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Abstract 

In this study, tropospheric column concentration of nitrogen dioxide (TNO
2
CC) were 

derived from Sentinel-5P data. We employed statistical and local spatial autocorrela-

tion analyses to investigate the spatialtemporal distribution and variation of TNO
2
CC 

across 346 major Chinese cities from 2019 to 2023. Using Random Forest (RF) 

and Shapley Additive Explanations (SHAP), we analyzed the influence of 15 natural 

factors on ambient TNO
2
CC levels. The high R² values (0.92 and 0.76), along with 

the close adherence to the 1:1 line, demonstrate the model’s robustness. The most 

influential natural factors identified include atmospheric pressure, aerosol optical 

depth, Leaf Area Index, evapotranspiration, and dew point temperature. Addition-

ally, a non-linear response curve approach was applied to examine the independent 

association between natural driving factors and pollutant concentrations. TNO
2
CC 

varied seasonally across the 346 cities, with the highest levels in winter and the low-

est in summer. From 2019 to 2023, TNO
2
CC levels exhibited fluctuating trends, with 

notable regional disparities: higher concentrations were observed in capital cities and 

in northern and northeastern part of China. TNO
2
CC were significantly influenced by 

temperature-related variables, aerosol optical depth, and leaf area index. The find-

ings of this study identify key natural influencing factors and provide a scientific basis 

for revealing the causes of urban air pollution in China, informing pollution control 

strategies, identifying priority areas for remediation, and supporting the natural formu-

lation of protection policies.

Introduction

In recent years, environmental problems caused by air pollutants have attracted 
increasing attention [1]. Air pollution, which threatens human health and ecosystems, 
is a global environmental issue [2]. Air quality in any region is directly influenced by 
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local human activities [3].Nitrogen dioxide (NO
2
) is both a pollutant in its own right 

and a precursor to other pollutants, such as O
3
 through photochemical reactions 

with volatile organic compounds (VOCs) and fine particulate mater (PM
2.5

) via nitrate 
formation [4]. TNO

2
CC is an important indicator of air pollution [5], as it contributes 

to acid rain, acid fog, and photochemical smog [6], increases PM
2.5

 concentrations 
[7–8], threatens public health [9–12], and harms both society and the ecological envi-
ronment [13]. Therefore, it is essential to study NO

2
 pollution [14].

To systematically investigate the etiology of atmospheric pollution and develop 
source-oriented mitigation strategies, scholars have predominantly focused on two 
key research avenues: (1) the spatiotemporal variations of air pollution, and (2) the 
identification of multi-scale drivers influencing pollutant dynamics [15]. Traditional 
ground-based air pollution monitoring and analysis method are often limited due to 
(1) insufficient sampling across spatial and temporal dimensions [16], and (2) the 
uncertainties associated with interference from other gases [17]. Random Forest 
(RF), a common Machine Learning (ML) method, effectively identifies key features 
from high-dimensional datasets, making it a robust tool for pollution analysis [18].

Previous studies have identified various factors that may influence air pollution. 
For example, Wang et al. (2015) observed strong correlations between atmospheric 
pollutants and meteorological parameters, such as temperature, relative humid-
ity, wind speed, and precipitation, in Wuxi’s urban area during 2014 [19]. Liu et al. 
reported a significant positive correlation between the level of urbanization, human 
activity intensity, and environmental pollutant concentrations in Fangshan District, 
Beijing [20]. Additional factors, such as vegetation coverage index [21], have also 
been widely examined by numerous researchers [22–30]. These influencing factors 
are widely recognized. Building on this foundation, 15 independent variables were 
selected to study TNO

2
CC based on the principles of data representativeness, quan-

tifiability, and accessibility, while accounting for the systemic interrelationships among 
multiple factors. The variables include: Pressure (atmospheric pressure), LAI (Leaf 
Area Index), Dew (dew point temperature), AOD (aerosol optical depth), WS (wind 
speed), Month (month), ET (evapotranspiration), RH (relative humidity), Pre (precip-
itation), Fire (fire activity), LST (land surface temperature), Temp (air temperature), 
GPP (gross primary productivity), Year (year), and Snow (snow cover).

The Tropospheric Monitoring Instrument (TROPOMI) effectively observes global 
atmospheric trace gases, including NO

2
. This study utilizes the Google Earth Engine 

(GEE) platform to retrieve TNO
2
CC data, integrating a particle swarm optimization- 

enhanced random forest with Shapley Additive Explanations (SHAP) interpreta-
tion algorithms to systematically analyze the spatiotemporal variation patterns and 
natural driving factors of NO

2
 pollution across China’s prefecture-level cities. Within 

this framework, we quantitatively examine the impacts of meteorological drivers on 
regional air quality dynamics. The integration of satellite remote sensing and explain-
able machine learning offers a robust analytical framework for identifying pollution 
control priorities, thereby establishing a theoretical foundation for evidence-based 
atmospheric pollution mitigation strategies in China.
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Materials and methods

Study area

As the world’s largest developing country, China covers vast territorial expanses and encompasses diverse natural 
environments. The nation extends across extensive latitudinal gradients and traverses multiple climatic zones, including 
tropical, subtropical, temperate, and frigid zones. These distinct climatic regimes exhibit significant variations in tempera-
ture, humidity, and wind patterns. For instance, southern cities experience humid subtropical conditions, while northern 
regions are characterized by continental aridity. China’s landforms are complex and diverse, comprising plateaus, moun-
tains, plains, basins, and other landform types. Mountainous and plateau regions facilitate air mass exchange, whereas 
basin and plain terrains restrict pollutant diffusion. As shown in Fig 1, urban development patterns vary markedly across 
Chinese 346 study units, which include sub-provincial cities, prefecture-level municipalities, and autonomous prefectures. 
These urban centers, predominantly concentrated in eastern China, display divergent industrialization trajectories, urban-
ization rates, and population densities. The selected cities encapsulate representative variations in terrain, climatic, and 
environmental governance frameworks, ensuring a comprehensive analysis of regional atmospheric dynamics.

Hu Huanyong Line(or Hu Line)is a demographic and geographic dividing line in China, proposed by Chinese geog-
rapher Hu Huanyong in 1935. It illustrates the uneven distribution of China’s population and economic activity from 
northeast to southwest.The administrative division data in GeoJSON format is sourced from the National Geospatial 
Information Public Service Platform (Tianditu), with the website: https://cloudcenter.tianditu.gov.cn/administrativeDivision. 
The map approval number is GS (2024) 0650. The data coordinates are in GCS_WGS_1984. Global Artificial Impervious 

Fig 1.  Distribution map of major cities in China.

https://doi.org/10.1371/journal.pone.0334535.g001
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Area (GAIA) dataset, Version 10 (v10). Developed by: Tsinghua University/Fine Resolution Observation and Monitoring of 
Global Land Cover (FROM-GLC). http://data.ess.tsinghua.edu.cn

Data sources

The Sentinel satellite series is a component of the European Copernicus Programme. The Sentinel-5P (S5P) satellite, 
launched in 2017, is designed for real-time monitoring of various atmospheric trace gases, aerosols, and cloud distributions 
on a global sacale (https://dataspace.copernicus.eu/). Since August 2019, it has achieved a minimum spatial resolution of 
5.5 × 3.5 kilometers. The main data products include Level 1B, which consists of radiometrically calibrated raw spectral data; 
Level 2: which provides retrieved vertical column concentrations of atmospheric components such as the TNO

2
CC; and Level 

3, which offers gridded data after spatiotemporal aggregation, such as global daily/monthly averages. The Level 3 products 
deliver gridded daily averages measured by the TROPOMI spectrometer. As measurements are taken at same time each day 
(early afternoon), these data effectively capture the NO

2
 pollution characteristics of urban agglomerations in China.

This study uses the OFFL products of Sentinel-5P for research, and uses the “COPERNICUS_S5P_OFFL_L3_NO
2
” 

dataset to count TNO
2
CC, which includes annual, seasonal, and monthly TNO

2
CC data from 2019 to 2023. The OFFL_L3 

product is selected because its update frequency is 1–2 months, which is suitable for scientific research and long-term 
trend analysis, and the data has undergone complete radiometric calibration, spectral correction, and optimization of 
retrieval algorithms (such as the update of the TM5 meteorological model) to reduce the impact of cloud cover, etc. In 
contrast, NRT (Near-Real-Time) data is updated hourly and is mainly used for real-time monitoring. More importantly, the 
Level 3 data has been aggregated into gridded products (such as 0.01° resolution), which directly supports the calculation 
of seasonal/annual averages, while NRT requires users to process it themselves. All satellite nitrogen dioxide data used in 
this study are tropospheric column concentration, with a unit of mol/m². Other data sources are shown in Table 1:

ECMWF/ERA5_LAND/MONTHLY: The ERE5-LAND-MONTHLY dataset available on the Google Earth Engine (GEE) 
platform combines model data with measured data from countries around the world using physical laws, with a spatial res-
olution of 10,000 meters and a temporal resolution of 1 month. In this study, bands such as ‘temperature_2m’,’total_pre-
cipitation’, ‘dewpoint_temperature_2m’,’surface_pressure’,’u_component_of_wind_10 m’and’v_component_of_wind_10 
m’from the “ECMWF/ERA5_LAND/MONTHLY” dataset in GEE are used for the statistics of meteorological data. https://
doi.org/10.1038/s41558-024-02035-w

Table 1.  Data source for the study area.

Date Source

Temp ECMWF/ERA5_LAND/MONTHLY

LST MODIS/061/MOD11A2

Pressure ECMWF/ERA5_LAND/MONTHLY

WS ECMWF/ERA5_LAND/MONTHLY

RH ECMWF/ERA5_LAND/MONTHLY

Dew ECMWF/ERA5_LAND/MONTHLY

Pre ECMWF/ERA5_LAND/MONTHLY

ET MODIS/006/MOD16A2

Snow MODIS/061/MOD10A1

GPP MODIS/061/MYD17A3HGF

AOD MODIS/061/MOD08_M3

Lai MODIS/061/MCD15A3H

Fire MODIS/061/MOD14A1

Date is the data name, and Source is the Source of the data obtained. GEE platform data source link:  
https://earthengine.google.com/

https://doi.org/10.1371/journal.pone.0334535.t001

http://data.ess.tsinghua.edu.cn
https://dataspace.copernicus.eu/
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https://doi.org/10.1371/journal.pone.0334535.t001
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MOD16A2.061: It is an evapotranspiration and heat flux product with a temporal resolution of 8 days and a spatial 
resolution of 500 meters. In this study, the “ET” band of the “MODIS/006/MOD16A2” dataset in GEE is used to conduct 
statistics on ET data.

MODIS/061/MOD11A2: It is a LST product with a temporal resolution of 8 days and a spatial resolution of 500 meters. 
This study uses the “LST_Day_1km” band of the “MODIS/061/MOD11A2” dataset in GEE to calculate the LST data.

MOD17A2H: It is a gross primary productivity product with a temporal resolution of 8 days and a spatial resolution of 
500 meters. In this study, the “Gpp” band of the “MODIS/006/MOD17A2H” dataset in GEE is used for the statistics of 
gross primary productivity.

MODIS/061/MOD08_M3: This data product contains atmospheric parameters related to atmospheric aerosol particle 
properties, total ozone load, atmospheric water vapor, cloud optical and physical properties, and atmospheric stability 
indices. This dataset plays an important role in studying atmospheric environmental changes.

MODIS/061/MCD15A3H: This data product includes LAI with a spatial resolution of 500 meters. The LAI variable is 
defined as the equivalent number of leaf layers per unit ground area. In this study, the LAI data from the MODIS/061/
MCD15A3H dataset on the GEE platform is selected to study the influencing factors.

MOD14 is an important product of the MODIS (Moderate Resolution Imaging Spectroradiometer) fire detection and 
thermal anomaly dataset. It has a temporal resolution of daily and a spatial resolution of 1 km.

MODIS/061/MOD10A1 data product provides global snow cover information and belongs to the snow cover 
dataset with a spatial resolution of 500m. Snow cover is usually expressed as a percentage, indicating the pro-
portion of snow in each pixel. Snow cover data has important applications in meteorology, climate research and 
other fields.

The vector boundaries of urban built-up areas were extracted from the China urban built-up areas 2020 dataset. Using 
ArcMap 10.8, the geographic coordinates (latitude and longitude) of each city’s built-up area centroid were calculated 
using spatial analysis tools.

Research methods

Data preprocessing.  Remote sensing data processing: The geemap package was used to call and process datasets 
on the GEE platform in Python 3.8.

Sentinel-5P data processing: Remote sensing data vary in spatial and temporal resolution. Through the GEE platform, 
Sentinel-5P data were uniformly resampled and exported at a resolution of 1 kilometer. The processing chain involves 
converting L2 data into L3 data gridded by latitude and longitude using tools such as harpconvert, filtering out low-quality 
pixels, masking negative values, generating annual and quarterly averages, and performing statistics aggregation within 
built-up area boundaries.

Data preparation: The Pandas library in Python 3.8 was used for data organization and filtering, and the sklearn pack-
age was applied to impute missing values in the original dataset. This ensures the overall quality of the data and facilitates 
the establishment of a database.

Statistical analysis.  This study examined TNO
2
CC across 346 major Chinese cities from 2019 to 2023. Raster 

datasets were homogenized to compute annual and seasonal averages, with seasons defined as follows: spring (March–
May), summer (June–August), autumn (September–November), and winter (December–February). For the calculation 
of interannual mean values, we take into account that satellite observations are affected by factors such as cloud cover 
and ice/snow, resulting in uneven data availability across months. Therefore, when calculating seasonal mean values 
and annual mean values, we first compute the seasonal averages, and then use the arithmetic mean of these seasonal 
averages to derive the annual mean values. This approach ensures that each season contributes equally to the final 
annual result. ANOVA was applied to assess interannual differences in TNO

2
CC, accompanied by characteristic maps 

illustrating inter annual and seasonal variation patterns.
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Spatial analysis.  Local spatial autocorrelation analysis: The local spatial autocorrelation method effectively detected 
spatial heterogeneity in urban atmospheric pollution patterns by identifying the geographic locations of pollution clusters 
and their aggregation types, such as high-high (HH) and low-low (LL) clusters. The calculation formulas were as follows:

	
I =

(xi – x)
S2

∑n

j = 1,j ̸= i
Wij (xi – x)

	 (1)

	
S2 =

1
N

∑n

i = 1
(xi – x)2

	 (2)

where I represents the local spatial autocorrelation index, xi denotes the first element of the attribute, x  represents the 
mean value of the nitrogen dioxide, Wij is the spatial weighting matrix, S2 represents the variance of the attribute, N  is the 
number of elements.

Based on the local Moran’s I index, this study used LISA maps to identify regional clustering patterns, categorizing spa-
tial associations into four types: high-high (HH) clusters, low-low (LL) clusters, high-low (HL) spatial outliers, and low-high 
(LH) spatial outliers [31]. This methods enables the detection of statistically significant localized clusters and spatial anom-
alies, offering critical insights into the spatial heterogeneity of atmospheric NO

2
 pollution across China’s urban agglomera-

tions [32–33]. LISA cluster analysis was further refined [34]. Each cluster type was defined as follows:
HH clusters: Areas where both the target region and its neighboring zones exhibit elevated TNO

2
CC.

HL outliers: Areas with high TNO
2
CC levels surrounded by regions with low concentrations.

LH outliers: Areas with low TNO
2
CC adjacent to high-pollution neighbors.

LL clusters: Areas where both the target region and its surrounding area consistently demonstrate low TNO
2
CC levels.

Non-significant clusters: Regions lacking statistically significant spatial autocorrelation.
Subsequently, based on these four aggregation types, cities were classified and analyzed according to their temporal 

stability over five years period. This classification distinguished cities that consistently maintained a specific type of aggre-
gation, those that changed once, and those that have undergone multiple transitions.

The Random Forest (RF) model

The RF model is an ensemble learning algorithm [35], proposed by Breiman and Cutler in 2001, which uses decision 
trees as its base learners. During prediction, the RF algorithm employs the Bootstrap resampling method to draw 
samples from the original dataset. By iteratively constructing multiple decision trees through sampling with replace-
ment, the model aggregates predictions from each tree and determines the final output via majority voting, thereby 
ensuring robust generalization performance through ensemble learning [36]. Compared to the traditional linear 
model, the RF model effectively captures complex interactions among various variables, offers fast training speeds, 
and does not require a predefined functional form [37]. Additionally, its simple structure and relatively few tuning 
parameters make it well-suited for multidimensional, multi-factor prediction tasks while delivering highly accurate pre-
diction results [38].

Using the Random Forest (RF) model, follow these steps:
First, determine the `n_estimators` parameter. Then, further automate parameter tuning using grid search, setting the 

parameter tuning range.Adjust the `max_depth` parameter by establishing a tuning interval and using grid search for 
experimentation. When `max_depth` reaches the model’s highest score, if this score is lower than when only `n_estima-
tors` is set, the model should not use the `max_depth` parameter. Adjust the `min_samples_leaf` parameter with a defined 
tuning range and grid search. When `min_samples_leaf` achieves the model’s highest score, if this score is lower than 
that of the model with only `n_estimators` set, the model should not use the `min_samples_leaf` parameter. Adjust the 
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`min_samples_split` parameter by setting a tuning interval and applying grid search. When `min_samples_split` reaches 
the model’s highest score, if this score is lower than the model with only `n_estimators` configured, it indicates that adjust-
ing `min_samples_split` can no longer optimize the model. Finally, adjust the `max_features` parameter using grid search. 
When `max_features` attains the model’s highest score, the model reaches its optimal performance.

This study employed the PSO algorithm to optimize the hyperparameters of the RF model, facilitating an efficient explo-
ration of the hyperparameter space to identify optimal configurations a. The RF model was trained using month average 
TNO

2
CC (2019–2023) and 15 explanatory variables.

Shapley additive explanations.  SHAP is an additive explanation model that evaluates the impact of in-put variables on 
model predictions [39], SHAP quantifies the relative im-portance of input variables by assessing the average variation in model 
outputs due to changes in those variables [40], This is achieved through scatter plots and SHAP value distributions, which 
visualize variable contributions, model performance, and any biases in the estimates [41]. Applying SHAP values to interpret the 
optimized RF model provides deeper insights into the relative contributions of individual factors during training [42].

Assuming the *j*-th predictor variable of the *i*-th target variable is denoted as xij , the model’s predicted value for the 
*i*-th target variable is yi, and the average predicted value across all target variables is ybase, the SHAP value adheres to 
the following formula [43]:

	 y i = ybase + f (xi1) + f (xi2) + f (xi3) + ... + f(xiy)	 (3)

where f (xij) represents the SHAP value of the j-th predictor variable for the i-th target variable, indicating the marginal con-
tribution of this predictor to the model’s prediction of the target variable. In this study, the target variable was the TNO

2
CC, 

with 15 explanatory variables as variable. Absolute SHAP values measure the magnitude of influence exerted by each 
predictor on the model’s output, enabling variable importance ranking. A higher absolute SHAP value indicates a greater 
impact of the corresponding predictor on TNO

2
CC variability.

Technical ideas

At present, many scholars use TROPOMI remote sensing inversion products to analyze and estimate the spatiotemporal 
concentration of air pollutants [44]. In this study, TROPOMI-drived TNO

2
CC data were used to explore its spatial and tem-

poral distribution and natural influencing factors. The research consists of three main components, as shown in Fig 2:
First, using seasonal and annual time windows, statistical models such as analysis of variance (ANOVA) and Tam-

hane’s T2 post-hoc tests were applied to analyze the temporal evolution patterns of TNO
2
CC across 346 major Chinese 

cities from 2019 to 2023. Second, local Moran’s I and LISA cluster analysis were employed to identify high- and low-value 
spatial agglomerations and autocorrelation patterns.

TNO
2
CC (2019–2023) were used as the dependent variable, while 15 natural driving factors, including meteorological, 

vegetation, and anthropogenic indices, were used as variable. The model was optimized via Particle Swarm Optimization 
(PSO), resulting in the following hyperparameters: n_estimators = 4953, max_depth = 18, min_samples_split = 4, min_ sam-
ples_leaf = 1. By integrating the built-in feature importance ranking of the RF model with SHAP interpretation algorithms, 
this study identified key variables of air pollution. The top five natural influential factors were selected to generate partial 
dependence plots (PDPs), illustrating their nonlinear relationships with the dependent variable (TNO

2
CC). Analyzing these 

relationships provides a basis for formulating effective urban air pollution prevention and control strategies in China.
This study used TNO

2
CC from 346 cities as the target variable. Based on existing research by domestic and international 

scholars on natural factors influencing atmospheric pollutant levels, 15 variables were selected, including Pressure, Lai, ET, 
and others, to train the RF model. Importance was ranked using the SHAP importance metric, quantified by the mean abso-
lute SHAP value for each factor. Key natural drivers were subsequently identified, and their marginal effects on TNO

2
CC were 

analyzed through SHAP value decomposition, revealing nonlinear relationships and threshold behaviors in pollution dynamics.
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Results

Temporal distribution of TNO2CC

The interannual variability characteristics of TNO
2
CC in major Chinese cities are illustrated (Fig 3). From 2019 to 2023, 

the average annual NO
2
 concentration exhibited a wave-shaped trend, initially increasing, then decreasing, and ris-

ing again. Between 2019 and 2021, TNO
2
CC gradually increased, with a smaller difference between 2020 and 2021 

Fig 2.  Technology roadmap. The administrative division data in GeoJSON format is sourced from the National Geospatial Information Public Service 
Platform (Tianditu), with the website: https://cloudcenter.tianditu.gov.cn/administrativeDivision. The map approval number is GS (2024) 0650. The data 
coordinates are in GCS_WGS_1984.

https://doi.org/10.1371/journal.pone.0334535.g002

https://cloudcenter.tianditu.gov.cn/administrativeDivision
https://doi.org/10.1371/journal.pone.0334535.g002
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compared to 2019. The average annual concentrations were 1.29 × 10-4mol/m2, 1.42 × 10–4 mol/m2, and 1.47 × 10–4 mol/m2 
for 2019, 2020, and 2021, respectively. The highest concentration over these three years occurred in 2021. In 2022, NO

2
 

concentration dropped significantly to 1.31 × 10–4 mol/m2. In 2023, concentrations increased slightly to 1.33 × 10–4 mol/m2.
This study applied ANOVA and Tamhane’s T2 post-hoc tests to examine seasonal aver-ages of TNO

2
CC across major 

Chinese cities from 2019 to 2023. This approach enabled a rigorous comparison of interannual and intraseasonal variabil-
ity in NO

2
 pollution patterns, revealing statistically significant differences (p < 0.05) across climatic zones and urbanization 

gradients. The results in Table 2 confirm that significant differences in mean TNO
2
CC among the five years within each 

season. Notably, spring and summer exhibited relatively lower interannual variability, whereas winter demonstrated the 
most pronounced variability, possibly due to intensified heating emissions and stagnant meteorological conditions during 
the colder months, autumn is the season with the smallest difference in five years. The average annual concentration in 
autumn is the second highest value.

The seasonal variability of TNO
2
CC in China’s major cities is depicted (Fig 4). The TNO

2
CC were ranked in descending 

order: winter > autumn > spring > summer. During 2019–2023, TNO
2
CC demonstrated significant seasonal variations, with 

peak concentrations observed in winter, lowest levels in summer, and moderate values in autumn and spring. The mar-
ginal difference between autumn and spring contrasted sharply with the winter-summer disparity, highlighting the domi-
nant influence of seasonal emission patterns such as meteorological stagnation and precipitation is relatively low, making 

Fig 3.  Interannual variation characteristics of troposphere nitrogen dioxide vertical column density in major Chinese cities.

https://doi.org/10.1371/journal.pone.0334535.g003

Table 2.  Table of seasonal differences in five years.

Season F P

Spring 30.66 <0.05

Summer 16.76 <0.05

Autumn 8.38 <0.05

Winter 55.19 <0.05

Season represents the name of each Season, P value (< 0.05) represents the difference between each  
Season, and F value represents the degree of seasonal difference between each year. The greater the F  
value, the greater the difference; On the contrary, the smaller the difference.

https://doi.org/10.1371/journal.pone.0334535.t002

https://doi.org/10.1371/journal.pone.0334535.g003
https://doi.org/10.1371/journal.pone.0334535.t002
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it difficult for NO
2
 pollutants to settle in winter. The figure shows more anomalies in winter, mainly due to seasonal effects, 

i.e., weaker photochemical sinks.

Spatial distribution characteristics of TNO2CC

A local spatial autocorrelation analysis model was applied to generate LISA cluster maps, illustrating the spatial heteroge-
neity of air pollution severity within the study area and its surrounding regions. Fig 5 shows the interannual variation in the 
number of cities belonging to each cluster types over the five-year period. The number of cities classified as HH and LL 
clusters remained relatively stable. In contrast, LH clusters exhibited moderate interannual fluctuations, with annual counts 
of 2, 1, 3, 5, and 2 cities, respectively.

This spatial pattern is influenced by Yulin’s unique geographic location. Although local TNO
2
CC were relatively low, the 

city borders Shanxi Province to the east, a heavily industrialized region with elevated TNO
2
CC levels, and Yan’an City 

to the south. It is located in the northernmost part of Shaanxi and serves as a border area connecting five provinces and 
regions: Shanxi, Gansu, Ningxia, Inner Mongolia, and Shanxi. HL clusters were observed only in 2019, with Harbin City in 
Heilongjiang Province as the sole representative (Fig 6).

The administrative division data in GeoJSON format is sourced from the National Geospatial Information Public Service 
Platform (Tianditu), with the website: https://cloudcenter.tianditu.gov.cn/administrativeDivision. The map approval number 
is GS (2024) 0650. The data coordinates are in GCS_WGS_1984.

Significant spatial disparities in TNO
2
CC were evident across major Chinese cities (Fig 6), following a general decreas-

ing gradient from east to west. High TNO
2
CC zones were primarily located east of the Hu Line (Hu Huanxian Line) and 

north of the Yangtze River Basin.
Elevated TNO

2
CC levels were observed in northern China. Similarly, high concentrations of TNO

2
CC were detected in 

the eastern coastal areas, particularly in the Yangtze River Delta and the Pearl River Delta regions. In Northeast China, 
significant TNO

2
CC accumulation was observed in metropolitan centers such as Harbin and Shenyang. Additionally, 

distinct regional hotspots of TNO
2
CC were identified in northern Xinjiang (including Urumqi) and within the Sichuan Basin. 

The highlands surrounding the Sichuan Basin hinder the horizontal and vertical dispersion of air pollutants, leading to the 

Fig 4.  Seasonal variation characteristics of vertical column density of nitrogen dioxide in the troposphere of major cities in China. The points 
in the figure represent the annual average values of TNO

2
CC in each city; The square represents the mean value, and the horizontal line represents the 

median value.

https://doi.org/10.1371/journal.pone.0334535.g004

https://cloudcenter.tianditu.gov.cn/administrativeDivision
https://doi.org/10.1371/journal.pone.0334535.g004
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Fig 5.  Changes in the number of cities of each agglomeration type in five years.

https://doi.org/10.1371/journal.pone.0334535.g005

Fig 6.  Local spatial autocorrelation analysis of vertical column concentration of tropospheric nitrogen dioxide in major cities of China.

https://doi.org/10.1371/journal.pone.0334535.g006

https://doi.org/10.1371/journal.pone.0334535.g005
https://doi.org/10.1371/journal.pone.0334535.g006
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accumulation of pollutants and thus an increase in TNO
2
CC. This effect is particularly pronounced in provincial capitals 

like Chengdu.
Low TNO

2
CC are mainly located south of the Yangtze River and west of the Hu Line, covering regions such as North-

west China (including southern Xinjiang, Ningxia, and Qinghai), Southwest China (including Tibet, Yunnan, and Guizhou), 
Southeast China (such as Guangdong and Fujian), and Northeast China (including Heilongjiang and eastern Inner 
Mongolia). The spatial distribution of TNO

2
CC across China shows a distinct east-west gradient, with significantly higher 

concentrations in the east and lower levels in the west.
Over the past five years, 54 cities consistently remained classified as HH clustering areas. These were primarily con-

centrated in Beijing, Shijiazhuang, Jinan, Shanghai, Nanjing, and Hangzhou, as well as Shenyang and Benxi in Liaoning 
Province. Such regions, particularly the traditional industrial base in northeast China centered on Shenyang, have long 
maintained persistently high TNO

2
CC. In contrast, 74 cities remained LL clusters, characterized by lower industrialization 

levels, moderate urbanization, and geographic isolation from high-emission zones, minimizing cross-regional pollution 
influence. Additionally, 34 cities transitioned once in cluster classification, including Qinhuangdao, Chengde, Heihe, and 
Luoyang. Among these, 20 cities, such as Nanping, Meizhou, and Daqing, exhibited relatively stable clustering patterns 
for 3–4 years, while 14 cities, including Ma’anshan, Jieyang, and Ya’an, exhibited non-significant clustering for 1–2 years 
but maintained a single cluster type in other years. A total of 12 cities, such as Fuzhou, Dandong, and Kizilsu Kirghiz 
Autonomous Prefecture, underwent multiple transitions in cluster classification. Notably, Xuancheng, Bayannur, Zhaotong, 
and four prefecture-level cities in Xinjiang, located near provincial capitals, and Zhongshan city near the Pearl River 
Delta, exhibited unstable clustering due to significant influence from adjacent high-emission zones. Coastal cities such as 
Fuzhou, Yancheng, Dandong, Yantai, and Yangzhou, which are situated along the Huaihe River’s waterway, also exhib-
ited heightened variability in cluster types. This variability was attributed to unstable meteorological conditions, including 
fluctuations in pressure, temperature, humidity, and WS.

From the perspective of climate zones, as shown in Fig 7, cities with high TNO
2
CC are mainly concentrated in the II 

and III climate zones east of the Hu Huanyong Line, followed by the IV climate zone and the northern part of the V climate 
zone. Cities with low TNO

2
CC are mainly distributed in the II and III climate zones west of the Hu Huanyong Line, as well 

as the I climate zone, the southern part of the V climate zone, the VI climate zone, and the VII climate zone.

Natural factors influencing tropospheric TNO2CC in Chinese cities

Using the processed month average TNO
2
CC from 2019 to 2023, the following explanatory natural variables were 

selected: Pressure, Lai, Dew, AOD, WS, Month, ET, RH, Pre, Fire, LST, Temp, GPP, Year, and Snow. These variables 
formed the basis for constructing an optimized RF model to analyze the spatiotemporal drivers of TNO

2
CC variability. 

Predictor importance was quantified using mean SHAP values, with the top five influential factors selected to generate 
PDPs. The RF model, combined with SHAP interpretation algorithms, facilitated an analysis of key drivers and used PDPs 
to isolate the marginal relationships between these natural factors and TNO

2
CC while controlling for other variables. As 

shown in Fig 8, the results showed that the slopes of the modeling group and the validation group were 0.86 and 0.74, 
respectively, with R² values of 0.94 and 0.76. The data points of both the modeling group and the validation group were 
close to the 1:1 fitting line, as shown in Fig 8, indicating that the obtained RF model has a high degree of fitting.

Fig 9 illustrates the overall importance of each natural variable, with the y-axis representing ranked variable importance 
and the x-axis indicating mean SHAP values. The analysis demonstrated that Pressure exerted the strongest influence on 
TNO

2
CC, followed by Lai, ET, Dew, and AOD. Based on this ranking, the top five factors, including Pressure, Lai, ET, Dew, 

and AOD, were identified as key natural drivers for in-depth analysis, while the remaining variables contributed minimally 
to the model’s explanatory power (Fig 9). The parameter tuning results are as follows: S1 File.

The study revealed nonlinear relationships between these key drivers and TNO
2
CC by applying PDPs to analyze the 

top five most influential factors. Pressure was identified as the most important natural variable. As Pressure increased, 
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TNO
2
CC exhibited an overall upward trend (Fig 10a). The relationship between Pressure and TNO

2
CC followed a wave-

shaped pattern, rapidly escalating TNO
2
CC response magnitude when Pressure reached approximately 95,000 Pa. A 

pronounced positive correlation was observed in high-Pressure regions (> 95,000 Pa), indicating that elevated pressure 
consistently coincided with increased TNO

2
CC levels. The response of TNO

2
CC to AOD can be divided into two stages 

(Fig 10b). In the lower AOD range, TNO
2
CC sensitivity to AOD increased rapidly. Beyond an AOD value of approximately 

330, the response gradually stabilized. TNO
2
CC participates in photochemical reactions in the atmosphere with other 

compounds, forming secondary aerosols. These secondary aerosols increase PM concentration, thereby elevating AOD 
values. The influence of Lai on TNO

2
CC exhibited a nonlinear trend, initially declining and then stabilizing (Fig 10c). Lower 

Lai values correspond to higher TNO
2
CC, while higher Lai values correspond to low-er concentrations. ET exhibited a 

negative correlation with TNO
2
CC (Fig 10d). As ET increases, TNO

2
CC decreases, following an overall nonlinear trend 

of an initial sharp decline followed by gradual stabilization. Additionally, Dew also showed a negative correlation with 
TNO

2
CC overall, characterized by a brief increase followed by a continuous decrease, dividing the response into two 

phases (Fig 10e). Below approximately 263 K (low Dew range), Dew and TNO
2
CC exhibited a positive correlation. Above 

263 K (high Dew range), the relationship shifts from positive to negative correlation, with TNO
2
CC gradually decreasing as 

Dew increases.

Fig 7.  Map of China’s climate zoning. The administrative division data in GeoJSON format is sourced from the National Geospatial Information Public 
Service Platform (Tianditu), with the website: https://cloudcenter.tianditu.gov.cn/administrativeDivision. The map approval number is GS (2024) 0650. 
The data coordinates are in GCS_WGS_1984.

https://doi.org/10.1371/journal.pone.0334535.g007

https://cloudcenter.tianditu.gov.cn/administrativeDivision
https://doi.org/10.1371/journal.pone.0334535.g007
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Discussion

A previous study applied the geographically weighted regression model to identify the the determinants of PM
2.5

 concen-
tration and explore variations in atmospheric pollutants [45]. Other research has employed principal component analysis, 
concluding that effective pollution control requires coordinated management of major pollutants, such as PM

10
, PM

2.5
, 

and O
3
 [46]. The RF model offers several advantages, including low sensitivity to parameters [47], strong robustness 

Fig 8.  Performance of the Random Forest (RF) model for nitrogen dioxide concentration. (a): modeling, (b): validation.

https://doi.org/10.1371/journal.pone.0334535.g008

Fig 9.  Importance ranking of the affecting factors based on RF-SHAP model.

https://doi.org/10.1371/journal.pone.0334535.g009

https://doi.org/10.1371/journal.pone.0334535.g008
https://doi.org/10.1371/journal.pone.0334535.g009
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Fig 10.  Influence intensity of Pressure(a), AOD(b), Lai(c), ET(d), Dew(e) on nitrogen dioxide concentration. (a): Pressure: atmospheric pressure; 
(b): AOD: aerosol optical depth; (c) Lai: Leaf Area Index; (d) ET: evapotranspiration; (e): Dew: dew point temperature. The blue line represents the trend 
of the impact of key influencing factors on TNO

2
CC variation. SHAP values indicate the absolute effect size of features on the target variable, where the 

magnitude directly reflects each feature’s marginal contribution to TNO
2
CC variations. A SHAP value > 0 indicates a positive contribution, confirming that 

the factor’s influence on TNO
2
CC change increases as the SHAP value rises. Conversely, a SHAP value < 0 indicates a negative contribution, where a 

decreasing SHAP value corresponds to a stronger negative impact on TNO
2
CC changes. Data on other influencing factors, except for the top five, can 

be found in S1 File.

https://doi.org/10.1371/journal.pone.0334535.g010

https://doi.org/10.1371/journal.pone.0334535.g010
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against missing values, and improved computational efficiency through optimized variable selection [48]. The PSO 
algorithm exhibits excellent optimization performance [49]. This is particularly true in the field of environmental monitor-
ing—for instance, in aspects such as pollutant concentration monitoring and water quality monitoring—where it demon-
strates excellent performance [50]. This study employed an optimized RF model to identify key natural factors influencing 
TNO

2
CC, providing theoretical foundations and data-driven insights for atmospheric pollution control.

This study analyzed correlation coefficients between natural variables to gain deeper insight in-to the factors and the 
mechanisms influencing TNO

2
CC (Fig 11), the sample points comprised monthly average data from 346 cities spanning 

2019–2023. Analysis of 15 natural variables determined the correlation analysis between variable pairs. The results indi-
cated strong correlations (coefficients: > 0.65) between Lai and ET, GPP, Dew, Pre, LST, and Temp, whereas weak correla-
tions (coefficients: > 0.65) were observed between AOD, Year, and other natural factors [51]. These findings suggest that 
the combined effects of vegetation and atmospheric processes mainly influence TNO

2
CC changes.

Fig 11.  Thermodynamic diagram of NO
2
 influencing factors. AOD (aerosol optical depth), Dew (dew point temperature), ET (evapotranspiration), 

Fire (fire activity), GPP (gross primary productivity), Lai (Leaf Area Index), LST (land surface temperature), Month(month), Pre (precipitation), Pressure 
(atmospheric pressure), RH (relative humidity), Snow (snow cover), TEMP (air temperature), WS (wind speed), Year (year).

https://doi.org/10.1371/journal.pone.0334535.g011

https://doi.org/10.1371/journal.pone.0334535.g011
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The PSO algorithm was applied to optimize the RF model’s hyperparameters and evaluate its robustness. Model per-
formance was confirmed by calculating the R² using a linear regression model, indicating reasonable fitting accuracy (Fig 
8). The built-in feature im-portance ranking function of the RF model was employed to prioritize 15 natural factors, includ-
ing Pressure, Lai, Dew, ET, RH, AOD, Fire, GPP, Temp, Year, Month, Pre, LST, WS, and Snow, across the studied cities. 
Combined with the SHAP interpret ability algorithm (Fig 9). The analysis identified Pressure, AOD, Lai, ET, and Dew as 
the top five factors influencing TNO

2
CC variations, emphasizing the significant roles of pressure and vegetation in urban 

NO
2
 pollutant dynamics. This finding contrasts with Wu et al who re-ported Temp and Pre as dominant natural drivers of 

NO
2
 variability in the Shaanxi-Gansu-Ningxia region [52]. The discrepancy possibly arises from the region’s unique topo-

graphic and climatic characteristics, highlighting the spatial heterogeneity of NO
2
 pollution mechanisms.

TNO
2
CC exhibited strong seasonal variability, peaking in winter and declining in summer (Fig 4). This pattern is 

attributed to elevated pressure and lower temperatures in winter, which reduce the planetary boundary layer height and 
hinder pollutant dispersion [53]. Under such stable air conditions, NO

2
 air pollutant accumulates [54]. Moreover, winter is 

characterized by static and stable weather conditions with low WS, leading to increased concentrations, whereas summer 
conditions promote better diffusion [55]. Although the annual average value in autumn is higher than that in summer and 
spring, the interannual difference is the smallest, as shown in Table 2. This phenomenon may occur because the meteoro-
logical conditions (such as WS, Temp and Pre) in autumn are more stable between years, so even if the TNO

2
CC is high, 

its interannual variation may be small. As shown in Fig 3, the interannual trend from 2019 to 2023 displays a wave-like 
pattern in annual average TNO

2
CC. This pattern aligns with Zhang et al, who reported similar TNO

2
CC temporal variabil-

ity in China, possibly influenced by prolonged high-Pressure systems during an extreme cold wave in December 2021 
[56]. Notably, 2022 recorded the lowest annual TNO

2
CC within five years, followed by a rebound in 2023. Meteorologi-

cal reports attribute the decline in 2022 to weaker cold air activity compared to previous years [57], collectively reducing 
emissions. In contrast, stronger cold air processes in 2023 may explain the renewed increase in NO

2
 levels. Based on the 

analysis of climate zones, the impact of meteorological factors on the changes in TNO
2
CC has also been confirmed. The 

warm temperate zone features distinct four seasons, moderate precipitation, slightly cold winters and hot summers. In 
winter, static and stable weather conditions and temperature inversion phenomena often occur, making it difficult for near 
– surface pollutants (such as NO

2
 and PM

2.5
) to diffuse [58]. In summer, photochemical reactions and precipitation can 

remove part of the NO
2
 in the atmosphere and reduce its concentration [59].

The model identified LAI, ET, and Dew as three of the top five natural influencing factors, all of which are  
vegetation-related variables. Correlation analysis underscores vegetation’s role as a key regulator of TNO

2
CC. LAI, 

defined as the total one-sided green leaf area per unit of ground surface [60], enhances photosynthetic efficiency, thereby 
reducing atmospheric TNO

2
CC through direct uptake and by facilitating wet deposition during Pre events [61]. Seasonally, 

higher LAI values in summer correspond to lower TNO
2
CC levels due to increased vegetation absorption and ET-driven 

rainfall. Spatially, southern China’s dense vegetation exhibits stronger NO
2
 removal capacity compared to northern 

regions, highlighting the importance of urban greening and vegetation coverage in shaping TNO
2
CC spatiotemporal 

patterns [62]. In addition to meteorological and vegetation factors, fire activity also have a certain impact on changes in 
TNO

2
CC. However, according to the ranking results, the effect is relatively limited. Therefore, this factor will only cause a 

slight change in TNO
2
CC under special circumstances (such as urban fires) [63].

However, it is worth noting that this study focuses on the temporal-spatial distribution of TNO
2
CC and the research 

on its natural influencing factors. Nevertheless, it must be acknowledged that natural factors play a regulatory role in the 
influencing process, while human factors are the fundamental source [64]. This is an aspect that needs improvement in 
our future research—we should fully consider the impacts of other social factors. Nowadays, emission inventory data 
has become well-developed. Examples include the U.S. National Emission Inventory (NEI), the UK National Atmospheric 
Emission Inventory (NAEI), and China’s Multi-resolution Emission Inventory for China (MEIC). Because of this, more 
researchers are using these emission inventories to analyze where pollutants come from [65–68]. In future work, we can 
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use these inventories to study the spatial distribution of air pollution sources. In terms of data validation, China’s ground-
based air quality monitoring stations are already quite comprehensive, and the temporal resolution of the measured data 
is also very high. Some researchers have already used ground monitoring data to verify the usability of S5P data from 
other countries [69–72]. Next, we can conduct ground-based validation research on China’s S5P data to ensure the reli-
ability of the data. Our goal is to provide a more scientific theoretical basis for air pollution control.

Conclusions

This study analyzed the interannual and seasonal spatiotemporal distribution characteristics of TNO
2
CC in 346 major 

Chinese cities from 2019 to 2023, using satellite remote sensing data, statistical methods, and local spatial autocorrelation 
analysis. The key findings are summarized as follows:

(1)	 TNO
2
CC exhibited significant temporal heterogeneity across the five years. Annual trends demonstrated an initial 

rise, followed by a decline and rebound. Seasonally, concentration remained consistently higher in winter and lower in 
summer.

(2)	 TNO
2
CC across 346 major Chinese cities displayed notable spatial clustering. High-concentration hotspots were 

mainly distributed in urban areas of the North China Plain, Yangtze River Delta, and northeastern China. In contrast, 
low-concentration zones were concentrated in northwestern, southwestern, southern coastal, and Inner Mongolia 
regions. Additionally, monsoon climates in eastern China contribute to increased summer Pre, which dilutes TNO

2
CC 

levels, while centralized coal heating in northern regions during winters exacerbates TNO
2
CC accumulation, resulting 

in pronounced seasonal contrasts.

An RF model incorporating 15 natural influencing factors was optimized through iterative hyperparameter tuning, 
achieving high predictive accuracy with training and validation datasets closely aligned along the 1:1 fit line. Feature 
importance ranking using the SHAP algorithm identified Pressure, AOD, Lai, ET, and Dew as the top five drivers of 
TNO

2
CC variability. SHAP analysis revealed the following patterns: Pressure exhibited a positive correlation with TNO

2
CC, 

following a wave-shaped upward trend. AOD transitioned from negative to positive effects on TNO
2
CC at thresholds 

of approximately 330. Lai and ET displayed negative correlations, with TNO
2
CC decreasing initially and stabilizing as 

these factors increased. Dew exerted a greater influence on TNO
2
CC near 263 K. Three different temperature measure-

ments, Dew, LST, Temp. They themselves have a strong correlation. This shows that TNO
2
CC is strongly influenced by 

temperature.
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