritis and scoliosis: a mid-term cohort study. *Spine (Phila Pa 1976).* 2025;50(4):252–8. <https://doi.org/10.1097/BRS.0000000000005035> PMID: 38747218
58. Fang M-Q, Huang X-L, Wang W, Li Y-A, Xiang G-H, Yan G-K, et al. The efficacy of Schroth exercises combined with the Chêneau brace for the treatment of adolescent idiopathic scoliosis: a retrospective controlled study. *Disabil Rehabil.* 2022;44(18):5060–8. <https://doi.org/10.1080/09638288.2021.1922521> PMID: 33984249
59. Wang B, Sun Y, Guo X, Cao J, Lu H, Chen W, et al. The efficacy of 3D personalized insoles in moderate adolescent idiopathic scoliosis: a randomized controlled trial. *BMC Musculoskelet Disord.* 2022;23(1):983. <https://doi.org/10.1186/s12891-022-05952-z> PMID: 36376952
60. Shaw M, Adam CJ, Izatt MT, Licina P, Askin GN. Use of the iPhone for Cobb angle measurement in scoliosis. *Eur Spine J.* 2012;21(6):1062–8. <https://doi.org/10.1007/s00586-011-2059-0> PMID: 22065167
61. Chockalingam N, Dangerfield PH, Giakas G, Cochrane T, Dorgan JC. Computer-assisted Cobb measurement of scoliosis. *Eur Spine J.* 2002;11(4):353–7. <https://doi.org/10.1007/s00586-002-0386-x> PMID: 12193997
62. Zhao L, Zhang Y, Sun X, Du Q, Shang L. The Scoliosis Research Society-22 questionnaire adapted for adolescent idiopathic scoliosis patients in China: reliability and validity analysis. *J Child Orthop.* 2007;1(6):351–5. <https://doi.org/10.1007/s11832-007-0061-1> PMID: 19308531
63. Cheung KMC, Senkoylu A, Alanay A, Genc Y, Lau S, Luk KD. Reliability and concurrent validity of the adapted Chinese version of Scoliosis Research Society-22 (SRS-22) questionnaire. *Spine (Phila Pa 1976).* 2007;32(10):1141–5. <https://doi.org/10.1097/01.brs.0000261562.48888.e3> PMID: 17471100
64. Akçay B, Çolak TK, Apti A, Çolak İ. The immediate effect of hanging exercise and muscle cylinder exercise on the angle of trunk rotation in adolescent idiopathic scoliosis. *Healthcare (Basel).* 2024;12(3):305. <https://doi.org/10.3390/healthcare12030305> PMID: 38338189
65. Rrecaj-Malaj S, Beqaj S, Krasniqi V, Qorolli M, Tufekcievski A. Outcome of 24 weeks of combined schroth and pilates exercises on Cobb angle, angle of trunk rotation, chest expansion, flexibility and quality of life in adolescents with idiopathic scoliosis. *Med Sci Monit Basic Res.* 2020;26:e920449. <https://doi.org/10.12659/MSMBR.920449> PMID: 32280133
66. Lendzion M, Łukaszewicz E, Waś J, Czaprowski D. Self-evaluation of trunk aesthetics in conservatively treated children and adolescents with idiopathic scoliosis. *Ortop Traumatol Rehabil.* 2018;20(5):371–82. <https://doi.org/10.5604/01.3001.0012.8273> PMID: 30648659
67. Sheikh Alshabab B, Gupta MC, Lafage R, Bess S, Shaffrey C, Kim HJ, et al. Does achieving global spinal alignment lead to higher patient satisfaction and lower disability in adult spinal deformity? *Spine (Phila Pa 1976).* 2021;46(16):1105–10. <https://doi.org/10.1097/BRS.0000000000004002> PMID: 34398135
68. Erşen Ö, Yüzügüldü U, Başak AM, Güveli R, Ege T. Effect of clinical and radiological parameters on the quality of life in adult patients with untreated adolescent idiopathic scoliosis: a cross-sectional study. *Eur Spine J.* 2023;32(4):1196–203. <https://doi.org/10.1007/s00586-023-07571-1> PMID: 36797417
69. Mak T, Cheung PWH, Zhang T, Cheung JPY. Patterns of coronal and sagittal deformities in adolescent idiopathic scoliosis. *BMC Musculoskelet Disord.* 2021;22(1):44. <https://doi.org/10.1186/s12891-020-03937-4> PMID: 33419438
70. Dimitrijević V, Viduka D, Šćepanović T, Maksimović N, Giustino V, Bianco A, et al. Effects of Schroth method and core stabilization exercises on idiopathic scoliosis: a systematic review and meta-analysis. *Eur Spine J.* 2022;31(12):3500–11. <https://doi.org/10.1007/s00586-022-07407-4> PMID: 36229615
71. Kocaman H, Bek N, Kaya MH, Büyükturan B, Yetiş M, Büyükturan Ö. The effectiveness of two different exercise approaches in adolescent idiopathic scoliosis: a single-blind, randomized-controlled trial. *PLoS One.* 2021;16(4):e0249492. <https://doi.org/10.1371/journal.pone.0249492> PMID: 33857180
72. Gao A, Li J-Y, Shao R, Wu T-X, Wang Y-Q, Liu X-G, et al. Schroth exercises improve health-related quality of life and radiographic parameters in adolescent idiopathic scoliosis patients. *Chin Med J (Engl).* 2021;134(21):2589–96. <https://doi.org/10.1097/CM9.0000000000001799> PMID: 34653079
73. Belli G, Toselli S, Latessa PM, Mauro M. Evaluation of self-perceived body image in adolescents with mild idiopathic scoliosis. *Eur J Investig Health Psychol Educ.* 2022;12(3):319–33. <https://doi.org/10.3390/ejihpe12030023> PMID: 35323209

74. Villamor GA, Andras LM, Yang J, Skaggs DL. Psychological effects of the SRS-22 on girls with adolescent idiopathic scoliosis. *Spine Deform*. 2018;6(6):699–703. <https://doi.org/10.1016/j.jspd.2018.04.005> PMID: 30348346
75. da Silveira GE, Andrade RM, Guilhermino GG, Schmidt AV, Neves LM, Ribeiro AP. The effects of short- and long-term spinal brace use with and without exercise on spine, balance, and gait in adolescents with idiopathic scoliosis. *Medicina (Kaunas)*. 2022;58(8):1024. <https://doi.org/10.3390/medicina58081024> PMID: 36013490
76. Moreno Mateo F, Bovonratwet P, Peiró García A. Early-onset scoliosis. *Curr Opin Pediatr*. 2024;36(1):105–11. <https://doi.org/10.1097/MOP.0000000000001318> PMID: 37991009
77. Schreiber S, Parent EC, Khodayari Moez E, Hedden DM, Hill DL, Moreau M, et al. Schroth physiotherapeutic scoliosis-specific exercises added to the standard of care lead to better Cobb angle outcomes in adolescents with idiopathic scoliosis - an assessor and statistician blinded randomized controlled trial. *PLoS One*. 2016;11(12):e0168746. <https://doi.org/10.1371/journal.pone.0168746> PMID: 28033399
78. Sanders JO, Khouri JG, Kishan S, Browne RH, Mooney JF 3rd, Arnold KD, et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. *J Bone Joint Surg Am*. 2008;90(3):540–53. <https://doi.org/10.2106/JBJS.G.00004> PMID: 18310704
79. Tombak K, Yüksel İ, Ozsoy U, Yıldırım Y, Karaşın S. A comparison of the effects of supervised versus home Schroth exercise programs with adolescent idiopathic scoliosis. *Children (Basel)*. 2024;11(3):354. <https://doi.org/10.3390/children11030354> PMID: 38539389
80. Maldaner N, Stienen MN. Subjective and objective measures of symptoms, function, and outcome in patients with degenerative spine disease. *Arthritis Care Res (Hoboken)*. 2020;72 Suppl 10:183–99. <https://doi.org/10.1002/acr.24210> PMID: 33091254
81. Alamrani S, Gardner A, Falla D, Russell E, Rushton AB, Heneghan NR. Content validity of Scoliosis Research Society questionnaire-22 revised (SRS-22r) for adolescents with idiopathic scoliosis: protocol for a qualitative study exploring patient's and practitioner's perspectives. *BMJ Open*. 2021;11(12):e053911. <https://doi.org/10.1136/bmjopen-2021-053911> PMID: 34907066
82. He Y, Dong H, Lei M, Liu J, Xie H, Zhang Z, et al. The role of the paraspinal muscles in the development of adolescent idiopathic scoliosis based on surface electromyography and radiographic analysis. *BMC Musculoskelet Disord*. 2024;25(1):263. <https://doi.org/10.1186/s12891-024-07329-w> PMID: 38570738
83. He C, Yang J-T, Zheng Q, Mei Z, Ma CZ-H. How do paraspinal muscles contract during the Schroth exercise treatment in patients with adolescent idiopathic scoliosis (AIS)? *Bioengineering (Basel)*. 2022;9(6):234. <https://doi.org/10.3390/bioengineering9060234> PMID: 35735477
84. Aktan-Ilgaz D, Sahiner H, Eraslan L, Gursen C, Guney-Deniz H. Effectiveness of bracing combined with exercise-based treatment of adolescent idiopathic scoliosis: assessing the synergistic benefits: a systematic review. *Prosthet Orthot Int*. 2025;49(2):228–35. <https://doi.org/10.1097/PXR.0000000000000362> PMID: 39298633
85. Reem J, Carney J, Stanley M, Cassidy J. Risser sign inter-rater and intra-rater agreement: is the Risser sign reliable? *Skeletal Radiol*. 2009;38(4):371–5. <https://doi.org/10.1007/s00256-008-0603-8> PMID: 19002685
86. Karol LA, Virostek D, Felton K, Jo C, Butler L. The effect of the Risser stage on bracing outcome in adolescent idiopathic scoliosis. *J Bone Joint Surg Am*. 2016;98(15):1253–9. <https://doi.org/10.2106/JBJS.15.01313> PMID: 27489315
87. Skalli W, Vergari C, Ebermeyer E, Courtois I, Drevelle X, Kohler R, et al. Early detection of progressive adolescent idiopathic scoliosis: a severity index. *Spine (Phila Pa 1976)*. 2017;42(11):823–30. <https://doi.org/10.1097/BRS.0000000000001961> PMID: 27779608
88. Ovadia D. Classification of adolescent idiopathic scoliosis (AIS). *J Child Orthop*. 2013;7(1):25–8. <https://doi.org/10.1007/s11832-012-0459-2> PMID: 24432055
89. Zhuang Q, Qiu G, Li Q, Zhang J, Shen J, Wang Y, et al. Modified PUMC classification for adolescent idiopathic scoliosis. *Spine J*. 2019;19(9):1518–28. <https://doi.org/10.1016/j.spinee.2019.03.008> PMID: 30940502
90. Haefeli M, Elfering A, Kilian R, Min K, Boos N. Nonoperative treatment for adolescent idiopathic scoliosis: a 10- to 60-year follow-up with special reference to health-related quality of life. *Spine (Phila Pa 1976)*. 2006;31(3):355–66; discussion 367. <https://doi.org/10.1097/01.brs.0000197664.02098.09> PMID: 16449911
91. Ilharrebode B. Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate? *Eur Spine J*. 2018;27(Suppl 1):48–58. <https://doi.org/10.1007/s00586-018-5472-9> PMID: 29368138
92. Cool J, Streekstra GJ, van Schuppen J, Stadhoudier A, van den Noort JC, van Royen BJ. Estimated cumulative radiation exposure in patients treated for adolescent idiopathic scoliosis. *Eur Spine J*. 2023;32(5):1777–86. <https://doi.org/10.1007/s00586-023-07651-2> PMID: 36943485
93. Luan F-J, Wan Y, Mak K-C, Ma C-J, Wang H-Q. Cancer and mortality risks of patients with scoliosis from radiation exposure: a systematic review and meta-analysis. *Eur Spine J*. 2020;29(12):3123–34. <https://doi.org/10.1007/s00586-020-06573-7> PMID: 32852591
94. Cheung C-WJ, Zhou G-Q, Law S-Y, Lai K-L, Jiang W-W, Zheng Y-P. Freehand three-dimensional ultrasound system for assessment of scoliosis. *J Orthop Translat*. 2015;3(3):123–33. <https://doi.org/10.1016/j.jot.2015.06.001> PMID: 30035049
95. Lau KK-L, Kwan KY-H, Cheung JP-Y, Chow W, Law KK-P, Wong AY-L, et al. Reliability of a three-dimensional spinal proprioception assessment for patients with adolescent idiopathic scoliosis. *Eur Spine J*. 2022;31(11):3013–9. <https://doi.org/10.1007/s00586-022-07338-0> PMID: 35922635
96. He C, Wong M-S. Spinal flexibility assessment on the patients with adolescent idiopathic scoliosis: a literature review. *Spine (Phila Pa 1976)*. 2018;43(4):E250–8. <https://doi.org/10.1097/BRS.0000000000002276> PMID: 28604491

97. Wong LPK, Cheung PWH, Cheung JPY. Curve type, flexibility, correction, and rotation are predictors of curve progression in patients with adolescent idiopathic scoliosis undergoing conservative treatment : a systematic review. *Bone Joint J.* 2022;104-B(4):424–32. <https://doi.org/10.1302/0301-620X.104B4.BJJ-2021-1677.R1> PMID: 35360948
98. Kao F-C, Lai P-L, Chang C-H, Tsai T-T, Fu T-S, Niu C-C, et al. Influence of lumbar curvature and rotation on forward flexibility in idiopathic scoliosis. *Biomed J.* 2014;37(2):78–83. <https://doi.org/10.4103/2319-4170.113182> PMID: 24732662