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Abstract

Accurate and energy-efficient temperature regulation in electric furnace systems
remains a challenging control problem due to nonlinear dynamics, significant ther-
mal inertia, and inevitable time delays. Conventional proportional-integral—derivative
(PID) and PID—acceleration (PIDA) controllers, though widely used, often exhibit
degraded performance under such conditions, particularly when implemented in

a single-degree-of-freedom. To address these limitations, this study proposes, for
the first time, a two-degree-of-freedom (2-DOF) PIDA controller tailored for electric
furnace temperature control. The controller structure allows independent tuning of
set-point tracking and disturbance rejection by introducing separate feedforward
paths in the proportional and derivative channels while maintaining integral and
acceleration actions on the error signal. To optimize the controller parameters, the
recently developed greater cane rat algorithm (GCRA) is employed for the first time
in this context. A novel adaptive objective function (combining normalized overshoot,
normalized settling time, and cumulative tracking error) guides the tuning process

to achieve a balanced improvement in both transient and steady-state performance.
The proposed GCRA-based 2-DOF PIDA controller is evaluated through extensive
simulations and compared against state-of-the-art metaheuristic tuning approaches,
including polar fox optimization (PFA), hiking optimization (HOA), success-history
based adaptive differential evolution with linear population size reduction (L-SHADE),
and particle swarm optimization (PSO), as well as several benchmark furnace control
methods. Results demonstrate that the proposed method consistently achieves faster
settling times, reduced overshoot, and near-zero steady-state error, while maintain-
ing robustness under external disturbances and measurement noise. For instance,

in the nominal case, the method yields an overshoot of 1.8382% and a settling time
of 3.4542s, outperforming PFA, HOA, L-SHADE, and PSO. Robustness tests under
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Abbreviations: ARO, Artificial rabbits
optimization; CEC, Congress on evolutionary
computation; DOF, Degree of freedom; GA,
Genetic algorithm; GCRA, Greater cane rat
algorithm; HOA, Hiking optimization algorithm;
IAE, Integral absolute error; LB, Lower bound;
PFA, olar fox algorithm; PID, Proportional—
integral—derivative; PIDA, Proportional-inte-
gral—derivative—acceleration; PSO, Particle
swarm optimization; SHADE, Success-history
based adaptive differential evolution with linear
population size reduction; UB, Upper bound;
ZN, Ziegler—Nichols.

load disturbances and measurement noise confirm stable operation with minimal
performance degradation, achieving less than 2.5% overshoot and under 4 s settling
time across all evaluated scenarios. These findings highlight the potential of the
GCRA-based 2-DOF PIDA controller as a high-precision and energy-efficient solution
for temperature regulation in industrial time-delay systems.

1. Introduction

Temperature regulation in electric furnace systems is a critical task in many industrial
applications, ranging from materials processing to precision manufacturing [1-4].
Achieving high-performance control in these systems is challenging due to their
nonlinear dynamics, significant thermal inertia, and unavoidable time delays [5]. Such
delays, often caused by sensor lag and slow heat transfer, can degrade both stability
and responsiveness if not properly addressed. Inaccurate or sluggish temperature
control not only reduces product quality but can also lead to excessive energy con-
sumption and operational inefficiencies.

Conventional proportional-integral—-derivative (PID) controllers have been widely
employed for furnace temperature regulation due to their simple structure and ease
of implementation [6-9]. For instance, Grassi and Tsakalis [10] applied frequency
loop-shaping techniques to PID tuning for diffusion furnaces, achieving improved
stability and tracking accuracy. However, their performance tends to deteriorate in
the presence of pure time delays and process nonlinearities, particularly when a
single-degree-of-freedom (1-DOF) structure is used. In these cases, proportional,
integral, and derivative actions are applied to the same error signal, making it difficult
to independently tune the set-point tracking and disturbance-rejection behaviors [11].
Extensions such as proportional-integral—derivative—acceleration (PIDA) controllers
[12—-18] offer improved transient performance by adding an acceleration term, yet
most reported designs still retain a 1-DOF configuration, limiting flexibility in shaping
the closed-loop response.

To overcome these shortcomings, this study introduces a two-degree-of-freedom
(2-DOF) PIDA controller specifically tailored for the temperature regulation of time-
delay systems. To the best of the authors’ knowledge, this is the first reported appli-
cation of such a controller structure to an electric furnace temperature system. By
incorporating separate feedforward weights in the proportional and derivative paths
while maintaining integral and acceleration actions on the raw error, the proposed
design enables independent tuning of reference tracking and disturbance rejec-
tion. This structural flexibility allows the controller to achieve rapid, low-overshoot
responses without sacrificing steady-state accuracy or robustness to disturbances.

An equally important contribution of this work lies in the tuning strategy. Controller
parameters are optimized using the greater cane rat algorithm (GCRA) [19], a recent
nature-inspired metaheuristic that models the adaptive foraging behavior of cane
rats. Although GCRA has shown promise in generic optimization tasks, this is the first
time it has been applied to tune a 2-DOF PIDA controller for temperature regulation in
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time-delay systems. The tuning process is driven by a novel adaptive objective function that combines normalized over-
shoot, normalized settling time, and cumulative tracking error [20] into a single metric. This formulation ensures balanced
improvements in both transient and steady-state performance, which is particularly important in thermal processes where
overshoot and prolonged settling can be costly.

The effectiveness of the proposed GCRA-based 2-DOF PIDA controller is rigorously validated through comparative
studies against several recent and established tuning methods, including metaheuristic optimizers such as polar fox
optimization algorithm [21], hiking optimization algorithm [22] (selected as representative of recently developed strate-
gies demonstrating strong exploration—exploitation balance), success-history based adaptive differential evolution with
linear population size reduction [23] (recognized as a winner in CEC benchmark competitions), and particle swarm
optimization [24] (the most widely applied swarm-based technique), as well as reported benchmark approaches like
artificial rabbits optimization-based filtered PID [6], modified electric eel foraging optimizer-based filtered PID [25], genetic
algorithm-based PID [26] and Ziegler-Nichols-based PID [27] controllers. The results demonstrate that the proposed
method consistently achieves faster settling, reduced overshoot, and near-zero steady-state error, while maintaining
robustness under external disturbances and measurement noise. In summary, the main contributions of this study are:

1. The first-ever design and application of a 2-DOF PIDA controller for temperature regulation in electric furnace systems
with time delay.

2. The first use of the GCRA to tune such a controller structure, leveraging its balance between exploration and exploita-
tion for precise parameter optimization.

3. A novel adaptive objective function that holistically balances transient and steady-state performance metrics.

4. A comprehensive performance evaluation, including robustness analysis and comparisons with state-of-the-art meth-
ods, demonstrating the superiority of the proposed approach.

The remainder of this paper is organized as follows. Section 2 provides a detailed overview of the GCRA, explaining
its biological inspiration, mathematical formulation, and adaptive search behavior. Section 3 describes the electric furnace
temperature system under consideration, emphasizing its nonlinear dynamics and inherent time-delay characteristics.
Section 4 presents the design of the proposed 2-DOF PIDA controller, including its structural configuration and the novel
GCRA-based parameter tuning process. Section 5 reports the simulation setup, performance evaluation metrics, and
comparative results against established and recent optimization-based control approaches, along with robustness assess-
ments. Finally, Section 6 summarizes the main findings, outlines potential industrial implications, and suggests future
research directions.

2. Overview of greater cane rat algorithm (GCRA)

The greater cane rat algorithm (GCRA) [19] draws inspiration from the foraging patterns of greater cane rats, both in and
out of their breeding season, to solve complex optimization problems. By emulating the way these animals search for
food (alternating between wide-ranging exploration and focused exploitation) the GCRA effectively balances the need to
discover new regions of the search space with the need to refine promising solutions.

The process begins by scattering an initial population of candidate solutions, denoted as X, across the search domain.
Each individual rat’s position x;; in the j dimension is determined by X;j = rand x (UB;— LB;) + LB; where UB; and LB;
define the permitted upper and lower bounds, and rand is a uniform random number between 0 and 1. This random initial-
ization ensures diversity, laying the groundwork for a robust search.

Within the rat community, a dominant male (who has learned the best food locations) guides the others. During
exploitation, each rat updates its position by averaging its current location with that of the leader:
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Xij + Xk
Xnowij = 0.7 x = 0

where x,; is the dominant male’s coordinate.
The algorithm toggles between exploration and exploitation depending on a control threshold (p = 0.5). In
the exploration phase, rats venture out to uncover new feeding grounds, adjusting their positions according to
Xnewij = Xij + C x (Xx;j—r x x;;) and then selecting between two update rules based on whether the newly evaluated objec-
tive value F¢" improves upon the current value F;:

XiJJrCX (X[(J‘—Oé X XkJ), Fyew< Fi

%= { Xij+ C X (Xmj— B X Xkj), otherwise 2

where x,; is the position of a randomly chosen female rat, and the parameters C, r, , and 8 modulate the step sizes in
response to the abundance or scarcity of resources.

When the population enters mating season, males concentrate their search around potential mates rather than roaming
widely. In this intensification phase, positions are refined as Xpew;;j = X;;j + C x (Xij— p % Xmj) with 1 randomly selected
between 1 and 4 to mirror varying litter sizes and to focus the search even more narrowly.

By alternating among these behaviors (random dispersal, leader-guided convergence, and mate-focused intensifica-
tion) the GCRA maintains a dynamic equilibrium between seeking unexplored regions and honing in on promising solu-
tions. This structured mimicry of cane rat behavior endows the algorithm with both versatility and resilience, making it well
suited to tackle a wide range of challenging optimization tasks.

Algorithm 1. Pseudocode of GCRA
Input: X - initial population (size popSize), max iter (maximum number of iterations), LB, UB (lower
and upper bounds for each dimension), p (exploration/exploitation threshold)
Output: Gbest - best solution found
1. Initialization
1.1 iter<0
1.2 For 1i=1 to popSize
For j =1 to D
xij < rand x (UBjy - LBj) + LBj
End For
Fi « EvaluateObjective (xi)
End For
2. Select initial leader
Gbest « solution with lowest Fi
k « index of the dominant male
3. Initial exploitation
For 1 = 1 to popSize, i # k

Xi « 0.7 x (X3 + Xx) + 2
Fi « EvaluateObjective (Xi)
End For

Update Gbest and k
4. Main loop
While iter <max iter
4.1 Compute C,r,o, B, 1
4.2 For i=1 to popSize
If rand(0,1) <p Then
Exploration
temp—Xi+C x (Xx — rxXi)
F temp~EvaluateObjective (temp)
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If F temp<Fi Then
X neweXi+C x (Xx — oxXg)
Else
m—random index#i
X neweXi+C x (Xm — PBxXk)
End If
Else
Exploitation
If inMatingSeason (iter) Then
m—random index#i
X neweXi+C x (Xk — puxXm)
Else
X newe0.7 x (Xi+Xy) + 2
End If
End If
4.3 Boundary check and fitness update
X new<EnforceBounds (X new, LB, UB)
F new—EvaluateObjective (X new)
4.4 Greedy acceptance
If F new<F:i Then
Xi<X new
Fi<F new
End If
End For
4.5 Update Gbest and k
Gbest—solution with lowest Fi
k—index of dominant male
4.6 iter—iter+1
End While
5.Return Gbest

3. Mathematical modeling of electric furnace control system

Fig 1 illustrates the feedback architecture employed to regulate the temperature of the electric furnace. The system contin-
uously measures the internal temperature and compares it to a desired set-point. Any discrepancy generates an error

Control output

Control
method

Power
regulator

Y

Error Electric furnace
signal
Set point

temperature +

Measured temperature

Product

Fig 1. Block diagram of the electric furnace temperature control system.

https://doi.org/10.1371/journal.pone.0334594.9001
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signal, which the controller processes to determine the appropriate adjustment. This control action is sent to the power
regulator, which then modulates the heater’s input power to drive the temperature back toward the set-point. Such a
closed-loop arrangement compensates for thermal inertia and external disturbances, maintaining the furnace at its target
temperature.

We represent the furnace dynamics with a second-order transfer function augmented by an exact dead-time term
(second-order plus dead time):

b -
Count®) = o T arsva® @

Here, the coefficients a,, a1, and ag capture the furnace’s thermal capacity and heat-transfer characteristics, b scales
the steady-state gain, and D denotes the pure time delay arising from sensor lag and the furnace’s thermal response. To
remain consistent with established studies [25-27], we adopt the numerical values of ag = 0.2, a4y = 1.1,a, =1, b=0.15
and D =1.5.

By retaining the exact exponential term €72 rather than approximating it with a Padé expansion [28], our model pre-
serves the true non-rational nature of the delay. This fidelity is essential for accurately predicting phase lag and gain
attenuation introduced by the dead time, which in turn leads to more reliable stability-margin assessments and robust
controller designs. In subsequent sections, the controller synthesis will explicitly account for this pure delay, ensuring that
both phase-margin specifications and disturbance-rejection requirements are met without the approximation errors that a
Padé model would introduce.

4. Proposed control methodology: Novel objective function and GCRA based 2-DOF PIDA controller

A proportional-integral-derivative—acceleration (PIDA) controller combines the classical PID actions with an addi-
tional acceleration term to improve both transient response and disturbance rejection [29]. Building on this prin-
ciple, the two-degree-of-freedom (2 DOF) PIDA controller is realized by four parallel signal paths, each of which
corresponds directly to one of the additive terms in the transfer-function expression (Eqg. (4)) and is depicted in the
block diagram of Fig 2. At the outset, the proportional branch applies a feedforward weight « to the reference input
R(s) before comparing it with the measured output Y(s). As indicated by the first term of Eq. (4), this weighted error
aR(s) — Y(s) is then scaled by the proportional gain Kp, thereby governing how aggressively the controller tracks set-
point changes.

NDS
s+ Np

U(s) = Kp [aR(s) — Y(s)] + sliA/f/A

< [R(S) = Y(8)] + Ko

2
BR(S) - Y(5)] + K ( ) R(s) - Y(s)]

(4)

In parallel, the integral branch addresses any residual steady-state error by passing the unweighted discrep-
ancy R(s)— Y(s) through the integrator K;. This action, represented by the second term in Eq. (4), ensures that
the long-term average error is driven to zero. The third path implements a filtered derivative action with its own
feedforward weight 3. As shown in Eq. (4), the error SR(s) — Y(s) is first amplified by Kp and then filtered by the
first-order term (Nps)/(s + Np). In accordance with the fourth term of Eq. (4), the raw error R(s) — Y(s) is multiplied
by the acceleration gain K, and subsequently passed twice through the same first-order filter (Nas)/(s + Na),
thereby realizing a second-order lead characteristic. This “acceleration” effect contributes additional phase mar-
gin and sharpens the controller’s transient response without unduly exciting measurement noise. All four branch
outputs are then summed at the final junction on the right side of Eq. (4) to produce the overall control signal U(s)
. By incorporating independent set-point weights a and 3 in the proportional and derivative loops while retaining
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Fig 2. Block diagram of 2-DOF PIDA controller.
https://doi.org/10.137 1/journal.pone.0334594.9002

integral and acceleration actions on the raw error, the structure depicted in Fig 2 faithfully implements the com-
posite transfer function of Eq. (4) and enables separate tuning of reference tracking and disturbance-rejection
characteristics.

The proposed 2-DOF PIDA controller distinguishes itself from both conventional PID [30] and single-degree-of-free-
dom PIDA [31] schemes by offering dedicated tuning channels for set-point tracking and disturbance rejection, while
remaining straightforward to implement [32]. In a standard PID, proportional and derivative actions indiscriminately
react to any error, and even in a single-DOF PIDA all four corrective branches (proportional, integral, derivative,
and acceleration) operate on the same error signal, precluding independent shaping of reference and disturbance
responses. By contrast, the 2-DOF PIDA leverages separate feedforward weights in its proportional and derivative
paths, so that the aggressiveness of set-point changes can be adjusted without compromising the controller’s ability
to suppress disturbances or eliminate steady-state error. From a practical perspective, the parallel-branch realization
aligns naturally with digital control architectures or analog circuitry, and the inclusion of first-order filters in the deriva-
tive and acceleration channels mitigates measurement noise. Consequently, the 2-DOF PIDA delivers enhanced tran-
sient performance, reduced overshoot, and robust disturbance handling in a form that remains accessible for industrial
deployment.

The control performance of the proposed methodology was quantified by the adaptive objective function (OF) defined
in Eq. (5), which combines three key measures of time-domain behavior into a single scalar metric. Specifically, the nor-
malized percent overshoot (OS) was weighted by p4, the normalized settling time (ST) by p2, and the cumulative tracking
error e(t) = r(t) — y(t) by the remaining weight (1 — p1 — p2). In all simulations, the coefficients were set to p1 = 0.15 and
p2 = 0'05, and a prediction horizon (simulation time) of tr = 50 s was adopted. This adaptive objective function can be
considered as a modified versin of integral of absolute error (IAE) [20] which is described by the integral term of Eq. (5).
During each trial, a step change in the reference temperature from 200 °C to 210 °C was applied when computing the OF,
ensuring that both transient peaks and steady-state deviations were captured.
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t
OF =p1-OS+p2- ST+ (1=p1—p2) | le(t)|dt )
0

The parameter-tuning loop driven by the GCRA is depicted in Fig 3. At each generation, candidate controller param-
eters are assigned to the 2-DOF PIDA controller, and the electric-furnace model is simulated under the prescribed ref-
erence step. The resulting output temperature is compared to the reference to form the error signal e(t), from which the
objective function OF is evaluated according to Eq. (5). The GCRA then uses these OF values to guide its search (min-
imizing OF by balancing exploration of new parameter regions with exploitation of promising solutions) until maximum
number of iterations is achieved.

5. Results and discussion
5.1. Compared algorithms and parameter settings

Five metaheuristic algorithms were evaluated to benchmark the proposed method’s performance. The greater cane rate
algorithm (GCRA) [19] was included for its novel nature-inspired foraging mechanism. The polar fox optimization algorithm
(PFA) [21] and hiking optimization algorithm (HOA) [22] were selected as representative of recently developed strategies
demonstrating strong exploration—exploitation balance. Success-history based adaptive differential evolution with linear
population size reduction (L-SHADE) [23], recognized as a winner in CEC benchmark competitions, was adopted to repre-
sent state-of-the-art differential-evolution variants. Finally, particle swarm optimization (PSO) [24], the most widely applied
swarm-based technique, was used as a baseline comparison.

Assignnew| K, K, K, N, K, N, a f
Apply GCRA controller T | | I Y |
parameters 9, 0,0,0,0,9,0,0
Minimize - S T S A -
(-] (-] (<] -] [~ o (-] o
Evaluate objective | I I | I | |
functian Q'OIQ'Q'Q|Q|O'O
A
v Output’
— . temperature
emperature — 2-DOF PIDA Electric ’
controller urnace
w—— 1]
Sensor
$ Heating
coil
Voltage ¥
Resistance I

Fig 3. Block diagram of the GCRA-based 2DOF PIDA controlled electric furnace system.

https://doi.org/10.1371/journal.pone.0334594.9003
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All algorithms were executed with their default parameter configurations to ensure an equitable comparison. A
population size of 30 individuals was maintained throughout, and each optimizer was allowed 100 iterations per run.
To obtain statistically meaningful results, each algorithm was independently run 25 times under these uniform set-
tings. This standardized experimental design guaranteed that observed performance differences could be attributed
to the intrinsic search behaviors of the algorithms rather than to user-tuned parameters.

5.2. Statistical analysis and significance testing

To quantify and compare the optimization performance of the five algorithms, a detailed statistical evaluation was con-
ducted. In Fig 4 the best objective-function value obtained in each of the 25 independent runs is plotted for every method.
It can be seen that the GCRA consistently achieved lower best-of-run values, with only rare excursions above 20. By con-
trast, the PSO results exhibited both higher peaks and greater dispersion, indicating less reliable convergence behavior
under the same experimental conditions.

A complementary view is provided by the box-and-whisker plots in Fig 5, which display the full distribution of objective-
function values across runs. The median line for GCRA lies below those of all other algorithms, and its interquartile range
is the narrowest, reflecting both superior central tendency and low variability. In comparison, PFA and HOA produced
higher medians and broader boxes, while L-SHADE and PSO showed still larger spreads and more pronounced outliers,
suggesting that their search processes were less stable.

Numerical summaries and nonparametric significance tests are collated in Table 1. GCRA attained a minimum OF of
18.4199, a maximum of 20.7721, and an average of 19.4261 (standard deviation=0.6582). The other methods registered
higher means, e.g., PFA (21.1587), HOA (21.7733), L-SHADE (20.5208), and PSO (22.5239), with standard deviations
ranging from 0.7485 to 1.0967. Pairwise Wilcoxon signed-rank tests [33] were performed between GCRA and each com-
parator, yielding p-values all below 1x 10~*. These results confirm that GCRA’s improvements over the other algorithms
are statistically significant at the 5% level.

25 —¥— GCRA—— PFA—8— HOA — L-SHADE -6- PSO
T T T o) T

Objective function

5 10 15 20 25
Number of run

Fig 4. Obtained best objective function values with respect to number of runs.

https://doi.org/10.1371/journal.pone.0334594.9004
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Fig 5. Boxplot analysis showing the distribution of objective function values with respect to number of runs.

https://doi.org/10.1371/journal.pone.0334594.9005

Table 1. Statistical performance evaluation of algorithms and p-values obtained from Wilcoxon’s test.

Statistical metric GCRA PFA HOA L-SHADE PSO
Minimum 18.4199 19.8614 20.7778 19.5392 21.3850
Maximum 20.7721 22.8466 23.4415 22.8706 24.8729
Median 19.3464 20.9260 21.6567 20.1156 22.0437
Average 19.4261 21.1587 21.7733 20.5208 22.5239
Standard Deviation 0.6582 0.8799 0.7485 0.8578 1.0967
p-value - 1.2290E-05 1.2290E-05 7.2245E-05 1.2290E-05

https://doi.org/10.137 1/journal.pone.0334594.t001

5.3. Objective function minimization and obtained controller parameters

The convergence behavior of each optimization method is illustrated in Fig 6, where the evolution of the objective-function
value over successive iterations is plotted for all five algorithms. It can be observed that the GCRA achieved rapid descent
of the objective metric, reaching its minimum value after 93 iterations, whereas the other methods (particularly PSO and
HOA\) exhibited slower convergence and greater oscillation in their search trajectories.

Upon completion of the search process, the best parameter sets identified by each algorithm were recorded.
Table 2 summarizes the predefined bounds for each controller parameter along with the optimal values returned by
GCRA, PFA, HOA, L-SHADE, and PSO. For instance, GCRA selected a proportional gain of 2.3941 and an integral
gain of 0.4060, while the derivative gain and associated filter were tuned to 3.5696 and 327.3797, respectively. The
acceleration coefficient set by GCRA at 0.9993 and its associated filter was 137.8373, with feedforward weights
o =1.1895 and 3 = 1.6249. In comparison, the other algorithms returned values that deviated more markedly from the
mid-ranges of the search space, reflecting their less effective balance between global exploration and local refine-
ment. By coupling the swift convergence displayed in Fig 6 with the parameter profiles of Table 2, it is demonstrated
that GCRA not only minimizes the adaptive objective function more efficiently but also identifies controller settings that
reside within well-conditioned regions of the design space, thereby ensuring both performance and robustness in the
resulting 2-DOF PIDA controller.
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Fig 6. Best convergence curves of the algorithms with respect to iteration number.
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Table 2. Adopted parameter ranges and the obtained best parameters via different algorithms.

Parameter Range GCRA PFA HOA L-SHADE PSO

Kp [0.1, 10] 2.3941 2.3246 2.8115 2.3148 2.5421
K [0.1, 1] 0.4060 0.4506 0.5720 0.5134 0.4267
Kb [0.1, 10] 3.5696 3.5457 3.8575 3.5234 3.1155
Np [5, 500] 327.3797 308.7118 164.8769 109.1211 254.6417
Ka [0.1, 1] 0.9993 1.0969 1.0642 0.9458 0.9038
Na [5, 500] 137.8373 68.3960 145.0049 271.1871 133.3183
[ed [0.5, 2] 1.1895 1.1835 1.0214 1.1449 1.1302
B8 [0.5, 2] 1.6249 1.9786 1.2602 1.7715 1.3860

https://doi.org/10.1371/journal.pone.0334594.t002

5.4. Transient response analysis

The dynamic behavior of the optimized 2-DOF PIDA controllers was examined through step-response simulations.

In Fig 7, the temperature trajectories following a set-point jump from 200 °C to 210 °C are overlaid for all five algorithms. It
is evident that the GCRA-tuned controller exhibits the swiftest rise toward the target, reaching the vicinity of 210 °C mark-
edly faster than its counterparts, while PFA demonstrates the slowest approach and the largest initial overshoot. A mag-
nified view of this interval is presented in Fig 8, where the finer distinctions in rise time and peak behavior are highlighted.
The GCRA-based response settles within the +2 °C band in under 4 s, whereas PFA remains outside this band until
approximately 6s. HOA and PSO achieve comparable rise rates to GCRA but incur slightly larger peaks, and L-SHADE
displays moderate speed yet a pronounced oscillatory tendency before settling.

Steady-state accuracy is illustrated in Fig 9. All controllers ultimately converge close to the 210 °C set-point; however,
PFA maintains a small but visible steady-state offset, while the GCRA and HOA variants attain virtually zero residual error.
L-SHADE and PSO also approach the target precisely but require longer settling durations to do so.

These qualitative observations are substantiated by the quantitative metrics summarized in Table 3. The GCRA-
optimized controller achieved the shortest settling time (3.4542s), the lowest overshoot (1.8382%), and the smallest
steady-state error (2.9715% 107°) among all methods. In comparison, PFA required 5.3326 s to settle, exhibited a 9.2226%
overshoot, and left a steady-state error of 2.4119x 10, HOA, L-SHADE, and PSO all registered longer settling times
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(4.6285s, 5.1825s, and 4.5496 s respectively), larger overshoots (1.8995%, 4.5433%, 1.9677%), and greater residual
errors (6.4311x 1075, 1.6770x 107, 9.8710 x 107° respectively).

5.5. Comparisons with reported best approaches

To contextualize the performance of the proposed GCRA-based 2-DOF PIDA controller, its results were compared against
several benchmark strategies previously reported in the literature, namely the artificial rabbits optimization (ARO)-based
filtered PID (PID-F) [6], modified electric eel foraging optimizer (NEEFO)-based PID-F [25], genetic algorithm (GA)-based
PID [26], Ziegler-Nichols (ZN)-based PID [27] tuning method. The comparative transient responses for a step change from
200 °C to 210 °C are depicted in Fig 10, with an enlarged view in Fig 11 to better highlight early-stage dynamics. From
these results, it is apparent that the GCRA-tuned 2-DOF PIDA delivers a markedly faster approach to the target tempera-
ture, achieving settling in less than 3.5s, whereas all other reported methods required substantially longer durations. The
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Table 3. Time domain performance metrics of different algorithms based 2-DOF PIDA controllers.

Stability metric GCRA PFA HOA L-SHADE PSO
Settling time (s) 3.4542 5.3326 4.6285 5.1825 4.5496
Peak (°C) 210.1838 210.9223 210.1899 210.4543 210.1968
Overshoot (%) 1.8382 9.2226 1.8995 4.5433 1.9677
Steady-state error (%) 2.9715E-05 2.4119E-04 6.4311E-05 1.6770E-04 9.8710E-05
https://doi.org/10.1371/journal.pone.0334594.t003
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Fig 10. Comparative transient response analysis with respect to reported approaches....
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GA- and ZN-based controllers, in particular, exhibited noticeably sluggish responses, accompanied by overshoots exceed-
ing 20% and 50%, respectively. Both ARO- and mEEFO-based PID-F schemes showed improved transients relative to GA
and ZN, yet their settling times remained above 11s and their overshoots above 12%, underscoring their slower conver-

gence to steady conditions.
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Steady-state performance, presented in Fig 12, reinforces these observations. While all methods ultimately approached
the set-point, the GCRA-based 2-DOF PIDA not only reached it sooner but also maintained the lowest steady-state
error, recorded at 2.9715x% 1075, as summarized in Table 4. In contrast, GA and ZN left higher residual errors, with the GA
method exhibiting more than an order of magnitude greater steady-state deviation.

Quantitative analysis in Table 4 further substantiates the superiority of the proposed approach. Alongside its minimal
steady-state error, the GCRA-based controller attained the lowest overshoot (1.8382%) and peak temperature
(210.1838 °C), whereas the ZN-based PID peaked at 215.0707 °C, far exceeding the target and inducing large oscil-
lations before stabilization. These findings demonstrate that, by leveraging the exploration—exploitation balance of the
GCRA in tuning the 2-DOF PIDA, both transient and steady-state metrics are significantly improved over those offered by
the best previously reported tuning methodologies. This translates into faster, more accurate, and more stable tempera-
ture regulation, which is highly advantageous for practical thermal process control.
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Fig 12. Comparative steady-state response analysis with respect to reported approaches.

https://doi.org/10.1371/journal.pone.0334594.9012
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Table 4. Comparative time response metrics analysis with respect to reported approaches.

Stability metric GCRA-based 2-DOF PIDA ARO-based PID-F mEEFO-based PID-F GA-based PID ZN-based PID
Settling time (s) 3.4542 11.8272 11.7823 19.4569 13.8103

Peak (°C) 210.1838 211.2718 211.2447 212.1926 215.0707
Overshoot (%) 1.8382 12.7180 12.4466 21.9256 50.7074
Steady-state error (%) 2.9715E-05 3.4251E-05 3.5773E-05 5.4091E-04 8.5227E-05

https://doi.org/10.1371/journal.pone.0334594.t004

5.6. Input tracking performance analysis

The ability of the proposed GCRA-based 2-DOF PIDA controller to follow varying reference inputs was assessed through
dedicated input-tracking simulations. As illustrated in Fig 13, the controller was subjected to a sequence of step changes
in the temperature set-point. Across all transitions, the output closely tracked the reference trajectory, exhibiting minimal
overshoot and negligible steady-state error. This responsiveness highlights the effectiveness of the tuned control parame-
ters in maintaining rapid adaptation without inducing instability.

To further examine adaptability, a variable reference profile consisting of both abrupt and gradual changes was
applied, as shown in Fig 14. In this scenario, the proposed control approach maintained accurate tracking through-
out, seamlessly adjusting to the different rates of change in the set-point. The absence of oscillatory artifacts or
prolonged settling periods demonstrates the controller’s robustness against dynamic variations in the desired oper-
ating point. Such consistent behavior under diverse input conditions confirms that the GCRA-optimized 2-DOF PIDA
controller can deliver precise and reliable temperature regulation, even when the operating requirements shift over
time.

5.7. Performance analysis for disturbance rejection and measurement noise

The robustness of the proposed GCRA-based 2-DOF PIDA controller was further evaluated under external disturbances
and measurement noise, as depicted in Fig 15. In these tests, the system was subjected to a sudden disturbance in the
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Fig 13. Input tracking performance analysis of the proposed approach.

https://doi.org/10.1371/journal.pone.0334594.9013
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heater input and a superimposed Gaussian noise component on the temperature measurement signal, replicating practi-
cal operating conditions in which sensor inaccuracies and process perturbations occur simultaneously.

The corresponding closed-loop responses are illustrated in Fig 16. It can be observed that the proposed control strat-
egy maintained stable operation, quickly counteracting the impact of the disturbance and restoring the temperature to its
nominal set-point. The corrective action was prompt, with minimal deviation from the desired value, indicating that the
tuned controller parameters provided an effective balance between responsiveness and stability. Furthermore, the pres-
ence of measurement noise did not induce oscillatory artifacts or noticeable performance degradation, demonstrating
strong resilience against high-frequency fluctuations. These findings confirm that the GCRA-tuned 2-DOF PIDA controller
not only excels in nominal tracking tasks but also preserves performance integrity under realistic plant uncertainties. The
ability to reject disturbances while suppressing noise-induced variations underscores its suitability for precise temperature
regulation in electric furnace applications, where environmental and measurement-related imperfections are inevitable.
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6. Conclusion and future work directions

In this study, a novel 2-DOF PIDA controller has been developed and applied for the first time to the temperature
regulation of an electric furnace system. The proposed structure enables independent tuning of set-point tracking and
disturbance rejection by introducing separate feedforward gains for proportional and derivative actions, while retaining
integral and acceleration terms on the raw error signal. This structural advantage addresses the inherent limitations
of conventional single-degree-of-freedom configurations, which often struggle to balance transient performance and
steady-state accuracy in nonlinear, time-delayed thermal processes. The controller parameters were optimized using
the GCRA, marking the first application of this recent nature-inspired metaheuristic to such a control architecture. A
novel adaptive objective function, combining normalized overshoot, normalized settling time, and cumulative tracking
error, was employed to achieve balanced improvements across both transient and steady-state performance mea-
sures. Comparative evaluations against state-of-the-art metaheuristic optimizers and benchmark tuning strategies
demonstrated that the proposed method consistently delivered faster settling times, lower overshoot, and near-zero
steady-state errors, while maintaining strong robustness under external disturbances and measurement noise. Over-
all, the integration of the GCRA with the 2-DOF PIDA controller offers a promising and energy-efficient solution for
precise temperature regulation in industrial furnace systems, with potential applicability to other time-delay processes
in different domains.

Future research directions may focus on several extensions of this work. First, experimental validation on a physical
furnace setup would be valuable to confirm the real-world applicability of the proposed design under practical constraints
such as actuator limitations, sensor noise, and parameter drift. Second, hybridization of the GCRA with other optimiza-
tion strategies could be explored to further enhance convergence speed and global search capability. Third, adaptive or
self-tuning versions of the 2-DOF PIDA controller could be developed to automatically adjust parameters in response to
process variations and disturbances in real time. Additionally, extending the approach to multivariable temperature control
systems and integrating predictive or learning-based elements, such as model predictive control or reinforcement learn-
ing, could further improve performance in highly dynamic and uncertain environments. These future investigations are
expected to broaden the applicability and impact of the proposed methodology across a wide range of industrial control
challenges.
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