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Abstract
The Cauchy combination test (CCT) is a p-value combination method used in multiple-
hypothesis testing and is robust under dependence structures. This study aims to eval-
uate the CCT for independent and correlated count data where the individual p-values
are derived from tests based on normal approximation to the negative binomial distribu-
tion. The correlated count data are modelled via copula methods. The CCT performance
is evaluated in a simulation study to assess the type 1 error rate and the statistical power,
and compare it with existing methods. Our results indicate that the number of combined
tests, the negative binomial success parameter, and sample size significantly affect the
type 1 error rate of the CCT under independence or moderate correlation. The CCT
has more control over managing the type 1 error rate as the strength increases in the
Gumbel-Hougaard copula. In general, the choice of copula and the strength of its corre-
lation have a significant influence on type 1 error rates for both the CCT and MinP tests.
Our simulation findings support the broader applications of the CCT under multivariate
copulas that model upper-tail dependence with higher correlations. This knowledge may
have significant implications for practical applications.

Introduction
Combining p-values from various statistical tests is a fundamental procedure in multiple test-
ing for applied statistics. It is a tool to detect an overall effect, such as in meta-analysis and
bioinformatics. These combination tests combine and unify large numbers of p-values to a
single p-value, potentially providing a more powerful test than testing each p-value sepa-
rately. Suppose there arem hypotheses to be tested simultaneously. Let H0i and Hai repre-
sent the null and alternative hypotheses for the ith variable, respectively, where i = 1,… ,m.
Let T = (T1,… ,Tm)T be the vector of test statistics corresponding to them hypotheses, along
with their associated p-values P = (p1,… , pm)T. The purpose of the p-value combination test is
testing:

H0 ∶
m

⋂
i=1

H0i versus Ha ∶
m

⋃
i=1

Hai (1)
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where H0, the global null hypothesis, is satisfied when all the individual null hypotheses H0iCompeting interests: The authors have
declared that no competing interests exist. are true and Ha, the global alternative hypothesis, if at least one of the individual alternatives

Hai is true. Combining multiple tests provides a comprehensive conclusion about a specific
research question. Moreover, it improves statistical power and controls the inflation of type 1
errors. These p-value combination methods inherently account for the number of combined
tests, thereby avoiding the need for multiple testing corrections.

In the literature, many p-value combination tests, which differ by their underlying assump-
tions, have been proposed to combine independent individual p-values [1,2]. Extensions of
these combination tests have been developed to include dependence and weights [3–7]. The
significance of the global alternative hypothesis may be significantly affected when the test
statistic of the combined p-values does not appropriately account for the correlations among
the individual p-values. It is crucial to investigate the impact of the correlation on the signif-
icance of the combined test [8]. For an overview of these methods see [8–11]. Recently, there
has been interest in the Cauchy combination test (CCT) [12] due to its advantageous features
over other methods in addressing challenges arising from correlations, computations, and
sparse signals in high-dimensional settings.

This study set out to evaluate the CCT’s performance for count data. The objective is to
investigate the type 1 error rate and the statistical power of the CCT when the individual p-
values are derived from test statistics based on the normal approximation to the negative
binomial distribution. The study offers some important insights by studying the influence
of the negative binomial parameter, the success parameter, and the number of individual p-
values on the combination test. Moreover, it discusses the implications on the power in the
case of independent and correlated data.

This paper is organized as follows. The next section, Materials and methods, reviews three
p-value combination methods: Fisher, MinP, and the Cauchy combination tests, and intro-
duces the copula methods to construct correlations between count variables. The Simulation
study section describes the simulation design. The Results and discussion section presents
findings and applications to meta-analysis data. Finally, a conclusion is given in the Conclu-
sion section.

Materials and methods
In this section, we briefly review the CCT and two other p-value combination tests, the MinP
and Fisher’s tests. In addition, we introduce the copula methods for producing correlated
data.

P-value combination methods
MinP test. Theminimum p-value test (MinP) [13], orders the individual p-values in

ascending order p(1) < p(2) <… < p(m). Under the assumption that they are independent and
identically uniform on the unit interval [0,1], the MinP test is p(1) which follows a beta distri-
bution with parameters 1 andm, and its p-value is calculated as 1 – (1 – p(1))m.

Fisher’s combination test. The Fisher’s combination test [1] combines the non-linear
transformations of them p-values where each transformation –2 log(pi), under the null
hypothesis, has a chi-square distribution with 2 degrees of freedom.Therefore, the Fisher’s
test statistic has the following distribution:

ΨF =
m
∑
i=1

–2 log(pi)∼𝜒2
2m. (2)
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Cauchy combination test. The Cauchy combination test (CCT) by Liu and Xie [12] pos-
sesses advantageous features over other tests. The CCT is robust against correlation structure
and powerful against sparse signals. In addition, it is computationally efficient which makes
it suitable for high dimensional data analysis. The CCT is the sum of weighted non-linear p-
values transformations through the tangent function. Under the null hypothesis, the CCT is
defined as:

ΨCCT =
m
∑
i=1
𝜔i tan{(0.5 – pi)𝜋}, (3)

where 𝜔i > 0 and∑m
i=1 𝜔i = 1. If no prior information is provided, the CCT becomes the

weighted average of the transformations where 𝜔i = 1
m . However, if the weights are random

variables and independent of the individual test statistics, then the tail approximation still
holds. Under various correlation structures, the correlation has a minimal impact on the tails
of the CCT distribution. The tails of the CCT distribution are approximately standard Cauchy,
and its p-value is:

PCCT = 0.5 –
arctan(𝜓CCT)

𝜋 . (4)

It has been theoretically and empirically demonstrated in [12] that the CCT can effec-
tively control type 1 error rates across different significance levels. The ratio of the size of
the CCT, which represents the type 1 error rate, to the significance level approaches 1 as the
significance level converges to 0. This indicates its validity in large-scale multiple testing.

Under the global null hypothesis, the tail probability of the CCT is approximated by a stan-
dard Cauchy distribution, which is valid under the assumptions of bivariate normality of the
individual tests and some regularity conditions on the correlation matrix. However, Long
et al. [14] broaden the applicability of the CCT when the assumption of bivariate normality
may not hold. They demonstrated that, theoretically and by simulation, the approximation
of the standard Cauchy distribution for the tail probability of the CCT is still valid across a
broader range of bivariate copula distributions. This includes the six popular copula distri-
butions, the product Copula, Farlie–Gumbel–Morgenstern (FGM) Copula, Cuadras-Augé
Copula, Normal Copula, Ali-Mikhail-Haq (AMH) Copula, and Survival Copula. While their
study focused on bivariate copula dependence structures, our research is based on simulat-
ing more complex joint distributions under multivariate copulas, which is realistic for many
real-world applications where higher-order correlations exist.

Copula methods
We utilise copulas to simulate correlated count data [15,16]. Copula methods are power-
ful tools to capture complex dependencies between variables rather than simple linear rela-
tionships [17]. They model various structures of dependencies, including tails dependen-
cies. A copula is a multivariate distribution function that models the dependence structure
between multiple variables, each following a standard uniform marginal distribution, U(0,1)
[18]. The basic theorem of copula theory is known as Sklar’s Theorem [19]. Two types of
Archimedean parametric copulas for asymmetric dependencies are considered: the Clay-
ton and the Gumbel-Hougaard copulas. As both copulas are widely used in applications to
model asymmetric tail dependence, they are suitable for evaluating the CCT and studying the
effect of low and large correlated p-values on the properties of the combination tests. In addi-
tion, they are exchangeable copulas as their bivariate margins share a common correlation
structure through Kendall’s tau value. They are easy to interpret and serve our aim to evaluate
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the combination method under a simple controlled correlation structure; for example, if the
original data exhibit jointly low counts using the Clayton copula.

The Clayton copula models positive dependence in the lower tail, while the Gumbel-
Hougaard copula models positive dependence in the upper tail. They are defined by:

C(u;𝜃) = (1 –m +
m
∑
i=1

u–𝜃i )
– 1
𝜃
, 𝜃 > 0, u∈ [0, 1]m (5)

and

C(u;𝜃) = exp
⎧⎪⎪⎨⎪⎪⎩
– [

m
∑
i=1
(– logui)𝜃]

1/𝜃⎫⎪⎪⎬⎪⎪⎭
, 𝜃 ∈ [1,∞), u∈ [0, 1]m. (6)

Both copulas have the parameter 𝜃, representing the tail dependence coefficient. As 𝜃
increases, the strength of dependence increases. The associated Kendall’s 𝜏 for each copula
depends on the parameter 𝜃. It takes the form 𝜏 = 𝜃/(𝜃+ 2) for the Clayton copula and 𝜏 =
1– 1/𝜃 for the Gumbel-Hougaard copula[18]. For illustration, S1 Fig and S2 Fig present wire-
frame and contour plots of bivariate Clayton and Gumbel–Hougaard copulas, and scatter
plots of a sample of size n = 1000 simulated from the bivariate copulas with 𝜏 = 0.5 (𝜃 = 2).

Evaluating the Cauchy combination test for count data
Biological data, such as RNA-sequencing data, are best fitted with the negative binomial dis-
tribution. Unlike the Poisson distribution, the negative binomial distribution accounts for
overdispersion when the variance exceeds the mean [20,21]. In this context, the CCT has been
adopted as a gene-set test to combine p-values from individual genes and identify differen-
tially expressed genes [22]. Another application of the CCT on count data, in a comparative
study evaluating different methods for analysing microbiome data [23], the CCT outperforms
other methods of combining p-values and provides an accurate p-value while controlling
the type one error rate. In addition, the ranked combined p-values produced from the CCT
have high-rank similarity with the true ranks. The CCT successfully replicated and identi-
fied microbiome taxa associated with colorectal cancer in a real dataset where the most highly
ranked microbiome taxa using the CCT have been reported to be associated with this con-
dition. Consequently, evaluating the CCT is pivotal to providing a robust statistical tool for
analyzing non-Gaussian count data.

We aim to evaluate the type 1 error rate and the power of the CCT to combine individual
p-values obtained from the normal approximation to the negative binomial distribution and
modelling the correlation between the discrete data via copula methods. There are several for-
mulations for the negative binomial distribution in the literature. In this paper, we used the
following definition. In a sequence of independent Bernoulli trials, the negative binomial dis-
tribution is the distribution of the number of trials (or failures) X needed until a fixed number
(r) of successes occurs. Then, X∼NB(r, p) where the first parameter r is the number of suc-
cesses, and p is the probability of success in each trial, and the probability mass function of
X is:

f(x) = (x + r – 1
r – 1

)pr(1 – p)x, x = 0, 1, ... (7)

with mean and variance:

E(X) = r(1 – p)
p

and V(X) = r(1 – p)
p2

. (8)
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The normal approximation to the negative binomial is applied here for large r and mod-
erate p. This approximation is accurate under these conditions because both parameters, r
and p, affect the shape and symmetry of the negative binomial distribution. Hence, it closely
resembles that of a normal distribution. This approximation enables us to meet the assump-
tions required by the Cauchy combination test for the individual tests. The normal approxi-
mation to the negative binomial distribution becomes as follows:

X≈N (E(X),V(X)) . (9)

Then, we approximate the sampling distribution of the sample mean using the central limit
theorem where the sampling distribution converges to normal for large sample size.

Simulation study
This simulation was designed to assess the type 1 error rates and the power of three differ-
ent p-value combination methods: the Cauchy combination test (CCT), Fisher’s test, and the
MinP test using independent and correlated p-values obtained from the normal approxima-
tion to the negative binomial distribution. In this context, the number of variables refers to
the number of individual tests, or similarly p-values, denoted asm. We denote the sample size
as n and the number of simulations asM.

Data generation
Datasets for independent and correlated variables were simulated from the negative bino-
mial (NB) distribution using the R software version 4.5.0 [24]. The correlations were modelled
using the Clayton and the Gumbel-Hougaard copulas to introduce the correlation among the
variables using the copula package [17]. The dependence parameter, 𝜃, denotes the depen-
dency strength between the variables. We considered 𝜃 values of 1, 3, and 5, which represent
weak (independence in the Gumbel-Hougaard copula), moderate, and strong correlations
in the lower or upper tail. The corresponding Kendall’s 𝜏 values are 0.33, 0.60, and 0.71 for
the Clayton copula, and 0, 0.67, and 0.80 for the Gumbel-Hougaard copula. First, we gener-
ated data using copulas with dimensionm and parameter 𝜃. Following this, the simulated unit
variates from these copulas were transformed by the negative binomial quantile function to
obtain count data from the negative binomial distribution.

Type 1 error rate
To evaluate the type 1 error rate, the data were simulated under the null hypothesis, H0i: 𝜇i =
𝜇0i, i = 1,…m, usingM = 105 replications at 0.05 and 0.01 levels of significance. We generated
datasets from negative binomial distribution with parameters r and p = 0.5, NB(r,0.5), each
with a sample size n = 30 under the null hypothesis H0i: 𝜇i = r0i, i = 1,…m. Fixing a large sam-
ple size of 30 and a moderate probability of success of 0.5, helped us to isolate their effects and
satisfy part of the assumptions of the normal approximation and the CLT, and then, study the
influence of the success parameter r. We varied the following parameters: the number of vari-
ablesm, the number of success parameter of the negative binomial distribution r, and cop-
ula parameter 𝜃. We calculated the Z test for each variable as Zi =

̄Xi –𝜇0i√
V(Xi)

n

, with a two-sided

p-value given by 2[1–Φ(|Zi|), for i = 1,…m. We combined the individual p-values using the
three combination methods. Finally, we calculated the mean of the combined p-values that
were below the prespecified significance level.
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Power comparisons
The statistical powers of the three combination methods were compared in the presence of
sparse signals. The evaluation was performed against the sample size and the correlation
strength using different correlation structures. Data were generated from a negative binomial
distribution consisting of nine variables with parameters r = 10 and p = 0.5, along with one
variable with r = 11 and p = 0.5. This scenario reflects the sparsity of the signals commonly
encountered in multiple hypothesis testing, where a small number of hypotheses compared to
the nulls are true. Specifically, in our simulation setting, a significant test out of 10 is an exam-
ple of this scenario. In practice, for instance, detecting rare variants in the Genome-Wide
Association Studies (GWAS) or the RNA-seq analysis, few genes are expected to be associated
with a phenotype or a disease.

We varied the correlation structures and evaluated the power against values of sample size
n = 5, 10, 30, 50, 100, 150, 200, 300, 500, 1000 usingM = 10, 000 replicated samples. The correla-
tion structures included independence among all variables, and correlated variables modelled
via the Clayton and the Gumbel-Hougaard copulas with 𝜃 equals 3.

Results and discussion
To evaluate the performance of the CCT, we conducted a simulation study to assess the type
1 error and power when the individual p-values were obtained from tests based on the nor-
mal approximation to the negative binomial distribution. In addition, we studied the effect of
the success parameter, the sample size, and the correlation structures. In addition, we provide
applications of the combination methods to real meta-analysis datasets for count data.

Table 1 presents the type 1 error rates for different numbers of independent p-values, r,
and significance levels. To demonstrate the effect of the success parameter r, Fig 1 presents
the results when the numbers of combined tests are 10 and 50. Across different values of the
parameter r and varying the number of testsm, the Fisher’s test consistently controls the type
1 error well. When the number of tests is small, all methods manage to control false positives
within different significance thresholds. However, the impact of the parameter r on the type 1
error rates of the CCT and MinP tests is evident asm increases.

The MinP method exhibited relatively stable type 1 error rates as r increased while it
remained conservative for the CCT. The CCT had conservative type 1 error rates at the 0.05
significance level, whereas at 0.01, it was around 0.01, except whenm = 100 and r equals 5 or
30. As r increased, the rate increased for the CCT especially for largem. For instance, when
m = 50 at 𝛼 = 0.05, type 1 error rate increased from 0.0222 to 0.0401.

The results in Table 1 show that a small value of r (r = 5) leads to conservative type 1 error
rates for the CCT and liberal rates for the MinP method. We expect that as the parameter r
value increases, the rate will be around the significance level of 0.05. A possible interpretation
is that the skewness of the negative binomial distribution affects the sampling distribution of
the sample mean. When r is small, the negative binomial distribution is positively skewed,
and its skewness is defined as 𝛾 = (2–p)√

(1–p)r
. The skewness value decreases and becomes closer

to zero as r increases, which affects the symmetry of the sampling distribution and, therefore,
the accuracy of the individual p-values.

When r is small, the normal approximation of the sample mean through the Central
Limit Theorem might be inaccurate and produce p-values, under the null hypothesis, that are
stochastically larger than a uniform distribution U(0,1) (conservative individual p-values).
As a result, the MinP method may still have higher rejection rates because of its sensitiv-
ity to the few small p-values. The CCT, which is based on the average of the transformed p-
values, is less likely to reject the null hypothesis due to the excess number of large p-values.
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Table 1. Type 1 error rates of the CCT, Fisher, and MinP tests at different values of the level of significance 𝜶
usingM = 10,000 replications. Datasets were simulated fromm independent negative binomial variables NB(r, 0.5)
with sample size n = 30, where r is the success parameter and the probability of success is 0.5.

𝜶
Number of tests (m) r Test 0.05 0.01
10 5 CCT 0.0444 0.0106

Fisher 0.0475 0.0097
MinP 0.0516 0.0142

30 CCT 0.0498 0.0086
Fisher 0.0510 0.0103
MinP 0.0531 0.0096

50 CCT 0.0464 0.0100
Fisher 0.0500 0.0120
MinP 0.0462 0.0095

50 5 CCT 0.0222 0.0058
Fisher 0.0506 0.0110
MinP 0.0722 0.0188

30 CCT 0.0379 0.0066
Fisher 0.0514 0.0086
MinP 0.0517 0.0109

50 CCT 0.0401 0.0085
Fisher 0.0493 0.0096
MinP 0.0544 0.0112

100 5 CCT 0.0078 0.0019
Fisher 0.0495 0.0091
MinP 0.0665 0.0198

30 CCT 0.0230 0.0034
Fisher 0.0526 0.0113
MinP 0.0494 0.0097

50 CCT 0.0259 0.0061
Fisher 0.0469 0.0085
MinP 0.0484 0.0098

CCT: Cauchy combination test; MinP: Minimum P-value test.

https://doi.org/10.1371/journal.pone.0334663.t001

In practical contexts, the trade-off between type 1 error rate and power is crucial. Applying
the CCT or MinP method has implications on the results that rely on the normal approxima-
tions to skewed count data, such as negative binomial data with small r. The CCT has a con-
servative type 1 error rate and reduces false positives, i.e. rejecting the null hypotheses less
frequently than the expected nominal level. Consequently, it has less power and may fail to
detect true positives (true signals). On the other hand, the MinP method increases the risk of
false positives, and therefore, has higher misleading power. For example, in applications such
as genomics, the aim is to detect differentially expressed genes; The MinP method may incor-
rectly detect genes that are not truly differentially expressed, and the CCT may not be able to
declare the truly significant genes.

In contrast, the Fisher method shows stable type 1 error rates closer to the nominal level
regardless of the value of the success parameter r. This indicates its robustness to the value of
r and means that even when we have conservative individual p-values, Fisher tends to control
the type 1 error rate. This finding is also supported by [25], who found that the Fisher method
works well with conservative null p-values.

As a practical guideline, the success parameter r should be sufficiently large. A lower
bound on r should be maintained such that the standardised skewness (the skewness of the
sample mean), 𝛾√

n , is below a small threshold that is close to zero. A sensitivity analysis of
the CCT type 1 error rate was conducted by varying the success parameter r, the sample sizes
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Fig 1. Type 1 error rates of the Cauchy combination test (smooth line), Fisher’s test (dotted line), and MinP test
(dashed line) at the significance level 𝜶 = 0.05 against the success parameter r, usingM = 10,000 replications.
Datasets were simulated fromm independent negative binomial variables with sample size n = 30 and parameters
(r,0.5). A:m = 10. B:m = 50.

https://doi.org/10.1371/journal.pone.0334663.g001

n = 30, 100, 200, and the number of combined testsm = 30, 50. The results are presented in
Table 2. For example, whenm = 30, and across different values of sample sizes 30,100,200,
we observed that the CCT type 1 error rates were around 0.05 (after rounding to two dig-
its) when the standardised skewness values ranged between 0.05 and 0.07. A smaller sample
size requires a larger r value, and conversely, a larger sample size requires a smaller r. Specif-
ically, when the sample sizes n were 30,100 or 200, the corresponding r values that maintain
the type 1 error rate were 50,20 and 5, respectively. Additionally, a larger number of indi-
vidual tests required a more stringent threshold. For instance, whenm = 50, (the results are
not shown), the thresholds were around 0.04–0.05. This approach may improve the normal

PLOS One https://doi.org/10.1371/journal.pone.0334663 October 24, 2025 8/ 17

https://doi.org/10.1371/journal.pone.0334663.g001
https://doi.org/10.1371/journal.pone.0334663


ID: pone.0334663 — 2025/10/21 — page 9 — #9

PLOS One Evaluating the Cauchy combination test for count data

Table 2. Sensitivity analysis of the type 1 error rates of the CCT usingM = 10,000 replications. Datasets were
simulated fromm = 30 independent negative binomial variables NB(r, 0.5) with varying sample sizes, where r is the
success parameter and the probability of success is 0.5.

n = 30 n = 100 n = 200
r sk CCT sk CCT sk CCT
5 0.17 0.036 0.09 0.043 0.07 0.045
10 0.12 0.038 0.07 0.043 0.05 0.046
15 0.10 0.042 0.05 0.043 0.04 0.049
20 0.09 0.041 0.05 0.047 0.03 0.047
25 0.08 0.044 0.04 0.046 0.03 0.048
30 0.07 0.042 0.04 0.045 0.03 0.049
35 0.07 0.042 0.04 0.047 0.03 0.049
40 0.06 0.044 0.03 0.046 0.02 0.047
45 0.06 0.043 0.03 0.046 0.02 0.050
50 0.05 0.050 0.03 0.045 0.02 0.047
55 0.05 0.048 0.03 0.048 0.02 0.049
60 0.05 0.044 0.03 0.049 0.02 0.052
65 0.05 0.048 0.03 0.048 0.02 0.047
70 0.05 0.046 0.03 0.048 0.02 0.050
75 0.04 0.046 0.02 0.050 0.02 0.050
80 0.04 0.046 0.02 0.045 0.02 0.050
85 0.04 0.044 0.02 0.046 0.02 0.047
90 0.04 0.047 0.02 0.047 0.02 0.052
95 0.04 0.048 0.02 0.048 0.02 0.048
100 0.04 0.044 0.02 0.048 0.02 0.052
CCT: Cauchy combination test; sk: Standardised skewness.

https://doi.org/10.1371/journal.pone.0334663.t002

approximation of the individual test statistics, and therefore, the individual p-values follow
the uniform distribution under the null. It helps to effectively control the type 1 error rate of
the combination methods.

In addition, we conducted a rigorous diagnostic assessment using a heatmap in Fig 2 of
the CCT type 1 error rates across a grid of different sample sizes n and success parameters r.
In 1000 replications, we assessed the average of type 1 error rates using 10,000 simulations
by combiningm = 30 individual p-values. The heatmap shows that as n and r increase, type 1
error rates approach the nominal level of 0.05.

It is important to note that the choice of sample size of 30 is based solely on the normal
approximation using the CLT. Although it is considered large enough, in practical appli-
cations, there are more rigorous methods to estimate the sample size and evaluate the pre-
cision of the normal approximation of skewed count data; see, for example, [26]. This may
help explain the observed conservative type 1 error rates for large numbers of individual
tests (m) and (r), meaning that the CCT requires larger sample sizes. As both the negative
binomial success parameter (r) and sample size (n) increase, the distribution of the sam-
ple mean becomes more symmetric and continuous, and the corresponding p-values better
approximate the uniform distribution under the null. Consequently, the CCT rejection rate
stabilizes around the nominal level, confirming the theoretical validity of the method under
approximately continuous individual p-values. With lower values of (r) and (n), the individ-
ual tests are influenced by the discreteness and skewness of the underlying count data and
produce discrete p-values that may affect the validity of the CCT. Alternatively, the Fisher
method is more appropriate than other combination methods under the assumption of inde-
pendence.
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Fig 2. A heatmap presenting the average type 1 error rates of the Cauchy combination test at the significance
level 𝜶 = 0.05.

https://doi.org/10.1371/journal.pone.0334663.g002

Two types of correlation structures using the Clayton and the Gumbel-Hougaard copulas
were introduced. The results are presented in Tables 3 and 4. Fisher’s test has the highest

Table 3. Type 1 error rates for the CCT, Fisher, and MinP tests at 0.05 significance level usingM = 10,000 repli-
cations. Datasets were modeled using the Clayton copula with 𝜃 = {1, 3, 5} and simulated fromm negative binomial
variables NB(r, 0.5) with sample size n = 30, where r is the success parameter and the probability of success is 0.5.
Number of tests (m) r Test 𝜽

1 3 5
10 5 CCT 0.0557 0.0604 0.059

Fisher 0.106 0.156 0.179
MinP 0.0489 0.0346 0.0294

30 CCT 0.0562 0.0603 0.0588
Fisher 0.1193 0.1679 0.1864
MinP 0.0418 0.0286 0.0251

50 5 CCT 0.0476 0.067 0.066
Fisher 0.1841 0.2399 0.2574
MinP 0.0517 0.0317 0.0261

30 CCT 0.0624 0.0665 0.06
Fisher 0.2016 0.2548 0.2648
MinP 0.0359 0.0196 0.0141

100 5 CCT 0.0351 0.0713 0.0705
Fisher 0.221 0.2689 0.2834
MinP 0.0493 0.0311 0.0208

30 CCT 0.0594 0.0691 0.0625
Fisher 0.2353 0.281 0.2908
MinP 0.0376 0.0201 0.012

500 5 CCT 0.0057 0.049 0.0654
Fisher 0.28 0.2948 0.3103
MinP 0.0611 0.0288 0.0194

30 CCT 0.03 0.065 0.0595
Fisher 0.29 0.3031 0.3192
MinP 0.0355 0.0155 0.0081

CCT: Cauchy combination test; MinP: Minimum P-value test.

https://doi.org/10.1371/journal.pone.0334663.t003
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Table 4. Type 1 error rates for the CCT, Fisher, and MinP tests at 0.05 significance level usingM = 10,000 replica-
tions. Datasets were modeled using the Gumbel-Hougaard copula with 𝜃 = {1, 3, 5} and simulated fromm negative
binomial variables NB(r, 0.5) with sample size n = 30, where r is the success parameter and the probability of success
is 0.5.
Number of tests (m) r Test 𝜽

1 3 5
10 5 CCT 0.0478 0.0529 0.0498

Fisher 0.0522 0.1932 0.2025
MinP 0.0534 0.0196 0.0138

30 CCT 0.0492 0.0539 0.051
Fisher 0.0533 0.1918 0.2014
MinP 0.0527 0.0193 0.0131

50 5 CCT 0.0233 0.0536 0.0506
Fisher 0.0521 0.2707 0.2827
MinP 0.0669 0.0092 0.0053

30 CCT 0.0402 0.0568 0.0514
Fisher 0.0513 0.2722 0.2825
MinP 0.0528 0.0086 0.0044

100 5 CCT 0.0104 0.0542 0.051
Fisher 0.0507 0.2948 0.3051
MinP 0.0633 0.0057 0.003

30 CCT 0.0236 0.0559 0.0511
Fisher 0.0521 0.2937 0.3046
MinP 0.0484 0.0061 0.0022

500 5 CCT 0.0001 0.0554 0.0505
Fisher 0.0469 0.3255 0.3342
MinP 0.0868 0.0036 0.0014

30 CCT 0.0004 0.0555 0.0512
Fisher 0.0478 0.3259 0.3351
MinP 0.0557 0.0032 0.0011

CCT: Cauchy combination test; MinP: Minimum P-value test.

https://doi.org/10.1371/journal.pone.0334663.t004

type 1 error rates, except in the Gumbel-Hougaard copula when 𝜃 is 1, which represents the
independence case. As expected, this is due to the violation of the independence assumption.
In contrast, the MinP test tends to be more conservative in controlling type 1 errors across
different copula structures and levels of dependence. Our findings show that the CCT outper-
forms the MinP test in controlling false positives, particularly when the dependence strength
𝜃 increases from 1 to 5 in the Gumbel-Hougaard copula.

For the CCT, the choice of copula model significantly affected controlling the type 1 error
rates. In Table 3, as the parameters r and 𝜃 increased, the CCT had slightly higher type 1
error rates for different numbers of dependent tests through the Clayton copula. On the other
hand, modelling tests based on the Gumbel-Hougaard copula showed that as the correlation
strength increased, the type 1 error rate decreased and became more controlled for highly
correlated tests. For example, at r = 30 and 𝜃 = 5, across different numbers of tests, the type 1
error rates for the CCT ranged from 0.0588 to 0.0625, while in the Gumbel-Hougaard cop-
ula they ranged from 0.051 to 0.0514. Similarly, when r = 30 and 𝜃 = 3, CCT, the type I error
rates ranged from 0.0691-0.0603, but in the Gumbel-Hougaard copula, they were between
0.0539-0.0568.

Both copulas differ in modelling extreme values. The dependence in the lower tail of the
Clayton copula tends to produce small counts that occur together across variables, resulting
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in low sample means and large absolute Z test statistics values. Furthermore, the discrete-
ness of the data can lead to tied sample means and p-values. When these effects are com-
bined, small p-values can occur more frequently than expected under the global null hypoth-
esis. Since the CCT is sensitive to small p-values, this can significantly inflate the type 1 error
rate. On the other hand, the Gumbel-Hougaard copula better controls type 1 error rates
because it shows weak dependence in the lower tail. Thus, the sample means increase com-
pared to Clayton and therefore reduce the likelihood of many false positives under the null
hypothesis.

Under multivariate copulas, lower-tail dependence structure can inflate the type 1 error
rate, as shown in the Clayton copula results, and copulas that model the upper tail are valid
for higher correlations, i.e. higher copula parameter (𝜃). We further explored the validity
of the CCT under the multivariate survival Clayton copula [27]. Similar to the Gumbel-
Hougaard copula, this copula captures upper-tail dependence. We aimed to assess whether
the tail dependence structure affects the type 1 error rate of the CCT. It was proved that under
the bivariate survival copula, the CCT is valid and its tail is well approximated by the Cauchy
distribution [14]. When considering the multivariate copula the results, see S1 Table, indi-
cated that the CCT maintained type 1 error rates under the survival Clayton copula for higher
copula parameter 𝜃 = {5, 8}. These findings support the broader applications of the CCT to
multivariate copulas to model the upper tail dependence.

Fig 3 compares the power of the three combination methods against the sample size. As
expected, power is generally increasing as the sample size increases. The Fisher and MinP tests
have higher power than the CCT when the combined individual tests are independent. The
CCT and MinP exhibit comparable power in sparse signals and small effect sizes, regardless
of the correlation structure.

The MinP method showed relatively higher power compared to the Fisher method and the
CCT when combining independent tests. At a sample size of 30, both the MinP and Fisher
methods approached the maximum power of 1, while the power curve for the CCT increased
slowly. It remained below the other two methods even for larger sample sizes, which sug-
gested that it may be conservative in detecting the true signal when r is small, specifically
when r = 11, where the normal approximation may not be accurate.

For correlated count data, the Fisher method exhibited higher power, especially for small
to moderate sample sizes. The independence assumption for the Fisher method was vio-
lated in this case, leading to inflated type 1 error rate, which reflected a misleading increase
in power. Although the power curve for the CCT achieved higher power at smaller sample
sizes, this must be interpreted with caution due to its liberal type 1 error rates at n = 30. How-
ever, as the sample size exceeded 30, the normal approximation of the negative binomial vari-
ables became more accurate, and the power observed at larger sample sizes became more reli-
able. On the other hand, the MinP method, which represents a conservative method under
dependence, offered more reliable power results.

Real data applications
In addition to simulation results, we provide a real data analysis to illustrate the application
of combination methods to combine p-values from count data. Meta-analyses of Genome-
Wide Association Studies (GWAS) show that two SNPs (rs4570625-T and rs17110747-A) on
the TPH2 gene are associated with major depressive disorder (MDD) using fixed effects mod-
els [28]. We apply the Cauchy combination test (CCT) and the Fisher method to combine
p-values in two meta-analysis studies. The first study includes six independent case-control
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Fig 3. The power comparison of the Cauchy combination test (smooth line), Fisher’s test (dotted line), and MinP
test (dashed line) from negative binomial data in three different correlation structures. A: Independent variables.
B: Clayton copula. C: Gumbel-Hougaard copula.

https://doi.org/10.1371/journal.pone.0334663.g003
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studies to test the association between the rs4570625-T SNP and MDD.The second meta-
analysis involves five studies to test the association of the rs17110747-A SNP and MDD.The
individual p-values were calculated from the forest plots 1 and 2 in [28].

For the first meta-analysis, the individual p-values were 0.78, 0.002, 0.74, 0.016, 0.89, and
0.10. By combining these p-values and at a significance level of 0.05, both the CCT and Fisher
method indicated significant results with combined p-values of 0.011 and 0.009, respectively.

In the second meta-analysis, the individual p-values were 0.94, 0.0015, 0.97, 0.79, and 0.81.
The CCT produced a combined p-value of 0.0082, while the Fisher method yielded a non-
significant result of 0.17. Notably, [29] applied a new proposed p-value combination method
to combine the five individual p-values which resulted in a combined p-value of 0.0081. Along
with the CCT, their result was the only significant finding among other existing p-value com-
bination methods.

The Cauchy combination test (CCT) yielded significant findings when applied to both
real meta-analysis studies, while the Fisher method exhibited significance in only one study.
Under the independence assumption, the difference in detecting true signals between the
CCT and Fisher method is due to their sensitivities to small p-values in a sparse setting. These
findings highlight the potential of the CCT when applied to meta-analysis of count data and
only a subset of studies exhibit strong effects.

It is important to note that multivariate copulas with discrete marginal distributions do not
have a unique copula representation [19]. The imitation of non-uniqueness in copulas arises
in the estimation of the copula parameter and joint distribution of observed discrete data.
In practice, a specific copula may not capture this, but different possible copulas may lead to
the same marginals and joint distribution. However, this limitation does not affect the valid-
ity of our simulation study. We explicitly specified a known correlation structure in advance,
simulated latent uniform variables using a copula, and then applied the inverse cumulative
function of the negative binomial distribution. The goal was to assess the influence of the
correlation structures on the p-value combination methods [15,16].

Further study is needed to evaluate combination methods, particularly the CCT, under
highly dispersed count data using distributions such as the Poisson Inverse Gaussian (PIG)
and Sichel. Models based on these distributions offer flexibility in fitting and modelling
highly dispersed count data and outperform negative binomial models in the analysis of crash
and infectious disease count data [30–32]. Furthermore, the performance of the CCT could
be compared with other methods that account for dependence structures, such as the Z or
Empirical Brown’s methods, in discrete settings. It is also of interest to examine the robustness
of the CCT under other types of copulas such as, for instance, a symmetric and heavy-tailed
dependence structure like the Student-t copula or even under more complex mixed correla-
tion structures such as the Vine copula. Future work could evaluate the combination methods
and extend them to count data that exhibit overdispersion and temporal or spatial depen-
dence, such as traffic data, under other distributional models and more complex dependence
structures [30,32]. Such comparisons would improve our understanding of the performance
of p-value combination methods and guide practitioners in selecting appropriate approaches
for real-world count data analysis.

Conclusion
In this paper, we compare three p-value combination tests, where individual p-values are
obtained from count data based on normal approximation to the negative binomial distri-
bution. The Cauchy combination test (CCT) is a powerful and robust method against sparse
alternatives under arbitrary dependence structures. The observed variations in type 1 error
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rates of the CCT when combining multiple independent or correlated tests based on the
normal approximation emphasize the need for caution to ensure the validity of statistical
inferences. We find that the number of combined tests influences the accuracy of normal
approximation, which is affected by both the sample size and success parameter. In addition,
the choice of the copula and its parameter are also other factors to consider. Our simula-
tion findings support the broader application of the CCT to multivariate copulas that model
upper-tail dependence with higher correlations. These factors contribute to the robustness
and validity of the CCT.
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