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Abstract
In recent years, the problem of pests seriously affects the yield and quality of crop, pos-
ing a major challenge to the safe production of crop, which have seriously hindered the
development of China’s agriculture. How to quickly and accurately monitor pests, timely
grasp the occurrence dynamics of pests, and prevent and control pests is of great signifi-
cance for reducing crop yield losses. Considering the discontinuity of spraying pesticides
and releasing natural enemies in the process of pest control, and the Filippov system’s
ability to accurately depict switching states and human intervention measures, a non-
smooth Filippov predator-prey system with threshold strategies is investigated incorpo-
rating several different functional responses, such as Holling II functional response and
ratio functional response etc, which should be selectively applied dependent on the popu-
lation of the prey. The aim of this study is to investigate the complex dynamics including
bistabilities of the ecosystem when the relative populations of the prey and predator is
substantially different, by modelling the non-smooth Filippov system with multiple switch-
able functional responses for the very first time, which is believed to be more realistic for
modeling the dynamics of real ecosystem, thus the solution of the present work may be
more suitable for real world applications such as for the integrated pest management.
The validity of the proposed system is assessed by simulation, and bifurcation set of
equilibria and the global stability of equilibria has been numerically obtained through an
arbitrary set of parameters. Moreover, the dynamic behaviors of proposed system, such
as the existence of various equilibria and their global stabilities; the existence of vari-
ous domains such as the sliding domain, escaping domain and crossing domain, have
been analyzed in great details in the present work. It is shown that the sliding region and
escaping region cannot coexist when the density of the prey and predators is substan-
tially different. It is further demonstrated that the real equilibrium and pseudo-equilibrium
points can coexist when the population of the prey is less than that of the predator; and
only the virtual equilibrium and pseudo-equilibrium can coexist in the case of when the
population of the prey is more than that of the predator.In particular, it is noted that all
trajectories of the prey and predators population are eventually converging into certain
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equilibrium points as it is demonstrated in the numerical simulation. This implies that
there exists global asymptotic stability of equilibrium points under the proposed system,
in which the population of preys eventually reaches a steady state of density at the real
equilibrium and pseudo-equilibrium points. This work also highlights the significant role of
the threshold in the process of pest controls: it is seen from this work that different types
of equilibrium points can occur dependent on the choice of the economic threshold (ET).
The conclusions obtained will be applied to Unmanned Aerial Vehicle (UAV) to spray
pesticides and release natural enemies in a timely and quantitative manner, thereby
achieving efficient and rapid monitoring and control of large-scale crop. This can more
effectively ensure stable and high crop yields, provide theoretical guidance for scientific
prevention and control, and is of great significance for reducing the burden on farmers,
promoting agricultural development, and realizing agricultural modernization.

1 Introduction
In recent years, the outbreak of crop diseases and pests has become more and more frequent,

Competing interests: The authors have
declared that no competing interests exist.

resulting in serious crop losses and even production failures, which have seriously hindered
the development of China’s agriculture. A pest is a species that damages other valuable pop-
ulations or interferes with human activities, so it is necessary to take measures to reduce pest
damage to crops [1–5]. In the pest-natural enemy ecosystem, pests and natural enemies are
interdependent and mutually restricted, and an appropriate amount of pests can maintain the
ecological balance. If the pests are completely killed, the ecological imbalance will be caused,
and the natural enemy population will be extinct due to lack of food. As a result, Integrated
pest Management (IPM), a threshold control strategy that combines chemistry, economics,
and biology, was developed. Integrated pest management (IPM) is implemented to keep pest
populations below the economic harm level (EIL) rather than eliminate them completely,
which benefits individual cropping systems and local ecosystems [3–5].

Discontinuity in the dynamics of animals’ population in the natural environment seems to
be an universal property of the ecosystem, as the animal’s survivals and growth rate are sub-
ject to the impact of food resources, climatic conditions, seasonal change and human factors.
To understand and to predict when these discontinuities may occur with high degree of accu-
racy, the systems are needed to be modelled by using non-smooth functional responses. Sys-
tems which exhibit non-smooth behavior can be broadly divided into three different types
dependent on the degree of smoothness : i) non-smooth continuous system, ii) impulsive
system and iii) Filippov system. Tang Sanyi et al. and other experts [1–5] studied the non-
smooth continuous pest control under the integrated pest management system, by using the
Impulsive Differential Equation to model the spraying of pesticide at fixed time intervals, and
to release natural enemies intermittently dependent on the environmental conditions. Similar
studies but using a general functional response and impulsive control, had been reported by
the authors [3] in 2020 for the study of the extinction and permanence of the predator-prey
system. Recent work that employed generalized functional response for modelling the pop-
ulation dynamics in the ecosystem has been further extended by the same authors for three
species impulsive system [4], as well as a m-prey and n-predator impulsive system [5] under
seasonal disturbance factors, had also been reported. One of the drawbacks for all the pre-
vious work has been the modelling of the ecosystem when the control strategy is instanta-
neously applied, and at the same time to deduce the effects of the control immediately after
the control strategy is implemented. This methodology has modelled the reduction of pest
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population over a short period of time after the control strategy is applied, which may over
estimate the number of pest deaths than it would actually happen in practice. To model closer
in line with the real environment, it is necessary to introduce a continuity of control strategy,
like the Filippov system [6–20], which allows the monitoring of the increase or the reduction
of pest population before and after the control measures have been applied. In recent years,
there are many encouraging reports that use Filippov system for pest control such as the work
by Tang Sanyi et al. In 2019 Qin et al. [10] investigated the threshold control strategy for a
non-smooth Filippov ecosystem which featured a group defense from the pest. In 2021 Arafa
et al. [14] studied the effectiveness of population dynamics by using Filippov pest control
model which incorporates with a time delay. The global dynamics of the Filippov predator-
prey model which featured two independent thresholds for the integrated pest manage-
ment (IPM) was discussed by Li et al. [8] in 2022. At the same time, Jiao et al. [8] probed the
dynamics and bifurcations of the predator-prey system using Filippov Leslie-Gower response
function to model the group defense of the pest with time delays.

As far as the authors aware, most if not all of the existing literatures including those men-
tioned above in [6–21], have assumed a single rate of feeding by the prey, i.e. the predation
process is described by a single functional response for the entire period within the predator-
prey system. This paper attempts to fill the gap by modelling a non-smooth Filippov predator-
prey system with threshold strategies is investigated incorporating several different func-
tional responses for the first time. Different from previous research, the present work devel-
ops the modelling for an integrated pest management (IPM) especially with several differ-
ent functional responses such as Holling II functional response and ratio functional response
etc, which should be selectively applied dependent on the population of the prey. In prac-
tice, the mutual competition amongst the predator is dependent on its population for a given
number of prey in the environment. For example, in the predator-prey system, the thresh-
olds about the preys are related to the population of predators. When the number of preys x(t)
are in abundance, namely x(t) >ET > 0, where ET is the economic threshold, then the preda-
tor which has population of y(t) should not mutually compete for food as the result of suffi-
cient of food for the predators. Thus the interactions of the prey-dependent can be described

by functional responses such as Holling-I functional response
⎧⎪⎪⎨⎪⎪⎩

b
ax(t) 0 < x(t) < a
b x(t) > a

, Holling-

II functional response rx(t)
a+bx(t) , Holling-III functional response

rx(t)2
a+bx(t)2 and Ivlev functional

response r (1 – e–𝛼x(t)) and so on. As an example we can adopt the Holling-II functional
response to obtain the subsystem model of the predator-prey system

⎧⎪⎪⎨⎪⎪⎩

dx(t1)
dt1
= rx(t1)(1 – x(t1)

K ) –
ax(t1)y(t1)
1+bx(t1)

dy(t1)
dt1
= –Dy(t1) + ex(t1)y(t1)

1+bx(t1)

(1)

where x (t1) , y (t1) denote the densities of the prey (pest) and predator (natural enemy) at
time t1, respectively. r > 0 is the intrinsic growth rate of the prey, K > 0 is the carrying capacity
of the prey, D > 0 is the death rate of the predator. The e > 0 denotes the rate of converting the
consumed preys into the growth of predators, and the ax(t1)y(t1)

1+bx(t1) is the Holling-II functional
response which represents the rate of predation by the predator per-capita.

While the number of preys is declining to less than a certain multiple of the number of
predators x(t) <ET, the mutual interference between predators will be triggered to take effect
and the predator-dependent type will dominate the interactions between the predator and
prey. In this case functional responses such as ratio-dependent ax(t)y(t)

bx(t)+cy(t) , and others like
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the Beddington-DeAngelis functional response mx(t)
a+bx(t)+cy(t) , Watt-type functional response

exp –cx(t)
y(t)m and so on are more suitable to model the predator-prey system. The ratio-dependent

functional response ax(t)y(t)
bx(t)+cy(t) is selected here in the predator-prey models and the following

subsystem can be obtained:

⎧⎪⎪⎨⎪⎪⎩

dx(t1)
dt1
= rx(t1)(1 – x(t1)

K ) –
ax(t1)y(t1)

bx(t1)+cy(t1)
dy(t1)
dt1
= –Dy(t1) + ex(t1)y(t1)

bx(t1)+cy(t1)

(2)

In the paper, we develop the Filippov predator-prey model by combining the above two
subsystems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t1)
dt1
= rx(t1)(1 – x(t1)

K ) –
ax(t1)y(t1)
1+bx(t1) x(t1) > ET

dy(t1)
dt1
= –Dy(t1) + ex(t1)y(t1)

1+bx(t1)
dx(t1)
dt1
= rx(t1)(1 – x(t1)

K ) –
ax(t1)y(t1)

bx(t1)+cy(t1) x(t1) < ET
dy(t1)
dt1
= –Dy(t1) + ex(t1)y(t1)

bx(t1)+cy(t1)

(3)

that is:

⎧⎪⎪⎨⎪⎪⎩

dx(t1)
dt1
= rx(t1)(1 – x(t1)

K ) –
ax(t1)y(t1)

𝜂+bx(t1)+c𝜖y(t1)
dy(t1)
dt1
= –Dy(t1) + ex(t1)y(t1)

𝜂+bx(t1)+c𝜖y(t1)
(4)

in which

𝜂 =
⎧⎪⎪⎨⎪⎪⎩

1 x(t1) > ET
0 x(t1) < ET

and

𝜖 =
⎧⎪⎪⎨⎪⎪⎩

0 x(t1) > ET
1 x(t1) < ET

Note that the ET is set by certain threshold strategy. In order to simplify the system in (4),
the parameters and variables can be defined as follows:

t = rt1, x1 =
x
K
, y1 =

y
K
, a1 =

aK
r
, b1 = bK,D1 =

D
K
, e1 =

eK
r
, c1 = cK

Then we can obtain:

⎧⎪⎪⎨⎪⎪⎩

dx1(t)
dt = x1(t)(1 – x1(t)) –

a1x1(t)y1(t)
𝜂+b1x1(t)+c1𝜖y1(t)

dy1(t)
dt = –D1y1(t) + e1x1(t)y1(t)

𝜂+b1x1(t)+c1𝜖y1(t)
(5)

in which

𝜂 =
⎧⎪⎪⎨⎪⎪⎩

1 x1(t) > ET
0 x1(t) < ET
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and

𝜖 =
⎧⎪⎪⎨⎪⎪⎩

0 x1(t) > ET
1 x1(t) < ET

The aim of this study is to investigate the complex dynamics including bistabilities of the
ecosystem when the relative populations of the prey and predator is substantially different,
by modelling the non-smooth Filippov system with multiple switchable functional responses
for the very first time, which highlights the significant role of the threshold in the process of
pest controls: it is seen from this work that different types of equilibrium points can occur
dependent on the choice of the economic threshold (ET). Finally, the resulting conclusion
is given the corresponding biological explanation. The organization of this paper is outlined
as follows: Sect 2 gives a summary of how various regimes such as the sliding region, cross-
ing region and escaping region are defined, subsequently the five different kinds of equilib-
ria that will be discussed in the following sections of the paper will be briefly introduced. In
Sect 3 , the dynamical behaviors of two subsystems (i.e. the system (1) and (2) as set out in the
above paragraphs) and their dynamic behaviors on the discontinuity boundary Σ (see text in
Sect 2) are derived. Subsequently their equilibria together with the existence of three regimes
such as the sliding, escaping and crossing domains, are derived. The dynamics of the sliding
mode and various forms of equilibria within the Filippov system (i.e. the system (5) in the
above paragraph), and their global asymptotic stability are discussed in Sect 4. In Sect 5, we
probe the bifurcation set of equilibria and their global stability of equilibria through numer-
ical simulations. Subsequently the paper is concluded in Sect 6 and the theoretical results are
discussed in the context of biological factors and practical viewpoints.

2 Preliminaries
Denote

D ={(x1, y1)∈ R2+|x1 > 0, y1 > 0},
H(Z) =H(x1, y1) = x1 – ET,

F1(x1, y1) =[x1(t)(1 – x1(t)) –
a1x1(t)y1(t)
1 + b1x1(t)

, –D1y1(t) +
e1x1(t)y1(t)
1 + b1x1(t)

]T

=[F11,F12]T,

F2(x1, y1) =[x1(t)(1 – x1(t)) –
a1x1(t)y1(t)

b1x1(t) + c1y1(t)
, –D1y1(t) +

e1x1(t)y1(t)
b1x1(t) + c1y1(t)

]T

=[F21,F22]T,
FiH = < Fi,∇H > (i = 1, 2),
Z =(x1, y1).

Therefore, the system (5) can be rewritten as the following generalized system with discon-
tinuous in the right-hand side as shown below:

Ż(t) =
⎧⎪⎪⎨⎪⎪⎩

F1(Z) Z∈G1,
F2(Z) Z∈G2,

(6)
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in which

G1 = {H(Z) > 0},G2 = {H(Z) < 0}.

And the discontinuous boundary between the region G1 and G2 is defined as Σ = {Z∈
D|H(Z) = 0}, so we have D =G1⋃Σ⋃G2. The discontinuous boundary Σ can be classified as
the following three different regions:

(i) The Sliding region Σs = {Z∈ Σ,F1H < 0 and F2H > 0}, which implies that once the
trajectories of the system touch the boundary Σs, it will stay in the same region.

(ii) The Crossing region Σc = {Z∈ Σ,F1H ⋅ F2H > 0}, which implies that once the trajecto-
ries of the system touch the boundary Σc, it will propagate to another region.

(iii) The Escaping region Σe = {Z∈ Σ,F1H > 0 and F2H < 0}, which implies that once the
trajectories of the system touch the boundary Σe, it will propagate towards either region G1 or
G2.

Definition 2.1. [8] Provided F1(ER) = 0 and ER ∈G1(F2(ER) = 0 and ER ∈G2), then ER is a
real equilibrium of system (6).

Definition 2.2. [8] Provided F1(EV) = 0 and EV ∈G2(F2(EV) = 0 and EV ∈G1), then EV is a
virtual equilibrium of system (6).

Definition 2.3. [8] Provided Ep ∈ Σ and 𝜆F1(Ep) + (1 – 𝜆)F2(Ep) = 0 , where 0 < 𝜆 < 1,and
𝜆 = F2H

F2H–F1H
, then Ep is a pseudo-equilibrium of system (6).

Definition 2.4. [8] Provided Fi(Eb) = 0(i = 1, 2) and Eb ∈ Σ, then Eb is a boundary equilib-
rium of system (6).

Definition 2.5. [8] Provided FiH(ET) = 0(i = 1, 2) and ET ∈ Σ, then ET is the tangency point
of system (6).

Definition 2.6. [8] Provided ET ∈ Σ, F1H(ET) = 0 and F21H(ET) < 0 (or F21H(ET) > 0), then
ET is an invisible (or visible) tangency equilibrium of subsystem (1). Similarly, provided ET ∈ Σ,
F2H(ET) = 0 and F22H(ET) > 0 ( or F22H(ET) < 0), then ET is an invisible (or visible) tangency
equilibrium of subsystem (2).

3 Qualitative analysis of the subsystem (1) and (2)
Lemma 3.1. Suppose that Z(t) = (x1(t), y1(t)) is any solution of system (5) with the initial

value Z(t0) = (x1(t0), y1(t0)), x1(t0) > 0, y1(t0) > 0, then Z(t) > 0, namely x1(t) > 0, y1(t) >
0.

Proof : As

dx1 (t)
dt

|x1=0 = [x1(t)(1 – x1(t)) –
a1x1(t)y1(t)

𝜂 + b1x1(t) + c1𝜖y1(t)
]|x1=0 = 0,

dy1 (t)
dt

|y1=0 = [–D1y1(t) +
e1x1(t)y1(t)

𝜂 + b1x1(t) + c1𝜖y1(t)
]|y1=0 = 0.

Thus Z(t) > 0 as long as the initial value satisfies x1(t0) > 0, y1(t0)) > 0. ◻

Lemma 3.2. Suppose Z(t) = (x1(t), y1(t)) to be the solution of system (5), then the setΩ =
{(x1, y1)∈ R2+|x1 ≤ 1, e1a1 x1 + y1 ≤ M

𝜆 } is positively invariant and attracting for any given initial
values in R2+.
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Proof : It follows that

dx1 (t)
dt

= x1(t)(1 – x1(t)) –
a1x1(t)y1(t)

𝜂 + b1x1(t) + c1𝜖y1(t)
≤ x1(t)(1 – x1(t)).

By solving the above equation, we can obtain that:

x1(t)≤
1

1 + ce–t
(c≥ 0),

which results in

lim
t→∞

x1(t)≤ 1.

Then we can get

x1(t)≤ 1.

Define the functionW (t, x) = e1
a1
x1 (t) + y1 (t) , then:

dW (t, x)
dt

= e1
a1

dx1 (t)
dt

+ dy1 (t)
dt

= e1
a1
x1(t)(1 – x1(t)) –D1y1 (t) ,

which is the upper right derivative ofW (t, x) along a solution of the system in (5) with
respected to time and for 0 < 𝜆 ≤D1, we have

dW(t,x)
dt + 𝜆W (t, x) = e1

a1
x1(t)(1 + 𝜆 – x1(t)) + (𝜆 –D1) y1 (t)

≤ e1
a1
(𝜆 + 1)x1(t) – e1x1(t)2

a1
= – e1

a1
[x1(t)2 – (𝜆 + 1)x1(t)]

= – e1
a1
[x1(t) – (𝜆+1)2 ]

2 + (𝜆+1)
2e1

4a1
≤ (𝜆+1)

2e1
4a1

.

Thus there exists a positive constant numberM = (𝜆+1)
2e1

4a1
, such that

dW (t, x)
dt

+ 𝜆W (t, x) ≤M,

By solving the above equation it produces:

W (t, x) = e–𝜆t[∫ Me𝜆tdx + C] = e–𝜆t[C + Me𝜆t

𝜆 ] =
M
𝜆 + Ce

–𝜆t → M
𝜆 (t→∞)

HenceW (t, x) is ultimately bounded by a constant, namely e1
a1
x1 + y1 ≤ M

𝜆 , thusΩ is posi-
tively invariant and attracting for any given initial values in R2+. ◻

3.1 Dynamical behaviors of the subsystem (1)
When x1(t) > ET the Filippov system (6) in section 2 is qualitatively dependent on the sub-
system (1). There are three equilibrium points in the subsystem(1) namely: E01 = (0, 0), E11 =
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(1, 0), E1 = (x∗1 , y∗1), in which

x∗1 =
D1

e1 – b1D1
, y∗1 =

(1 – x∗1)(1 + b1x∗1)
a1

.

As (x∗1 , y∗1)∈ R2+, namely x∗1 > 0, e1–b1D1 > 0, we can obtain that D1 < e1
b1+1 ; y

∗
1 > 0, 1–x∗1 >

0, we can obtain that e1
b1+1 <

e1
b1
, so we can get that D1 < e1

b1+1 <
e1
b1
.

Theorem 3.3. (i) The equilibrium E01 = (0, 0) is in a saddle and it is unstable all the time. (ii)
The equilibrium point E11 = (1, 0) is in a saddle when D1 < e1

b1+1 , and it is locally asymptotically
stable when D1 > e1

b1+1 . (iii) The interior equilibrium point E1 = (x∗1 , y∗1) is locally asymptotically
stable when e1(b1–1)

b1(1+b1) <D1 < e1
b1+1 .

Proof : Consider the Jacobian matrix about the equilibrium point of the subsystem (1):

J =
⎛
⎝
1 – 2x1 –

a1y1
(1+b1x1)2 – a1x1

1+b1x1
e1y1

(1+b1x1)2 –D1 + e1x1
1+b1x1

⎞
⎠
.

(i) Let x1 = y1 = 0, we can get the J(E01) = (
1 0
0 –D1

) . Then we obtain the eigenvalues of

J(E01) will be 𝜆1 = 1,𝜆2 = –D1 < 0, so the equilibrium E01 = (0, 0) is saddle and unstable all the
time.

(ii) Let x1 = 1, y1 = 0, we can get the J(E11) = (
–1 – a1

1+b1
0 –D1 + e1

1+b1
) , then we obtain the eigen-

values of J(E11) is 𝜆1 = –1,𝜆2 = –D1 + e1
1+b1 . When D1 < e1

b1+1 , then 𝜆2 > 0, so E11 = (1, 0) is
saddle. Similarly, when D1 > e1

b1+1 , then 𝜆2 < 0, so E11 = (1, 0) is locally asymptotically stable.
(iii) Let x1 = x∗1 , y1 = y∗1 , we can get the

J(E1) =
⎛
⎜
⎝

1 – 2x∗1 –
1–x∗1

1+b1x∗1
– a1x∗1
1+b1x∗1

e1(1–x∗1)
a1(1+b1x∗1)

–D1 + e1x∗1
1+b1x∗1

⎞
⎟
⎠
,

then we obtain the result that all eigenvalues of J(E1) are negative when tr(J(E1)) < 0 and
|J(E1)| > 0, that is, e1(b1–1)

b1(1+b1) <D1 < e1
b1+1 , the interior point E1 = (x

∗
1 , y∗1) is locally asymptotic

stable. ◻

Theorem 3.4. The interior point E1 = (x∗1 , y∗1) is globally asymptotic stable when b(1– D1
e1–b1D1

)
< 1.

Proof : Define

V1 =D1[x1 – x∗1 – x∗1 ln
x1
x∗1
] +D2[y1 – y∗1 – y∗1 ln

y1
y∗1
]

where D1 and D2 are arbitrary positive constants. Then we can obtain:

dV1

dt
=D1
(x1 – x∗1)

x1
dx1
dt
+D2

(y1 – y∗1)
y1

dy1
dt

(7)
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Substituting the subsystem (1) into the above equation (7) which generates

dV1

dt
=D1(x1 – x∗1)2[–1 +

a1b1y∗1
(1 + b1x1)(1 + b1x∗1)

]

+ (x1 – x∗1)(y1 – y∗1)
(1 + b1x1)(1 + b1x∗1)

e1D2 – a1D1(1 + b1x∗1).

Put D1 = 1 and D2 = a1(1+b1x∗1)
e1

, then

dV1

dt
= (x1 – x∗1)2[–1 +

a1b1y∗1
(1 + b1x1)(1 + b1x∗1)

]

< (x1 – x∗1)2[–1 +
a1b1y∗1
(1 + b1x∗1)

].

When –1+ a1b1y∗1
(1+b1x∗1)

< 0, then it has that dV1
dt < 0. By employing the value of y∗1 , we can get

b(1 – x∗1) < 1, namely b(1 – D1
e1–b1D1

) < 1. ◻

3.2 Dynamical behaviors of the subsystem (2)
When x1(t) < ET, the Filippov system (6) is qualitatively dependent on the subsystem (2).
There are three equilibrium points in the subsystem (1): E20 = (0, 0), E21 = (1, 0), E2 = (x∗2 , y∗2),
in which

x∗2 = 1 +
a1D1b1 – a1e1

c1e1
, y∗2 =

(1 – x∗2)e1x∗2
a1D1

.

As (x∗2 , y∗2)∈ R2+, namely x∗2 > 0, we can obtain that D1 < e1
b1
; y∗2 > 0, 1 – x∗2 > 0, we can

obtain that a1e1–c1e1
a1b1

<D1, so we can get that a1e1–c1e1
a1b1

<D1 < e1
b1
.

Theorem 3.5. (i) The equilibrium E20 = (0, 0) is in a saddle and it is unstable all the time.
(ii) The equilibrium point E21 = (1, 0) is also in a saddle when D1 < e1

b1
, and it is locally asymp-

totically stable when D1 > e1
b1
. (iii) The interior point E2 = (x∗2 , y∗2) is locally asymptotically stable

when D1 < e1
b1+1 and a1 <

e1D1+
e21

e1–D1
e1+D1

.

Proof : Consider the Jacobian matrix about the equilibrium point of the subsystem (2):

J =
⎛
⎜
⎝

1 – 2x1 –
a1c1y21

(b1x1+c1y1)2 – a1b1x21
(b1x1+c1y1)2

e1c1y21
(b1x1+c1y1)2 –D1 + e1b1x21

(b1x1+c1y1)2

⎞
⎟
⎠
.

(i) Let x1 = y1 = 0, we can get the J(E20) = (
1 0
0 –D1

) . Then we obtain the eigenvalues of

J(E20) will be 𝜆1 = 1,𝜆2 = –D1 < 0, therefore the equilibrium E20 = (0, 0) is in a saddle and it is
unstable all the time.

(ii) Let x1 = 1, y1 = 0, we can get the J(E21) = (
–1 – a1

b1
0 –D1 + e1

b1
) , then we obtain the eigen-

values of J(E21) will be 𝜆1 = –1,𝜆2 = –D1 + e1
b1
. When D1 < e1

b1
, then 𝜆2 > 0, so E21 = (1, 0) is in a

saddle. Similarly, when D1 > e1
b1
, then 𝜆2 < 0, so E21 = (1, 0) is locally asymptotically stable.
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(iii) Let x1 = x∗2 , y1 = y∗2 , we can get the

J(E2) =
⎛
⎜⎜
⎝

1 – 2x∗2 –
a1c1y∗

2
2

(b1x∗2+c1y
∗
2)2

– a1b1x∗
2

2
(b1x∗2+c1y

∗
2)2

e1c1y∗
2

2
(b1x∗2+c1y

∗
2)2

–D1 + e1b1x∗
2

2
(b1x∗2+c1y

∗
2)2

⎞
⎟⎟
⎠
,

then we obtain the result that all eigenvalues of J(E2) are negative when tr(J(E2)) < 0 and

|J(E2)| > 0, that is, D1 < e1
b1+1 and a1 <

e1D1+
e21

e1–D1
e1+D1

, the interior point E2 = (x∗2 , y∗2) is locally
asymptotically stable. ◻

Theorem 3.6. The interior point E2 = (x∗2 , y∗2) is globally asymptotically stable when
a1b1 – e1c1 < 0.

Proof : We select the Dulac fuction G(x, y) = 1
x1y1

, then the following can be obtained:

𝜕(GF21)
𝜕x + 𝜕(GF22)𝜕y = – 1

y1
+ a1b1 – e1c1
(b1x1 + c1y1)2

.

Thus based on the Bendixson-Dulac criterion, when a1b1 – e1c1 < 0 there are no any closed
orbits in the region G2, therefore the interior point E2 = (x∗2 , y∗2) is globally asymptotic sta-
ble. ◻

4 The dynamic behaviors on Σ and equilibria
This section will be divided into three parts, firstly the existence of the sliding domain, escap-
ing domain and crossing domain will be studied. Then the sliding mode dynamics will be
focused and finally different kinds of equilibria points in Filippov system (6) will be examined
in more details.

4.1 The existence of the sliding domain, escaping domain and crossing
domain
Let’s consider the discontinuous boundary Σ and through simple evaluation on the boundary
gives:

F1H = x1(t)(1 – x1(t)) –
a1x1(t)y1(t)
1 + b1x1(t)

= 0,

F2H = x1(t)(1 – x1(t)) –
a1x1(t)y1(t)

b1x1(t) + c1y1(t)
= 0,

where ∇H = (1, 0) and x1(t) = ET. Hence, we can get that:

ys1 =
(1 – ET)(1 + b1ET)

a1

ys2 =
(1 – ET)b1ET
a1 – c1(1 – ET)

Next, consider the following three cases:
case 1:When a1 – c1(1 – ET) – b1c1ET(1 – ET) > 0, then a1 – c1(1 – ET) > 0, thus ys2 > 0

and ys1 > ys2, we can obtain that:
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(i) Sliding region Σs = {(x1, y1)∈ Σ | ys2 < y1 < ys1}.
(ii) Crossing region Σc = {(x1, y1)∈ Σ | 0 < y1 < ys2}⋃{(x1, y1)∈ Σ | y1 > ys1}.
case 2:When a1 – c1(1 –ET) > 0 and a1 – c1(1 –ET) – b1c1ET(1 –ET) < 0, thus ys2 > 0 and

ys1 < ys2, we can obtain that:
(i) Sliding region Σs = {(x1, y1)∈ Σ | ys1 < y1 < ys2}.
(ii) Crossing region Σc = {(x1, y1)∈ Σ | 0 < y1 < ys1}⋃{(x1, y1)∈ Σ | y1 > ys2}.
case 3: If a1–c1(1–ET) < 0, then a1–c1(1–ET)–b1c1ET(1–ET) < 0, thus ys2 < 0 and ys1 > ys2,

we can get that:
(i) Escaping region Σs = {(x1, y1)∈ Σ | 0 < y1 < ys1}.
(ii) Crossing region Σs = {(x1, y1)∈ Σ | y1 > ys1}.
According to the above results the following theorem can be produced:

Theorem 4.1. The sliding region and escaping region can not exist at the same time.

4.2 Sliding mode dynamics
By using the Utkin’s equivalent control method the following can be obtained:

dH
dt
= dx1(t)

dt
= x1(t)(1 – x1(t)) –

a1x1(t)y1(t)
𝜂 + b1x1(t) + c1𝜖y1(t)

= 0.

When x1(t) = ET and by solving the above equation:

𝜂 + b1x1(t) + c1𝜖y1(t) =
a1x1(t)y1(t)

x1(t)(1 – x1(t))
,

then we can get:

dy1 (t)
dt

= –D1y1(t) +
e1x1(t)y1(t)

𝜂 + b1x1(t) + c1𝜖y1(t)
= –D1y1(t) +

e1
a1
(x1 – x21)

= –D1y1(t) +
e1ET(1 – ET)

a1
≜ 𝜙(y1).

4.3 Five kinds of equilibriums of Filippov system (6)
In this section five different kinds of equilibriums in the Filippov system (6) is discussed here.
It follows from the section 3 that E1 = ( D1

e1–b1D1
, (1–x

∗
1)(1+b1x

∗
1)

a1
) is the unique positive equilib-

rium of the subsystem (1), and E2 = (1+ a1D1b1–a1e1
c1e1

, (1–x
∗
2)e1x

∗
2

a1D1
) is the unique positive equilib-

rium of the subsystem (2). The nature and types of the above two equilibriums can be studied
as follow:

(i) When the condition that D1
e1–b1D1

> ET is satisfied, then E1 is in a real equilibrium and
hereby it is termed as E1R. Otherwise E1 is a virtual equilibrium and hereby termed as E1V.

(ii) When the condition that 1 + a1D1b1–a1e1
c1e1

< ET is satisfied, then E2 is in a real equilibrium
which hereby termed as E2R. If not, then E2 is in a virtual equilibrium and hereby termed as E2V.

Pseudo-equilibrium:There are two different ways to satisfy the pseudo-equilibrium con-
dition Ep(ET, yp)∈ Σ as it is to be shown in the following: one way is to obtain the condition
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by solving the equation 𝜙(yp) = 0, where yp = e1ET(1–ET)
a1D1

. The other is from the definition 2.3:

𝜆(x1(1 – x1) –
a1x1y1
1+b1x1

–D1y1 + e1x1y1
1+b1x1

) + (1 – 𝜆)⎛
⎝
x1(1 – x1) – a1x1y1

b1x1+c1y1
–D1y1 + e1x1y1

b1x1+c1y1

⎞
⎠
= (0

0
) .

By solving the above equations the following can be obtained:

𝜆 =
x1(1 – x1) – a1x1y1

b1x1+c1y1
a1x1y1

b1x1+c1y1 –
a1x1y1
1+b1x1

,

then by substituting the value of 𝜆 into the above equation it yields the pseudo-equilibrium
Ep(ET, yp) such that:

yp =
e1ET(1 – ET)

a1D1
.

According to 𝜙′(y1) = –D1 < 0 and the stability theory of the ODE it can be shown that the
pseudo-equilibrium Ep is locally asymptotic stable.

Theorem 4.2. (i) When a1–c1(1–ET)–b1c1ET(1–ET) > 0, the pseudo-equilibrium Ep exists
iff the real equilibrium E1R and E2R are both coexisted.

(ii) When a1–c1(1–ET) > 0 and a1–c1(1–ET)–b1c1ET(1–ET) < 0, the pseudo-equilibrium
Ep exists iff the virtual equilibrium E1V and E2V are both coexisted.

Proof : Due to the fact that:

y1 – ys1 =
e1ET(1 – ET)

a1D1
–
(1 – ET)(1 + b1ET)

a1

= (1 – ET)(e1ET –D1 – b1ETD1)
a1D1

=
(1 – ET)(e1 –D1b1)(ET – D1

e1–b1D1
)

a1D1
,

y1 – ys2 =
e1ET(1 – ET)

a1D1
–
(1 – ET)b1ET
a1 – c1(1 – ET)

= ET(1 – ET)[a1e1 – e1c1(1 – ET) – a1D1b1]
a1D1[a1 – c1(1 – ET)]

= ET(1 – ET)
a1D1[a1 – c1(1 – ET)]

⋅
ET – 1 – a1D1b1–a1e1

c1e1
e1c1

,

where x∗1 = D1
e1–b1D1

, x∗2 = 1 + a1D1b1–a1e1
c1e1

, 1 – ET > 0, e1 –D1b1 > 0.
Thus (i) When a1 – c1(1 – ET) – b1c1ET(1 – ET) > 0, then the pseudo-equilibrium Ep exists

⇔ ys2 < y1 < ys1 ⇔ x∗2 < ET < x∗1 ⇔ and the real equilibrium E1R and E2R are both coexisted.
(ii) When a1–c1(1–ET) > 0 and a1–c1(1–ET)–b1c1ET(1–ET) < 0, the pseudo-equilibrium

Ep exists⇔ ys1 < y1 < ys2 ⇔ ET > x∗1 and ET < x∗2 ⇔ then the virtual equilibrium E1V and E2V are
both coexisted. ◻
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Boundary equilibrium: It is from the definition 2.4 that the boundary equilibrium should
respectively satisfy the following equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t)
dt = x1(t)(1 – x1(t)) –

a1x1(t)y1(t)
1+b1x1(t) = 0

dy1(t)
dt = –D1y1(t) + e1x1(t)y1(t)

1+b1x1(t) = 0
x1(t) = ET

(8)

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t)
dt = x1(t)(1 – x1(t)) –

a1x1(t)y1(t)
b1x1(t)+c1y1(t) = 0

dy1(t)
dt = –D1y1(t) + e1x1(t)y1(t)

b1x1(t)+c1y1(t) = 0
x1(t) = ET

(9)

Therefore, the Eq (8) has the solution if and only if ET = D1
e1–b1D1

, then the boundary equilib-
rium can be obtained:

E1b = (ET,
(1 – ET)(1 + b1ET)

a1
).

Similarly, the Eq (9) has the solution if and only if ET = 1+ a1D1b1–a1e1
c1e1

, then the boundary
equilibrium can be obtained:

E2b = (ET,
(1 – ET)b1ET
a1 – c1(1 – ET)

).

Tangent point: By putting F1H = 0 and F2H = 0, then the two tangent point can be com-
puted:

E1T = (ET,
(1 – ET)(1 + b1ET)

a1
),E2T = (ET,

(1 – ET)b1ET
a1 – c1(1 – ET)

).

Theorem 4.3. (i) When D1 > e1ET
1+b1ET , then the tangent point E1T is visible.

(ii) When (1–ET)b1ETa1–c1(1–ET) <
(e1–b1D1)ET

D1c1
, then the tangent point E2T is visible.

Proof : (i) Through calculation we can get:

F1H | E1T = x1(t)(1 – x1(t)) –
a1x1(t)y1(t)
1 + b1x1(t)

| E1T = 0,

F21H | E1T =
𝜕(F1H)
𝜕z F1H | E1T

= (
1–2x1(t)–

a1y1(t)
[1+b1x1(t)]2

– a1x1(t)
1+b1x1(t)

)(
x1(t)(1–x1(t))–

a1x1(t)y1(t)
1+b1x1(t)

–D1y1(t)+
e1x1(t)y1(t)
1+b1x1(t)

) | E1T

= a1D1x1(t)y1(t)
1 + b1x1(t)

–
e1a1x21(t)y1(t)
[1 + b1x1(t)]2

| E1T

= x1(t)(1 – x1(t))(D1 –
e1x1(t)

1 + b1x1(t)
).

Thus, E1T is visible⇐ F21H > 0⇔D1 > e1ET
1+b1ET .
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(ii) Similarly we can obtain:

F2H | E2T = x1(t)(1 – x1(t)) –
a1x1(t)y1(t)

b1x1(t) + c1y1(t)
| E2T = 0,

F22H | E2T =
𝜕(F2H)
𝜕z F2H | E2T

=
⎛
⎜
⎝

1–2x1(t)–
a1c1y

2
1(t)

[b1x1(t)+c1y1(t)]2

–
a1b1x

2
1(t)

[b1x1(t)+c1y1(t)]2

⎞
⎟
⎠
(

x1(t)(1–x1(t))–
a1x1(t)y1(t)

b1x1(t)+c1y1(t)

–D1y1(t)+
a1x1(t)y1(t)

b1x1(t)+c1y1(t)
) | E2T

= a1b1x21(t)D1y1(t)
[b1x1(t) + c1y1(t)]2

–
e1a1b1x31(t)y1(t)
[b1x1(t) + c1y1(t)]3

| E2T

= b1x1(t)(1 – x1(t))
b1x1(t) + c1y1(t)

(D1 –
e1x1(t)

b1x1(t) + c1y1(t)
).

Thus, E2T is visible⇐ F22H < 0⇔ (1–ET)b1ET
a1–c1(1–ET) <

(e1–b1D1)ET
D1c1

. ◻

5 Numerical simulation and bifurcation analysis
In this section the bifurcation set of equilibria and the global stability of equilibria will be
assessed by means of numerical simulation methods.

5.1 Bifurcation set of equilibria
It can be seen from the above that the dynamics of the Filippov system (5) are greatly depen-
dent on the ET and equilibria points of the system. Moreover, the occurrence of various types
of equilibrium points are also dependent on the value of ET and also the death rate of Preda-
tors D1. Thus the bifurcation diagram as function of bifurcation parameters ET and D1 is con-
structed in order to explore the richness of various possible dynamics of the Filippov system
(5). Three critical curves are defined as follows:

L1 = {(D1,ET) | ET =
D1

e1 – b1D1
}

L2 = {(D1,ET) | ET = 1 +
a1D1b1 – a1e1

e1c1
}

L3 = {(D1,ET) | D1 =
e1

b1 + 1
}

By putting the yp = ys1 and yp = ys2, then we can obtain the curves L1 and L2 can be plotted
respectively to study the relationship between pseudo-equilibrium Ep and the sliding segment
Σs, namely ys2 < y1 < ys1 or ys1 < y1 < ys2. Also on the left of the curve L1 it depicts the interior
equilibrium point E1 which is labelled as EV1 , and it turns into ER1 on the right. Similarly, the
curve L2 is the dividing line between EV2 and ER2 . Also, the curve L3 is the dividing line for the
existence of the interior equilibrium point.

By fixing all other parameters a1 = 0.4, b1 = 0.5, c1 = 0.5, e1 = 2, then the D1 –ET parameter
plane (Fig 1) can be divided into five regions by these three curves, and the existence of pos-
sible equilibria is indicated in each area. It is seen that the pseudo-equilibrium Ep coexists in
the region I2 and I4. It is worth mentioning that the boundary equilibria is located only along
the curves. Moreover, if the parameter D1 is fixed to 1, then we can see that as ET increases:
EV2 and ER1 coexist→ E2B exists→ ER2 and ER1 coexist→ E1B exists→ ER2 and EV1 coexist. Thus it
is evidenced that ET plays a key role in the analyses of bifurcations of the Filippov system (5).
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Fig 1. Bifurcation set of Filippov system (5)’s equilibria, where the values of other fixed parameters are
a1 = 0.4, b1 = 0.5, c1 = 0.5, e1 = 2.

https://doi.org/10.1371/journal.pone.0334425.g001

5.2 The global stability of equilibria
The global stability of the equilibria in the Filippov system (5) is validated in this section
through numerical simulation. In here we consider two cases of when E1 = (x∗1 , y∗1) and E2 =
(x∗2 , y∗2):

(i) When the parameters are set as a1 = 0.4, b1 = 0.5, c1 = 0.5, e1 = 2,D1 = 1 it can be
shown through simple calculation that x∗1 = 2

3 and x∗2 = 0.4 indicating that x∗1 > x∗2 . When
ET is varied the interior equilibrium points E1, E2 and pseudo-equilibrium Ep changed
as shown in Fig 2(a). For example when ET = 0.3 < x∗2 < x∗1 , then E1 becomes ER1 and E2
becomes EV2 such that E1 becomes the only real equilibrium point where all solutions tend
to converge into E1 eventually, as it is shown in Fig 2(b). When x∗2 < ET = 0.5 < x∗1 , then
E1 is still ER1 and E2 becomes ER2 . In this case both E1 and E2 are in real equilibrium and
all solutions tend to converge into either E1 or E2 eventually, as it is shown in Fig 2(c).
When x∗2 < x∗1 < ET = 0.8, E1 becomes EV1 and E2 becomes ER2 . Then E2 is the only real equi-
librium in this case and all solutions tend to converge into E2 eventually as it is shown
in Fig 2(d).

(ii) Similarly let’s set the parameters a1 = 1, b1 = 2, c1 = 2, e1 = 3.5,D1 = 1 and it can be
shown by simple calculation that x∗1 = 2

3 and x∗2 = 0.8 which indicates that x∗1 < x∗2 . As value of
the ET is increased or decreased the interior equilibrium point E1, E2 and pseudo-equilibrium
Ep are subsequently affected as shown in Fig 3. For example when ET = 0.5 < x∗1 < x∗2 , then E1
and E2 becomes ER1 and EV2 respectively. It can be seen that E1 becomes the only real equilib-
rium and all solutions tend to converge into E1 eventually as shown in Fig 3(b).When x∗1 <
ET = 0.75 < x∗2 , E1 still exists as EV1 and E2 becomes EV2 . Then E1 and E2 are both the virtual
equilibrium, we can clearly see that all solutions tend to deviate from both E1 and E2 and tend
to converge into the pseudo equilibrium Ep, which exhibits as the global asymptotic stability
as shown in Fig 3(c). However when x∗1 < x∗2 < ET = 0.9, then E1 becomes EV1 and E2 becomes
ER2 . In this case E2 becomes the only real equilibrium and we can see that all solutions tend to
converge into E2 eventually as depicted in Fig 3(d).
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Fig 2. Illustrates the dynamical behavior of the Filippov system (5) which is plotted by using parameters
a1 = 0.4, b1 = 0.5, c1 = 0.5, e1 = 2,D1 = 1: (a) Shows the existence of the interior equilibrium point (in solid blue
plot) for subsystem (1), the dotted curves (in red and black) are the interior equilibrium point of subsystem (2). (b) E1
becomes the only real equilibrium point and all solutions tend to converge into E1 eventually. (c) Both E1 and E2 are the
real equilibrium points and all solutions tend to converge either into E1 or E2 eventually and (d) E2 becomes the only real
equilibrium point and all solutions tend to converge into E2 eventually.

https://doi.org/10.1371/journal.pone.0334425.g002

6 Conclusions and biological significance
Nowadays, the Filippov system has been found to be useful to describe the real-world prob-
lems and investigated in many fields, such as those in physics, ecology and many other mul-
tidisciplinary subjects like networked control systems, multi-agent systems, neural networks,
mechanical systems as well as in the integrated pest management for the ecosystem mod-
elling etc [6–24]. Despite great deal of reports on non-smooth Filippov predator-prey system
[6–24], none of them have ever considered using functional responses together with the Fil-
ippov system simultaneously. This work explores the behavior of the Filippov predator-prey
system by imposing threshold policy on the population of prey for the initiation of a mixture
of functional response types to study the dynamic of the ecosystem for the very first time. In
this study the Holling-II and ratio functional responses have been implemented in the model
depending on the population of the prey. For example, the mutual interference of the preda-
tor will play an important role when the number of prey is below the economic threshold
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Fig 3. Illustrates the dynamical behavior of the Filippov system (5) similar to the above figure but using different
parameters a1 = 1, b1 = 2, c1 = 2, e1 = 3.5,D1 = 1: (a) Shows the existence of the interior equilibrium point for subsystem
(1) in solid blue plot, and the interior equilibrium point of subsystem (2) in red and black lines. (b) E1 becomes the only
real equilibrium and all solutions tend to converge into E1 eventually. (c) Both E1 and E2 are the virtual equilibrium points
and all solutions tend to converge away from E1 or E2 eventually and to form a pseudo equilibrium Ep instead. (d) E2 is the
only real equilibrium and all solutions tend to converge into E2 eventually.

https://doi.org/10.1371/journal.pone.0334425.g003

(ET), thus the ratio functional response has been adopted in this work to model the ecosys-
tem by taking into account of the competition among the predators. On the other hand when
the population of the prey reaches or exceeds ET, the mutual interference among predators
becomes negligible thus the Holling-II functional response has been selected in this work to
model the dynamics of the ecosystem.

So we make use of Filippov theories and qualitative techniques with numerical simulations
to investigate dynamical behaviors of proposed system in detail, including global dynamics
of subsystems, the existence of sliding mode and different types of equilibria, sliding mode
dynamics and the global stability of equilibria.

Stability analysis (asymptotic analysis) provides critical support for integrated pest man-
agement (IPM) by studying the equilibrium states of systems under long-term dynamics [3–
5,23,24]. By establishing Differential Equations, the asymptotic stability of the pest-predator-
crop system is analyzed to predict the long-term equilibrium points after reducing chemical
pesticide use. For example, predator-prey model in [23] demonstrated that when negative

PLOS One https://doi.org/10.1371/journal.pone.0334425 October 23, 2025 17/ 19

https://doi.org/10.1371/journal.pone.0334425.g003
https://doi.org/10.1371/journal.pone.0334425


ID: pone.0334425 — 2025/10/17 — page 18 — #18

PLOS One Filippov predator-prey system

feedback mechanisms exist in the system, asymptotic stability can suppress pest population
outbreaks.

Furthermore, the proposed Filippov system together with the switchable functional
response had been validated through numerical simulations. It has been demonstrated that
the real equilibrium and pseudo-equilibrium points can coexist when the population of the
prey is less than that of the predator (i.e. x∗1 < x∗2 ); and in the case of when the population
of the prey is more than that of the predator (i.e. x∗1 > x∗2), only the virtual equilibrium and
pseudo-equilibrium can coexist. As the economic threshold (ET) increases and when x∗1 > x∗2 ,
then the following equilibrium sequences can coexist: EV2 and ER1 coexist→ ER2 and ER1 coex-
ist→ ER2 and EV1 coexist, as explicitly depicted in Fig 2 above. Since both E1 and E2 are both
the real equilibrium, all solutions tend to either E1 or E2 eventually. This is an extremely inter-
esting bistability phenomenon that can be seen in this switchable Filippov system. Similarly,
when the ET increases and x∗1 < x∗2 , then the following equilibrium sequences can coexist:
EV2 and ER1 coexist→ EV2 and EV1 coexist→ ER2 and EV1 coexist, as it is demonstrated in Fig 3
above. According to our results it has also shown that the sliding and escaping regions can-
not coexist under our proposed system. In particular, it is noted that all trajectories of the
prey and predator’s population are eventually converging into certain equilibrium points as
it is demonstrated in the numerical simulation in Sect 5. This implies that there exists global
asymptotic stability of equilibrium points under the proposed system, in which the popula-
tion of preys eventually reaches a steady state of density at the real equilibrium and pseudo-
equilibrium points. This means we don’t need to take any action at this point.

This work also highlights the significant role of the threshold ET in the process of pest con-
trols.So the reasonable control threshold (ET) can be effective for prevention and control of
pests. Consequently, our findings are valuable for how to draw up strategies effectively and
when to take measures.This paper enriches the theoretical and methodological framework of
future system dynamics modeling, holding significant theoretical and practical implications.
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