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Abstract

In recent years, the problem of pests seriously affects the yield and quality of crop, pos-
ing a major challenge to the safe production of crop, which have seriously hindered the
development of China’s agriculture. How to quickly and accurately monitor pests, timely
grasp the occurrence dynamics of pests, and prevent and control pests is of great signifi-
cance for reducing crop yield losses. Considering the discontinuity of spraying pesticides
and releasing natural enemies in the process of pest control, and the Filippov system’s
ability to accurately depict switching states and human intervention measures, a non-
smooth Filippov predator-prey system with threshold strategies is investigated incorpo-
rating several different functional responses, such as Holling Il functional response and
ratio functional response etc, which should be selectively applied dependent on the popu-
lation of the prey. The aim of this study is to investigate the complex dynamics including
bistabilities of the ecosystem when the relative populations of the prey and predator is
substantially different, by modelling the non-smooth Filippov system with multiple switch-
able functional responses for the very first time, which is believed to be more realistic for
modeling the dynamics of real ecosystem, thus the solution of the present work may be
more suitable for real world applications such as for the integrated pest management.
The validity of the proposed system is assessed by simulation, and bifurcation set of
equilibria and the global stability of equilibria has been numerically obtained through an
arbitrary set of parameters. Moreover, the dynamic behaviors of proposed system, such
as the existence of various equilibria and their global stabilities; the existence of vari-
ous domains such as the sliding domain, escaping domain and crossing domain, have
been analyzed in great details in the present work. It is shown that the sliding region and
escaping region cannot coexist when the density of the prey and predators is substan-
tially different. It is further demonstrated that the real equilibrium and pseudo-equilibrium
points can coexist when the population of the prey is less than that of the predator; and
only the virtual equilibrium and pseudo-equilibrium can coexist in the case of when the
population of the prey is more than that of the predator.In particular, it is noted that all
trajectories of the prey and predators population are eventually converging into certain
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equilibrium points as it is demonstrated in the numerical simulation. This implies that
there exists global asymptotic stability of equilibrium points under the proposed system,
in which the population of preys eventually reaches a steady state of density at the real
equilibrium and pseudo-equilibrium points. This work also highlights the significant role of
the threshold in the process of pest controls: it is seen from this work that different types
of equilibrium points can occur dependent on the choice of the economic threshold (ET).
The conclusions obtained will be applied to Unmanned Aerial Vehicle (UAV) to spray
pesticides and release natural enemies in a timely and quantitative manner, thereby
achieving efficient and rapid monitoring and control of large-scale crop. This can more
effectively ensure stable and high crop yields, provide theoretical guidance for scientific
prevention and control, and is of great significance for reducing the burden on farmers,
promoting agricultural development, and realizing agricultural modernization.

1 Introduction

In recent years, the outbreak of crop diseases and pests has become more and more frequent,
resulting in serious crop losses and even production failures, which have seriously hindered
the development of China’s agriculture. A pest is a species that damages other valuable pop-
ulations or interferes with human activities, so it is necessary to take measures to reduce pest
damage to crops [1-5]. In the pest-natural enemy ecosystem, pests and natural enemies are
interdependent and mutually restricted, and an appropriate amount of pests can maintain the
ecological balance. If the pests are completely killed, the ecological imbalance will be caused,
and the natural enemy population will be extinct due to lack of food. As a result, Integrated
pest Management (IPM), a threshold control strategy that combines chemistry, economics,
and biology, was developed. Integrated pest management (IPM) is implemented to keep pest
populations below the economic harm level (EIL) rather than eliminate them completely,
which benefits individual cropping systems and local ecosystems [3-5].

Discontinuity in the dynamics of animals’ population in the natural environment seems to
be an universal property of the ecosystem, as the animal’s survivals and growth rate are sub-
ject to the impact of food resources, climatic conditions, seasonal change and human factors.
To understand and to predict when these discontinuities may occur with high degree of accu-
racy, the systems are needed to be modelled by using non-smooth functional responses. Sys-
tems which exhibit non-smooth behavior can be broadly divided into three different types
dependent on the degree of smoothness : i) non-smooth continuous system, ii) impulsive
system and iii) Filippov system. Tang Sanyi et al. and other experts [1-5] studied the non-
smooth continuous pest control under the integrated pest management system, by using the
Impulsive Differential Equation to model the spraying of pesticide at fixed time intervals, and
to release natural enemies intermittently dependent on the environmental conditions. Similar
studies but using a general functional response and impulsive control, had been reported by
the authors [3] in 2020 for the study of the extinction and permanence of the predator-prey
system. Recent work that employed generalized functional response for modelling the pop-
ulation dynamics in the ecosystem has been further extended by the same authors for three
species impulsive system [4], as well as a m-prey and n-predator impulsive system [5] under
seasonal disturbance factors, had also been reported. One of the drawbacks for all the pre-
vious work has been the modelling of the ecosystem when the control strategy is instanta-
neously applied, and at the same time to deduce the effects of the control immediately after
the control strategy is implemented. This methodology has modelled the reduction of pest
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population over a short period of time after the control strategy is applied, which may over
estimate the number of pest deaths than it would actually happen in practice. To model closer
in line with the real environment, it is necessary to introduce a continuity of control strategy,
like the Filippov system [6-20], which allows the monitoring of the increase or the reduction
of pest population before and after the control measures have been applied. In recent years,
there are many encouraging reports that use Filippov system for pest control such as the work
by Tang Sanyi et al. In 2019 Qin et al. [10] investigated the threshold control strategy for a
non-smooth Filippov ecosystem which featured a group defense from the pest. In 2021 Arafa
et al. [14] studied the effectiveness of population dynamics by using Filippov pest control
model which incorporates with a time delay. The global dynamics of the Filippov predator-
prey model which featured two independent thresholds for the integrated pest manage-

ment (IPM) was discussed by Li et al. [8] in 2022. At the same time, Jiao et al. [8] probed the
dynamics and bifurcations of the predator-prey system using Filippov Leslie-Gower response
function to model the group defense of the pest with time delays.

As far as the authors aware, most if not all of the existing literatures including those men-
tioned above in [6-21], have assumed a single rate of feeding by the prey, i.e. the predation
process is described by a single functional response for the entire period within the predator-
prey system. This paper attempts to fill the gap by modelling a non-smooth Filippov predator-
prey system with threshold strategies is investigated incorporating several different func-
tional responses for the first time. Different from previous research, the present work devel-
ops the modelling for an integrated pest management (IPM) especially with several differ-
ent functional responses such as Holling IT functional response and ratio functional response
etc, which should be selectively applied dependent on the population of the prey. In prac-
tice, the mutual competition amongst the predator is dependent on its population for a given
number of prey in the environment. For example, in the predator-prey system, the thresh-
olds about the preys are related to the population of predators. When the number of preys x(t)
are in abundance, namely x(t) > ET > 0, where ET is the economic threshold, then the preda-
tor which has population of y(t) should not mutually compete for food as the result of suffi-
cient of food for the predators. Thus the interactions of the prey-dependent can be described
%x(t) 0<x(t)<a

x(t)>a

x(t) rx(t)?
a+bx(t)’ a+bx(t)?

response 1 (1 - e'“"(t)) and so on. As an example we can adopt the Holling-II functional
response to obtain the subsystem model of the predator-prey system

by functional responses such as Holling-I functional response { , Holling-

II functional response Holling-III functional response and Ivlev functional

dt) 1+bx(t1) (1)
dy(t) _ -Dy(t) + ex(t)y(t)

{dx(tl) _ rx(tl)(l _ %) _ ax(tl)y(tl)

dn 1+bx(t1)

where x (1), y (t;) denote the densities of the prey (pest) and predator (natural enemy) at
time t;, respectively. r > 0 is the intrinsic growth rate of the prey, K > 0 is the carrying capacity
of the prey, D> 0 is the death rate of the predator. The e > 0 denotes the rate of converting the
consumed preys into the growth of predators, and the % is the Holling-II functional
response which represents the rate of predation by the predator per-capita.

While the number of preys is declining to less than a certain multiple of the number of
predators x(t) < ET, the mutual interference between predators will be triggered to take effect
and the predator-dependent type will dominate the interactions between the predator and

prey. In this case functional responses such as ratio-dependent %, and others like
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the Beddington-DeAngelis functional response

exp },C(ngm) and so on are more suitable to model the predator-prey system. The ratio-dependent

functional response % is selected here in the predator-prey models and the following

subsystem can be obtained:

W, Watt-type functional response

bx(ty)+cy(t1) (2)
dy(t1) =-Dy(t;) + ex(t1)y(t1)

{dx(tl) = rx(f)(1 - X(tl)) ax(ty)y(t)
dt

bx(t1)+cy(t1)

In the paper, we develop the Filippov predator-prey model by combining the above two
subsystems:

dx(t) _ rx(ty) (1 - %) _ax(t)y(t) x(t;)>ET

dt; 1+bx(t1)
S = -Dy(n) + SR ®)
L) () (1- ) - 2O (1)) <ET
dy(t ex(t t
L =-Dy(n) +
that is:
dx(t) _ (1) ax(t)y(t)
{XI ) (-5 - it o m (@)
dy(t1) _ ex(t)y(t1)
i ==Dy(t) + e
in which
_ 1 X(tl) >ET
70 x(t)<ET
and

0 x(t1)>ET
€=
1 x(t1)<ET

Note that the ET is set by certain threshold strategy. In order to simplify the system in (4),
the parameters and variables can be defined as follows:

akK D K
t:rt13x1 7}/1 y)al 73b1:hK7Dl:E)el:e73C1:CK

Then we can obtain:

N+b1x1 () +c1ey (t) (5)
dyi (t) 1)1)/1 (t) i exi (O (1)

(22 -n00n0)- it
dt

n+bix; ([)+C1 €)1 (t)

in which

B 1 Xl(t)>ET
7 0 Xl(t)<ET
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and

0 xl(t) >ET
€=
1 xl(t) <ET

The aim of this study is to investigate the complex dynamics including bistabilities of the
ecosystem when the relative populations of the prey and predator is substantially different,
by modelling the non-smooth Filippov system with multiple switchable functional responses
for the very first time, which highlights the significant role of the threshold in the process of
pest controls: it is seen from this work that different types of equilibrium points can occur
dependent on the choice of the economic threshold (ET). Finally, the resulting conclusion
is given the corresponding biological explanation. The organization of this paper is outlined
as follows: Sect 2 gives a summary of how various regimes such as the sliding region, cross-
ing region and escaping region are defined, subsequently the five different kinds of equilib-
ria that will be discussed in the following sections of the paper will be briefly introduced. In
Sect 3, the dynamical behaviors of two subsystems (i.e. the system (1) and (2) as set out in the
above paragraphs) and their dynamic behaviors on the discontinuity boundary X (see text in
Sect 2) are derived. Subsequently their equilibria together with the existence of three regimes
such as the sliding, escaping and crossing domains, are derived. The dynamics of the sliding
mode and various forms of equilibria within the Filippov system (i.e. the system (5) in the
above paragraph), and their global asymptotic stability are discussed in Sect 4. In Sect 5, we
probe the bifurcation set of equilibria and their global stability of equilibria through numer-
ical simulations. Subsequently the paper is concluded in Sect 6 and the theoretical results are
discussed in the context of biological factors and practical viewpoints.

2 Preliminaries

Denote

D={(x1,y1) ER*"|x; > 0,y > 0},
H(Z) ZH(Xl,yl) =X —ET,

=[Fi1, Fi,]%,
=[Fo1, F]",
FH=<F,VH>(i=1,2),
Z:(x1>y1)~

Therefore, the system (5) can be rewritten as the following generalized system with discon-
tinuous in the right-hand side as shown below:

(6)

(1) - F(Z) ZeG),
\E©@) zeG,

PLOS One | htitps://doi.org/10.1371/journal.pone.0334425 October 23, 2025 5/19



https://doi.org/10.1371/journal.pone.0334425

PLOS One Filippov predator-prey system

in which
G, ={H(Z) > 0},G,={H(Z) <0}.

And the discontinuous boundary between the region G; and G, is definedasZ={Z €
D|H(Z) =0}, so we have D = G; | J Z |J G,. The discontinuous boundary ¥ can be classified as
the following three different regions:

(i) The Sliding region £, = {Z € X, F{H< 0 and F,H > 0}, which implies that once the
trajectories of the system touch the boundary Z, it will stay in the same region.

(ii) The Crossing region £. = {Z € £, F{H - F,H > 0}, which implies that once the trajecto-
ries of the system touch the boundary Z,, it will propagate to another region.

(iil) The Escaping region %, = {Z € Z,F;H > 0 and F,H <0}, which implies that once the
trajectories of the system touch the boundary Z,, it will propagate towards either region G; or
Gz.

Definition 2.1. [8] Provided F,(Eg) = 0 and Eg € G, (F,(Eg) = 0 and Eg € G,), then Eg is a
real equilibrium of system (6).

Definition 2.2. [8] Provided F,(Ey) = 0 and Ey € G3(F,(Ey) =0 and Ey € G,), then Ey is a
virtual equilibrium of system (6).

Definition 2.3. [8] Provided E, € X and AF\(E,) + (1 - A)Fy(E,) =0, where 0 <A < 1,and
A= %I, then E, is a pseudo-equilibrium of system (6).

Definition 2.4. [8] Provided F;(Ep) = 0(i = 1,2) and E, € %, then E;, is a boundary equilib-
rium of system (6).

Definition 2.5. [8] Provided FiH(Er) = 0(i=1,2) and Er € Z, then Er is the tangency point
of system (6).

Definition 2.6. [8] Provided Er € £, FiH(Er) = 0 and FH(Er) <0 (or FH(Er) > 0), then
Er is an invisible (or visible) tangency equilibrium of subsystem (1). Similarly, provided Er € %,

F,H(Er) =0 and F5H(Er) > 0 (or FAH(Er) <0), then Er is an invisible (or visible) tangency
equilibrium of subsystem (2).

3 Qualitative analysis of the subsystem (1) and (2)

Lemma 3.1. Suppose that Z(t) = (x1(t), y1(t)) is any solution of system (5) with the initial
value Z(ty) = (x1(t9), y1(t0)), x1(f0) > 0,y1(f0) > 0, then Z(t) > 0, namely x,(t) > 0,y,(t) >

0.
Proof: As
dx; () arx1 () (1)
o= [ (D (1 -x,(8)) - x1=0=0,
dt =0 = [x1(£)(1 = x1(2)) n+b1x1(t)+61€y1(t)]| 0
dy, (1) ewx1 () (1)
—0=|-D t =0=0.
dt |y1_0 [ 1)/1( ) * n+ blxl(t) + C1€}/1(t) ]|y1—0
Thus Z(t) > 0 as long as the initial value satisfies x1 () > 0,y1(%)) > 0. ]

Lemma 3.2. Suppose Z(t) = (x1(t), y1(t)) to be the solution of system (5), then the set Q =
{(x1,31) ER*™|x; < 1, 2x+ < 8} is positively invariant and attracting for any given initial
values in R**.
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Proof: 1t follows that

dxi (1) ax1 (H)y1 (1)
0 xi1 () (1-x (1)) - 77+b1x1(t)+c1€y1(t)_ x1 (1) (1-x:(t)).

By solving the above equation, we can obtain that:

1
t) < >0),
x(t) < 1+ce*t(c_ )
which results in

lim x; (t) < 1.

t—o00

Then we can get
Xl(t) <l
Define the function W (£, x) = ZLx; (£) + y1 () , then:

dw (tx) _erdn () dn(8) _e
it a dt dr ax(t)(l x1(1)) =Dy (1),

which is the upper right derivative of W (¢, x) along a solution of the system in (5) with
respected to time and for 0 < A < Dy, we have

dW(tx)

+AW (t,x) = —xl(t)(l +A-x1(t)) +(A-D1)y (t)

< %(/H 1) (t) - “"“” 2 (02 - (A+ D (1))
%[xl(t) _ (/l;—l)] (ﬂ,+l) 81 (/1+1) 61

4a; - 4a;

Thus there exists a positive constant number M = , such that

_ (A1)’
aa,
dw (t,x)

AW (£,x) <M,

By solving the above equation it produces:

t
Mfl ]:%+Ce’}"—>%/[(t—> )

W (t,x) = e"“[/ Metdx + C]=e™[C+

Hence W (¢,x) is ultimately bounded by a constant, namely %xl + < %, thus Q is posi-
tively invariant and attracting for any given initial values in R**. O

3.1 Dynamical behaviors of the subsystem (1)

When x, (¢) > ET the Filippov system (6) in section 2 is qualitatively dependent on the sub-
system (1). There are three equilibrium points in the subsystem(1) namely: Ey; = (0,0), Ey; =
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(1,0), E; = (x7,y7), in which

D] - (1—xT)(1+b1x’f)

- - b]Dl 1= ay

—-%

As (xl,yl) € R**, namely x1 > 0,e;-b1 Dy > 0, we can obtaln that Dy < 3955 )7 > 0,1-x7 >
er
by *

b , S0 we can get that D; <

Theorem 3.3. (i) The equilibrium Ey; = (0,0) isin a saddle and it is unstable all the time. (ii)
The equilibrium point E11 =(1,0) is in a saddle when Dy < il “—, and it is locally asymptotically
stable when D; > (iii) The interior equilibrium point Ey = (x}, y7) is locally asymptotically

b+1

e1(b1-1)
stable when gy <D; < b1+1

Proof: Consider the Jacobian matrix about the equilibrium point of the subsystem (1):

a1)1 a1x
J= 1-2x e_}’(1+l¢1x1)2 B 1+}31ic1
1)1 e1X1 M
(1+b1x1)? _Dl 1+b1x)
1 0
(i) Let x; = y; =0, we can get the J(Eq;) = D | Then we obtain the eigenvalues of
-D,

J(Eo) willbe A; = 1,4, = -Dj <0, so the equilibrium Ey; = (0,0) is saddle and unstable all the

time.
ay

-1 -
(ii) Let x; = 1,1 = 0, we can get the J(E;;) = ( 0 D 1:”1 ) , then we obtain the eigen-
- 1+b1

values of J(E1) is Ay =-1,A4, =-Dy + 1+b . When D) < %+, then 4, > 0,50 Ej; = (1,0) is
saddle. Similarly, when Dy > 3=, then /12 <0,s0 Ej; = ( 1 0) is locally asymptotically stable.
(iii) Let x; = x7, y1 = ¥}, we can get the

« 1-x ax}
J(Ey) = 1-2% - Ter TTrbie
1) = er (1-x7) e1xt >
_al=x) _D: + 1
a(1+byxt) LT Tabyaf

then we obtain the result that all eigenvalues of J(E; ) are negative when tr(J(E;)) < 0 and
|J(E1)| > 0, that is, ;:8’:;1)) <D < 474, the interior point E; = (x7,y7) is locally asymptotic
stable. O

Theorem 3.4. The interior point Ey = (x7,y1) is globally asymptotic stable when b(1 - _- b1D1 )
<L

Proof: Define

* * x 3k 3k
Vi =Dy [x - x] —xllnx—i] +Dy[y1 -] —yllny—i]

1 N

where D; and D, are arbitrary positive constants. Then we can obtain:

avy (01 = x7) dx (1 -1) dn
T _p AT ) O 7
a0 a7y dr 2
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Substituting the subsystem (1) into the above equation (7) which generates

av, 2 a1biy;

Dy (g - 2 )P[-1 +

g Db =) = A N U b))
(%1 =x7) (1 - 1)
(1+b1x1)(1+b1x>f)

e1D, - a1D1(1 + ble).

Put D;=1and D, = M, then

&_ )2 arbiyy
a - )l (1+b1x1)(1+b1x1)]
%\ 2 alblyl
X1+ — .
<(X1 xl) [ + (1+b1x’f)]

When -1+ (fﬂzli T*) <0, then it has that dVl < 0. By employing the value of y}, we can get

b(1-x7) <1, namely b(1 -

ebD)<1. ]

3.2 Dynamical behaviors of the subsystem (2)

When x, (t) < ET, the Filippov system (6) is qualitatively dependent on the subsystem (2).
There are three equilibrium points in the subsystem (1): E;g = (0,0), E;1 = (1,0), E; = (x5, 55),

in which
% allel -aer (1 —x2)61X2
X, =1+ Vs =
ci1é; a1D1
As (x5,y5) € R**, namely x} > 0, we can obtain that D; < b Liys >0,1 - x5 > 0,wecan

obtain that "% < Dy, so we can get that 28514 < Dy <
arby aby h1

Theorem 3.5. (i) The equilibrium Eyy = (0,0) is in a saddle and it is unstable all the time.
(ii) The equilibrium point Ey, = (1,0) is also in a saddle when D < £+, and it is locally asymp-
totically stable when D > 7+ L. (iii) The interior point E; = (x3,5) is locally asymptotically stable

2
(Z]D]-i-'z1 Dy

when Dy < and ar < ——p—

Proof: Consider the Jacobian matrix about the equilibrium point of the subsystem (2):

2 2
_ _ ajcry| _ arbixy

= 1-2x (byx1+c1y1)? (byx1+c1y1)?

erc1y] —D elble

(byx1+c1y1)? (b1x1+c1y1)2
1 0
(i) Let x; = y; =0, we can get the J(Ey) = (0 D ) . Then we obtain the eigenvalues of
-D,

J(Ey) willbe 1; = 1,4, = -D; <0, therefore the equilibrium E,o = (0,0) is in a saddle and it is

unstable all the time.
-1 _a
(ii) Let x; = 1,1 = 0, we can get the J(E,;) = ( 0 -D, thr ﬂ ) , then we obtain the eigen-
values of J(E,;) will be 4; = —1 ,Ay =-Dj + el . When D; < - then Ay > 0,80 E;; =(1,0)isina

saddle. Similarly, when D; > i 2L then A, < 0 so En=(1, 0) 1s locally asymptotically stable.
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(iii) Let x; = x3, y1 = ¥5, we can get the

2 +2
1—2x* aic1y, ajbix,
- 2 7 (byx+c vF)2 T (b xt e v5)2?
J(E:) = S G
€11y, —D e101x,

(brxs+c1y5)? 1 (b5 +c1y3)?

then we obtain the result that all eigenvalues of J(E;) are negative when tr(J(E;)) <0 and

e1Dy+—1—
[/(E2)| > 0, thatis, Dy < ;"7 and a; < %, the interior point E, = (x5, y5) is locally

asymptotically stable. ]

Theorem 3.6. The interior point E; = (x5, y3) is globally asymptotically stable when
a1b1 -ejc; <0.

Proof: We select the Dulac fuction G(x,y) = ﬁ, then the following can be obtained:

a(GF21) + a(GFzz) _ 1 . albl —-e10;

O0x dy y (bixy +cy)?

Thus based on the Bendixson-Dulac criterion, when a,b, - e;¢; <0 there are no any closed

orbits in the region G, therefore the interior point E, = (x5, y5) is globally asymptotic sta-
ble. ]

4 The dynamic behaviors on X and equilibria

This section will be divided into three parts, firstly the existence of the sliding domain, escap-
ing domain and crossing domain will be studied. Then the sliding mode dynamics will be
focused and finally different kinds of equilibria points in Filippov system (6) will be examined
in more details.

4.1 The existence of the sliding domain, escaping domain and crossing
domain

Let’s consider the discontinuous boundary X and through simple evaluation on the boundary
gives:

_ax () (t) -0
1+ byx;(t)
a1 (D)1 (1)

FH=x(t)(1-x(1)) - m -~

>

FiH=x(t)(1-x(¢))

where VH = (1,0) and x, (¢) = ET. Hence, we can get that:

_(1-ET)(1+b,ET)
- 0

_ (1-ET)b,ET
“a,-¢,(1-ET)

Ys1

Ys2

Next, consider the following three cases:
case 1: When a; - ¢;(1 - ET) - b1c;ET(1 - ET) > 0, thena; - ¢;(1 - ET) > 0, thus y > 0
and y;; > s, we can obtain that:
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(i) Sliding region Z; = {(x1,1) €Z | y2 <1 < ¥s1}-

(ii) Crossing region . = {(x1, 1) €Z | 0<y1 <y} U{(x1,01) EZ | 1 > ya }.

case 2: When a; —¢;(1-ET) > Oand a; - ¢;(1-ET) - b1c; ET(1 - ET) <0, thus y;; > 0 and
¥s1 < Ys2, We can obtain that:

(i) Sliding region Z; = {(x1, 1) €Z | ¥a1 <¥1 <¥s2}-

(ii) Crossing region £, = {(x1, 1) €Z | 0<y1 <ya} U{(x1,01) EZ | 31 >y }-

case 3: If a;—¢; (1-ET) <0, then a; -¢; (1-ET)-b,c ET(1-ET) <0, thus y,, < 0 and yq > ye,
we can get that:

(i) Escaping region =, = {(x1,y1) €Z | 0<y1 <yq }.

(ii) Crossing region Z; = {(x1,y1) €Z | y1 > ya1 }-

According to the above results the following theorem can be produced:

Theorem 4.1. The sliding region and escaping region can not exist at the same time.

4.2 Sliding mode dynamics

By using the Utkin’s equivalent control method the following can be obtained:

dH dx(t) arx1 () ()
P L OLCE LNy oy s gy o

When x; (¢) = ET and by solving the above equation:

arx1()y1(t)

n+bix (t) +cren (t) = m

then we can get:
e1x1()y1(t)
n+ blxl(t) + C1€y1(t)
e
=-Diyi(t) + —(x1 - x7)
a;

elET(l - ET) A
a; -

dy: (t)
N - D
o w(t) +

=-Diy(t) + ¢(n).

4.3 Five kinds of equilibriums of Filippov system (6)

In this section five different kinds of equilibriums in the Filippov system (6) is discussed here.

It follows from the section 3 that E; = (el—giDl , (l_xf)i?blx?) )

rium of the subsystem (1), and E, = (1 + 22 1Cl;161—a161 , (1-;1’2*[))?1@ ) is the unique positive equilib-
rium of the subsystem (2). The nature and types of the above two equilibriums can be studied
as follow:

(i) When the condition that elfii o > ET is satisfied, then E; is in a real equilibrium and
hereby it is termed as Ey. Otherwise E; is a virtual equilibrium and hereby termed as E},.

(ii) When the condition that 1 + ’”lef% < ET is satisfied, then E, is in a real equilibrium
which hereby termed as Ex. If not, then E, is in a virtual equilibrium and hereby termed as E2,.

Pseudo-equilibrium: There are two different ways to satisfy the pseudo-equilibrium con-

dition E,(ET, y,) € X as it is to be shown in the following: one way is to obtain the condition

is the unique positive equilib-
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by solving the equation ¢(y,) = 0, where y, = aETU-ET) The other is from the definition 2.3:

a1 Dy
aixiy; _ __aixi)
1 x(1-x) - 1+0%, 1-1 x(1-x) bxiren | (O
_D + €1X1)1 + ( ) -D + €1X1)1 - 0 .
lyl 1+b1X1 lyl b1X1+61y1
By solving the above equations the following can be obtained:
a1x1y1
_ xl(l _xl) T bixitap
- aix1y1 aixiy1 >

bixi+ay 1+b1x)

then by substituting the value of A into the above equation it yields the pseudo-equilibrium
E,(ET,y,) such that:

_ 61ET(1 - ET)
yp - a1D1 '

According to ¢’ (1) = -Dj <0 and the stability theory of the ODE it can be shown that the
pseudo-equilibrium Ej, is locally asymptotic stable.

Theorem 4.2. (i) When a,-¢,(1-ET)-byc,ET(1-ET) > 0, the pseudo-equilibrium E, exists
iff the real equilibrium Ey and E% are both coexisted.

(ii) When a;—c;(1-ET) > 0 and a,-¢;(1-ET)-b,c; ET(1-ET) < 0, the pseudo-equilibrium
E, exists iff the virtual equilibrium E\, and E3, are both coexisted.

Proof: Due to the fact that:

@lET(1-ET) (1-ET)(1+ biET)

Y=Y = a,D, a
_ (1-ET)(e;ET- D, - bETD,)
- a1D1
_ (1-ET)(er - Diby) (ET - 315)
a1D1 ’
etET(1-ET) (1-ET)b,ET
Y1-Y2 = -
a1 D, a; - c1(1-ET)

_ ET(1-ET)[ae; - erc;(1 - ET) - a; D1 by ]
a1Di[a; - ¢;(1-ET)]
- ET(1-ET) ‘ET_1_almCl;7lel—ale1
a\Di[a; - ¢;(1-ET)] o

>

where x} = el_gﬁ, =1+ ‘”mcli%, 1-ET > 0,e; - Dby > 0.

Thus (i) When a, - ¢;(1-ET) - byc,ET(1 - ET) > 0, then the pseudo-equilibrium E,, exists
S Yo <y1 < ys1 © x5 < ET < x} < and the real equilibrium E} and E% are both coexisted.

(ii) When a;-¢; (1-ET) > 0 and a;-¢; (1-ET)-b,¢c; ET(1-ET) < 0, the pseudo-equilibrium
E, exists € yq < y1 <y € ET > x| and ET < x5 < then the virtual equilibrium E}, and E, are
both coexisted. O
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Boundary equilibrium: It is from the definition 2.4 that the boundary equilibrium should
respectively satisfy the following equation:

dx1(f) =x1(H)(1-x(8) - ax (O (1) _ -0

. 1+b1x1(t)
500y, (1 22800 1y ®
xl(t):ET

and

dxl(t) _ (t)(l —XI(t)) _ arx (H)y1 (1)

) (o) )

t erxi(t t
i = D)+ 5 e = © ©)
X1 (t) =ET

Therefore, the Eq (8) has the solution if and only if ET =
rium can be obtained:

o b 5, » then the boundary equilib-

(1—ET)(1+b1ET))

E} = (ET,

aiD;

bi-ae
Similarly, the Eq (9) has the solution if and only if ET = 1 + S=255, then the boundary

equilibrium can be obtained:

1-ET)b,ET

E; = (ET, (A-EDbET ).

a) —C; (1 - ET)

Tangent point: By putting F; H = 0 and F,H = 0, then the two tangent point can be com-
puted:

Eb (ET (1-ET)(1 + b,ET)

(1-ET)b,ET
o L= (BT )

).

Theorem 4.3. (i) When D, > ﬁlﬂr then the tangent point EIT is visible.

(ii) When (I—ET)blET (El—lel)ET

2o (LED) Do, then the tangent point EZ is visible.

Proof: (i) Through calculation we can get:

FiH | =x()(1-x(t)) - M

d(FiH
FiH|p = (al )F1H|E1

) ( 1221 (1) [1:2121(8)]2) (Xl(f)(qu(f))allilb(ltzfér()f))
- (O] e1x1 (Dy1 ()
’1i1b?xl(t) -Diy1(H)+ 11+1b1x1](t)

|E1T:0’

|E1T

_aDix (yi (1) eranxi(H)yi (1) |

1+ bix (1) [1+b1x: (1) ]? &
=x1(t)(1-2x1(t)) (D - lilzlitzt))

1 ie wias 2 e ET
Thus, E7 is visible < F{H > 0 & Dy > 1557
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(ii) Similarly we can obtain:

arx (t)y (1)
Bl = -a) - v an@ B0
2H | g =2 ()(1-x(0) (D) +en()
d(FH
EH|p = (azz )F2H|E2

E2

2
B B aycyyy () apx1 (D)yg (1)
2 () G rean OF (xl(’)(“"l(‘))‘hlﬁl<1r>+c11y1(t)) |
T

_abhd© Dy () + 2 On O
Tl (e (D12 1 byxy () +ery1 (1)

) abixi()Diyi(t)  embixg(D)yi (1) .
[ (6) + e (O o () + ()] '
_ b ()(-xn(0),,,  ex(D)
bixi(t) + ey (t) ! bixi(t) + e (t)”

(L-ET)biET . (e1-byDy)ET

2 ... 2
Thus, E7 is visible € FH < 0 & o (1ED) i

5 Numerical simulation and bifurcation analysis

In this section the bifurcation set of equilibria and the global stability of equilibria will be
assessed by means of numerical simulation methods.

5.1 Bifurcation set of equilibria

It can be seen from the above that the dynamics of the Filippov system (5) are greatly depen-
dent on the ET and equilibria points of the system. Moreover, the occurrence of various types
of equilibrium points are also dependent on the value of ET and also the death rate of Preda-
tors D;. Thus the bifurcation diagram as function of bifurcation parameters ET and D, is con-
structed in order to explore the richness of various possible dynamics of the Filippov system
(5). Three critical curves are defined as follows:

D, )
e — bll)l
a1D1 bl —ae;

L1 = {(Dl,ET) |ET:

L, = {(Dl,ET) |ET: 1+
e

}

€1
b1+1

Ly={(Dy,ET) | D, =

By putting the y;, = y; and y;, = y», then we can obtain the curves L; and L, can be plotted
respectively to study the relationship between pseudo-equilibrium E,, and the sliding segment
%5, namely Yo < y1 < ¥s1 O Y51 < ¥1 < ¥s2. Also on the left of the curve L, it depicts the interior
equilibrium point E; which is labelled as E}, and it turns into EX on the right. Similarly, the
curve L, is the dividing line between E and Ex. Also, the curve L; is the dividing line for the
existence of the interior equilibrium point.

By fixing all other parameters a; = 0.4, b; = 0.5,¢; = 0.5, ¢; = 2, then the Dy — ET parameter
plane (Fig 1) can be divided into five regions by these three curves, and the existence of pos-
sible equilibria is indicated in each area. It is seen that the pseudo-equilibrium E, coexists in
the region I, and 4. It is worth mentioning that the boundary equilibria is located only along
the curves. Moreover, if the parameter D is fixed to 1, then we can see that as ET increases:
Ej and ER coexist — E3 exists — EX and EX coexist — Ej exists — EX and E} coexist. Thus it
is evidenced that ET plays a key role in the analyses of bifurcations of the Filippov system (5).
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Fig 1. Bifurcation set of Filippov system (5)’s equilibria, where the values of other fixed parameters are
a; =0.4,b; =0.5,c1 =0.5,e; = 2.

https://doi.org/10.1371/journal.pone.0334425.9001

5.2 The global stability of equilibria

The global stability of the equilibria in the Filippov system (5) is validated in this section
through numerical simulation. In here we consider two cases of when E; = (x7,y}) and E; =
(3,55

(i) When the parameters are set as a; = 0.4,b; = 0.5,¢; =0.5,e; =2,D; =1 it can be
shown through simple calculation that x7 = % and xj = 0.4 indicating that x] > x5. When
ET is varied the interior equilibrium points E;, E, and pseudo-equilibrium E, changed
as shown in Fig 2(a). For example when ET = 0.3 < x} < x}, then E; becomes ER and E,
becomes E} such that E; becomes the only real equilibrium point where all solutions tend
to converge into E,; eventually, as it is shown in Fig 2(b). When x5 < ET = 0.5 < x{, then
E, is still EX and E, becomes EX. In this case both E; and E, are in real equilibrium and
all solutions tend to converge into either E; or E, eventually, as it is shown in Fig 2(c).

When x < x} < ET = 0.8, E; becomes E} and E, becomes EX. Then E, is the only real equi-
librium in this case and all solutions tend to converge into E, eventually as it is shown
in Fig 2(d).

(ii) Similarly let’s set the parameters a; = 1,b; =2,¢; =2,e; =3.5,D; = 1 and it can be
shown by simple calculation that x7 = % and x; = 0.8 which indicates that x7 < x5. As value of
the ET is increased or decreased the interior equilibrium point E;, E; and pseudo-equilibrium
E, are subsequently affected as shown in Fig 3. For example when ET = 0.5 < x] < x5, then E;
and E, becomes EX and E) respectively. It can be seen that E; becomes the only real equilib-
rium and all solutions tend to converge into E; eventually as shown in Fig 3(b).When x} <
ET =0.75 < x5, E; still exists as EY and E, becomes E;’ . Then E; and E, are both the virtual
equilibrium, we can clearly see that all solutions tend to deviate from both E; and E, and tend
to converge into the pseudo equilibrium Ep, which exhibits as the global asymptotic stability
as shown in Fig 3(c). However when x} < x5 < ET = 0.9, then E, becomes E} and E, becomes
EX. In this case E, becomes the only real equilibrium and we can see that all solutions tend to
converge into E, eventually as depicted in Fig 3(d).
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Fig 2. Illustrates the dynamical behavior of the Filippov system (5) which is plotted by using parameters

ap =0.4,b; = 0.5,¢; = 0.5, e; =2,D; = 1: (a) Shows the existence of the interior equilibrium point (in solid blue

plot) for subsystem (1), the dotted curves (in red and black) are the interior equilibrium point of subsystem (2). (b) E;
becomes the only real equilibrium point and all solutions tend to converge into E; eventually. (c) Both E; and E, are the
real equilibrium points and all solutions tend to converge either into E; or E; eventually and (d) E; becomes the only real
equilibrium point and all solutions tend to converge into E; eventually.

https://doi.org/10.1371/journal.pone.0334425.g002

6 Conclusions and biological significance

Nowadays, the Filippov system has been found to be useful to describe the real-world prob-
lems and investigated in many fields, such as those in physics, ecology and many other mul-
tidisciplinary subjects like networked control systems, multi-agent systems, neural networks,
mechanical systems as well as in the integrated pest management for the ecosystem mod-
elling etc [6-24]. Despite great deal of reports on non-smooth Filippov predator-prey system
[6-24], none of them have ever considered using functional responses together with the Fil-
ippov system simultaneously. This work explores the behavior of the Filippov predator-prey
system by imposing threshold policy on the population of prey for the initiation of a mixture
of functional response types to study the dynamic of the ecosystem for the very first time. In
this study the Holling-IT and ratio functional responses have been implemented in the model
depending on the population of the prey. For example, the mutual interference of the preda-
tor will play an important role when the number of prey is below the economic threshold
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Fig 3. Illustrates the dynamical behavior of the Filippov system (5) similar to the above figure but using different
parameters a; = 1, b1 =2,¢; =2, e, = 3.5,D; = 1: (a) Shows the existence of the interior equilibrium point for subsystem
(1) in solid blue plot, and the interior equilibrium point of subsystem (2) in red and black lines. (b) E; becomes the only
real equilibrium and all solutions tend to converge into E; eventually. (c) Both E; and E; are the virtual equilibrium points
and all solutions tend to converge away from E; or E; eventually and to form a pseudo equilibrium Ep instead. (d) E; is the
only real equilibrium and all solutions tend to converge into E; eventually.

https://doi.org/10.1371/journal.pone.0334425.g003

(ET), thus the ratio functional response has been adopted in this work to model the ecosys-
tem by taking into account of the competition among the predators. On the other hand when
the population of the prey reaches or exceeds ET, the mutual interference among predators
becomes negligible thus the Holling-II functional response has been selected in this work to
model the dynamics of the ecosystem.

So we make use of Filippov theories and qualitative techniques with numerical simulations
to investigate dynamical behaviors of proposed system in detail, including global dynamics
of subsystems, the existence of sliding mode and different types of equilibria, sliding mode
dynamics and the global stability of equilibria.

Stability analysis (asymptotic analysis) provides critical support for integrated pest man-
agement (IPM) by studying the equilibrium states of systems under long-term dynamics [3-
5,23,24]. By establishing Differential Equations, the asymptotic stability of the pest-predator-
crop system is analyzed to predict the long-term equilibrium points after reducing chemical
pesticide use. For example, predator-prey model in [23] demonstrated that when negative
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feedback mechanisms exist in the system, asymptotic stability can suppress pest population
outbreaks.

Furthermore, the proposed Filippov system together with the switchable functional
response had been validated through numerical simulations. It has been demonstrated that
the real equilibrium and pseudo-equilibrium points can coexist when the population of the
prey is less than that of the predator (i.e. x] <x} ); and in the case of when the population
of the prey is more than that of the predator (i.e. x{ > x3), only the virtual equilibrium and
pseudo-equilibrium can coexist. As the economic threshold (ET) increases and when x} > x3,
then the following equilibrium sequences can coexist: Ey and EX coexist — EX and EX coex-
ist » ER and E} coexist, as explicitly depicted in Fig 2 above. Since both E; and E, are both
the real equilibrium, all solutions tend to either E; or E, eventually. This is an extremely inter-
esting bistability phenomenon that can be seen in this switchable Filippov system. Similarly,
when the ET increases and x} < x5, then the following equilibrium sequences can coexist:

Ey and EX coexist — Ej and E} coexist — EX and E} coexist, as it is demonstrated in Fig 3
above. According to our results it has also shown that the sliding and escaping regions can-
not coexist under our proposed system. In particular, it is noted that all trajectories of the
prey and predator’s population are eventually converging into certain equilibrium points as
it is demonstrated in the numerical simulation in Sect 5. This implies that there exists global
asymptotic stability of equilibrium points under the proposed system, in which the popula-
tion of preys eventually reaches a steady state of density at the real equilibrium and pseudo-
equilibrium points. This means we don't need to take any action at this point.

This work also highlights the significant role of the threshold ET in the process of pest con-
trols.So the reasonable control threshold (ET) can be effective for prevention and control of
pests. Consequently, our findings are valuable for how to draw up strategies effectively and
when to take measures.This paper enriches the theoretical and methodological framework of
future system dynamics modeling, holding significant theoretical and practical implications.
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