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Abstract 

Polycyclic aromatic hydrocarbons (PAHs) have posed considerable threats to both 

ecosystems and human health. To explore their characteristics and risks in temper-

ate glacial watersheds, water samples from the Meili Snow Mountains in the south-

eastern Tibetan Plateau were collected and analyzed. The results revealed that the 

concentrations of total PAHs (∑PAHs) ranged from 406.5 to 820.9 ng‧L−1, and the 

mean ∑PAH level was relatively high compared to other global studies. PAHs were 

characterized by low–molecular–weight congeners, mainly including fluorene, and 

phenanthrene. Fluorene, phenanthrene, pyrene, and benzo[a]pyrene, were preva-

lent throughout the Meili Snow Mountains, with concentrations ranging from 164 to 

425 ng‧L−1, 23.6 to 201 ng‧L−1, 17.9 to 90.1 ng‧L−1, and 50–117 ng‧L−1, respectively. 

PAHs originated from heterogeneous combustion sources, such as coal combus-

tion, vehicular emissions, and biomass burning. These variations were attributed to 

various factors, including altitude effects, long–range atmospheric transport, and local 

environmental driving patterns. Specifically, ∑PAHs in runoff rivers decreased with 

increasing altitude, reflecting differences in local anthropogenic activities. The risk 

assessment indicated that PAHs posed moderate to high ecological risks and poten-

tial carcinogenic threats. This study provides valuable insights into the safety of drink-

ing surface water resources and the structural and functional stability of ecosystem in 

the Meili Snow Mountains, which is significant for improving regional ecological safety 

and human health.
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Introduction

The environmental threats posed polycyclic aromatic hydrocarbons (PAHs), have 
attracted widespread attention due to public awareness of health problems increases. 
PAHs are known for their carcinogenic, teratogenic, and mutagenic effects on 
humans and animals [1,2]. The United States Environmental Protection Agency (US 
EPA) has listed 16 PAHs as priority pollutants due to their potential health hazards. 
These PAHs include naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), 
fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fluo), pyrene 
(Pyr), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), 
benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3–cd]pyrene (IcdP), 
dibenz[a,h]anthracene (DahA), and benzo[g,h,i]perylene (BghiP) [3,4]. This classifica-
tion is also recognized by the European Union [5].

PAHs originate from anthropogenic and natural origins, with anthropogenic sources 
as the dominant contributor. These anthropogenic PAHs primarily originate from the 
incomplete combustion of fossil fuels and organic materials, vehicle exhaust emis-
sions, and oil spills related to exploration activities in coastal regions [6,7]. PAHs enter 
aquatic environment through wet–dry deposition, sewage discharge, and surface runoff 
[8]. Industrial advancements and the use of various fuels have led to the widespread 
presence of PAHs in aquatic environment. Dissolved PAHs in waters exhibit greater 
bioavailability and toxicity than those in adsorbed or particulate forms [9], thereby 
posing threats to both aquatic ecosystem and human health. Previous studies have 
shown increased risk due to the direct harmful effects of dissolved PAHs on living 
organisms [10], i.e., development toxicity, genotoxicity, oxidative stress, carcinogenicity, 
and endocrine disruption [11], and their connection with human cancer [12]. Therefore, 
assessing the health and ecological risks of PAHs in aquatic environments is crucial for 
protecting the health of residents and promoting safe and healthy living environment.

Semi–volatile PAHs can disperse regionally and globally through atmospheric 
transport in the form of gaseous or particulate matter [13]. Glaciers, snow, and rivers 
serve as important vectors for the deposition of PAHs from the atmosphere, poten-
tially impacting drinking water and agricultural water supply. Therefore, it is critical to 
conduct study on PAHs in temperature glacial regions to quantitatively evaluate their 
effects on both human health and the ecological environment [14]. Studies on PAHs 
in glacial watersheds have predominantly focused on the Tibetan Plateau (TP) region 
with minimal anthropogenic activities. Li et al measured the PAH concentrations of the 
Qiyi, Yuzhufeng, Xiaodongkemadi, and Gurenhekou glaciers across the TP, and found 
PAH concentration in the Yuzhufeng glacier were the highest and low–molecular–
weight (LMW) PAHs were the most prevalent, due to the low–temperature combustion 
of coal and biomass [13]. Liu et al indicated PAHs in glacial meltwater and down-
stream river water from the easter TP originated from incomplete coal combustion 
and coking discharge and were no obvious carcinogenic risk to human health [15]. Li 
et al found the PAHs in the glaciers over the TP had low biological risk [16]. As gla-
ciers melt, the trapped PAHs are released and can enter the runoff rivers. Therefore, 
it is necessary to carry out study on PAHs pollution in glacier basins with significant 
anthropogenic activities in the Meili Snow Mountains on the southeastern TP.
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The Meili Snow Mountains (98°30′–98°46′E, 28°10′–28°41′N) constitute a continuous mountain range in the southeast-
ern TP and serve as an integral part of the Hengduan Mountains. The highest elevation is Kawagebo Peak at 6740 m 
above sea level. This region hosts a significant number of temperate glaciers, which are mountain glaciers known for 
high accumulation and melting rates. This mountain range is vital for supplying agricultural irrigation and domestic water 
to residents in downstream areas, making it critical for the ecological health and well–being of these communities. The 
Meili Snow Mountains are located near the heavily polluted Indian subcontinent characterized by a dense population and 
extensive industrial and agricultural activities. Additionally, there is considerable tourism activities surrounding the Meili 
Snow Mountains.

Zhang et al revealed that polychlorinated biphenyls contamination in the Meili Snow Mountains, predominantly from 
glacier melt and atmospheric transport, poses significant ecological risks but negligible carcinogenic threats to human 
populations [17]. However, investigation on PAHs has not yet been conducted in the Meili Snow Mountains. Therefore, in 
this study, 13 glacial meltwater and 5 river water samples, were collected in October 2023. The primary objectives were 
to: (1) elucidate the concentration and compositional characteristics of PAHs, (2) identify potential sources of PAHs, (3) 
assess human health and ecological risks of PAHs, and (4) investigate the possible influencing factors of PAHs. This study 
aimed to provide essential data and insights into potential risks of PAHs to aquatic ecological security and public health, 
thereby assessing ecological conditions, and improving human health in this region.

Materials and methods

Sample collection

Glacial river samples were collected from different river watersheds in the Meili Snow Mountains using a clean plastic 
bucket in October 2023. Sampling sites included the Qunatong River (gs), Pojun River (pj), Mingyong River (my), Sinong 
River (sn), and Yubeng River (yb) (Fig 1). Five river water samples were collected from the downstream regions of rivers 
originating from glacial meltwater across various altitudinal gradients. Notably, the yb and gs watersheds are tourist des-
tinations. In total, 18 water samples were collected at different altitudes along the glacier basins. Comprehensive details 
are provided in S1 Table.

During sampling, we employed the clean polypropylene suits, gloves, and a pre‒cleaned stainless steel shovel to pre-
vent pollution and ensure the accuracy of subsequent laboratory measurements. In the field, water samples were filtered 
using 0.7 μm glass‒fiber filters (Whatman International Ltd., Maidstone, England). Samples of filtered water (2 L) was 
stored in low–density polyethylene bottles (Thermo Scientific), in the dark at 4°C during transport to the analytical labo-
ratory at the Beijing Institute of Geology of Nuclear Industry, where they were subsequently stored at −18°C until analy-
sis. Before sampling, these bottles were thoroughly rinsed with ultrapure water and acetone to remove potential organic 
pollutants.

Chemicals and reagents

All chemicals used for sample processing and analysis were of analytical, liquid chromatography, or pesticide residue 
grade, and obtained from Wako Chemical (Osaka, Japan) and Tan–Mo Technology Co., Ltd. (Jiangsu, China). A standard 
PAH solution (1 mL) containing the 16 priority pollutants served as the standard sample. Deionized water, with a resistiv-
ity of 18 MΩ‧cm, was obtained from a Milli–Q water purification system. Florisil, with a particle size of 60–100 mesh, was 
activated in an oven at 130°C for 24 h.

Sample pretreatment

The water samples were thoroughly agitated, and 1 L was precisely measured into a separatory funnel [18]. Substitute 
standard solution (100 μL 2 μg‧mL−1) was added to 1 L water sample and thoroughly mixed. The pH of the water samples 
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was adjusted to a range of 5–9 with hydrochloric acid. Then, 30 g sodium chloride and 50 ml n–hexane were sequentially 
added to the water samples, and the mixture was shaken for 5 min and allowed to stand for stratification until the aqueous 
phase and organic phase separate. The extraction process was repeated twice. The sample was dried using anhydrous 
sodium sulfate and then concentrated to 10 ml. Subsequently, the solution was concentrated to 1 mL using a nitrogen–
blowing apparatus. A Florisil column was used for purification, and the eluent was further concentrated to < 1 mL. An 

Fig 1.  Locations of the sampling points in the Meili Snow Mountains. (a) shows the regional map of the Meili Snow Mountains, (b) indicates the 
location of the Meili Snow Mountains in the Tibetan Plateau, and (c), (d), (e), and (f) are partial enlarged views of glacier watersheds.Data sources: Riv-
ers and glaciers are extracted from Landsat 8 imagery, DEM (elevation) based on Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), was obtained from NASA (https://www.earthdata.nasa.gov/). All sources are in the public domain and not copyrighted.

https://doi.org/10.1371/journal.pone.0334592.g001

https://www.earthdata.nasa.gov/
https://doi.org/10.1371/journal.pone.0334592.g001
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internal standard solution was added and adjusted to 1 mL with acetonitrile. The internal standards of PAHs consisted of 
naphthalene–d

8
, acenaphthene–d

10
, phenanthrene–d

10
, chrysene–d

12
, and pyrene–d

12
. Finally, the prepared samples were 

stored at 4°C until analysis.

Gas chromatography‒mass spectrometry analysis

The pretreated sample was analyzed using gas chromatography–mass spectrometry (GC–MS, Clarus 600, 8547, Per-
kin Elmer, USA) with electron ionization [18]. Separation of target compounds was conducted using a quartz HP–5MS 
capillary column (30 m × 0.25 mm × 0.25 μm film thickness, Agilent Technologies) operating selected ion monitoring mode. 
Helium (99.99% purity) was used as the carrier gas at a constant flow rate of 1.2 mL‧min−1 during analysis. Each sample 
was injected in a volume of 1.0 μL in splitless injection mode. The injector temperature was maintained at 280 °C, and the 
electron impact ionization voltage was set to 70 eV, with the ion source temperature was set to 230 °C. The temperature 
program for the oven was as follows. The column was initially held at 80 °C for 2 min, subsequently increased to 180 °C at 
a rate of 20 °C‧min−1, and finally increased to 290 °C at a rate of 10 °C‧min−1, with a hold time of 5 min.

A five‒point internal calibration curve was established for each of the 16 PAHs through serial dilution of a high‒concen-
tration stock solution (200 mg‧L−1 of 16 PAH mixture in acetonitrile) to generate five calibration at concentrations of 0.1, 
0.5, 1.0, 5.0, and 10.0 μg‧mL−1. A 10 μL aliquot of each calibration standard was automatically injected into the GC‒MS 
system using an autosampler to obtain chromatograms. Calibration curves were constructed by plotting the peak areas 
against corresponding concentrations, all of which exhibited excellent linearity (R² > 0.999). Quantification of individual 
PAHs was performed using their respective calibration curves. For MS detection, the scan mode was used a mass‒to‒
charge (m/z) range of 35‒500. Speak identification of PAHs was performed using the National Institute of Standards and 
Technology (NIST) mass spectral library.

Quality assurance and quality control

The limit of detection (LoD) for the target analyte was determined using a specific method. A blank sample was subjected 
to injection, followed by the repeated injection zof 10 needles. Then, the standard deviation of the peak area integral at the 
designated retention time for the target substance was calculated, where the corresponding content was calculated with 3 
standard deviation value as the detection limit. The certified material used in the analytical process consisted of a mixture 
of 16 PAHs in methanol (lot number: 21100429, part number: 81168a, Tan–Mo Technology Co., Ltd). The recovery rate 
and precision data are presented in S2 Table.

Statistical analysis

The concentrations of PAH components at the 18 sampling sites, which were distributed across five glacial watersheds, 
were statistically analyzed using Origin software. Since the data were not normally distributed, the non-parametric 
Mann-Whitney U test (for pairwise comparisons) and Kruskal-Wallis H test (for multi-group comparisons) were applied to 
evaluate the significance of differences in PAHs concentrations among the different watersheds.

Health risk assessment

Incremental lifetime cancer risk (ILCR) model established by the US EPA [19] is used to assess human health risk for 
infants (1–2 yrs), toddlers (5–6 yrs), children (9–12 yrs), adolescents (15–18 yrs) and adults (18–75 yrs) [20,21]. Due to the 
similar toxicological mechanisms of PAH congeners, toxicity equivalency factors (TEF) were used to assess toxic equiva-
lent quotient (TEQ) relative to Bap. BaP is recognized as the most carcinogenic and mutagenic PAH, and it is the only one 
with adequate toxicological data to confirm its potential carcinogenicity [22]. The TEQ and ILCR formulas are as follows:

	 TEQ = ΣCi × TEFi	 (1)
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	 ILCR = CSF × TEQ × IR × EF × ED × 10–6/(BW × AT)	 (2)

where Ci is the concentration of PAH congeners (ng‧L−1), and CSF is the carcinogenic slope factor of BaP, quantified as 
7.3 (kg‧d)‧mg−1 [23]. IR is water the intake rate (L‧d−1), EF denotes the exposure frequency (day‧yr−1), ED is the exposure 
duration (yr), BW is the body weight (kg), AT is the average time (d), and TEFi is the TEF of individual PAHs (i), as shown 
in S3 Table. Detailed information of the primary exposure parameters is presented in S4 Table.
ILCR values of less than 1 × 10−6 indicate negligible cancer risk, while ILCR values ranging from 1 × 10−6 to 1 × 10−4 sug-

gest potential cancer risk. An ILCR values exceeding 1 × 10−4 indicate a high cancer risk [24,25].

Ecological risk and potential toxicity assessment

The risk quotient (RQ) is used to assess the potential ecological risk of PAHs to aquatic organisms. The RQ formula is as 
follows:

	 RQNCs = Ci/CNCs	 (3)

	 RQMPCs = Ci/CMPCs	 (4)

where RQ
NCs

 and RQ
MPCs

 is the minimum and maximum values of RQ, respectively. C
i
 is the concentration of PAH conge-

ners (ng‧L−1), while C
NCs

 and C
MPCs

 represent the lowest and highest risk standard values of PAHs, as detailed in S5 Table. 
The RQΣPAHs(NCs)

 and RQΣPAHs(MPCs)
 are the summation of 16 PAHs RQ

NCs
 and RQ

MPCs
, respectively, thereby providing a com-

prehensive assessment of 16 PAHs and accurately reflecting pollution level [26]. The ecological risk levels are presented 
in S6 Table.

Backward trajectory analysis

To examine the transport mechanisms contributing to the abundance of PAHs, the HYbrid single-particle Lagrangian inte-
grated trajectory (HYSPLIT) model was utilized to calculate the 120 h back trajectories from October 2021 to September 
2023. These trajectories were generated with a termination altitude set 500 m above sea level, and cluster analysis was 
performed at three–month intervals.

Results

Concentration and occurrence of PAHs

Descriptive statistics for 16 PAHs in all samples are presented in S7 Table, while the detected PAH concentrations are 
shown in Fig 2. The analysis revealed that Flu, Phe, Pyr, and BaP were found at all sampling points, while Ace was 
detected only at pj–4 and yb–3, at the lowest concentrations, it was excluded from further analysis. The concentrations of 
Flu, Phe, Pyr, and BaP ranged from, 164–425 ng‧L−1, 23.6 to 168 ng‧L−1, 17.9 to 90.1 ng‧L−1, and 50–117 ng‧L−1, respec-
tively. The relative abundance of individual PAHs followed Flu > Phe > BaP > Pyr (Fig 2a). Notably, Flu and Phe were 
the predominant contributors to PAH pollution. However, BaP, known for its carcinogenic properties, was detected in all 
samples, necessitating additional investigation. The concentrations of total PAHs (∑PAHs) ranged from 406.5 to 820.9 
ng‧L−1, with a mean value of 526.9 ng‧L−1. The highest ∑PAHs appeared at yb–3 (820.9 ng‧L−1), while the lowest was at 
pj–1 (406.5 ng‧L−1), which suggested significant pollution in the Meili Snow Mountains. As shown in Fig 2b, the concentra-
tion of Flu showed greater variability among PAH congeners, followed by Phe, Bap, and Pyr. The significant variations in 
the concentration of Phe indicated a relatively more heterogeneous spatial distribution. The statistical analysis revealed 
significant differences (p < 0.05) in the concentrations of individual PAH components among the five glacial watersheds. 
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Furthermore, a consistent spatial pattern was observed within each watershed, characterized by higher concentrations at 
downstream sites compared to upstream sites.

Composition and distribution characteristics

As shown in Fig 3a, the primary compositional patterns of PAHs consisted of 3–ring (Flu, and Phe), 4–ring (Pyr), and 5–
ring (BaP) in this study. The PAH compositions in all samples showed a high degree of similarity. Notably, 3–ring PAHs 
were the predominant pollutants, constituting 60.4–84.5% (mean value of 74.38%). This was followed by 5– and 4–ring 
PAHs, which accounted for 10.3–23.3% (mean value of 15.13%), and 4.2–12.9% (mean value of 9.49%), respectively. 
Overall, compared to high–molecular–weight (HMW, ≥ 4–ring) PAHs, LMW (2– and 3–ring) PAHs were the prevalent pol-
lutants (Fig 3b).

Compared to meltwater samples, ∑PAHs in the river samples were relatively high, with the exception of those from 
the Mingyong River watershed. Analysis revealed no significant differences in the mean ∑PAHs across various glacial 
watersheds (S1 Fig). However, the Yubeng River and Qunatong River watersheds showed relatively high ∑PAHs, possibly 
due to intense anthropogenic activities associated with their status as tourist destinations. Conversely, the Sinong River 
watershed showed the lowest ∑PAHs.

Health risk assessment

BaP is a potent carcinogen which serves as an indicator of PAH toxicity, as it was measured in all samples, we only 
employed it to assess cancer risk. The ILCR values for the five age groups are presented in Fig 4. The ILCR values varied 
between 0.64 × 10−6 and 1.49 × 10−6 (mean value of 1.01 × 10−6) for the infant group. In the toddler group, the ILCR val-
ues ranged from 1.26 × 10−6 to 2.95 × 10−6 (mean value of 2.01 × 10−6). For the child group, the ILCR values ranged from 
1.92 × 10−6 to 4.48 × 10−6 (mean value of 3.04 × 10−6). For the adolescent group, the ILCR values ranged from 2.22 × 10−6 
to 5.19 × 10−6 (mean value of 3.54 × 10−6). Finally, the adult group had ILCR values between 7.40 × 10−6 and 17.32 × 10−6 
(mean value of 11.80 × 10−6). Among the five age groups, the highest cancer risk was in the adult group, while the lowest 
risk was in the infant group. According to the current PAH levels, the cancer incidence ratios were as follows: 1.01 cases 
per million for infants, 2.01 cases per million for toddlers, 3.04 cases per million for children, 3.54 cases per million for 

Fig 2.  Concentrations of individual PAHs at the sampling points (a) and box line plots illustrating the concentrations of Ace, Flu, Phe, Pyr, and 
BaP (b).

https://doi.org/10.1371/journal.pone.0334592.g002

https://doi.org/10.1371/journal.pone.0334592.g002
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adolescents, and 11.80 cases per million for adults. The lifetime cancer risk, calculated as the aggregate value of the five 
age groups, yielded values ranging from 13.42 × 10−6 to 31.41 × 10−6 (mean value of 21.40 × 10−6). After 70 years of contin-
uous exposure, the cancer incidence ratio was 21.40 cases per million individuals. The lowest lifetime cancer risk value 
was located at yb–1 (13.42 × 10−6) exceeding the threshold of 1 × 10−6, demonstrating a potential cancer risk.

Fig 3.  Composition pattern of PAHs and contribution of LMW and HMW to ∑PAHs.

https://doi.org/10.1371/journal.pone.0334592.g003

Fig 4.  ILCR values of PAHs through the ingestion of surface water exposure route: ILCR values at all sampling points (a) and mean ILCR 
values (b).

https://doi.org/10.1371/journal.pone.0334592.g004

https://doi.org/10.1371/journal.pone.0334592.g003
https://doi.org/10.1371/journal.pone.0334592.g004
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Ecological risk and potential toxicity assessment

The RQ
NCs

 values in all samples were more than 1 (Fig 5a), demonstrating that these PAH congeners posed moder-
ate ecological hazards. Furthermore, the RQ

MPCs
 for Flu and BaP exceeded 1 (Fig 5b), suggesting significant risk and 

severe toxicity to aquatic organisms. Conversely, the RQ
MPCs

 values for the other PAH congeners remained below 1, 
with the exception of Pyr at yb–3, reflecting moderate ecological risk. Notably, Flu exhibited the highest ecological risk. 

Fig 5.  Distribution of RQ and m–RQ values, and relations between m–RQ and TEQ.

https://doi.org/10.1371/journal.pone.0334592.g005

https://doi.org/10.1371/journal.pone.0334592.g005
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Furthermore, the RQ
∑PAHs(NCs)

 values were less than 800, with exception of yb–3 (Fig 5a), while the RQ
∑PAHs(MPCs)

 values 
exceeded 1 (Fig 5b). These findings suggested that the pollution levels of ΣPAHs presented a moderate–2 ecological 
risk; however, yb–3 was a high ecological risk. Additionally, mean–RQ (arithmetic mean of RQ

NCs
) and TEQ were used to 

assess the potential toxicity and risk levels to aquatic organisms (Figs 5c and 5d). The m–RQ exceeded 100 at all sam-
ples, considered as high risk [27]. TEQ ranged from 50.4 to 117.7 ng‧L−1, indicating a moderate risk.

Overall, the Meili Snow Mountains exhibited a moderate to high toxicity and risk, with significant implications for eco-
logical health. We hypothesize that this conclusion could also apply to other regions in the southeastern TP, where ∑PAHs 
could be an order of magnitude higher than those found in the Meili Snow Mountains.

Discussion

Potential source identification

The source identification is considered essential for understanding the transport and fate of PAHs in the environment. In 
this study, we used compositional characteristics, molecular ratios and Pearson’s correlation coefficients to identify poten-
tial sources of PAHs in the Meili Snow Mountains.

PAHs originating from anthropogenic activities, petrogenic sources, and low– to moderate–temperature combustion 
processes were characterized by a significant presence of LWM PAHs, such as NaP, Ace, Flu, and Phe [28]. By contrast, 
HMW PAHs, such as Fluo, Pyr, and BaP, have been predominantly associated with pyrogenic sources and high–tem-
perature combustion processes [29,30]. Analysis of all samples revealed the presence and concentration of Flu, Phe, 
Pyr, and BaP (Fig 2a), indicating that the PAHs originated from heterogeneous combustion sources. Notably, HMW PAHs 
were not predominant over LMW PAHs in any of the samples (Fig 3b). This suggested that contribution from pyrolytic 
sources, resulting from high–temperature combustion processes, was significantly lower than from low– or moderate–
temperature combustion sources. Consequently, we inferred that incomplete combustion was the primary contributor 
to PAH emissions, which is further supported by the presence of PAH congeners indicating various sources. Phe, Flu, 
and Pyr were predominantly associated with the combustion of coal, biomass, and coke [9,31], while Bap was primarily 
released from the combustion of coal, diesel, and gasoline [32]. Furthermore, Flu and Phe were indicative of emissions 
from coke ovens [33].

The molecular ratios and compositional relationship are presented in Fig 6. A Flu/(Flu + Pyr) ratio exceeding 0.5 indi-
cated diesel emissions, while below 0.5 suggested emissions from gasoline, petrol, and biomass combustion [34,35]. The 

Fig 6.  Molecular ratios for selected PAHs, and compositional relationship between Pyr and BaP.

https://doi.org/10.1371/journal.pone.0334592.g006

https://doi.org/10.1371/journal.pone.0334592.g006
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Flu/(Flu + Pyr) ratios exceeded 0.5, indicating that diesel emissions significantly contributed to the pollution. These diesel 
emissions primarily originated from the transportation sector, especially from the operation of diesel vehicles and heavy 
trucks [36]. Furthermore, a LMW/HMW ratio of less than 1 signified combustion sources, while greater than 1 indicated 
petroleum sources [37]. The LMW/HMW ratios were all above 1 suggesting that pyrogenic activities were predominant, 
corroborating results from previous studies [13,38]. Pyrogenic sources included the incomplete combustion of organic 
matter, such as fossil fuels, coal, wood, and biomass, by–products from industrial processes, and emissions from gaso-
line or diesel–powered vehicles [39]. Additionally, nine principal non–alkylated compounds were classified as combustion 
PAHs (CPAHs), facilitating to differentiate between combustion and non–combustion sources [40]. A CPAH/∑PAH ratio 
less than 0.3 indicated petrogenic sources, while between 0.3 and 0.7 suggested a mixed source, and exceeding 0.7 
implied the predominance of combustion inputs [40]. The CPAH/∑PAH ratios were above 0.7, with the exception of gs–1, 
gs–3, gs–4, and sn–2, further confirming the dominance of PAHs generated from combustion processes.

Relationships among PAHs due to common source were assessed by Pearson’s correlation coefficients. A strong posi-
tive correlation between Pyr and BaP (Fig 6b) could be inferred from emissions of gasoline vehicles during high tempera-
ture processes.

Overall, the analysis indicated that combustion–derived PAHs, primarily originating from biomass burning, coal com-
bustion, and vehicular emissions, were predominant in the Meili Snow Mountains.

Comparison with previous studies

PAHs have been extensively detected in ice cores, snow, the atmosphere, and sediment in remote alpine regions 
[13,15,16,41–43]. Numerous studies on PAHs have been conducted in regions surrounding the TP (Fig 7a and S8 Table). 
Overall, the mean ∑PAH levels in river water (CR, SWGR, GR, BDR, DXR, and YTR) were higher than glacial meltwater 
(UPGR, BES, DG, and HG), ice cores (ICDG and ICRG), and snow (GRHK, XDKMD, YZF, and QG), with the exception 
of glacial meltwater from the Dagu glacier (DG) [15]. The DG is located near roadways, with significant anthropogenic 
activities [15]. Furthermore, the mean ∑PAHs in surface water from the SWGR and BDR reached 24750 ng‧L−1 and 5799.2 
ng‧L−1, respectively [44,45]. These two rivers are situated in urban areas with high population density and strong anthropo-
genic activities.

The mean ∑PAH value in this study exceeded those reported in various other regions across China (Fig 7b and S8 
Table), with the exception of riverine environments situated in northern China, such as LR, DXR, SR, and HR. Specifi-
cally, the mean ∑PAH value in LR was 2920.6 ng‧L−1, and PAHs primarily originated from a mixed source and combustion 
processes during flood and dry periods [46], respectively. In DXR, the PAHs were attributed to the incomplete combustion 
of coal, and emissions from cooking activities [15]. PAHs in the SR were linked to anthropogenic influences from urban 
oil pollution and incomplete combustion of coal and gas [47]. Furthermore, in NCL, LMW PAHs, such as Phe and Flu, 
remained the predominant PAHs [41].

The mean ∑PAH level in this study was higher than those reported in other regions worldwide, but lower than CR, 
SSR, OR, RN, and SWGR (Fig 7c and S8 Table). Importantly, water samples from CR, SSR, OR, RN, and SWGR passed 
through urban and industrial zones, and PAHs generated by anthropogenic activities were subsequently discharged into 
the river [48,49]. By contrast, the mean ∑PAHs in SWK, PA, and WSAB indicated that remote regions, far from direct 
anthropogenic activities, were affected by PAHs through long–range atmospheric transport (LRAT), contributing to their 
global distribution. Considering the high PAH level and the sensitive ecological conditions on TP, it remains imperative to 
identify the sources of these pollutants and implement targeted strategies to mitigate pollution.

Influence factors

This study identified a limited number of PAHs, aligning with a previous study in the eastern TP [15], which could be 
explained by the difficulties encountered by PAH pollutants when reaching high–altitude regions. The contribution of LMW 
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Fig 7.  Distribution of mean ∑PAHs (ng‧L−1) in water samples from various watersheds: areas surrounding TP (a), areas surrounding China 
(b), and areas around the world (c). Detailed information is provided in S8 Table. Basemap satellite images was obtained from the World Imagery Esri 
layer under a CC BY license. Sources: Esri,Maxar, Earthstar Geographics, and the GIS User Community. Content is the intellectual property of Esri and 
is used herein with permission. Copyright © 2025 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0334592.g007

https://doi.org/10.1371/journal.pone.0334592.g007
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PAHs was greater than that of HMW PAHs, due to their different solubility and volatility characteristics. Moreover, ∑PAHs 
were relatively high in river water located downstream of glacial confluences, likely due to the cumulative effects of PAHs 
in the runoff river. The results of this study were affected by regional pollution dynamics, altitude variations, and the effects 
of LRAT.

Local surroundings within the various watersheds.  The compositional characteristics of PAHs in the Meili Snow 
Mountains were similar to those in snow and cryoconites from the TP [13,15], confirming the connection between glacial 
meltwater and river water [15], which could be attributed to the release of PAHs stored in snow, glaciers, and cryoconites 
during the melting process, subsequently entering the runoff rivers [50]. Furthermore, downstream rivers showed a 
cumulative effect on PAHs transported from upstream sources. Notably, the contribution of LMW PAHs was significantly 
greater than that of HMW PAHs (Figs 3b and 6a). This difference could be explained by the higher volatility of LMW PAHs, 
facilitating LRAT [51,52], whereas HMW PAHs were more likely to deposite during the condensation process [53].

Anthropogenic activities significantly increased PAH pollution levels of surface water. The Yubeng River watershed had 
the highest mean ∑PAH value (S1 Fig). This watershed encompasses Yupeng village, a prominent tourist destination, 
where emissions from vehicles, driven by an influx of visitors, contributed to high ∑PAHs. Conversely, the Sinong River 
watershed had the lowest mean ∑PAH value, which could be ascribed to limited tourism development, inadequate acces-
sibility, and a sparse population. Additionally, the Qunatong River and Pojun River watersheds had relatively high mean 
∑PAHs (S1 Fig), likely due to their geographical proximity and the potential LRAT.

In this study, with the exception of my–2, variations in ∑PAHs showed a significant cumulative effect on downstream 
river water (Fig 2a). Specially, my–2 is located in the middle reaches of the Mingyong River, while the water sample at 
my–1 was collected from a glacial–terminal lake. The high ∑PAHs at my–1 could be attributed to the accumulation of gla-
cial meltwater over time, explaining why ∑PAHs at my–1 exceeded those at my–2.

Altitude effects in the various watersheds.  Previous studies have revealed that various factors, including altitude, 
latitude, and distance from pollution sources, can affect ∑PAHs in environmental media [54,55]. Among these factors, 
altitude was identified as the most significant, as indicated by the observed inverse relationship between ∑PAHs and 
altitude in the eastern TP glacial basin [15]. A decreasing trend in ∑PAHs with increasing altitude was observed in certain 
watersheds, especially within the Qunatong River and Yubeng River watersheds (Fig 8), likely due to increased local 
confluence and enrichment [15]. Additionally, the sampling points located in low–altitude regions with high population 
density and developed tourism, were affected by various PAH emission sources. Consequently, PAHs originating from 
anthropogenic activities played a substantial role in adversely affecting the environment.

LRAT and wet–dry deposition effects.  Previous studies have shown that PAHs originating from source regions can 
reach high–altitude region through LRAT [15,16] and wet − dry deposition processes [56]. Fig 9 illustrates a significant 
feature of the large–scale regional air mass in the Meili Snow Mountains, indicating that the Meili Snow Mountains 
is predominantly affected by Indian monsoon circulation originating from the Indian Ocean and the Bay of Bengal. 
Consequently, PAHs carried by water vapor were extensively distributed across the investigated areas through LRAT, as 
evidenced by the prevalence of LMW PAHs (Figs 3b and 6a), explained by LMW PAHs transported more effectively to 
remote regions than HMW PAHs [57].

Furthermore, contrary to the arid conditions from November to April, the rainy season from May to October significantly 
increases precipitation. The high concentration of LMW PAHs (Fig 3b) reflected the effective removal of PAHs from the 
atmosphere due to heavy rainfall. Apart from wet deposition, atmospheric PAHs transported through dry deposition might 
be another important source [58].

Health risk assessment

The ILCR values in this study were greater than those reported in the eastern TP region [15], but lower than those of sur-
face water from the Liaohe River in Northeast China [47]. These differences could be primarily attributed to the selection 
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of exposure parameters, and the variations in concentrations of PAH congeners. All ILCR values were within the threshold 
limits from 1 × 10−6 to 1 × 10−4, indicating that the ingestion of surface water in the investigated area posed a potential can-
cer risk. Importantly, infants, toddlers, and children were more vulnerable and sensitive to PAHs [59,60], increasing their 
risk of health complications.

PAHs can be metabolized and react as electrophilic intermediates capable of forming PAH–DNA adducts, serving as 
biomarkers indicative of DNA damage linked to cancer [61]. Prolonged exposure to PAHs has been shown to increase 
cancer risk [62]. The mean ∑ILCR values indicated that the ingestion of surface water contaminated with PAHs may 
account for an additional 21.40 cancer cases per million individuals (Fig 4b). This result contrasted with data reported from 
the eastern TP region [15], primarily due to high concentration of potent carcinogen BaP in all samples. Benzo (a) pyrene 
diol epoxide is a metabolite from the diol epoxide of BaP, which can react with DNA, leading to mutation and eventually 
cancer [63]. BaP is predominantly associated with combustion sources, including vehicular emissions, fuel oil combus-
tions, and biomass burning [8,36,45]. This highlights the importance of implementing green mobility initiatives as promoted 
by national transportation systems, and converting to cleaner energy alternatives to reduce emissions resulting from tradi-
tional biomass and fuel combustion.

According to previous study [64], following the implementation of drinking water treatment plans, the mean ILCR values 
were 7.38 × 10−7 for the infant group, 1.47 × 10−6 for the toddler group, 2.22 × 10−6 for the child group, 2.59 × 10−6 for the 
adolescent group, and 8.63 × 10−6 for the adult group. These results indicated a persistent potential cancer risk to human 
health.

Ecological risk and potential toxicity assessment

The results of the ecological risk assessment (Fig 5) aligned with those reported in Aoshan Bay and Jiaozhou Bay [65]; 
however, they were lower than assessments conducted in cryoconties from TP glaciers [16] and seawater from Hangzhou 
Bay located in the western region of the East China Sea [66]. Both Flue and BaP have been shown to pose high ecolog-
ical risk. Notably, yb–3, located in a tourist area, was the highest ecological risk, due to high concentration of BaP. Due 
to the special physical properties of HMW PAHs [67], there were difficulties in quantifying their concentrations which has 
ignored their ecological effects [68,69]. Compared to LMW PAHs, HMW PAHs have higher toxicity, and even at low con-
centration, we inferred that their ecological risk was higher. The ubiquitous presence of potent carcinogen BaP indicated 

Fig 8.  Relationships between ∑PAHs and altitude: Qunatong River watershed (a), and Yubeng River watershed (b).

https://doi.org/10.1371/journal.pone.0334592.g008

https://doi.org/10.1371/journal.pone.0334592.g008


PLOS One | https://doi.org/10.1371/journal.pone.0334592  October 16, 2025 15 / 20

Fig 9.  Cluster analysis of 72 h back trajectories in the Meili Snow Mountains between October 2021 and October 2023. The colored lines repre-
sent different clusters. Data sources: National border information was obtained from Natural Earth (http://www.naturalearthdata.com/). All sources are in 
the public domain and not copyrighted.

https://doi.org/10.1371/journal.pone.0334592.g009

http://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pone.0334592.g009
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certain substances, typically non–toxic, exhibiting significant toxicity even at low concentrations. In the future, it will be 
imperative to routinely monitor the concentrations of dissolved HMW PAHs, with particular emphasis on BaP, while also 
identifying their primary sources. Furthermore, because PAHs in aquatic environments undergo dynamic transformations 
among different phases [9] and highly toxic HMW PAHs readily adsorb to particulate matter [67], subsequent studies 
should focus on their potential toxicity and risks to aquatic organisms of the particulate phase.

Conclusions

In this study, we found that the ∑PAHs ranged from 406.5 to 820.9 ng‧L−1, with a mean value of 526.9 ng‧L−1. Furthermore, 
the PAH pollution level in this region was relatively high in comparison to other global studies. The water samples showed 
the presence of LMW PAH congeners, with Flu, Phe, Pyr, and BaP commonly detected. While meltwater exhibited lower 
∑PAHs, downstream rivers, particularly the Qunatong River and Yubeng River watersheds, presented higher ∑PAHs. We 
suggested various factors, including regional pollution patterns, altitude, and LRAT, significantly affected the composition 
and distribution of PAHs. Importantly, we noted the mean ∑PAHs in river runoff decreased with increasing altitude, indicat-
ing that altitude–dependent variation in anthropogenic activity intensity was the primary drivers of this trend. Additionally, 
we observed that the PAHs originated from heterogeneous combustion, including coal combustion, vehicular emissions, 
and biomass burning. Backward trajectory analysis revealed that PAH pollutants from the Indian Ocean and the Bay of 
Bengal were transported to the Meili Snow Mountains through LRAT mechanisms, with air mass sources significantly 
affecting areas with elevated ΣPAHs. Furthermore, heavy rainfall had a washing effect on atmospheric PAHs, leading to 
the differences in influencing factors between high and low ∑PAH areas. Finally, we calculated RQ and ILCR of PAHs and 
found moderate to high ecological risk and potential carcinogenic threats.

This study provides a new perspective on the safety of drinking surface water resources and the structural and func-
tional stability of ecosystem in the Meili Snow Mountains, which is of great significant for enhancing the regional ecolog-
ical environment and public health. According to the study, the following interventions are proposed to mitigate localized 
anthropogenic emissions within scenic areas of the Meili Snow Mountains: (1) Residential Energy Transition: Implement 
phased replacement of firewood combustion with grid-supplied electricity for household energy needs. (2) Transportation 
Electrification: Facilitate conversion of gasoline-powered vehicles to zero-emission vehicles (ZEVs) in the Yubeng Scenic 
Area transportation fleet. These measures are projected to significantly reduce emissions of particulate matter (PM₂.₅), 
nitrogen oxides (NOₓ), and carbon monoxide (CO) from distributed pollution sources.
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